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ABSTRACT 

OBSERVER INCORPORATED NEOCLASSICAL CONTROLLER DESIGN: 

 A DISCRETE PERSPECTIVE 

 

 

W. Alexander Baker Jr. 

 

Marquette University, 2010 

 

 

 

Control theory has generally been divided into two categories, modern control and 

classical control. Modern control uses state feedback to alter the pole locations of a given 

system. Classical control uses pre-compensation to alter the zeroes of the system and uses 

output feedback to adjust the poles to bring stability to the system. The drawback is that 

the application of classical control techniques can be a lengthy, complicated and iterative 

design process and in the end, classical control techniques still do not give information 

about the state of the system. Neoclassical control combines classical control techniques 

with the state feedback approach of modern control to stabilize the system, eliminate the 

steady state error, provide relevant internal state information, and reduce the time it takes 

to design the controller.  

 

This thesis explores the application of neoclassical control to discrete-time 

systems. The mass-spring-damper, magnetic levitation, and ball and beam systems are 

discretized using the zero-order-hold or the Euler approximation. State-feedback control 

is used to modify the pole locations for these systems. A discrete-time integrator is put in 

series to eliminate the steady-state error for a step input. The pre-compensator is also put 

in series to replace the numerator of the open-loop system with a desired numerator. The 

unit output-feedback is then used to close the loop.  The closed-loop system will have a 

step response which matches the discrete-time optimal ITAE, Bessel, or Butterworth 

transfer functions. 

 

An observer is added to estimate the state of the plant in this work. The observer 

is applied to the discrete-time mass-spring-damper, the magnetic levitation, and the ball 

and beam systems in such a way that the error in the state estimate will be driven to zero 

within the desired period of time. This will allow the application of this controller to 

systems when the state is not known or measurable. 
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 Chapter 1:  Introduction 

1.1: History of Control Theory 

 Control theory has a long history, from James Watt’s fly-ball governor to J.C. 

Maxwell’s use of differential equations to mathematically describe the performance of a 

system (1). Control theory also has a diverse history, particularly in the World War II and 

Cold War era. During this time, the United States and western civilization focused on 

frequency domain control techniques while the Soviet Union focused on time domain 

techniques (1). These control methods helped control systems from automatic pilots of 

planes to the telephone system. In the years following World War II, the techniques, now 

referred to as classical control, were emphasized academically. Combining root locus 

techniques with proportional, integral, and derivative control was, and still is, an effective 

method of control. Various combinations of proportional, integral, and derivative control 

are used in signal filtering and the performance characteristic control of systems. For 

linear, time-invariant (LTI), single input single out (SISO) systems, classical control 

works well, however, it is not optimal for controlling complex systems with multiple 

inputs and multiple outputs (MIMO). As the space race was heating up between the 

USSR and the USA, modern control theory became the more efficient alternative for 

controlling complex systems. Modern control allows complex systems to be broken down 

into state variables. These state variables are controlled via state-feedback control. State-

feedback control allows the poles of a system transfer function to be relocated without 

altering the zeros in the process. If a particular state is unknown, modern control uses 

observers in conjunction with the controller in order to estimate the unknown states. The 

observer is designed in such a way that the difference between the state and the state 
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estimate is reduced to zero within a predetermined period of time, allowing the state 

estimate to replace the actual state, which is not measurable. 

1.2: Overview of Continuous-Time Neoclassical control 

 Individually, classical and modern control work reasonably well. However, if 

classical control techniques are combined with modern control techniques, the overall 

control design process can be more efficient than classical control or modern control 

alone. This concept is the idea behind the development of neoclassical control. By 

combining elements of classical control with elements of modern control, it is possible to 

achieve a closed-loop transfer function for a linear, time-invariant, SISO system that is 

equivalent to a chosen standard transfer function. The process is done in such a way that 

the only design parameter is the settling time. The standard transfer functions chosen for 

this thesis are ones which are optimized for systems with a unit step input. The block 

diagram of the continuous-time neoclassical controller is show in Figure 1-1.   

 

Int 

Gsys(s)  

(n-1)th-order 
plant 

 

K 

Y(s) R(s) 

Ts(s)—nth-order standard transfer function 

Gs(s) 

Gsf(s) 

Pre-comp 
X(s) 

Figure 1. 1: Block diagram of the neoclassically controlled system Figure 1-1:  Block diagram of the neoclassically controlled system (1) Figure 1- 1:  Block diagram of the neoclassically controlled system (1) 
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In order to match a desired transfer function, with known poles and zeros, the 

controller must be able to modify the plant’s poles to the desired values and cancel the 

plant’s zeroes and replace them with the desired zeroes from the closed-loop transfer 

function. 

Neoclassical Control combines modern control’s  state-feedback pole placement 

technique, as shown in the Gsf(s) block, with the classical control’s  zero-pole cancelation 

in the Pre-compensator(Pre-comp). To eliminate the possibility of a steady-state error for 

the step response, an integrator (int) from classical control is also used. The integrator‘s 

inclusion in the Neoclassical control design raises the order of the system, which forces 

the controller to match a standard transfer function which is one order higher than the 

order of the plant. By enclosing these three elements in a unit output feedback, the effect 

of variations of the plant’s parameters on the controller performance is further reduced. 

This makes the controller more robust. (2) 

When the continuous-time neoclassical control design was tested on a linearized 

mass-spring damper (MSD) system and a linearized magnetic levitation (ML) system, the 

results were the successful application of the control method (1). The step response 

matched the response of the ITAE standard transfer function, the steady state error was 

zero and the settling time was 1 second (1). These parameters were achieved without the 

need for the trial and error, time consuming root locus-based techniques of classical 

control. The neoclassical controller makes the design process more efficient and less 

iterative.  
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The goal of this thesis is to expand on the current theory of neoclassical control 

design. The number of standard transfer functions used in the neoclassical controller will 

be increased with the inclusion of the Butterworth transfer function and the Bessel 

transfer function. The neoclassical controller will be applied to the 4
th

 order ball and 

beam system. The ball and beam system is a type 4 system. This will mark the first time 

that neoclassical control design has been used on a system which is not type zero. The 

neoclassical controller will be designed in discrete-time for the first time. An observer 

will also be incorporated into the neoclassical control design to allow for state estimation. 

This thesis will take a closer look at continuous-time neoclassical control in 

chapter 2. This analysis will include a look at three types of standard optimal transfer 

functions, the previously used Integral of Time multiplied by the Absolute Error (ITAE) 

transfer function, the Bessel transfer function, and the Butterworth transfer function. This 

discussion will be followed by an examination of discrete-time neoclassical control in 

Chapter 3. This chapter will include a discussion about the discretization of continuous-

time systems and standard transfer functions. The 4
th
 chapter will display the results of 

the case studies for the discrete-time neoclassical controller. The 5
th
 chapter will take a 

second look at the benchmark systems from the previous case studies with addition of an 

observer for the case where the state is not available for feedback. The last chapter will 

be a summary of the thesis, ideas for future expansion of the research, and the conclusion.
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 Chapter 2: Continuous-time Neoclassical Control Review 

In order to adequately investigate discrete-time neoclassical control, the current 

understanding of continuous-time neoclassical control must be reinforced and expanded. 

Three standard transfer functions will be used in the design of the neoclassical 

controllers: the Bessel, Butterworth, and ITAE transfer functions. The systems for which 

the neoclassical controllers will be designed are the Mass-Spring-Damper, the Magnetic 

Levitation, and the Ball and Beam systems. Full derivations of the models of all systems 

will be presented in chapter 4.  

