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ABSTRACT

A NOVEL APPROACH TO THE PART ORIENTATION PROBLEM FOR
ROBOTIC ASSEMBLY APPLICATIONS

Brian J. Slaboch, B.S.

Marquette University, 2011

SCARA (Selective Compliant Assembly Robot Arm) type robots are the
most common type of assembly robots. These robots have four degrees of freedom
(three rotational and one translational). Typically these robots are used for
assembly tasks that take place along a vertical axis. Many times, however, assembly
tasks take place along a non-vertical axis.

To account for non-vertical axis assembly, parts must be fed in a proper
orientation to allow for correct assembly. Parts feeders and specialized end-effectors
are typically used to feed parts in their proper orientation. This thesis investigates a
novel end-effector that can be used to feed parts for industrial assembly
applications. Specifically, the purpose of the novel end-effector is to provide a
SCARA robot with an added selectable degree of freedom.

This end-effector aims to bridge the gap between complex anthropomorphic
grippers and simple binary grippers. The approach is novel in that the end-effector
interacts with the environment to produce the added degree of freedom. New path
planning algorithms were developed to work in conjunction with the novel
end-effector. A prototype end-effector was designed, built, and tested to prove the
validity of this new approach.
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CHAPTER 1

Introduction

Assembly lines were first made famous by Ford Motor Company at the start

of the twentieth century. Mass production of automobiles revolutionized

manufacturing processes. Businesses realized that a low unit cost per manufactured

part led to a competitive advantage. Companies continue to find innovative

manufacturing processes that allow them to lower costs and increase quality.

The assembly lines created by Ford have changed significantly from the early

1900’s. In many cases, robotic manipulators have replaced human workers on

assembly lines. In the automobile industry robots are used for spot welding and

other assembly tasks. Robotic manipulators can be used to decrease assembly time

and reduce human error. However, one drawback of robotic manipulators is that

they lack flexibility. Parts must be fed in a specific part orientation prior to

assembly. Current parts feeding devices can lead to high capital costs and offer little

flexibility. There is a need to create more efficient and flexible ways to feed

industrial parts.

The ability to orient a part prior to an industrial assembly task is known as

the part orientation problem. This can include orienting a part prior to grasping it,

or this can refer to simultaneous grasping and orientation. As will be shown in this

chapter, there are two common approaches to the part orientation problem. These

two areas can be broadly categorized into parts feeding systems and end-effector

designs (Fig. 1.1). End-effector designs can further be broadly categorized as either

complex anthropomorphic hands or simple binary grippers. Complex

anthropomorphic hands provide the desired flexibility for industrial assembly tasks

but are difficult to control due to the coordination of all of the degrees of freedom

(DOF) of the system. Conversely, binary grippers are easy to control but do not

provide the necessary flexibility.

This research aims to bridge the gap between the two and determine a way
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to combine the flexibility gained from using anthropomorphic hands with the

simplicity of binary grippers. To limit the scope of the design problem, this research

will focus on end-effector designs that can be used in conjunction with a SCARA

(Selective Compliant Assembly Robot Arm) type robot. This research aims to

create an end-effector that provides an added DOF to a SCARA robot without

adding significant complexity. SCARA type robots were chosen because these are

the most commonly used industrial assembly robots [5].

Part Orientation

Parts Feeding 
Systems

End-Effector 
Designs 

Anthropomorphic 
Hands

Stanford/JPL Hand [10]

Utah/Mit Hand [3]

? Binary Grippers

Electrical or 
Pneumatic Parallel 

Jaw Gripper

Figure 1.1: Manipulation Flow Chart: The part orientation problem can be broadly
categorized into parts feeding systems and end-effector designs.

Four DOF SCARA type robots (three rotational and one translational,

Fig. 1.2) are used in many industrial robotic assembly applications. The SCARA

robot shown in Fig. 1.2 allows for translational motion as well as a rotation about

the z-axis.1 SCARA type robots work well for assembly tasks and pick and place

operations that take place along a vertical axis (i.e., the direction of the

gravitational force). This is the most common type of assembly operation. Pick and

place assembly tasks are preferred because the parts feeding operation is greatly

simplified.

An example of vertical axis assembly is shown in Fig. 1.3. The lever shown in

Fig. 1.3a must be picked up, rotated, and then assembled onto the vertical post in

1Specifically, this type of motion is known as Schöenflies motion.
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Fig. 1.3b. In its natural resting position (Fig. 1.3a), the lever cannot be assembled

onto the vertical post using only the DOF of the SCARA robot. The part must be

rotated prior to assembly on the vertical post.

z

x
o

Figure 1.2: SCARA Robot

There are also many robotic assembly tasks and pick and place operations in

which a part must be assembled on an axis other than the vertical axis. For

instance, consider the six-axis Adept robot shown in Fig 1.42 The six-axis Adept

robot is able to pick a part oriented along the vertical axis, and it is able to place it

on an angled board. This type of angled assembly operation is not possible using

only the four DOF of a SCARA robot. The part must be rotated prior to placing it

on the angled board.

Figure 1.3: Lever Assembly onto Vertical Post [1]

The previous two examples show that proper part orientation is critical for

industrial assembly tasks. This chapter reviews previously developed solutions to

2Figure 1.4 is used with permission from Adept Technologies Inc.
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Figure 1.4: Angled Peg Assembly using Adept Viper Robot

the part orientation problem.

1.1 Parts Feeding Systems

The most common approach to the part orientation problem is to use a parts

feeding system. Parts feeding systems are typically costly for flexible assembly

because they are usually designed for one specific part, and therefore any part

change adds significant cost. There are applications in which parts feeders are

advantageous. For instance, parts feeders work well for small parts such as screws

that have to be stood upright prior to assembly. However, in many situations

capital costs can be reduced significantly if vibratory bowl feeders can be

eliminated. According to Boothroyd [6], parts feeders are responsible for 30% of the

cost and 50% of the failures in assembly operations.

Peshkin and Sanderson [7] developed a parts feeding system that uses a

conveyor belt with rigid fences to orient parts prior to assembly. They developed a

complete algorithm that can be used to orient polyhedral parts prior to assembly.

One drawback from this solution is that the algorithm only works for polyhedral

parts. Additionally, the algorithm may not be able to find a solution.

A similar approach to that of Peshkin and Sanderson was completed by

Zhang et al. [8] in which parts are fed on a conveyor belt and toppled over by pins.

This type of sensorless orientation has the same drawbacks as those of Peshkin and
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Sanderson. Another conveyor belt design was completed by Causey and Quinn [9].

Causey and Quinn created a conveyor belt design in which three conveyors work

together. This system works for a variety of parts, but it still requires three external

conveyors and a separate control algorithm for each part that is fed.

The main drawback with any parts feeding system is that it typically lacks

flexibility. The capital costs are typically high, and the parts feeding system must

be adjusted for each part. In an attempt to simplify this process, many researchers

have focused on parts feeding by grasping and manipulation.

1.2 End-Effector Design

Developing end-effectors that feed parts by grasping and manipulation allows

for a more flexible system. Many early end-effector designs mimic the human hand.

Examples of these are the Stanford/JPL hand [10], the Utah/MIT Hand [2]

(Fig. 1.5), and the Barrett Hand [11]. While these end-effectors are extremely

flexible, they are difficult to use in an industrial setting due to the required

computational power and coordination of the DOF.

Figure 1.5: Utah/MIT Hand [2]

There have also been attempts at creating industrially feasible end-effectors

to orient parts. Goldberg et al. produced a pivoting gripper [3] that uses ball

bearings to rotate a part under the force of gravity. They subsequently proved that

the pivoting gripper could be used to orient a part arbitrarily in six DOF using a
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four DOF SCARA type robot [4]. This gripper uses a series of pivot grasps as

shown in Fig. 1.6. In this design, a part is grasped between two ball bearings and

rotated under the force of gravity. By completing a series of these pivot grasps the

part can be manipulated. The major drawback with this system is that picking up a

part repeatedly takes too much time when compared to picking up a part and

assembling it directly.

Ziesmer and Voglewede improved upon this design by creating a

metamorphic [12] gripper that uses metamorphic joints that change between fixed

joints and spherical joints [13]. This reduces the amount of time to manipulate the

part. This design is limited in that the part to be picked up must have symmetrical

contact points. Ziesmer and Voglewede’s design is unique in that they used an

external fixed post to pivot the part to a desired angle. One drawback from this

design is that it does not work for delicate parts that cannot be pressed into an

external fixed finger. Additionally, the ability to use this gripper depends heavily on

the part geometry.

In 2002 Zhang et al. showed that it is possible to orient parts while grasping

them [8]. Their device is shown in Fig. 1.3. The gripper contact points are used to

manipulate the part prior to vertical axis assembly. Once again, this approach only

works for polyhedral parts. Furthermore, the approach lacks flexibility because the

pin design must be generated for each part to be manipulated.

Figure 1.6: Pivot Grasp [3]

A more industrial approach to solving this problem is to attach an electrical

rotary actuator to the end of a SCARA type robot to provide an added DOF.

However, electrical rotary actuators require a separate drive controller from that of

the robot. Motors may lead to significant downtime and added cost. Another option
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is to attach a pneumatic rotary actuator to the end of a SCARA type robot to

provide an added DOF. An example of a pneumatic rotary actuator is the Schunk

SKE pneumatic swivel head shown in Fig. 1.73. The Schunk SKE is a low weight

three position pneumatic actuator geared clean environments such as assembly and

packaging. Pneumatic rotary actuators offer less flexibility than electrical actuators

as they can generally only travel to two or three positions.