2.1: Neoclassical components 

As stated in chapter 1, neoclassical control combines state-feedback control with 

zero-pole cancelation in the pre-compensator. The neoclassical controller design is 

intended for use on linear, time-invariant (LTI), single input single output (SISO) 

systems. An integrator is added in series to eliminate steady-state error for the step 

response.  The loop is then closed using unity gain output feedback to improve the 

robustness of the controller and to set the constant term of the denominator. The block 

diagram for the neoclassical control block diagram can be seen in Figure 2-1. The 

purpose of this chapter is to highlight the important components of neoclassical control 

theory and to show how each component is brought together into the neoclassical control 

design. 
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2.1.1: The Plant  

The plant is the system for which the controller will be designed. The dynamics of 

the (n-1)th order system can be represented by both a state-space model and a transfer 

function as, 

State-space model    
x = Ax + Bu 
y = Cx + Du

      (2.1) 

Transfer function  H(s) = 
bn−1sn−1+⋯+b1s+b0

sn +an−1sn−1…+a1 s+a0
,    (2.2) 

where it is assumed that bn=0, which will be the case in all examples in this thesis. 

The transfer function is obtained from the state-space model using the formula,  

H(s)= C sI − A −1B + D.    (2.3) 

Since one of the elements of neoclassical control involves pole-placement, it is 

essential that the plant be controllable. A system is considered controllable if the system 

can start at any arbitrary initial state and be driven to an arbitrary final state in finite time 

Int 

Gsys(s)  

(n-1)th-order 
plant 

 

K 

Y(s) R(s) 

Ts(s)—nth-order standard transfer function 

Gs(s) 

Gsf(s) 

Pre-comp 

Figure 2- 1: Block diagram of the neoclassically controlled system 
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with a finite magnitude control action. Controllability of the system can be determined by 

determining the rank of the controllability matrix, 

Wc =  B AB ⋯ An−1B ,     (2.4) 

where A and B are the matrices from the state-space model of the system. If the 

controllability matrix is full rank, the system is controllable. 

2.1.2: State-feedback  

State-feedback control makes it possible to easily adjust the pole locations of a 

controllable system. The concept starts with a state-space model of the system. 

x = Ax + Bu      (2.5a) 

y = Cx + Du.      (2.5b) 

The input, u, is set to be the linear combination of the reference signal, r, and the 

control input, uc. The control input is defined as, 

     uc = −Kx.                   (2.6) 

Substituting u into the state equation yields: 

x =  A − BK x + Br.     (2.7) 

The state-feedback allows the poles of the plant to be altered in order to match the 

desired overall transfer function by choosing the gain, K. In the case of neoclassical 

control, pole placement is used so that when the integrator and pre-compensator are put 

in series with the state-feedback loop and the unity gain output feedback is used to 
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enclose the system, the resulting closed-loop transfer function will be equivalent to the 

standard transfer function of choice. 

The control gain, K, can be calculated by hand using Ackermann’s formula (3), 

K =  (p1 − α1)(p2 − α2) ⋯ (pn − αn ) Wc
    Wc

−1   (2.8) 

where Wc
     is the controllability matrix of the controllable canonical form of the system. 

The parameters, pn, are the desired pole locations of the system while the parameters, αn, 

are the pole locations of the system to be controlled. 

2.1.3:  The pre-compensator, integrator and output feedback 

The pre-compensator is the ratio of the desired numerator and the plant’s 

numerator. The purpose of the pre-compensator is to replace the numerator of the plant 

with the desired standard transfer function’s numerator. The integrator is used to 

eliminate steady state error of type-zero systems. The continuous-time integrator is 

represented as 1/s. However, the integrator will also raise the order of the system by one, 

which is why neoclassical control matches the closed-loop transfer function to a standard 

transfer function that is one order higher than the plant. The unit output feedback is used 

to adjust the constant term of the denominator and to improve the controller’s robustness. 

2.2:  Standard Transfer Functions 

 

In choosing the standard transfer functions that are used for neoclassical control, 

there are many factors to consider. These factors include the rise time, the overshoot, and 

the settling time resulting from the step responses of these transfer functions.  Rise time is 

the interval of time required for the step response of a system to go from 10% to 90% of 
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its final value. Overshoot is the percentage difference between the steady state value and 

the maximum value of the step response. Settling time is the minimum time required for 

the system response to remain within a band of ±2% of the steady state value (4) (2); 

In this thesis, three standard optimal transfer functions will be used: Integral of 

Time multiplied by Absolute Error (ITAE), Butterworth, and Bessel.  These transfer 

functions have an optimality property in either the frequency- or the time-domain 

response. All three of these standard transfer functions take an all pole form, 

H s =
a0

sn +an−1sn−1+⋯+a1s+a0
     (2.9) 

for an nth order system. 

2.2.1: ITAE Transfer Functions 

The ITAE transfer function is optimized to minimize the effect of the initial error 

over time for a unit step input (5). The mathematical representation of the error function 

is,  

dttetITAE
ft

t 0

)( .     (2.10)  
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The ITAE was used in previous work on continuous-time neoclassical control (1). 

For a step input, the denominators of the transfer functions that adhere to the ITAE 

optimization for a step input are, 

2
nd

 order               s2 + 1.4 ωns + ωn
2,    (2.11a)  

3
rd

 order               s3 + 1.75ωns2 + 2.15ωn
2s + ωn

3,   (2.11b)  

4
th

 order      s4 + 2.1ωns3 + 3.4ωn
2s2 + 2.7ωn

3s + ωn
4,   (2.11c)  

5
th

 order    𝑠5 +  2.8ωn  𝑠4 +  5ωn
2 𝑠3 + 5.5ωn

3 𝑠2 + 3.4ωn
4𝑠 + ωn

5 ,  (2.11d)  

where ωn  is the natural frequency(2,6). The ITAE transfer functions can be scaled by 

setting the natural frequency to a desired 2% settling time, Ts,desired, and then find the 

normalized ITAE transfer function’s settling time, Ts,norm.  The normalized transfer 

functions can be found by setting ωn equal to 1. Once the settling time of the normalized 

ITAE transfer function is found, then the equation, 

ωn =
𝑇𝑠,𝑛𝑜𝑟𝑚

𝑇𝑠.𝑑𝑒𝑠𝑖𝑟𝑒𝑑
,     (2.12)  

is used to find the ωn which scales ITAE transfer function to the desired settling time..  
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The step responses for the ITAE transfer function with a settling time of 1 second 

are simulated and the results are displayed below. 

 
Figure 2- 2: 2nd through 5th order of ITAE optimized transfer function step responses 

The step responses settle at the desired settling time. The even numbered orders of 

ITAE reach the steady state value from above while the odd numbered orders reach the 

steady state value from below. These transfer functions exhibit a small overshoot.



12 
 

2.2.2: Butterworth Transfer Functions 

The Butterworth transfer function has the property of being maximally flat in the 

pass band of the frequency response (7). For a step input, the denominators of the 

normalized Butterworth transfer functions are: 

2
nd

 order               s2 +  2s + 1     (2.13a)  

3
rd

 order                       s3 + 2s2 + 2s + 1     (2.13b)  

4
th

 order      s4 + 2.6131s3 + 3.4142s2 + 2.6131s + 1   (2.13c)  

5
th

 order    𝑠5 +  3.236 𝑠4 +  5.236 𝑠3 + 5.236 𝑠2 + 3.236𝑠 + 1       (2.13d)  

The Butterworth transfer function can be scaled by the 2% settling time of the 

normalized Butterworth transfer function. The roots of the normalized Butterworth 

transfer function, pn, are used to find the pole locations for the desired settling time, pd, 

through the following equation: 

pd =
𝑇𝑠,𝑛𝑜𝑟𝑚

𝑇𝑠.𝑑𝑒𝑠𝑖𝑟𝑒𝑑
𝑝𝑛 .     (2.14)  
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The step responses for the Butterworth standard transfer functions with a settling 

time of 1 second are shown below.

 

Figure 2- 3: 2nd through 5th order of Butterworth optimized transfer function step responses 

The Butterworth step response’s percent overshoot increases as the order of the 

transfer function increases. However all orders do show a settling time of 1 second. The 

overshoot does appear to be higher than the overshoot seen with the ITAE step response. 
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2.2.3: Bessel Transfer Functions 

The step response of the Bessel transfer functions exhibits minimal overshoot (3). 

For step inputs, the denominators of the Bessel transfer functions with a 2% settling time 

of 1 second are, 

2
nd

 order     s2 + 7.53s + 18.9,     (2.15a)  

3
rd

 order   s3 + 12.43s2 + 64.33s + 133.2,    (2.15b)  

4
th

 order   s4 + 19,09s3 + 163.9s2 + 730.2s + 1394,   (2.15c)  

5
th

 order  𝑠5 + 25.61 𝑠4 + 306 𝑠3 + 2090 𝑠2 + 8026 𝑠 + 13700,   (2.15d)  

To scale the Bessel polynomial, the equation, 

pd =
1

𝑇𝑠.𝑑𝑒𝑠𝑖𝑟𝑒𝑑
𝑝𝑛 ,     (2.16)  

is used, where pn is the pole for the Bessel polynomial and pd is the scaled Bessel 

polynomial. The roots of the Bessel polynomials with a 1% settling time of 1 second can 

be found in (3).  

The simulated step responses of the 2
nd

 through 5
th
 order Bessel transfer functions 

are shown in Figure 2-4. 
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Figure 2- 4: 2nd through 5th order of Bessel optimized transfer function step responses 

All of the Bessel responses have the minimal overshoot that is expected. The 

response slows as the order increases and they all settle at 1 second. 

 This thesis will use all three standard optimal transfer functions to demonstrate 

the flexibility neoclassical control has for the designer. The transient responses are 

already pre-determined by each standard transfer function and the only design parameter 

the designer needs to pick is the settling time. 
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2.3: Implementation of the continuous-time neoclassical controller. 

 The implementation of the neoclassical controller can be shown using a transfer 

function representation.  In order to design a neoclassical controller for a LTI, SISO 

system, the state-feedback controller gains need to be found. Starting with the desired 

transfer function, 

T s =
a0

sn +an −1sn−1+⋯+a1s+a0
,     (2.17)  

the unity gain output feedback is removed, resulting in the function, 

G s =
T(s)

1−T(s)
      (2.18)  

or     G s =
a0

sn +an −1sn−1+⋯+a1s
.     (2.19)  

The next step is to remove integrator: 

G s =  
1

s
 

a0

sn−1+an −1sn−2+⋯+a1
               (2.21)  

Gsf s =
G(s)

1

s

     (2.22) 

Gsf s =
a0

sn−1+an −1sn−2+⋯+a1
    (2.23) 

Now that the transfer function for the inner loop in Figure 2-1 has been derived, 

the poles of Gsf(s) can be used to find the desired poles for the block. 

With the poles for Gsf(s) and plant model known, the feedback gain, K, can be 

calculated and applied to the plant.  The integrator is then put in series with the plant. The 
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pre-compensator is also put in series to cancel and replace the numerator of the open-loop 

system. The unity gain output feedback is used to close the outer loop and the resulting 

system will be equivalent to the desired optimal transfer function. Figure 2-5 summarizes 

the design process. 
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Figure 2- 5: Neoclassical controller design flow chart. 
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2.4:  Limitations of neoclassical control 

Neoclassical control works for LTI and SISO systems. While there are well 

defined cases where neoclassical control works well, the cases where neoclassical control 

might not work have not been closely examined to this point. For continuous-time 

systems, if the zeroes of the open-loop system are in the right-half complex plane, the 

neoclassical controller can become unstable. This instability is due to the pre-

compensator, which adds the poles necessary to cancel out the finite zeroes of the plant.  

Theoretically, this is not a problem since the zeros and the poles will still cancel. 

However, in practice, the zeros and the poles would need to be exactly the same to cancel 

out; even the slightest difference in the pole location and the zero location will make the 

system unstable due to the imperfection of the attempted zero-pole cancellation. In the 

real world, exact zero-pole cancellation is nearly impossible.  

2.5:  Conclusion 

This chapter has reviewed the continuous-time neoclassical control by 

investigating the various components and how they are put together. This chapter has 

introduced the standard optimal transfer functions which will be used in the design of the 

neoclassical controllers. In the next chapter, the neoclassical control theory will be 

applied to the discrete-time domain. An observer will also be introduced to the 

neoclassical control theory to estimate unknown states. 
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Chapter 3: Theory of Discrete-time Neoclassical Control 

This chapter will focus on the neoclassical control theory from a discrete-time 

control perspective. This chapter will discuss the discretization process, revisit all of the 

pieces of the neoclassical control design with an emphasis on discrete-time operation, and 

explore the limitations that can influence the way neoclassical control is applied. At the 

end of the chapter, an observer will be incorporated into the neoclassical control design to 

allow for estimation of unknown states.  

3.1 Overview of discrete-time neoclassical control 

In recent years, technology has stepped away from continuous-time systems in 

favor of discrete-time systems. Discrete-time technology uses samples of a continuous-

time system response, which amounts to a low-pass filtering operation. Therefore the 

effects of wideband noises are attenuated. Since control of discrete-time systems is 

desired from this viewpoint, an understanding of discrete-time control is necessary. 

Discrete-time system models can take the form of a transfer function or a state-

space model, just like continuous-time systems.  Transfer functions represent the input-

output relationship of LTI, SISO systems. In continuous-time, transfer functions are 

system representations in the s-domain. For discrete-time systems, transfer functions are 

system representations in the z-domain. 
 

The discrete-time neoclassical model is shown in Figure 3.1. The block diagram is 

essentially the same as the continuous-time neoclassical controller block diagram. 

However, there are differences between the application of neoclassical control in 

continuous time and discrete time. This section will explore these differences, 
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particularly the development of the discrete-time model of the plant, the closed-loop 

standard transfer function, and the discrete-time form of the integrator. 

 

Figure 3- 1: Discrete-time neoclassical controller block diagram 

3.2: Discrete-time Plant
 

To apply discrete-time control to continuous-time systems, the system must be 

discretized or transformed into the discrete-time domain. Before discretization can 

happen, it is important to choose a proper sampling interval, T.  A sampling interval that 

is too large can miss variations in the system response, leading to misrepresentation of 

the system dynamics. However, making the sampling interval too small can lead to 

computational difficulty and could end up storing redundant information that does not 

improve the quality of the control action. The sampling interval that will be used 

throughout this thesis is 0.01 s. A more detailed method that can be used to choose a 

sampling interval can be found in (3). 

 

Int 

Gsys(z)  

(n-1)th-order 
system 

 

K 
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3.2.1: Zero Order Hold (ZOH) 

There are many forms of discretization. Two of the most commonly used are the 

zero order hold (ZOH) and the Euler approximation.  A continuous-time state-space 

model: 

,

x Ax Bu

y Cx Du

 

       

(3.1) 

is transformed into a ZOH equivalent discrete-time state-space model: 

1

,

k k k

k k k

x x u

y Cx Du

   

      

(3.2) 

which, by construction, exactly matches the output of the continuous-time model at the 

sampling instants. 

   The discrete-time system matrices, Φ and Γ, are obtained from the continuous-

time matrices by via the following equations (3): 

𝛷 = 𝑒𝐴𝑇
     

(3.3) 

𝛤 =  𝑒𝐴𝜏𝐵
𝑇

0
𝑑𝜏

     

(3.4) 

whereas the matrices in the measurement equation of both the continuous-time and 

discrete-time systems are the same 
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The poles, zpi, of the ZOH model are related to the poles, spi, of the continuous 

time model by the ZOH pole mapping function, 

pis T

piz e ,
     

(3.5) 

where T represents the sampling period (3). 