Figure 1.7: Schunk SKE Pneumatic Swivel Head

Researchers have also focused on underactuated systems that take advantage

of the dynamics of the system to manipulate a part. Lynch and Mason [14] created

a one DOF robot that manipulates a part by flipping it in the air and exploiting the

dynamic effects. This work is intriguing, but it is not industrially feasible because it

requires complex dynamic modeling as well as a complex control system.

Additionally, it lacks robustness.

Lynch et al. also created a 3-DOF robot that exploits dynamic properties to

control a passive joint [15]. Fig. 1.9 shows the 3-DOF system. The first two joints

3Figure 1.7 is used with permission from Schunk.
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Figure 1.8: Metamorphic Gripper [13]

are active and the third joint is a passive joint. As shown this robot is in the

horizontal plane. By moving the actuated joints appropriately the third passive

joint will move to the desired position. One problem with this system is that not all

trajectories are achievable at higher speeds. In addition, the dynamics change if the

robot is oriented in the vertical plane or if there are changes with friction.

Figure 1.9: Underactuated Robot [15]

1.3 Summary

As was shown in this chapter there are two common approaches to the

problem of orienting parts for an assembly task. These two approaches can be

categorized into parts feeding systems and end-effector designs. End-effectors can

further be categorized as complex anthropomorphic hands or simple binary
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grippers. Complex anthropomorphic hands are not industrially feasible due to the

coordination of all of the DOF, and simple grippers do not offer enough flexibility

for an industrial assembly task. This research aims to simplify the part orientation

problem by creating an industrially feasible end-effector that is both flexible and

simple. The goal is to create an end-effector that provides an added DOF to a

SCARA robot without adding significant complexity.

Chapter 2 will provide details of the mechanical design process. This will be

followed by a kinematic analysis in Chapter 3. Next, a dynamic analysis of this

system will be provided in Chapter 4. Following this analysis, Chapter 5 will focus

on the end-effector manufacturing and testing. Finally, Chapter 6 will explore ideas

for future work.
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CHAPTER 2

Mechanical Design

This chapter outlines the design process as well as the decision making that

occurred during the design process. This chapter begins with a section outlining the

design requirements. Engineering requirements were then determined based on the

design requirements. After determining the engineering requirements, a standard

quality functional deployment process was used to determine the relationship

between the engineering requirements and the design requirements. The next step

in the design process was to complete the conceptual design. Once the final concept

was chosen, different design configurations were created. The final step in the design

process was to determine specific part dimensions.

2.1 Design Requirements

In this design five design requirements for the end-effector were chosen. The

end-effector should be:

1. Robust: high number of cycles

2. Economical: low capital cost

3. Fast: short cycle time

4. Repeatable: low positioning error

5. Flexible: easily adaptable for different parts

To determine the relative weight of each design requirement a pairwise

comparison was completed (Table 2.1). Each design requirement was compared to

each of the other design requirements. When comparing two design requirements

they are denoted with either a one or a zero. A one indicates a design requirement
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of greater importance. This leads to a rough estimate of how important each design

requirement is relative to the others. For instance, in Table 2.1 robust is compared

to economical in the first column. It was thought that it was more important for the

system to be economical than robust. Thus, a one was given for economical and a

zero for robust. Robust was then compared against each of the other design

requirements. The column labeled “Total” shows the total number of ones that each

design requirement received. This can then be expressed as a percentage showing

the relative importance of each of the design requirements. Table 2.1 shows that

robustness is the most important design requirement and accuracy is the least

important. However, the system should still be low cost, fast, and flexible. This

table is inherently subjective, but it is useful because it shows that none of the

design requirements can be ignored. Additionally, the table of importance weights is

also used to evaluate different conceptual designs. This analysis will be completed

in Section 2.4.

Table 2.1: Pairwise Comparison

Design Requirement Total Importance Weight

Robust 0 1 1 1 3 30%
Economical 1 0 1 0 2 20%

Fast 0 1 1 0 2 20%
Repeatable 0 0 0 1 1 10%

Flexible 0 1 1 0 2 20%

2.2 Engineering Requirements

For each of the design requirements there must be a quantitative way to

measure how well a product performs a task. For instance, what is meant by “fast”

or “repeatable?” The design requirements can be quantitatively measured by using

engineering requirements.

Table 2.2 shows different engineering requirements that were considered for

this design. It is used to help the designer determine which engineering

requirements must be met to satisfy the design constraints. This is not meant to be

an exhaustive list, but it will at least be used to help guide the design process.
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Table 2.2: Engineering Requirements

Subfunction Engineering Characteristic Units Limits

Robust number of cycles - > 43200
Economical number of custom parts - < 3

Fast weight N < 4.45
cycle time s < 2

time to troubleshoot min < 5
Flexibility range of motion rad -π

2
to π

2

Repeatability positioning error mm ± 2.5
Simplicity number of actuators - 0

Each of the design requirements and the corresponding limits was chosen for

a particular reason. The reasons for each choice are listed below:

• 43,200 cycles was chosen so that the robot could operate at 30 cycles per

minute for 24 hours.

• The number of custom parts was chosen to be less than three to keep capital

costs down. Specifically, this will keep machining costs low.

• A low weight of 4.45 N was chosen because it allows for heavier parts and

grippers to be manipulated.

• A fast cycle time was critical in keeping costs down, and therefore a

reasonable cycle time of 2 seconds was chosen. This is consistent with the

robustness requirement.

• It should take less than five minutes to troubleshoot any problems that may

occur during operation. This will lower costs by reducing the amount of

downtime.

• The range of motion was limited to π rad. Typically, this is an acceptable

range of motion for an assembly task.

• The device must be repeatable to within ±2.5 mm.

• The number of actuators was chosen to be zero. This is important because it

allows the end-effector to be controlled using the robot controller.
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2.3 Quality Function Deployment

After the design requirements and engineering requirements are established it

is possible to determine the relationship between them using a House of Quality.

This information can be used to determine the relative weight of each of the

engineering requirements. The results show that a lower overall weight is critical for

a successful design. There are multiple reasons for this. A lighter end-effector

corresponds to shorter cycle times, increased robustness, and lower cost.

Additionally, a lighter end-effector allows a larger (in mass) part or gripper that

may be attached to the end of a robot.

In this section the relationship between the design requirements and the

engineering requirements was determined using a House of Quality. The next

section will focus on the conceptual design phase. In this section different design

concepts will be evaluated and one will be chosen to be developed further.

2.4 Conceptual Design

Conceptual design is perhaps the most important part of the design process.

A design may be either doomed for failure or primed for success early on in the

design process. Conceptual design is useful for analyzing alternative designs based

on guiding physical principles. To aid this process a weighted rating method was

used to evaluate different conceptual designs.

2.4.1 Magnet Device

The first design was based on the idea of locking and unlocking the

rotational joint using a combination of magnets as well as inertial forces. Figure 2.1

shows a concept sketch of this device. A fixed stop is placed at an angle θ with

respect to the vertical. As the robot accelerates the gripper would rotate until the

two magnets touched. This would lock the gripper at a desired angle. After the

assembly task is completed the robot would accelerate in the opposite direction, and

the inertial forces would unlock the joint.
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Figure 2.1: Magnet Concept

2.4.2 Ratchet Device

The second idea was to use a ratchet-like device in combination with inertial

forces to continuously lock and unlock a rotational joint. As a ratchet is moved from

one angle to another it becomes fixed at that angle. In this design the gripper of the

robot would be attached to the end of a ratchet-like device. As the robot accelerates

inertial forces would cause the ratchet, and therefore the gripper, to move to a

desired angle.

2.4.3 Mechanical Brake

Another idea was to use a mechanical brake similar to a mechanical brake on

a bicycle. It was thought that a similar idea could be used to stop the rotation of a

pivoting gripper. The mechanical brake would be actuated using an additional

pneumatic actuator.

2.4.4 Friction Device

Lastly, a device was considered in which controlled friction could be used to

achieve the desired rotation. The controlled friction concept brought together the

benefits from the other three concepts. The design is based on using positioning

hinges (also called constant torque hinges) that provide a constant torque resistance

throughout its range of motion. These types of hinges are identical to those

generally used in laptops. Thus, when a user moves the screen of a laptop from one
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angle to another the screen becomes fixed at that angle.

The idea is to apply the same concept to rotate a robotic gripper. Figure 2.2

shows the conceptual sketch for the controlled friction concept. As shown in the

figure, a positioning hinge is attached to the end of the SCARA robot. The

positioning hinge is attached to a pivot arm, and the pivot arm is attached to the

gripper. If an external force presses against the pivot arm then the gripper will

rotate. To provide an external force a fixed post is used. As the end of the robot

moves from position 1 (Fig. 2.2a) to position 2 (Fig. 2.2b) the end of the robot

moves along the −x-axis, and the pivot arm presses against the fixed post causing

the gripper to rotate. This will provide the system with an added DOF. Thus, a

four DOF SCARA type robot would have a selectable fifth DOF.

2.5 Concept Selection

Four different concepts were considered, but only one of these concepts could

be developed further. To help determine which concept to develop further a

weighted rating method was used. Table 2.3 shows how the weighted rating method

was used to evaluate different conceptual designs. The four concept alternatives

were rated on a scale from 0 − 4 (Table 2.4) for each of the criteria. The rating is

then multiplied by the importance weight to determine the weighted rating. The

sum of the weighted ratings for each concept provides an overall rating for that

concept. The results from Table 2.3 show that controlled friction idea achieved the

highest score.