The ZOH maps poles in the left-hand-plane of the s-domain map to poles within 

the unit circle in the z-domain. Poles in the right-hand-plane in the s-domain are mapped 

outside of the unit circle in the z-domain. Poles on the jω-axis in the s-domain are 

mapped onto the unit circle in the z-domain.  

3.2.2: Euler Approximation 

The first order Euler Approximation uses the Taylor series expansion of the ZOH 

and eliminates all terms in T higher than the first order in the state matrices; 

𝛷 ≈ 𝐼 + 𝐴𝑇,

     

(3.6) 

𝛤 ≈ 𝑇𝐵.
     

(3.7) 

 In the Euler Approximation, the discrete-time system will have the same number 

of zeroes in the transfer function as the continuous-time system. If the continuous-time 

system had zeroes in the right half of the complex plane, then the Euler approximation of 

that system will have the same number of zeroes outside of the unit circle. 
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3.3: Discretization of the continuous-time integrator 

The s-domain transfer function representation of the integrator is 1/s. The z-

transform can be used to transform this expression from the s-domain to the z-domain. 

The continuous-time integrator can be z-transformed into the following form: 

1

𝑠
→

𝑇∗𝑧

𝑧−1
=

𝑌(𝑧)

𝑈(𝑧)
.
     

(3.8) 

However, the use of the z-transform can introduce a half interval advance into the 

system. The inherent causality problem becomes an issue in the implementation of the 

system. To compensate for the causality problem, the modified z-transform is used with 

one step delay to obtain (8): 

1

𝑠
→

𝑇

𝑧−1
=

𝑌(𝑧)

𝑈(𝑧)
.
     

(3.9) 

3.4: Observer Based Discrete-time Neoclassical Control 

Until now, neoclassical control design has been based on the assumption that all 

of the state information is known. However, in real world problems, not all the state 

information may be known or measurable. In order to be able to control such systems, 

modern control theory provides the observer to estimate the unknown states. Before an 

observer can be designed for the system, it must be established that the system is 

observable. The test for observability involves constructing the observability matrix, Wo, 

using the system matrices, 

𝑊0 =

 
 
 
 
 

𝐶
𝐶𝛷
𝐶𝛷2

⋮
𝐶𝛷𝑛−1 

 
 
 
 

     

(3.10) 
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If Wo is full rank, then the system is observable. 

3.4.1: Observer implementation 

Observers can be easily incorporated in the neoclassical control design. There are 

two types of observers, full-order observers and reduced-order observers. For this thesis, 

full-order observers will be used. Figure 3.2 shows the incorporation of the observer into 

the neoclassical control block diagram. 

x 

 

Figure 3- 2: Discrete-time neoclassical controller block diagram with an observer 

 

For a discrete-time system with no feed forward term, which all of our systems 

will obey,  

𝑥𝑘+1 = 𝛷𝑥𝑘 + 𝛤𝑢𝑘     

(3.11a) 

𝑦𝑘 = 𝐶𝑥𝑘
,
      

(3.11b) 
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a closed-loop observer can be defined as, 

𝑥 𝑘+1 = 𝛷𝑥 𝑘 + 𝛤𝑢𝑘 + 𝐿(𝑦𝑘 − 𝐶𝑥 𝑘),

     

(3.12) 

where 𝑥 𝑘  represents the estimate of the state. The term (𝑦𝑘 − 𝐶𝑥 𝑘) is a measure of the 

difference between the output of the actual system and the output obtained from the 

observer. This term weighted by the observer gain, L, is used to improve the state 

estimate. 

Defining the error of the system as, 

𝑒𝑘 = 𝑥𝑘 − 𝑥 𝑘
     

(3.13) 

the error update equation can be derived from the state update equation and the estimate 

update equation as, 

𝑒𝑘+1 = (𝛷 − 𝐿𝐶)𝑒𝑘 .

     

(3.14) 

The solution to this error update equation is, 

𝑒𝑘 = (𝛷 − 𝐿𝐶)𝑘𝑒0,

     

(3.15) 

where e0 is the initial error in the estimate. The purpose of observer design is to choose L 

such that the eigenvalues of (𝛷 − 𝐿𝐶)are within the unit circle.  By placing the 

eigenvalues of (𝛷 − 𝐿𝐶) inside the unit circle, it is guaranteed that the error will be 

driven to zero in time, no matter how large the initial error may be. 

The observer settling time is the time it takes for the estimate error to go to zero. 

For discrete-time systems, the observer settling time must be less than the settling time of 

the controller by a factor of ten. This is achieved by placing the poles of the observer in 
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the location to get the desired error response. The observer does not affect the overall 

transfer function of the closed-loop system.  When the state equations in xk and ek are 

combined, the closed-loop system is represented as, 



































k

k

k

k

e

x

LC

KK

e

x

01

1

.    

(3.16) 

The challenge of implementing the neoclassical control technique on a system 

with an observer is to do so without losing the information from the observer.  As 

discussed previously, transfer functions were developed as a part of classical control 

theory. Transfer functions only represent the input-output relation of the system; they 

don’t provide information about the state of the system. The effect of using state-

feedback on a system can be seen in a transfer function representation. To this point, the 

neoclassical control design procedure could be represented at every step with a transfer 

function. However, the observer transfer function representation will not provide any 

information on the state estimates. Therefore, in order to apply the controller gains, K, to 

the state estimated system, the design procedure must be done in state-space 

representation to preserve the observer information. Fortunately, modern control theory 

has already developed a way to integrate an observer into a controller at the same time 

without losing important observer information. 

The observer, combined with the state-feedback model forms the state-feedback 

block, Gsf(z). The integrator and the pre-compensator can be put in series with the state-

feedback system. Using unity gain output feedback, the loop is closed and the overall 



28 
 

transfer function is equivalent to the desired transfer function and the error in the initial 

guess in minimized within the desired settling time.  

3.5: Conclusion 

The discrete-time neoclassical control theory has been described in this chapter. 

The pieces of the neoclassical control system block diagram have been explained. The 

limitations of using the ZOH to discretize the system have been noted, as has the way to 

control continuous-time systems with zeroes in the right half complex plane using 

discrete-time neoclassical control. In Chapter 4, the neoclassical control design will be 

applied to stable and unstable systems of various orders. In Chapter 5, the state observers 

that have been discussed in this chapter will also be implemented for the same systems. 
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 Chapter 4: Case Studies without Observers 

 In order to test the application of the discrete-time neoclassical controller, there 

will be three systems used in case studies, a mass-spring-damper, a magnetic levitation, 

and a ball and beam. After using the design process, all three systems will have step 

responses which will match the three desired standard transfer function; ITAE, Bessel, 

and Butterworth. 

4.1: The Mass-Spring Damper system 

 A mass on a spring and dashpot (damper) is often used as an example of harmonic 

motion. The differential equation comes from Newton’s laws and the behavioral 

equations of springs and dashpots. 

 

 

Figure 4- 1: A diagram of the Mass-Spring-Damper system with relevant force vectors (1) 
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 The component forces can be seen in Figure 4-1 or from a free body diagram of 

the system. In Figure 4-1, m is the mass, kS1 is the linear spring constant, kS3 is the non-

linear spring constant, b is the resistance to motion due to the dashpot, and Fext is an 

external force applied to the system. The equation of motion for the mass on the spring 

with a dashpot is (1): 

extSS Fxkxkxbxm  3

31
 . .   (4.1) 

 The system needs to be linearized before the neoclassical control design can 

begin. This linearization is achieved simply by setting kS3 to zero. By assuming x1=x and 

x2= x
,
 the state-space model is given as:  

m

F
x

m

k
x

m

b
x

xx

extS 



1

1

22

21





.     (4.2) 

Equation 4.2 can be placed into vector- matrix form as, 

 
𝑥 1
𝑥 2

 =  
0 1

−𝑘𝑆1

𝑚

−𝑏

𝑚

  
𝑥1

𝑥2
 +  

0
1

𝑚

 𝐹𝑒𝑥𝑡     (4.3) 

Assuming that the displacement of the mass with respect to its rest position is the 

measured quantity, the output or measurement equation is 

   1

2

1 0 0
x

y u
x

 
  

 
 .    (4.4) 
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 For the purposes of simulation, the parameters are assigned the values shown in 

Table 4-1. With these values, the system exhibits a slightly underdamped step response. 

m b kS1 kS3 

(kg) (N∙sec/m) (N/m) (N/m
3
) 

1 3 9 9 

Table 4- 1: Table of parameters to be used for the Mass-Spring-Damper system 

 Using a sampling period of T=0.01 seconds, the discrete-time state space 

representation of the system can be derived via the ZOH. The discrete-time state-space 

equations are: 

    ][0
][

][
01][

][
0099.0

0

][

][

97.00887.0

0099.09996.0
]1[

2

1

2

1

ku
kx

kx
ky

ku
kx

kx
kx








































  (4.5) 

 A unit step input is applied to the discrete-time system at t=0. The open-loop step 

response of the system is shown below in Figure 4-2. 
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Figure 4- 2 : The open-loop Mass-Spring-Damper system for a unit step input 

 The open-loop step response of this system has a 2% settling time of 2.6763 

seconds. Figure 4-2 shows a significant steady state error for the position vector with 

respect to the reference input of 1.  

In order to control the position variable of the system such that the steady state 

error goes to zero and the settling time is reached at a specified time, neoclassical control 

will be used.  Applying neoclassical control to the system requires that the control gains 

be calculated first.  

 Remember, the goal is displacement control of the Mass-Spring-Damper system 

to have a 1 meter steady state value of displacement and a settling time of 1 second for a 

unit step input. It is also desired to have the closed-loop system display behavior 

consistent with the step response for standard transfer function, whose properties are well 

established. Since the Mass-Spring-Damper system is a second order system, as 

explained before, the standard transfer function to which the overall system is matched 
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must be third order. State-feedback control is used to adjust the poles of the plant to the 

locations that give the overall desired transfer function. The appropriate discrete time 

optimal transfer function is chosen for the desired step response. The first of these is the 

ITAE 3
rd

 order discrete transfer function, 

Ti(z)=
)9244.0917.1(*)948.0(

)469.674.26911.6(*10
2

25





zzz

zz
,    (4.6) 

which represents the desired closed-loop transfer function to be obtained using the 

neoclassical block diagram shown in Figure 3-1. The closed-loop system needs to be 

made into an open-loop system by removing the unit feedback.  

)(1

)(
)(

zT

zT
zG

i

i

i




     

(4.7a) 

 
)9764.0865.1(*)1(

)469.674.26911.6(*10
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2

25


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

zzz

zz
zGi

    (4.7b) 

 The next step is to remove the discrete-time integrator.  In Chapter 2, it was 

shown that once a standard transfer function has its unit feedback removed, it will always 

have a pole at the origin in the s-domain. Poles at the origin in the s-domain map to poles 

at z=1 in the z-domain. Therefore, by removing the unit output feedback from the 

standard transfer function, there will always be a pole at z=1. This fact means that a 

discrete-time integrator can always be removed from the equation, 

( )
( )

1
( 1)

i
sfi

G z
G z

z



   

    (4.8a) 
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Gsfi(z)= 
9764.0865.1

)469.674.26911.6(*10
2

25





zz

zz
    (4.8b) 

 Gsfi(z) represents the inner loop state-feedback block in Figure 3-1 for a system 

being designed for an ITAE transfer function. At this point, the poles of Gsfi(z), the Φ 

matrix, and the Γ matrix are known. This is all that is needed to calculate the feedback 

gains necessary to match the closed-loop response to the ITAE transfer function. 

MATLAB’s place command or the Ackermann formula can be used to place the poles 

into the desired positions. The calculated state feedback gain for the ITAE neoclassical 

controller with a desired settling time of 1 second is, 

Ki=[109.16    10.09]       (4.9) 

 Now that all the pieces are known, the system can be reassembled again by 

putting the discrete integrator and pre-compensator in series with Gsfi(z). After closing 

the loop with unity gain feedback, the reconstructed system will have a transfer function 

that is equivalent to the desired ITAE transfer function. 

 The step response of the resulting system is shown in Figure 4-3 for the 

neoclassical control designed to yield the ITAE unit step optimized 3
rd

 order transfer 

function. 
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Figure 4- 3: The (a) step response and (b) control input of the neoclassical ITAE controller for the 

Mass-Spring-Damper system 

 The 2% settling time for the discrete-time ITAE neoclassically controlled Mass-

Spring-Damper is 1 second as per design. The steady state value is also equal to the unit 

step reference input, 1 m. The success in matching the ITAE standard transfer function to 

the position of the mass shows that the neoclassical approach works on this stable, 

linearized, single-input, single-output (SISO) system. The ITAE transfer function is an 

arbitrary choice of transfer function. The same design procedures can be used for other 

standard transfer functions. This gives neoclassical control flexibility in choosing the 

desired transient response for a system. To further display the control capabilities of the 

neoclassical controller, the system has also been tuned to the Bessel and Butterworth 

performance criteria, as shown below in Figure 4-4 and 4-5 respectively. 
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Figure 4- 4: The (a) step response and (b) control input of the neoclassical Bessel 

controller for the Mass-Spring-Damper system 
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Figure 4- 5: The (a) step response and (b) control input of the neoclassical 

Butterworth controller for the Mass-Spring-Damper system. 

 

 Figures 4-4 and Figure 4-5 show the step response for when the neoclassical 

controller design procedure is repeated for the Mass-Spring-Dampers using the discrete 

Butterworth transfer function and the discrete Bessel transfer function.  Just like the 

ITAE example, the desired design criteria have been attained. The desired settling time of 

1 second has been achieved and the steady-state value is equal to the magnitude of the 

reference unit step input. In fact, the primary differences between the ITAE, Butterworth, 

and Bessel step responses are the transient responses and magnitude of the control input,  

𝑢𝑐 = 𝐾𝑥     (4.10) 
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As Figure 4-6 shows, the control inputs are very different despite the fact that 

they are acting on the same system.

 

Figure 4- 6: The (a) step responses and (b) control inputs of the neoclassical 

controllers for the Mass-Spring-Damper system 

 

 The control inputs have very different steady-state values. The ITAE actually has 

the highest control input of all three performance criteria. This means that the ITAE 

requires more control action on the part of the controller than the others to achieve the 

desired performance. The steady state value of the control inputs can be calculated as, 

𝑢𝑠𝑠 = 𝐾𝑥𝑠𝑠       (4.11) 

where       𝑢𝑠𝑠 = 𝐾  
1
0
       (4.12) 
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for a steady state value of one for the position and zero for the velocity. Recalling that the 

control gain for the ITAE neoclassical controller is  

Ki=[109.16    10.09]      (4.13) 

Therefore,  

𝑢𝑠𝑠 = 109.16 N.      (4.14) 

This result is displayed on the red ITAE control input line in Figure 4-6 and Figure 4-3. 