This type of analysis is inherently subjective. Therefore the designer should

consider which concept alternative should be developed further. Three of the

concepts had a “showstopper” that eliminated it from contention. For instance, the

magnet idea was not chosen because it did not provide enough flexibility. While a

ratchet-like device could be used to move the gripper to different angles while

continually locking an unlocking, this device is difficult to manufacture and not very

robust. The brake required the use of an additional actuator which adds significant

overall complexity to the system. (The friction device did not have an obvious
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showstopper, and therefore this was the device chosen for further development.)

Table 2.3: Weighted Rating Method

Criteria Importance Weight Magnetism Ratchet Mechanical Brake Friction

Rating WR Rating WR Rating WR Rating WR
Robust 30% 3 0.9 2 0.6 3 0.9 3 0.9

Economical 20% 3 0.6 3 0.6 1 0.2 3 0.6
Fast 20% 3 0.6 3 0.6 3 0.6 3 0.6

Repeatable 10% 4 0.4 2 0.2 3 0.3 3 0.3
Flexible 20% 1 0.2 4 0.8 4 0.8 4 0.8

NA 2.7 NA 2.8 NA 2.8 NA 3.2

Table 2.4: Scale

Rating Value

Unsatisfactory 0
Just Tolerable 1

Adequate 2
Good 3

Very Good 4

There are numerous other advantages to using this design. It was reasoned

that the overall design would be lightweight due to the fact that there are few parts.

This is important because a low weight will allow for heavier parts and end-effectors

to be used. In addition, robust positioning hinges are readily available for purchase.

This will allow for a low-cost device with a high degree of robustness and accuracy.

Furthermore, it was thought that with proper path planning techniques the device

would be repeatable to within the specified limits1. Lastly, the system is “flexible”

in that any type of gripper may be attached to the pivot arm. This is an important

concept for this design. Many times specialized grippers are designed to pick up a

particular part. However, these specialized grippers are not designed to manipulate

the part in any way. An advantage of the controlled friction concept is that

specialized grippers may be still be utilized.

In this section four different conceptual designs were evaluated. The

controlled friction concept was chosen to be developed based on the results of the

weighted rating method as well as the fact that three of the designs had an obvious

1This will be explained in greater detail in Chapter 3.
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Figure 2.2: Concept Sketch: Friction may be used to maintain the gripper at a desired
angle.

showstopper. The next section will focus on different configuration designs for the

controlled friction concept.

2.6 Configuration Design

The next step in the design process is configuration design. The goal of

configuration design is to determine the product architecture and part

configuration. Product architecture refers to the number and type of components.

Part configuration refers to how parts are spatially arranged and how they are

connected [16].

Figure 2.3 shows the first configuration considered. In this configuration a

pivot arm is attached to a positioning hinge. The positioning hinge is attached to a

housing which is attached to the end of the robot. The gripper is attached to the

pivot arm. While in theory this configuration could work, there were numerous

issues with the configuration. The first is that the center of mass of the gripper is

far away from the positioning hinge. Thus, an extremely strong positioning hinge

would be required to to hold the gripper in place. Additionally, this configuration

does not work well from a path planning perspective. This will be explained in

greater detail in Chapter 3.

Figure 2.4 shows the second configuration considered. This configuration
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Figure 2.3: Configuration 1
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Figure 2.4: Configuration 2

improves upon the first in that the center of mass of the gripper is moved as close as

possible to the positioning hinge. This means that the positioning hinge does not

need to be nearly as strong as it would need to be for the first configuration.

Another advantage of this configuration is that it works well from a path planning

perspective. This will be explained in greater detail in Chapter 3.

The second configuration can be improved upon as shown in Fig. 2.5

(Configuration 3). In both configurations the housing and the pivot arm are the two
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manufactured parts. First consider the housing. In configuration two, the

positioning hinge slot is not centered with respect to the housing, but in

configuration three it is centered with respect to the housing. Symmetry is

important because it simplifies the design. The reason that the slot in configuration

two is not symmetric to the housing is that it is desired that when the pivot arm is

in the vertical position it aligns with the center axis of the robot attachment. This

will simplify the path planning. Next consider the pivot arm. In configuration two

the pivot arm is not centered over the positioning hinge. This is changed in

configuration three by creating a housing around the positioning hinge. This creates

a simplified design.

Configuration three was the final configuration chosen. The next step in the

design process is to determine the exact dimensions of the end-effector. Some of the

dimensions are chosen arbitrarily while other critical dimensions are chosen based

on detailed analysis. The next section will outline which dimensions were critical

dimensions and which dimensions were chosen arbitrarily.

          

Figure 2.5: Configuration 3

2.7 Parametric Design

Parametric design [16] involves determining the design variables. Design

variables are parameters of the design that are critical to the success of the design.

The exact values of the design variables are determined using different analysis
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techniques. Many of the dimensions on the two manufactured parts are not design

variables. For instance, fillets were included in the design to reduce stress

concentrations. The fillets were selected to be standard sizes (i.e., 0.3175
(

1
8

)

or

0.635
(

1
4

)

mm (in.)). These are not critical for the design. The critical dimension in

this design is the distance L from the center of the positioning hinge to the end of

the pivot arm as shown in Fig. 2.6.

 
L 

 

Figure 2.6: Critical Dimension

This dimension is critical because the success or failure of the design is based

on choosing this dimension correctly. There are many design tradeoffs that need to

be considered. There are multiple reasons why a designer would want the pivot arm

to be as long as possible. A longer pivot arm:

1. reduces the external force required to rotate the gripper while still allowing for

a strong positioning hinge. Thus, heavier grippers and parts can be

accommodated which makes the system more flexible.

2. increases the positioning accuracy, as will be shown in Chapter 3.

3. allows for a greater range of motion in certain path planning techniques.

On the other hand, it is advantageous to have a shorter pivot arm. A shorter pivot

arm:
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1. reduces weight. Less material is needed both for the pivot arm as well as the

housing.

2. increases rotation speed.

3. increases the available workspace of the robot.

As can be seen from the previous two lists, the length of the pivot arm is

critical. Chapter 3 will be used to determine the appropriate length of the pivot

arm with respect to different path planning techniques. Once the length of the pivot

arm is chosen from a path planning perspective, a dynamic analysis will be

completed in Chapter 4.
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CHAPTER 3

Path Planning

There are many different aspects to motion planning for a robotic system. A

common misconception is that motion planning involves only collision detection.

However, in robotic assembly applications, motion planning may include the process

of grasping the part, transferring the part, and positioning the part on a

subassembly. Thus, both physical and geometrical constraints could be taken into

account [17].

One subset of motion planning is path planning. Path planning considers the

basic motion planning problem from a geometrical point of view. This means that

the physical interaction between components is ignored (i.e., it is purely a kinematic

problem). Thus, the friction forces between the pivot arm and the fixed post as well

as the impact between the pivot arm and fixed post will be ignored.

This chapter outlines different path planning algorithms that can be used to

achieve the desired gripper rotation. These algorithms are unique in that it is

possible to use the built in controls from the robot to control the angle of rotation

of the gripper. There is no need for any external control software. This is a distinct

advantage over using an electrical rotary actuator.

3.1 Path Planning

Consider the schematic of the end-effector shown in Fig. 3.1. The purpose of

the end-effector is to rotate the gripper around the z-axis by an angle θ. Positive θ

is defined by the right hand rule (i.e., a counterclockwise rotation in the plane). As

shown, the gripper is at θ = 0. A cylindrical fixed post is positioned along the

z-axis. As the end-effector of the robot moves in the xy-plane the pivot arm can be

pressed against the fixed post which causes the positioning hinge, and thus the

gripper, to rotate.
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There are many different ways to move the robot’s end-effector in the

xy-plane to achieve a desired angle of rotation. However, depending on the

application there are certain paths that are more suitable than others. The

following sections outline different path planning algorithms that can be used for

different assembly applications. In each of the different paths the center of the

positioning hinge, point A, will be the point of interest. This is because this point is

fixed relative to the end of the robot. In the following figures, a dotted line with an

arrow will denote that the positioning hinge moves along that line.

Fixed Post

Positioning Hinge

Pivot Arm

Gripper

h

t

X

Y

g

r

L

A

Figure 3.1: Pivoting Gripper Device Schematic

3.1.1 Horizontal Line Path

One way to achieve the desired rotation is to move the end-effector in a

straight horizontal line path along the x-axis as shown in Fig. 3.2. As the

end-effector moves along the x-axis the pivot arm makes contact with the fixed post

and the force from the fixed post causes the positioning hinge to rotate. The desired

angle of rotation is denoted as θf .

The main advantage to this path is that the gripper is rotated during normal

operation of the robot. There is little wasted motion. Additionally, this path

planning motion is time independent. There is, however, one distinct disadvantage
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Figure 3.2: Horizontal Line Path

to this type of path planning; the gripper cannot be rotated a full 90◦ from the

vertical position. There is a limit on the possible angle of rotation due to the

diameter of the fixed post as well as geometrical constraints from the mechanical

design. This will be explained further in the following sections.

3.1.2 45◦ Angle Path

As shown in the previous section, horizontal line path planning works well

for certain assembly applications. However, many assembly tasks require the part

be rotated 90◦ from a vertical position to a horizontal position. There are different

ways to achieve this rotation. One possible path is to move the robot’s end-effector

at a 45◦ angle (relative to the y-axis) until the gripper has achieved the desired 90◦

rotation as shown in Figure 3.3.