The results for the steady state value of the control input for the Bessel and the 

Butterworth transfer functions can also be calculated based on the respective control 

gains, K, 

Kb=[53.011    9.1234]     (4.15) 

𝑢𝑠𝑠 =53.011 N     (4.16) 

Kbw=[76.152    9.9991]     (4.17) 

𝑢𝑠𝑠 = 76.152 N     (4.18) 

The steady state values for the control input match the results seen in the Figure 4-6. 

4.2: Magnetic Levitation system 

The discrete-time neoclassical control method has been shown to be effective for 

an open-loop stable 2
nd

 order system in the previous section. The neoclassical design 

procedure will now be applied to higher order systems. The magnetic levitation system is 

a 3
rd

 order system.  The magnetic levitation system consists of a metal ball of mass, m, 
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subjected to a force due to the magnetic field generated by an electromagnet with current, 

i, running through it. The current is controlled by the voltage applied to the coil. 

 

Figure 4- 7: A diagram of the Magnetic Levitation system. 

The linearized state-space model for the Magnetic Levitation system can be 

derived from the differential equations for the system, 
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where m is the mass, R is the resistance, L is the inductance, and x is the position from 

the bottom of the magnet (1). The magnetic force constant, k, is set equal to one for all 

magnetic levitation case studies. For this example, the state variables, x1, x2, and x3 

represent the position of the ball, the velocity of the ball, and the current running through 

the electromagnet, respectively. The resulting non-linear state equations are:  

   
21 )( xtx  ,      (4.21a)  
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and       

    33

1
)( Rxv

L
tx  .      (4.21c) 

The A and B matrices are linearized about an equilibrium position, x1,0 (9). The resulting 

linear continuous-time state-space model is 
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where the position of the ball is the measured output variable. 
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The parameters used for simulation are shown in Table 4-2.

 
m g R L x1,0 

(kg) (m/sec) (Ω) (mH) (m) 

0.015 9.81 0.615 143 0.125 

Table 4- 2: Table of parameters to be used for the Magnetic Levitation system 

A ZOH was used to discretize the magnetic levitation system. This caused an 

unexpected instability in the step response. An analysis of individual pieces in the design 

showed that the pre-compensator was the source of the instability. This implied that the 

numerator of the ZOH equivalent system has one or more zeroes outside of the unit 

circle. This was numerically confirmed upon analysis of the transfer functions. The 

continuous-time transfer function for the magnetic levitation system is, 

𝐺𝑠𝑦𝑠  𝑠 =
−1012

𝑠3+4.301 𝑠2−78.48 𝑠 337.5
=

−1012

(𝑠−8.859) (𝑠+8.859) (𝑠+4.301 )
.   (4.23) 

The discrete-time transfer function of the magnetic levitation system, using the 

ZOH method is, 

𝐺𝑠𝑦𝑠  𝑧 =
−0.0001669  𝑧2− 0.0006606  𝑧 − 0.0001633

𝑧3− 2.966 𝑧2+ 2.923 𝑧 − 0.9579
=

−0.00016688  (𝑧+3.694) (𝑧+0.265)

(𝑧−0.9579) (𝑧−0.9152 ) (𝑧−1.093)
. (4.24) 

The presence of one or more zeroes outside of the unit circle causes instability in 

the neoclassical controller due to the nature of the pre-compensator, which puts a pole at 

the same location as the plant’s zeroes. Imperfect zero-pole cancellation will destabilize 

the neoclassical controller.  

The continuous-time transfer function has a constant gain in the numerator. In 

comparison, the discrete-time transfer function not only has finite zeroes, one of the 

zeroes is outside of the unit circle. The Euler Approximation was chosen as an alternative 
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discretization method. The discrete-time transfer function of the magnetic levitation 

system, using the Euler Approximation is, 

𝐺𝑠𝑦𝑠  𝑧 =
−0.001012

𝑧3− 2.957 𝑧2+ 2.906 𝑧 − 0.9495
=

−0.001012

 (𝑧−0.957) (𝑧−0.9114 )(𝑧−1.089)
. (4.25) 

The Euler Approximation, unlike the ZOH, does not create any zeroes in the 

numerator. For this reason, the Euler approximation will be used as a method of 

bypassing the trouble with the numerator of the ZOH equivalent model. 

The Euler Approximation of the continuous-time state-space model of the 

magnetic levitation system is: 

𝑥 𝑘 + 1 =  
1 0.01 0

0.7848 1 −1.447
0 0 0.957

 𝑥 𝑘 +  
0
0

0.06993
 𝑢[𝑘]   (4.26a) 

𝑦 𝑘 =  1 0 0 𝑥 𝑘      (4.26b) 

The unit step response of this system is shown in Figure 4-8. 
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Figure 4- 8: The unit step response for the open-loop Magnetic Levitation system  

 

The displacement goes to negative infinity, which represents the ball rising 

upwards towards the bottom of the magnet. The dotted line in the inset of Figure 4-8 

represents the system constraint, the location of the magnet. The ball cannot move higher 

than the location of the magnet. The purpose of controlling the magnetic levitation 

system is not just to get the desired settling time and steady-state value for a step input, 

but also to stabilize this open-loop unstable system. 

Since the magnetic levitation system is a 3rd order system, the neoclassically 

controlled system is matched to a 4
th
 order standard transfer function. In the case of the 

ITAE performance criterion, the desired transfer function is: 



45 
 

7 3 2

4 3 2

10 *(1.7 18.35 18 1.606)
( )

3.903 5.715 3.722 0.9095
ITAE

z z z
T z

z z z z

   


   
    (4.27) 

Using the same procedure that was previously described for the Mass-Spring-

Damper system, the state feedback gains for the magnetic levitation system are calculated 

to be: 

KITAE= [-0.98146   -0.14611   0.74111]     (4.28) 

This state feedback gain, when used in the neoclassical control design for the 

magnetic levitation system, creates a closed-loop system with an overall transfer function 

which is equivalent to the desired ITAE optimal transfer function. The closed-loop step 

response for the system is shown in Figure 4-9. 

 

Figure 4- 9: The (a) step response and (b) control input of the neoclassical ITAE 

controller for the Magnetic Levitation system 
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As with the mass-spring-damper system, the step response shows a settling time 

of 1 second and a steady state value of 1 m. These are the design criteria that were 

originally set for the simulations. The magnetic levitation system is more complicated 

than the mass-spring-damper system; it is not surprising that the control input curve is 

more dynamic that the curve seen in the mass spring damper. After all, there are more 

variables involved that are being adjusted by the control input to derive the desired step 

response. The steady state value of the control input has a magnitude less than the control 

gain for the position. This is due to the fact that the steady state for the current, x3, is not 

zero, otherwise there would not be a magnetic field to hold the ball in the air.  

The control gains that give the step responses that match the Bessel and 

Butterworth transfer functions when applied to the discrete-time neoclassical control of 

the magnetic levitation system are: 

Kb=[ -2.0646     -0.22734      2.0089]      (4.29) 

Kbw=[ -4.4834    -0.40627     3.0727]      (4.30) 

The success of neoclassical controller on the magnetic levitation system is further 

highlighted Figures 4-10 and 4-11, where the Butterworth and Bessel step responses are 

displayed. 
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Figure 4- 10: The (a) step response and (b) control input of the neoclassical 

Butterworth controller for the Magnetic Levitation system 
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Figure 4- 11: The (a) step response and (b) control input of the neoclassical Bessel 

controller for the Magnetic Levitation system 

 

The light dotted lines in the position plots are the location of the magnet. . In 

looking at the control inputs of the performance criterion, it is once again noted that they 

are very different despite the similarities in step responses, as illustrated in Figure 4-12. 
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Figure 4- 12: A comparison of the ITAE, Bessel, and Butterworth (a) step responses 

and (b) control inputs  

 

The differences in control inputs, displayed in Figure 4-12, are due primarily to 

the control input’s effect on the position. Unlike the case of the Mass-Spring-Damper 

system, the control inputs are negative. The relative magnitudes are different from the 

Mass-Spring-Damper. This shows that though the standard transfer functions are similar, 

the amount of energy required to achieve the desired transient response differs from 

system to system. This is another factor in deciding which standard transfer function to 

use for a given system. By using neoclassical control, there is flexibility in deciding the 

most appropriate closed-loop transfer function for a given system. 
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4.3: The Ball and Beam System 

The ball and beam system is unlike either of the previous systems for which the 

neoclassical controller has been designed.  Unlike the mass-spring damper system and the 

magnetic levitation system, the open-loop ball and beam system has poles at the origin. 