The advantage to this path is that the gripper can be quickly pivoted from

0◦ to 90◦. This angle is necessary for a wide variety of applications. For instance,

consider the pick and place operation shown in Fig. 3.4 (Adapted from Goldberg et

al. [4]). With a conventional SCARA robot the rectangular parts would need to be

fed in their final upright configuration. At high feeding speeds this may cause the

parts to topple over. However, with the ability to rotate the parts 90◦ from a

horizontal to a vertical position the parts can be fed laying flat or vertically. This

would allow for higher feeding speeds.
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X

Y

Figure 3.3: 45◦ Angle Path

The next section will outline another type of path in which the goal was to

determine the shortest possible distance the robot’s end-effector would need to

travel to achieve the desired angle of rotation.

Figure 3.4: 90◦ Pick and Place [4]

3.1.3 Shortest Distance Path

The shortest distance path that is useful for certain assembly tasks. This is

not necessarily the “best” path that works for every assembly operation. This path

is called the shortest distance path because the goal was to determine the shortest

possible distance the robot’s end-effector would need to travel to achieve the desired
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angle of rotation, θf .

X

Y

θ
f

Line of Rotation

Figure 3.5: Shortest Distance Path

Consider the solid line that is at an angle of θf in Fig. 3.5. This line is fixed

in space, and it will be denoted as the line of rotation. This line is offset and

tangent to the fixed post. If the positioning hinge is moved from its initial position

to any position on the line of rotation the gripper will be rotated by an angle θf .

For example, the positioning hinge could move along a 45◦ line until it reaches the

line of rotation. This is exactly what was proposed in the previous subsection.

The quickest way to achieve a rotation of θf is to move the positioning hinge

from its initial position in a straight line perpendicular to the line of rotation. This

type of motion, however, does have limits. For instance, it is impossible to rotate

the gripper 90◦ using this type of motion. 90◦ rotation would correspond to moving

the positioning hinge along the y-axis. Doing so would not provide any rotation.

Three different paths have been introduced in this section. The next section

will provide the path planning algorithms that can be implemented in order to

utilize the three different paths.

3.2 Path Planning Algorithms

This section presents the path planning algorithms for the different paths.

For each of the path planning algorithms it is assumed the pivot arm begin in
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contact with the fixed post at θ = 0 (Fig. 3.6). Further, it is assumed that them

location of the fixed post is known relative to the base frame of the robot. Thus,

point A(xi, yi) in Fig. 3.6 is the starting position of the center of the positioning

hinge, and it is known relative to the fixed post and thus the base frame of the

robot. The goal is to determine the final position B(xf , yf) that the positioning

hinge must be moved to in order to achieve the desired rotation θf .

The fixed post has a radius, r, and the pivot arm has a thickness t. The

pivot arm length, h, is defined as the length from the center of the positioning hinge

to the center of the fixed post. In this particular case, the rectangular shape of the

pivot arm makes the geometry more difficult than is necessary. To simplify the

geometry, the fixed post of radius r can be viewed as a circle of radius R where

R = r + t
2
. The pivot arm can then replaced by a line as shown in Figure 3.6.

X

Y

xi , yi

h

t

r

=
L

h

R

A
xi , yi

L

A

Figure 3.6: Simplified Geometry

3.2.1 Horizontal Line Path Algorithm

The horizontal line path algorithm is simple, but has limits on the possible

angle of rotation. The reason for this is that there are geometrical constraints due

to the mechanical design. In this type of motion the positioning hinge begins at a

known point A and moves to point B along the x-axis. The kinematic equations

governing this type of motion are
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Figure 3.7: Horizontal Line Path Schematic

xf = xi + L sin θf + R (3.1)

yf = yi. (3.2)

In this analysis it is assumed that the end-effector is moved far enough along the

x-axis that the top of the pivot arm completely moves past the fixed post as shown

in Fig. 3.2(d). This is important because it allows for a shorter cycle time. The

fixed post is a physical constraint. If the desired angle of rotation is achieved prior

to the end-effector moving past the fixed post then the end-effector would need to

be moved around or under the fixed post to continue motion along the x-axis. The

excess motion of moving around or under the post would lead to higher cycle times.

The angle of rotation is dependent on both L and h. Thus,

L cos θf = h − R. (3.3)

Solving for θf yields

θf = arccos

(

h − R

L

)

. (3.4)

Equation 3.4 shows that there are limitations on θf due to the constraints placed on

h and L. In the chosen design L = 8.9 cm, r = 0.41 cm, and R = 0.88 cm. Due to

the physical constraint of the housing that surrounds the positioning hinge, h must

be at least 3.3 cm. In addition, for the max case it is desirable that the top of the
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pivot arm aligns with the top of the fixed post. The reason for this is that it ensures

that the pivot arm makes solid contact with the fixed post. Thus, h has a maximum

value of L − R
2

= 8.46 cm.
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Figure 3.8: θf vs. h (L = 8.9 cm): The horizontal line path allows for a limited range of
rotation.

Figure 3.8 shows how θf changes as a function of h with L = 8.9 cm. It can

be seen from the plot that 0.54 rad. (31◦) < θf < 1.29 rad. (74◦) for horizontal line

path motion. Figure 3.9 shows a plot of θf vs. h as L is varied from 5.1 cm to 24 cm

in 1.27 cm increments. The line furthest to the left corresponds to L = 5.1 cm, and

the farthest to the right is L = 25.4 cm. The dotted line is L = 8.9 cm. From

Fig. 3.9 it is clear that the design follows the law of diminishing returns. That is, as

L keeps increasing there is not a large increase in the range for θf . In fact, L would

need to be increased to 25.4 cm to increase the range of θf by 20◦. This is not

realistic as L would be too long to be practical. Thus, a path planning algorithm is

needed that allows for a full 90◦ rotation. This leads to the 45◦ path algorithm.

3.2.2 45◦ Path Algorithm

The 45◦ path is desirable because it provides a full 90◦ rotation. Figure 3.10

shows the schematic for straight line motion at a 45◦ angle (α = 45◦). The

positioning hinge begins at a known point A and moves to an arbitrary point B



30

0 5 10 15 20 25
0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

θ f [r
ad

.]

h [cm]

L Increasing

Figure 3.9: θf vs. h: The horizontal line path allows for a limited range of rotation.
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Figure 3.10: 45◦ Angle Schematic

along the 45◦ line. This leads to the following relationship between (xi, yi) and

(xf , yf) for the 45◦ path.

xf = xi + d sin α (3.5)

yf = yi + d cos α. (3.6)

By analyzing the geometry from Fig. 3.10 the distance, d, from (xi, yi) to

(xf , yf) in terms of h, R, α, and θf is
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Figure 3.11: d vs. θf : Choosing α = 45◦ means that small changes in θf will not produce
large changes in d.

d =
sin θf

sin(π − α − θf )

(

h − Rtan
θf

2

)

. (3.7)

Substituting α = 45◦ into Eqs. 3.5, 3.6, and 3.7 gives

xf = xi + d

√
2

2
(3.8)

yf = yi + d

√
2

2
(3.9)

d =
sin θf

sin
(

θf + π
4

)

(

h − Rtan
θf

2

)

. (3.10)

The full derivation for the expression in Eqn. 3.7 is given in Appendix A.

Equation 3.10 shows that given the system parameters, θf , xi, and yi it is possible

to use Equations 3.5 and 3.6 to quickly calculate the final position the end-effector

of the robot must move to in order reach the desired rotation.

There are many different straight line paths that could have been chosen.

However, there are specific reasons why α = 45◦ was chosen. Fig. 3.11 shows a plot

of d vs. θf for different α where d is the distance from A to B as calculated in

Eqn. 3.7. The α = 45◦ line has a relatively constant slope. This means that
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throughout the range of motion small changes in θf will not produce large changes

in d. Consider the α = 15◦ line in Fig. 3.11. As θf varies from 0◦ − 20◦, d varies

from 0 − 4.98 cm. Thus, a small change in θf produced a large change in d. Then,

as θf varies from 20◦ − 90◦, d varies from 4.95 − 7.65 cm. Thus, there is a large

amount of rotation with very little change in d. This would cause the system to be

more accurate during some parts of the cycle as opposed to others.

Additionally, a designer must be careful when choosing a value of α. By

looking at Fig. 3.12 is it obvious that α must be greater than or equal to αmin.

From Fig. 3.12

x =
√

h2 + R2, (3.11)

and

sin
αmin

2
=

R√
h2 + R2

, (3.12)

which leads to

αmin = 2 arcsin
R

h2 + R2
. (3.13)

It is critical that α > αmin because otherwise the positioning hinge will make

contact with the fixed post.

3.2.3 Shortest Distance Path Algorithm

The shortest distance path algorithm can be derived in a similar fashion to

that of the 45◦ path algorithm. Figure 3.13 shows the schematic for the shortest

distance path. The goal of this algorithm is to determine the shortest possible

distance the end-effector must be moved to achieve the desired rotation of θf .