While systems with at least one pole at the origin does not have steady state error for a 

step input, the neoclassical control design procedure can still be used to stabilize the 

system and design the system to have a specific transient step response.  

The concept of the ball and beam system is to be able to balance a ball of mass, 

m, radius, R, and a moment of inertia, Jball, on a beam of length, L, and mass, M, with 

moment of inertia, Jbeam at an arbitrary point, d, from the pivot point. The pivot point of 

the beam is at its center, as shown in Figure 4-13.  

 

Figure 4- 13: A diagram of the Ball and Beam system dynamics 
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Figure 4-13 illustrates the dynamics of the ball and beam system.  The angle of 

the beam is α, the gravitational constant is g, N is the normal Force, and d represents the 

distance of the ball from the pivot point. The forces acting on the ball and the beam can 

be described by the following differential equations (10): 

    𝑚𝑔𝑠𝑖𝑛 𝛼 +  
𝐽𝑏𝑎𝑙𝑙

𝑅2 + 𝑚 𝑑 = 𝑚𝑟𝛼 2    (4.31) 

To linearize this system, α is restricted to values close to zero so that the term on 

the right side of the equation reduces to zero and sin(α) may be approximated as α. When 

x1 represents the position of the ball and x2 represents the ball’s velocity, the state 

equations are: 
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However, for the example of this thesis, the input will not be the angle of the 

beam, α, but rather the angular acceleration of the beam due to an external actuator or 

motor.  By making x3 the angle of the beam and the x4 the angular velocity, the system 

representation becomes: 
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where the external torque is applied at the pivot point. The moments of inertia for the ball 

and beam are, 
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(4.34) 
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The output equation for the system is, 
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   (4.36) 

where the position of the ball is the measured output. 

The parameters are assigned the values in Table 4-3 in order to simulate the 

system. 

m g R Jball Jbeam 

(g) (m/sec) (cm) (kg∙m
2
) (kg∙m

2
) 

0.3 9.81 0.1 143 0.0125 

Table 4- 3:  Table of parameters to be used for the Ball and Beam simulations 

  

Again when the ZOH was used on the Ball and Beam to discretize the system, the 

step response showed unstable behavior. The cause of the instability was once again 

identified to be the pre-compensator. An analysis of the transfer function of the plant has 

been done.  

The continuous-time transfer function for the ball and beam system is:   
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𝐺𝑠𝑦𝑠  𝑠 =
−0.8541

𝑠4 .      (4.37) 

For a sampling interval, T, of 0.01 seconds, the ZOH equivalent discrete-time model of 

the ball and beam system is: 

𝐺𝑠𝑦𝑠  𝑧 =
−3.5586𝑒−010  (𝑧+9.899) (𝑧+1) (𝑧+0.101 )

 𝑧−1 4 .    (4.38) 

The equivalent Euler Approximation for the discrete-time transfer function model of the 

ball and beam system, 

𝐺𝑠𝑦𝑠  𝑧 =
−8.5407𝑒−009

 𝑧−1 4 .     (4.39) 

This analysis shows that once again, the ZOH equivalent model of the ball and 

beam system contains a zero that is outside the unit circle. This result, combined with the 

instability in the implementation of the neoclassical controller on the magnetic 

levitation’s ZOH equivalent model, implies that the unstable nature of the continuous-

time model is mapped to the numerator of the ZOH equivalent system. The Euler 

Approximation does not show this behavior; so it is once again used for discretization. 

The Euler Approximation of the discrete-time ball and beam system is: 
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  (4.40) 

The step response resulting from this state state-space model is shown in Figure 

4-14. 
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Figure 4- 14: The unit step response of the open-loop Ball and Beam system. 

 

From Figure 4-14, we see that the uncontrolled system is unstable when subjected 

to a unit step input. The graph makes sense from a physical standpoint; the graph shows 

the ball rolling down the beam. Depending on the length of the beam, the ball will 

eventually roll off the beam. The graph does not show the ball falling off the beam due to 

the system model being an approximation due to the linearization of the system. In order 

to stabilize this system, the neoclassical control method will be used.  

 As with the previous two examples, it is important to first identify the desired step 

response. After applying the neoclassical method, the eigenvalues of the inner state-

feedback loop is found. The gains needed to place the system poles at the desired 

locations to get a closed-loop transfer function equivalent for each of the optimal transfer 

function are: 
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Ki= [-7818.1   -1899.8    0.13007    0.010941],            (4.41) 

Kb=[ -9397.7      -2446.6      0.17963     0.015031],     (4.42) 

 Kbw=[ -52268      -7803.6      0.36099     0.020586].        (4.43) 

 The closed-loop transfer functions are equivalent to the desired transfer functions. 

This fact is confirmed when examining the closed-loop step response for the transfer 

function designed to match the ITAE transfer function in Figure 4-15. 

 

Figure 4- 15: The (a) step response and (b) control input of the neoclassical ITAE 

controller for the Ball and Beam system 

 

Once again, the step response has the desired characteristics of settling time and 

steady state value. The control input for the ball and beam system has a very high 
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magnitude implying that there is a large amount of control action needed in order to 

stabilize the system and control it to the desired position with a particular transient 

response specified by the ITAE criterion. These results are also seen in step responses for 

the neoclassical controllers designed to match the Butterworth and Bessel transfer 

functions, as shown in Figure 4-16 and Figure 4-17 respectively. 

 

Figure 4- 16: The (a) step response and (b) control input of the neoclassical 

Butterworth controller for the Ball and Beam system 
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Figure 4- 17: The (a) step response and (b) control input of the neoclassical Bessel 

controller for the Ball and Beam system 

The desired design criteria for the Ball and Beam neoclassical controller have 

been met. The desired settling time of 1 second has been achieved and the steady-state 

value is equal to the magnitude of the reference unit step input. However, the observed 

differences in the control input are once again evident.  
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Figure 4- 18:  A comparison of the ITAE, Bessel, and Butterworth (a) step responses 

and (b) control inputs for the Ball and Beam system 

 

Figure 4-18 shows a co-plot of the step responses and control inputs of all three 

neoclassical controllers for the ball and beam system. The Butterworth neoclassical 

controller has a higher magnitude of control than the ITAE and Bessel neoclassical 

controllers. An expanded view of the control inputs is shown in Figure 4-18c to show the 

difference in both transient response and steady state value. 
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Figure 4-18c: An expanded view of the control inputs. 