From the geometry it can be shown that in the case of the shortest distance
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Figure 3.12: αmin: α must be > αmin to ensure the hinge does not make contact with
the fixed post.

path equations

d =
sin θf

sin(π − α⋆ − θf)

(

h − Rtan
θf

2

)

. (3.14)

Equation. 3.14 is identical to Eqn. 3.7 which was used to derive the 45◦ path

algorithm. This leads to the following relationship between (xi, yi) and (xf , yf) for

the shortest distance path:

xf = xi + d sin α⋆ (3.15)

yf = yi + d cos α⋆. (3.16)

h
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A

xi , yi

d

xf , yf

θ
f

B

L

θ
f

α

Figure 3.13: Shortest Distance Path Schematic
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Substituting α⋆ = π
2
− θf into the Eqs. 3.14, 3.15, and 3.16 gives

d = sin θf

(

h − Rtan
θf

2

)

(3.17)

xf = xi + d cos θf (3.18)

yf = yi + d sin θf . (3.19)

3.2.4 Return Path

Each of the presented path planning algorithms provided a different way to

rotate the gripper to a desired angle θf . However, once the gripper is at a desired

angle there needs to be a path planning algorithm used to return the gripper to the

θ = 0 position. Just as there are numerous ways to achieve the initial gripper

rotation, there are an infinite number of return path algorithms that could be used.

In fact, the forward path algorithms can be implemented by using a matrix

transformation. The algorithm presented here is useful for the situation in which

the gripper must be returned to the same height as in the initial position.

h
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A

xi , yi
xf2 , yf2

E

L

θ

L
h

θC

C

xi2 , yi2

D

X

Y

Figure 3.14: Return Path Schematic

In the return motion algorithm it is assumed that the gripper is at some

angle, θ, with respect to the y-axis. In addition, it is assumed that the initial

position occurs when point c makes contact with the fixed post. Point c is the point

on the pivot arm that is a distance h from point A. This point was chosen because

it allows for a large pivot arm. From the geometry shown in Fig. 3.14 the following
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equations can be written for (xi2, yi2) and (xf2, yf2):

xi2 = xi + R(1 + cos θ) + h sin θ (3.20)

yi2 = yi + h(1 − cos θ) + R sin θ (3.21)

xf2 = xi + 2R (3.22)

yf2 = yi. (3.23)

Equations 3.20-3.23 show that the return algorithm is actually quite simple. It is a

convenient way to return the gripper to the θ = 0 position. One obvious

disadvantage of this return path algorithm is that the gripper is now on the

opposite side of the fixed post. Therefore, there needs to be a way to move the

gripper either around or under the fixed post. Moving under the fixed post is not a

good option. The reason is that there is not much clearance between the fixed post

and the point where the pivoting device is connected to the robot. Moving around

the fixed post (along the z-axis) is the better option. Figure 3.15 shows an example

of how the end-effector can be moved from its final position to its initial position by

moving around the fixed post.

x

z

Ending Point

Starting Point

Pick up Part

Pivot Arm

Fixed Post

Figure 3.15: Return Path

In this situation the path planning algorithm depends on the particular

operation. For instance, as shown in Fig. 3.15 the end-effector could be moved from

its ending point to a point where another part may be picked up. It may then be
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moved back to the starting point. There are countless ways to do this and one path

may be better than another depending on the assembly operation.

In this chapter three different path planning algorithms were presented that

may be used in conjunction with the end-effector to move a gripper to a desired

angle. This was purely a kinematic analysis. Each of the three different path

planning algorithms presented work well depending on the assembly operation.

There is not one particular path that is the best for all situations. The next section

will focus on the dynamics of the system. Specifically, a dynamic analysis will be

completed to determine the necessary resistance torque of the positioning hinge.
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CHAPTER 4

Dynamic Analysis

The positioning hinge is a critical part in the design. Different positioning

hinges provide different levels of torque resistance. The hinge must provide enough

torque resistance to resist inertial forces caused by rapid movements of the robot.

This will ensure that the end-effector maintains its orientation once it has been

moved to the desired angle. However, a positioning hinge with too much torque

resistance would require a longer lever arm or larger post in order to limit the

external forces acting on the robot. This is undesirable from a motion planning

viewpoint.

In this chapter a standard dynamic analysis will be completed using

Lagrange’s equations to determine a closed form expression for the required

resistance torque of the positioning hinge. The results will be verified by applying a

Newton-Euler analysis for a few special cases. Lastly, the results of this analysis will

be used to select the appropriate positioning hinge for different robotic assembly

applications.

4.1 Lagrange’s Equations of Motion

In this section the resistance torque of the positioning hinge, τ , is determined

using Lagrange’s equations of motion. τ is the torque needed to ensure the

positioning hinge does not rotate due to inertial forces. It is assumed that all bodies

are rigid and that the effects of gravity are included. Furthermore, it is assumed

that the end-effector is attached to a four DOF SCARA robot (Fig. 4.1).

The general form of Lagrange’s equation of motion with unconstrained
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Figure 4.1: SCARA Robot with End-Effector

coordinates is

Qi =
d

dt

(

∂L

∂q̇i

)

−
(

∂L

∂qi

)

, i = 1, 2, ..., N, (4.1)

where N is the number of generalized coordinates, Qi contains the generalized forces,

and qi are the generalized coordinates [18]. The Lagrangian, L, can be written as

L = K − U (4.2)

where K is the kinetic energy of the system and U is the potential energy of the

system.

For this problem the number of generalized coordinates was chosen to be the

same as the number of DOF of the system (i.e., the unconstrained case). The

generalized coordinates are
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q1 = θ1 (4.3)

q2 = θ2

q3 = θ3

q4 = l3

q5 = θ4.

The only generalized force that is of concern is the nonconservative moment acting

on link 4 (i.e, the torque at the friction hinge). Thus, by substituting Q5 = τ ,

q5 = θ4, and q̇5 = θ̇4, into Eqn. 4.1 the resistance torque can be written as

τ =
d

dt

(

∂L

∂θ̇4

)

−
(

∂L

∂θ4

)

. (4.4)

Eqn. 4.4 provides an equation for the amount of torque resistance required by the

positioning hinge to overcome the inertial forces from the robot as well as gravity.

This will ensure that the gripper will only be rotated when the pivot arm is pressed

against the fixed post. This analysis will assume that all of the joints are defined or

controlled ideally.

In general the kinetic and potential energy must be found for each link.

However, in this particular case the kinetic and potential energy of links one

through three can be ignored because the kinetic and potential energy terms are not

dependent on either θ4 or θ̇4. For this system the Lagrangian can then be simplified

to

L = K4 − U4. (4.5)

The reference configuration for the system is shown in Fig. 4.2. There is an inertial

coordinate system centered at o. The potential energy term for link four can be
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determined by inspection as

U4 = m4gl4(1 − cos θ4). (4.6)

The kinetic energy of link four can be expressed as

K4 =
1

2
m4‖~vd‖2 +

1

2
~ω⊤

4 I4~ω4, (4.7)

where I4 is the inertia matrix of link 4, ~vd is the velocity of the center of mass of the

end-effector, and ~ω4 is the angular velocity of the end-effector. The angular velocity

of the end-effector can then be written in Eqn. 4.8 as

l1 l2

θ1
a

θ2

Z

X

o

b

c

l3

θ3

θ4 =0 τ

g

d

m4

l4

1 2

3

4

Figure 4.2: Reference Configuration

~ω4 = θ̇4s123Î − θ̇4c123Ĵ + (θ̇1 + θ̇2 + θ̇3)K̂, (4.8)

where s123 = sin(θ1 + θ2 + θ3) and c123 = cos(θ1 + θ2 + θ3). The final term that

needs to be found is ~vd, the velocity of the center of mass of the end-effector. The
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velocity of point d in component form can be expressed as:

vdX
= l4θ̇4c123c4 − l2s12(θ̇1 + θ̇2) − l1θ̇1s1 − l4s123s4(θ̇1 + θ̇2 + θ̇3) (4.9)

vdY
= l4θ̇4s123c4 + l2c12(θ̇1 + θ̇2) + l1θ̇1c1 + l4c123s4(θ̇1 + θ̇2 + θ̇3)

vdZ
= θ̇3 + l4θ̇4s4.

All of the variables for evaluating Eqn. 4.4 have now been defined. A

MATLAB program was written to evaluate Eqn. 4.4 symbolically. A symbolic

manipulator was used because of the complexity of the equations. By setting θ̇4 = 0

and θ̈4 = 0 the equation for the torque resistance can be expressed as

τ = l4m4[(g + l̈3)s4 + c4[l1[θ̈1s23 − θ̇2
1c23] + l2[s3(θ̈1 + θ̈2) − c3(θ̇

2
1 + θ̇2

2)] (4.10)

−l4s4[(θ̇
2
1 + θ̇2

2 + θ̇2
3) + 2θ̇3(θ̇1 + θ̇2)] − 2θ̇1θ̇2(l2c3 + l4s4)]].

Equation 4.10 is important from a design perspective. Given the robot joint angles,

velocities, and accelerations it is possible to create a torque profile showing the

required resistance torque necessary so that the end-effector does not move due to

inertial forces and gravity. By using Eqn. 4.10, a designer can select an appropriate

positioning hinge for their particular assembly task.
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Figure 4.3: Free Body Diagram, Vertical Motion Case
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4.2 Newton-Euler Equations of Motion

In this section a standard Newton-Euler dynamic analysis will be used to

check the results obtained in Eqn. 4.10. A complete derivation would be very

complex; therefore, three different limiting subcases will be examined and then

compared to the results from the Lagrange formulation.

4.2.1 Vertical Motion

The first will be the limiting case in which the end-effector is being

accelerated in the vertical direction against gravity. This is a common motion in

many assembly tasks. The free body diagram (FBD) is shown in Fig. 4.3. In this

case the forces include the reaction forces at the hinge, the weight of the

end-effector, and the resistance torque of the positioning hinge, τ . Principal body

fixed x′y′z′ axes were chosen with the origin located at the center of mass of the

system (point d). Space fixed XY Z axes were chosen with origin at o.

The linear acceleration is:

~ad = azk̂. (4.11)

The force equations can be written according to Newton’s second law

∑

~F = m~ad, (4.12)
∑

~Fx = Rxc123 + Rys123 = 0,
∑

~Fy = −Ryc123 + Rxs123 = 0,
∑

~Fz = Rz − m4g = m4az.

Solving the force equations for Rx, Ry, and Rz shows that

Rx = 0, (4.13)

Ry = 0,

Rz = m4(g + az).
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Summing the moments around the y′-axis yields

∑

~My′

d
= −τ + l4Rx cos θ4 + l4Rz sin θ4 = Iy′y′

4
θ̈4. (4.14)

Setting θ̈4 = 0 and substituting in Rx, Rz and az = l̈3 into Eqn. 4.14 yields

τ = m4(g + l̈3)l4 sin θ4. (4.15)

Equation 4.15 is an expression for the torque resistance the positioning hinge

must provide when the system is being accelerated in the k̂ direction against gravity,

and this result matches the results from Eqn. 4.10. As expected, the maximum

torque occurs at θ4 = π
2

rad. The robot that the end-effector will be tested on has a

maximum vertical acceleration of 8m
s2 . This leads to a maximum torque value of

approximately 2.3 N-m. However, this torque value is only for one particular case.

4.2.2 Rotation about the θ3 Axis

The second limiting case is where the end-effector is rotating around the θ3

axis. This is also a common motion used in assembly tasks. It is assumed that

θ1 = θ2 = θ3 = 0, θ̇1 = θ̇2 = 0, and θ̈3 = 0. The FBD for this case is shown in

Fig. 4.4. Summing the forces in the x and z directions yields

∑

~F = m~ad, (4.16)
∑

~Fx = Rx = m4(−l4 sin θ4)θ̇
2
3,

∑

~Fz = Rz − m4g = 0.

Writing the moment equation around the y′-axis yields

∑

~My′

d
= −τ + Rxl4 cos θ4 + Rzl4 sin θ4 = Iy′y′

4
θ̈4. (4.17)

Setting θ̈4 = 0, substituting Rx and Rz from Eqn. 4.16 into Eqn. 4.17, and solving

for τ yields the equation for the resistance torque when the end-effector is being
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Figure 4.4: Free Body Diagram, Rotation about the θ3 Axis

rotated around the θ3 axis,

τ = m4l4 sin θ4(g − l4 cos θ4θ̇
2
3). (4.18)

This expression matches the results obtained from the Lagrange formulation in

Eqn 4.10.
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Figure 4.5: τ vs. θ4 for θ3 rotation

Figure 4.5 shows a plot of τ vs. θ4 for constant rotation about the θ3 axis at

10.5 rad
s

. Even at such a high speed of rotation it is clear from Fig. 4.5 that the

torque on the system due to the weight of the end-effector dominates the centrifugal

acceleration. It should also be noted that the maximum torque value is

approximately 1.2 N-m which is less than the 2.3 N-m of torque required motion
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along a vertical axis.

4.2.3 Rotation about the θ1 Axis

The third limiting case is where the end-effector is moving in circular motion

around the θ1 axis. It is assumed that θ1 = 0 rad, θ2 = 0 rad, and θ3 = π
2

rad.

Additionally, θ̇2 = θ̇3 = l̈3 = 0, θ̈1 = 3 rad
s2

, and θ̇1 = 4.36 rad
s

. θ̈1 and θ̇1 were chosen

based on the maximum angular acceleration and velocity of joint 1 of the robot.
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Figure 4.6: Free Body Diagram, Rotation about the θ1 Axis

The derivation for this case will follow a similar pattern as the previous two

cases. The FBD for this case is shown in Fig. 4.6. Summing the forces in the z and

y direction yields

∑

~Fz = Rz − m4g = m4adz
,

∑

~Fy = Ry = m4ady
. (4.19)

In order to evaluate Eqn. 4.19 it is necessary to determine the acceleration of

the center of mass (point d). The acceleration of the center of mass can be

expressed in Eqn. 4.20 as

~ad = ~ac + ~arel + ~αcd × ~rc/d + ~ωcd × (~ωcd × ~rc/d) + 2~ωcd × ~vrel (4.20)

Because points c and d are on the same rigid body there is no relative velocity or
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relative acceleration. The remaining terms can be expressed as follows

~ac = −(l1 + l2)θ̇
2
1 î + (l1 + l2)θ̈1ĵ,

~αcd = θ̈1k̂,

~rc/d = l4 sin θ4ĵ − l4 cos θ4k̂. (4.21)

Substituting Eqn. 4.21 into Eqn. 4.20 yields the acceleration of point d given in

Eqn. 4.22 as,

~ad = (−l4 sin θ4θ̈1 − (l1 + l2)θ̇
2
1 )̂i + ((l1 + l2)θ̈1 − l4 sin θ4θ̇

2
1)ĵ. (4.22)

Substituting ~ady
and ~adz

into Eqn. 4.19 and solving for the reaction forces gives

Rz = m4g,

Ry = m4[(l1 + l2)θ̈1 − θ̇2
1l4 sin θ4]. (4.23)

The moment equation around the x′-axis can then be written as:

∑

~Mx′d = τ − m4[(l1 + l2)θ̈1 − θ̇2
1l4 sin θ4]l4 cos θ4 − m4gl4 sin θ4 = 0. (4.24)

Finally, solving for τ gives

τ = m4[(l1 + l2)θ̈1 − θ̇2
1l4 sin θ4]l4 cos θ4 + m4gl4 sin θ4. (4.25)

The expression for τ in Eqn. 4.25 matches the expression determined using

Lagrange’s equations in Eqn 4.10. Figure 4.7 shows how the required positioning

hinge torque varies as θ4 is varied from 0◦ to 90◦. Recall that this is this is the case

in which θ̈1 = 3 rad
s2

, θ̇1 = 4.36 deg.
s

, and θ3 = π
2

rad. From Fig. 4.7 the maximum

torque is approximately 2.2 N-m. This is actually less than the torque required to

accelerate the end-effector in the vertical direction against gravity. However, this is

not true if θ3 is changed from 90◦ to 0◦. In this case there is a large centrifugal

acceleration. Figure 4.8 shows that with θ3 = 0 the max torque required is
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approximately 12 N-m. Simply rotating θ3 by 90◦ caused the required torque to

increase by a factor of 5. This example shows that with careful path planning the

amount of torque required by the positioning hinge can be reduced significantly.
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Figure 4.7: τ vs. θ4 for θ1 rotation (θ3 = 90◦)
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Figure 4.8: τ vs. θ4 for θ1 rotation (θ3 = 0◦)

The purpose of this research is to prove that this device is feasible. Thus, the

simplest type of motion (horizontal motion) will be used for testing. Figure 4.9

shows a plot of the torque resistance required for horizontal motion. This plot shows
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that the required torque for horizontal motion is approximately 1 N-m. Therefore,

for the experimental testing a positioning hinge with at least 1 N-m of torque must

be used so that the gripper does not rotate due to inertial forces. The end-effector

can still be moved in the vertical direction or in circular motion. However, with a

1 N-m positioning hinge these movements can’t be made at the max speed of the

robot. The advantage of the results of Eqn. 4.10 is that one can calculate exactly

how fast the robot can move before movement of the end-effector occurs. Table 4.1

shows the maximum allowable accelerations and velocities that can be used with a

1.5 N-m hinge. 1.5 N-m is used because this is the amount of torque the chosen

positioning hinge provides.

Table 4.1: Maximum Accelerations and Velocities

Case Variable Max Value

Vertical Motion l̈3 2 m

s2

Rotation about the θ3 Axis θ̇3 10.47 rad

s

Rotation about the θ1 Axis (θ3 = π

2
rad) θ̈1 1.5 rad

s2

Rotation about the θ1 Axis (θ3 = 0 rad) θ̇1 1.57 rad

s
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Figure 4.9: τ vs. θ4 for Horizontal Motion

In this chapter an equation for the required resistance torque of the

positioning hinge was derived using Lagrange’s equations of motion. This closed

form solution is a valuable design tool. Three special cases were derived using
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Newton’s equation of motion. It was seen from the examples that with careful path

planning the amount of required torque can be reduced significantly. This is

extremely valuable. By reducing the torque requirements of the positioning hinge

heavier grippers and parts can be attached to the end-effector. With the kinematic

and dynamic analysis complete, the next step in the design process was manufacture

and test the end-effector. This process will be outlined in Chapter 5.
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CHAPTER 5

End-Effector Manufacturing and Testing

This chapter will cover a range of topics related to the manufacturing and

testing of the end-effector. This chapter begins with a section covering the material

selection process. Different materials were compared based on their mechanical

properties. After explaining the material selection process, there will be a section in

this chapter that details how the specific positioning hinge was chosen. Finally, this

chapter will outline different experimental tests that were performed. This includes

tests done on a rapid prototype as well as the final product.

5.1 Material Selection

An important part of any design is the material selection. There are different

classes of materials such as metals, polymers, or composites. From the onset of the

material selection process it was decided that the end-effector should be made out of

metal. The reason for this is that metals are typically stiff, impact-resistant, and

easily machined. Using metal will allow for a more robust system. The two types of

metals considered were steel and aluminum. Other metals such as copper or

titanium were not considered because these materials were either too costly or had

undesirable material properties. For instance, copper was not considered because it

is too soft and not as easily machined as either steel or aluminium.

The most important factor considered when choosing between steel and

aluminium was the density of the material. Both steel and aluminum are stiff

enough for this application, and so density was considered to be the critical factor.

However, either metal could be used in the design. Steel has a density of 7.75 g

cm3

whereas aluminum has a density of 2.27 g

cm3 . Thus, using aluminum instead of steel

reduces the weight by 64% assuming the same part geometry. As was seen in

Chapter 2 a low weight is important for the design. The combined weight of the
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pivot arm and the base using aluminium is 3.11 N. This is in contrast to a combined

weight of 8.77 N for steel. This end-effector was designed to be attached to a robot

with a payload of 34.3 N. This means that saving 5.7 N allows for added flexibility

in either the part weight or gripper weight.

There were other material properties considered as well. Impact strength and

fatigue strength were also considered. Steel has a better fatigue strength and impact

strength. However, it was thought that a lower weight end-effector was more

important than either fatigue strength or impact strength. After choosing an

appropriate material, it was necessary to choose an appropriate positioning hinge.

5.2 Positioning Hinge Selection

There are many different types of commercially available positioning hinges.

These hinges come in many different shapes. There are standard hinges, L-shaped

hinges, U-shaped hinges, and others. During the configuration design phase

discussed in Chapter 2, it was determined that an L-shaped hinge should be used.

The chosen hinge also had to satisfy certain engineering requirements. The three

most important specifications of the hinge were the torque resistance, springback,

and number of cycles. After a thorough search for different positioning hinge

manufacturers it was determined that the hinge would be purchased from Reell.

The chosen hinge (Fig. 5.1)1 was the Reell PHK positioning hinge with 1.5 N-m of

torque resistance. The PHK hinge has a steel shaft that is surrounded by clips. One

part of the hinge is attatched directly to the shaft. The other part of the hinge is

connected to the clips. When the hinge is rotated the clip/shaft interference

provides the necessary torque.

This hinge was chosen for multiple reasons as listed below:

• The hinge is available in five different levels of torque resistance ranging from

1.5 N-m to 5.5 N-m. Thus, a stronger or weaker positioning hinge may be used

depending on the part weight or gripper weight attached to the end-effector.

1Figure 5.1 is used with permission from Reell Precision Manufacturing, Inc.
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Figure 5.1: Reell PHK Positioning Hinge

• The hinge allows for a full 360◦ of rotation. This allows the gripper to operate

in the specified range of −90◦ and 90◦.

• This hinge has a life of 20,000 cycles. This is less than the desired 43,200

cycles, but after much searching this was the most robust hinge available.

• The typical springback is less than 1◦. This should allow for the desired

positioning accuracy and repeatability.

One drawback from this hinge is that the torque tolerance is ±20% of the

nominal torque. Therefore, a positioning hinge with 1.5 N-m of torque operates in a

range of 1.2 N-m to 1.8 N-m. This means that the designer has to be extremely

careful in choosing a positioning hinge with the appropriate torque. For this design

a hinge with 1.5 N-m of torque was chosen. There are two reasons for this. The first

was that the dynamic analysis from Chapter 4 showed that the hinge required at

least 1 N-m of torque for horizontal motion. The 1.5 N-m positioning hinge satisfies

this requirement. The second reason for choosing this hinge is that this hinge was

first going to be used with plastic parts made from the rapid prototyping machine in

the Marquette University machine shop. Testing the device with plastic is much

different than with metal. The main concern was that if the positioning hinge was

too strong the pivot arm would break before being able to overcome the torque

resistance of the hinge.

The final deciding factor in choosing this hinge was the cost. Part of the goal

of this research is to create a low-cost system. Table 5.1 shows the approximate

costs of each of the components in this design. With a low cost positioning hinge

and only two manufactured parts, this is an extremely low cost end-effector. The
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labor cost is an estimate of the cost to manufacture one set of parts. If these types

of grippers were mass produced the costs of this system would be reduced

significantly. Once the positioning hinge was selected, the next step was to build

and test the end-effector.

Table 5.1: Costs

Component Cost ($)

Reel PHK Positioning Hinge 50
Material 100
Labor 1000

Assorted Bolts 0.50

5.3 Detail Design

During the parametric design phase it was determined that the distance, L,

from the center of the positioning hinge to the tip of the pivot arm was critical to

the success of this design. This dimension was chosen to be 8.9 cm. The reason for

this is that this value allows for a wide range of rotation with the straight line path

algorithm discussed in Chapter 3. Additionally, at this length both the 45◦ path

algorithm and the shortest distance path algorithm can be utilized effectively.

Figure 5.2 shows a detailed drawing of the pivot arm. There are certain

features worth pointing out. The first is that fillets can be seen throughout the

design which help to reduce stress concentrations. The second important feature is

that there is a housing that surrounds the positioning hinge. As mentioned in

Chapter 3, careful path planning is required to ensure that the fixed post does not

jam into the housing.

Figure 5.3 shows a detailed drawing of the base. One important feature of

the base is the slot that the positioning hinge sits in. This slot helps to ensure that

the side of the positioning hinge does not rotate. By looking at the top view one

will notice that the four attachment holes are not centered. The reason is that it

was desired that the pivot arm be centered with respect to the attachment point of

the robot. When the pivot arm is at θ = 0◦ the center axis of the pivot passes

through the center axis of the robot attachment point (the large hole in the top
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Figure 5.2: Detailed Drawing of the Pivot Arm

view of the base). This helps to simplify the kinematics because the positioning

hinge is not offset from the attachment point of the robot. The last important

feature is the 1 in. fillet that can be seen on the front view. This was necessary to

ensure that the side of the base did not bend significantly during normal operation.

Figure 5.4 shows the final CAD model. This assembly was used to ensure

that all of the parts could be assembled correctly. A motion simulation was created

to ensure proper functionality. In addition, the part files were used to create a rapid

prototype. This will be explained in further detail in the next section.

5.4 Prototype Testing

The physical prototype is shown in Fig. 5.5. It consists of a base, the pivot

arm, and a rapid prototype gripper. The rapid prototype is made using a Z310

prototyping machine. The prototyping machine uses powder to create a solid 3D

model. A plastic gripper was made to ensure that the real gripper would not be

damaged during testing. The physical prototype was useful for several reasons.
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Figure 5.4: CAD Model

Having a physical prototype ensured that the parts could be assembled properly. In

addition, it provided a reality check on the size of the components. After examining

the prototype it was determined that the fillets could have a larger radius to reduce

stress.

Ideally, this device would be tested on a SCARA type robot. However, the

only available robot for testing was a Mistsubishi Melfa RV-3S six-axis robot. To
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mimic the motion of a SCARA type robot the six DOF Mitsubishi robot was

constrained to move with only four DOF.

Rapid Prototype Gripper 

Fixed Post 

Pivot Arm 

Base Positioning Hinge 

Figure 5.5: Rapid Prototype

5.4.1 Rapid Prototype Test 1

The first test was a ninety degree turn test shown in Fig. 5.6. This test is

meant to mimic common pick and place assembly operations. For this test the pivot

arm was placed next to the fixed post as shown in Fig. 5.6a. The 45◦ path

algorithm was used to pivot the gripper 90◦ as shown in Fig. 5.6b. The speed on the

robot was set to 30% of its maximum value.

The results of this test were encouraging. The gripper was successfully cycled

through this process fifty times. Visual results showed that the gripper was

routinely pivoted to approximately the same place after each cycle was completed.
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(a) (b) 

Fixed Post 

Figure 5.6: Test 1 with Rapid Prototype

5.4.2 Rapid Prototype Test 2

The second test performed was completed to determine the relative accuracy

of the device. The end-effector was used to place a knife in an out of an angled knife

holder. This is shown in Fig. 5.7. The robot was set at 10% of it maximum speed.

The horizontal path algorithm was used to rotate the knife to the same angle as the

slot in the knife holder. The knife was then placed into the knife holder. The knife

was then pulled out of the knife holder, and the gripper was returned to its initial

position. This cycle was repeated 25 times. This shows that the device is

repeatable. The knife has a thickness of 1.2 mm and the slot it was placed into has

a thickness of 4.42 mm. Thus, the prototype had a positioning error of ±1.61 mm

for this particular test.

After the program was run at 10% of the robot maximum speed, the speed

was increased to 20%. Increasing the speed of the robot to 20% did not effect the

results. The knife was still accurately placed in and out of the knife holder.

However, this was not the case when the speed of the robot was further increased to

30%. At this higher speed the impact forces caused the pivot arm to rotate slightly

more than desired. This means that the knife was not able to be correctly placed

into the knife holder. As the knife approached the slot the tip of the knife blade

caught onto the solid part of the knife holder.
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(a) (b)

Figure 5.7: Test 2 with Rapid Prototype

5.4.3 Design Modifications

From these tests multiple lessons were learned. The first lesson learned was

that the fixed post was not sturdy enough. In these tests a hollow metal tube was

clamped to a wood board. When the pivoting part was pressed through the fixed

post, the post had a small vibration. A studier fixed post was used for the final

design.

In Test 2 an important lesson was that the impact forces are high enough

that at different robot speeds the gripper will be rotated a different amount. This

relates back to the path planning algorithms developed in Chapter 3. As stated

previously, these algorithms are developed based solely on the kinematics and not

on the dynamics of the motion. In practice, the dynamics cannot be ignored. At

very low speeds the impact forces can essentially be ignored. Therefore, it is

recommended that the path planning algorithms be used at lower speeds. However,

as will be seen in future sections, it is still possible to effectively use this device at

higher speeds.

5.5 Final Design

The final product is shown in Fig. 5.8. Multiple tests were performed to

determine the effectiveness of the design. This device was designed to be attached
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to a Schunk PWG-60s angular two finger binary gripper. Figure 5.9 shows the

gripper attached to the end-effector.

(a) (b) (c)

Figure 5.8: Final Design

5.5.1 Final Design Test 1

Figure 5.10 shows the setup for Test 12. In this demonstration a block is

picked up from the base plate of the robot, rotated to coincide with the angle of the

ramp, and finally the block is placed on the ramp and it slides back down to the

base plate of the robot. This cycle is then repeated multiple times. The robot speed

was set to the 40% of the maximum value. During this test it was seen that the

block was continuously brought to the correct angle, and there was almost no

discrepancy between cycles.

5.5.2 Final Design Test 2

Figure 5.11 shows a 90◦ turn test that was performed. This is similar to the

test that was performed with the prototype gripper. The difference was that the

speed was set to the maximum allowable speed of the robot to prove that this

device would work at high speeds. The device was put through approximately 200

cycles. The average cycle time was 1.8 s. This fell within the specified engineering

requirements.

2This demonstration was completed with help from Kevin Flynn.
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(a) (b)

Figure 5.9: Final Design with Gripper

Figure 5.10: Final Design Test 1

5.5.3 Discussion

There were multiple lessons learned during the testing of the end-effector. As

stated previously, a sturdier fixed post was needed. Fig. 5.10 shows the modified

version of the fixed post. The new version includes a solid rod that is bolted to a

stand that is clamped to the table of the robot. It was found that with this newly

designed fixed post, there was less vibration upon impact. For laboratory testing

the fixed post is simply clamped onto the stationary base plate of the robot. One

reason for this is that it allows for the capability to move the fixed post to any

location along the base plate. In practice, however, it is recommended that the fixed

post be mounted directly to the base plate of the robot without using any clamps.
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(a) (b)

Figure 5.11: Final Design Test 2

This will allow for a sturdier and more accurate system.

All of the tests were run using the teach-repeat option for the robot. One

drawback that occurred in the 90◦ turn test (max speed case) was that the robot

had to be programmed at its max speed. The program could not be created at a

lower speed and then be modified to run at the max speed. The reason for this, as

mentioned previously, was that due to the high impact forces the pivot arm would

overshoot it desired angle. This meant that the programmer had to correct for this

offset. The offset was significant enough that simply using the kinematic path

planning from Chapter 3 would not produce the desired result.

The positive result from this was that it was relatively easy to program the

robot to move the gripper to the desired angle. The kinematic path planning

algorithms allowed one to determine approximately where the end-effector should be

moved to. From there it was simple to correct for any additional springback from

the high impact forces. Ideally, the motion planning algorithm will incorporate the

dynamics. This will be an area of future work.

In this chapter material selection, positioning hinge selection, detail design,

and experimental testing was discussed. The results from the experimental tests

show that this gripper is industrially feasible, and it did meet the design

requirements. The final product is a low weight gripper that provides a high torque

to weight ratio.
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CHAPTER 6

Contribution and Future Work

Orienting parts properly for robotic assembly applications is a difficult

problem. Researchers have developed ways to orient parts ranging from parts feeders

to complex anthropomorphic hands. Each of these solutions works well for specific

types of robotic assembly applications. This thesis focused on a particular subset of

robotic assembly tasks. The goal of this research was to develop an end-effector that

could be used in an industrial setting to provide a selectable DOF to a SCARA type

robot. The next section outlines the specific contributions of this research.

6.1 Contributions of this Research

The contributions of this research are as follows:

• A novel end-effector was designed, built, and tested.

• The flexibility in this design is a key contribution. Many grippers that are

aimed at providing an added DOF only work for polyhedral parts. This design

is built to work with any custom gripper that can pick up a wider range of

parts.

• New path planning techniques were developed to be used with the

end-effector. Most path planning techniques are aimed at collision avoidance.

This is an application in which obstacles can be used as an advantage.

• This end-effector shows how the built in controls of a robot can be used to aid

in part manipulation. The end-effector can be designed as part of the overall

system as opposed to a separate entity.

• A dynamic analysis was completed to determine the required resistance torque

for the positioning hinge. The closed form solution allows for designers to
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easily specify an appropriate positioning hinge for a particular application.

It is to be emphasized that part of the beauty in this design is in its

simplicity. A simple mechanical device can be used to replace a complex electrical

or pneumatic rotary actuator. This end-effector is not a panacea for all robotic

assembly applications. However, this is a step in the right direction. The next

section will explore future research opportunities based on this work.

6.2 Future Work

There is a considerable amount of future work that can be done based on

this research. There are many questions that need to be answered before this work

can be implemented in an industrial setting.

6.2.1 Dynamic Analysis

In this thesis a dynamic analysis was completed that enables a designer to

determine the necessary torque the positioning hinge must provide to ensure the

positioning hinge does not move due to either inertial forces or gravity. However,

there is more dynamic analysis that needs to be completed. Most importantly, there

are significant impact forces that occur when the pivot arm makes contact with the

fixed post at high speeds. If the impact forces are too high the positioning hinge

will rotate more than the desired angle of rotation determined from the kinematic

modeling. Therefore, impact forces should be reduced as much as possible. One way

to reduce impact forces would be to coat the fixed post with rubber to help absorb

impact forces. Also, the robot’s end-effector may be moved at a slow enough speed

that impact forces can be ignored.

The impact forces could be used to determine the desired angle of rotation.

This could be determined experimentally. For horizontal path motion the angle of

rotation, θf , could be a function of multiple variables as shown in Eq. 6.1.

θf = f(mp, mg, vh, h, τ), (6.1)
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where mp and mg are the mass of the part and the gripper, vh is the horizontal

velocity of the end-effector, h is the distance from the centerline of the positioning

hinge to the center of the fixed post, and τ is the amount of torque provided by the

positioning hinge. This model could be used in conjunction with the kinematic

analysis in this thesis to create a more accurate system.

Another dynamic problem of interest is the amount of overshoot that may

occur as the gripper is being rotated. The momentum from the gripper may cause

overshoot. This can be determined by using a standard dynamic analysis.

6.2.2 Kinematic Analysis

This thesis outlined three related path planning algorithms that may be used

to obtain the desired angle of rotation. In each of these path planning algorithms

the following assumptions were made:

1. Only one fixed post was used.

2. The fixed post was cylindrical.

3. The pivot arm was a flat surface.

With these assumptions in place three path planning algorithms were

developed. Each of the path planning algorithms involved moving the end-effector

in a straight line, and the algorithms are all related in a general way. Only straight

line paths were considered because moving the end-effector in a straight line

reduced the cycle time.

However, there are still kinematic questions that need to be answered. A

more comprehensive way to approach the kinematic problem would be to approach

the problem from a complete system perspective. The goal of the kinematic problem

is the complete the following steps in the most efficient and accurate way possible:

1. Grasp the part.

2. Rotate the gripper from its initial angle to a desired angle.

3. Assemble the part.
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4. Rotate the gripper back to its initial angle.

5. Repeat this process.

When viewing this problem from a system perspective the problem becomes more

complex. There are new questions that would need to be answered. For instance,

where should the fixed post be placed in the robot’s workspace to provide optimal

performance? Additionally, there may be advantages to using more than one fixed

post. By strategically placing fixed post’s in the robot’s workspace an optimal

solution could be obtained.

Another consideration that would need to be taken into account is the design

of both the fixed post and the pivot arm. The kinematic equations developed in this

thesis were dependent on the radius, r, of the fixed post. Thus, the design of both

the fixed post and the pivot arm critical in the path planning.

6.2.3 Stress Analysis

A standard stress analysis could be completed on the fixed post to ensure

that it can withstand the continuous impact forces that occur. Additionally, a

standard stress analysis could be completed on the pivot arm to ensure that it does

not yield to the continuous impact forces.

6.2.4 Robustness

The most important part of a robotic system is robustness. In this design a

positioning hinge was used that will work for 20,000 cycles. More research needs to

be completed to determine a way to create more robust positioning hinges that will

last for longer periods of time. Additionally, over time there may be wear on both

the pivot arm and the fixed post. Research needs to be done to determine how

much of an impact wear will have on the overall system.
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APPENDIX A

The derivation below is for the distance, d, from (xi, yi) in terms of h, R, and

θf as shown in Fig. A.1

h

R

A

xi , yi

d

xf , yf

θ
f

B
L

α

p β

ε

Figure A.1: 45◦ Angle Schematic

From Fig. A.1

ǫ = π − θf (A.1)

β = π − α − θf . (A.2)

From Fig. A.2

R = l sin
ǫ

2
. (A.3)

Substituting Eqn. A.1 into Eqn. A.3 gives

R = l cos
θf

2
. (A.4)

The distance p can be written as

p = h − l sin
π − ǫ

2
, (A.5)
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Figure A.2: Relation Between ǫ and l

which can be simplified to

p = h − l sin
θf

2
. (A.6)

Substituting the relation between R and l from Eqn. A.4 gives

p = h − R sin
θf

2

cos
θf

2

. (A.7)

The law of sines states that

sin θf

d
=

sin β

p
(A.8)

Substituting β and p into Eqn. A.8 and solving for d gives

d =
sin θf

sin (π − α − θf )

(

h − Rtan
θf

2

)

. (A.9)
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