In implementing the neoclassical controller on the ball and beam system, the 

Butterworth might not be the most efficient performance criteria to use. The ITAE 

transfer function or Bessel transfer function would make more efficient choices for 

implementation on the ball and beam system.  However, the neoclassical control has 

proven capable of stabilizing and controlling a 4
th

 order system and can be used for 

higher order systems as well. 
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4.4: Conclusion 

 The discrete-time neoclassical control design has been shown to work for three 

systems with different open-loop properties. The step response closely matches the step 

response for the desired standard transfer function. The desired settling time for the 

examples was achieved. However, the controller has been built on the assumption that all 

of the states were known. In the next chapter, we will explore the effects of adding an 

observer to the system during the design process. We will also analyze the effect of the 

observer on the step response of the systems.  
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 Chapter 5: Case Studies with Observers 

 The discrete-time neoclassical controller design has been successfully 

implemented for cases where all state information is known. In real life, there are 

frequently cases where state information is not available due to an insufficient number of 

sensors to measure every state variable. For cases where systems with an unknown state 

need to be controlled with incomplete state information, an observer needs to be 

integrated into the controller design.  Once again, the mass-spring-damper, magnetic 

levitation, and ball and beam systems will be used to demonstrate the application of the 

neoclassical design model with observers incorporated in the design. The ITAE, Bessel, 

and Butterworth transfer functions will be used as the desired response not only for the 

controller gains, but also for the observer gains. 

5.1: The Mass-Spring-Damper System  

The mass-spring-damper system is a stable, 2
nd

 order system. This system is 

controllable and observable. 

 

Figure 5- 1: A diagram of the Mass-Spring-Damper system (1) 
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 In chapter 4, the state-space model for the linear Mass-Spring-Damper system 

was derived. 
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Using the same values in Table 4-1 and the ZOH, this system can be discretized using a 

sample period, T=0.01s, to give the discrete-time system matrices: 
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The procedure for adding an observer to a state space control system is well 

established in modern control theory. The observer gains for the Mass-Spring-Damper 

system will be based on the 2
nd

 order standard transfer function of choice to calculate the 

pole locations. The vector matrix form of the state feedback loop is,
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    (5.3) 

The only unknowns in this equation are the controller gain, K, and the observer 

gain, L. Once the pole locations are scaled to the desired observer settling time, the 

observer gains, L, will be calculated using the Φ and C matrices. The Ackermann formula 
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or MATLAB’s Place command can be used to find the gains for both K and L. Table 5.1 

shows the controller gains and the observer gains for each standard transfer function for 

the desired settling times. 

Observer Controller feedback gains 

K 

Observer gains 

L 

Settling time 1 sec 0.1 sec 

ITAE [109.1629   10.0859] [0.79914   23.299] 

Bessel [53.0106    9.1234]    [ 0.6723   12.8251] 

Butterworth [76.1516    9.9991] [0.7726    21.2409] 

Table 5- 1: Controller gains for Ts=1 sec and Observer gains for Ts=0.1 sec. for the Mass-Spring-

Damper system

 These gains are used in the vector-matrix form of Gsf, Equation 5.3. Then to 

complete the controller design, all that needs to be done is to place the integrator and pre-

compensator in series. Then after closing the loop with unity gain output feedback, the 

resulting closed-loop transfer function will match the desired standard transfer function. 

Figure 5-2 shows that there is a difference in the step response between the 

desired ITAE step response (green) and the actual step response with an initial estimate 

error of 0.25m. 
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Figure 5- 2: Discrete-time ITAE Neoclassical controller (a) step response and(b)  state estimate error 

for the Mass-Spring-Damper system 

Figure 5-2 has a step response close to the desired curve. Furthermore, the error in 

the state estimate goes to zero in 0.1 seconds, as expected. These results are similar to the 

results of the neoclassical control with observer for the Bessel and Butterworth responses 

shown in Figures 5-3 and 5-4 respectively. 
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Figure 5- 3: Discrete-time Bessel Neoclassical controller (a) step response and (b) state estimate error 

for the Mass-Spring-Damper system 
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Figure 5- 4: Discrete-time Butterworth Neoclassical controller (a) step response and (b) state estimate 

error for the Mass-Spring-Damper system 

In all three simulations, the error goes to zero in 0.1 seconds. The effect of the 

estimation error on the system remains long after the error goes to zero. However, 

differences do diminish with time and the settling time is close to the desired 1 second. 

5.2: Magnetic Levitation system  

The addition of the observer to the neoclassical controller has been successful 

when applied to a stable 2
nd

 order system. The magnetic levitation is a more complex 

system with more state variables to estimate. The magnetic levitation system is both 

controllable and observable. Therefore, the magnetic levitation is also a good system to 

test the neoclassical controller design with the observer. 
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Figure 5- 5: Diagram of the Magnetic Levitation system 

 

The linearized state-space model for the continuous-time magnetic levitation system, 
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The parameters for simulation are found in Table-4-2. The sampling interval, T, is 

0.01. The Euler discretization is used to give the discrete-time state-space representation 

of the magnetic levitation system: 
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𝑥 𝑘 + 1 =  
1 0.01 0

0.7848 1 −1.447
0 0 0.957

 𝑥 𝑘 +  
0
0

0.06993
 𝑢[𝑘]   (5.5a) 

𝑦 𝑘 =  1 0 0 𝑥 𝑘    (5.5b) 

The vector matrix form of the state update equation and error update equation is, 
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Using the same methods to find the controller gains and the observer gains that 

were used in the previous example will yield a state-space representation for the Gsf(z) 

block in Figure 3.2.  
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Table 5-2 shows the controller gains and the observer gains for each standard 

transfer function for the desired settling times. 

Observer Controller feedback gains 

K 

Observer gains 

L 

Settling time 1 sec 0.1 sec 

ITAE [-0.9815   -0.1461    0.7411]     [1.4351   90.6723  -12.2053] 

Bessel [-2.0646   -0.2273    2.0089]  [1.1011   45.8455   -4.1734] 

Butterworth [-4.4834   -0.4063    3.0727] [1.2380   65.1320   -8.5042] 

Table 5- 2: Controller gains for Tsc=1 sec. and Observer gains for Tso=0.1 sec. for the Magnetic 

Levitation system

 After the discrete-time integrator and the precompensator are put in series with 

Gsf(z) and the loop is closed with unity gain output feedback, the resulting closed-loop 

transfer function is equivalent to the chosen standard transfer function. However, there 

are small differences in the step response when there is an error in the initial estimate. 

Figure 5-6 through 5-8 shows the step response and observer state estimate error for the 

neoclassical controller with an observer with an initial estimate error of 0.075m for the 

ITAE, Bessel, and Butterworth transfer functions, respectively. 
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Figure 5- 6: Discrete-time ITAE Neoclassical controller (a) step response and (b) state estimate error 

for the Magnetic Levitation system 
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Figure 5- 7: Discrete-time Bessel Neoclassical controller (a) step response and (b) state estimate error 

for the Magnetic Levitation system 
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Figure 5- 8: Discrete-time Butterworth Neoclassical controller (a) step response and (b) state estimate 

error for the Magnetic Levitation system 
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In all three simulations, the error goes to zero in 0.1 seconds. But the effect of the 

estimation error on the system remains long after the error goes to zero. But the effect 

does diminish with time and the settling time is close to the desired 1 second. Due to the 

small error in the estimate, the systems come close to hitting the bottom of the magnet 

(straight dotted line). The constraint of the location of the magnet adds to the design 

process for the controller an extra layer of difficulty. By using the discrete-time 

neoclassical controller with observer, the process does not take long and even with errors 

in the estimate, the actual response still comes close to matching the desired step 

response. 

5.3: The Ball and Beam System 

The ball and beam system is a 4
th
 order, observable, and controllable system. 

 

Figure 5- 9: Diagram of the Ball and Beam system 
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The state-space model of the ball and beam is, 
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Using the values from table 4-3, the system is discretized using the Euler Approximation 

method.
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As with the previous two examples, it is important to first identify the desired step 

response. Using the standard transfer functions as a basis, the controller gains and the 

observer gains are calculated and substituted into the observer’s update equations, 
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Table 5-3 shows the controller gains and the observer gains for each standard 

transfer function for the desired settling times. 

Observer Controller feedback gains 

K 

Observer gains 

L 

Settling time 1 sec 0.1 sec 

ITAE [-7.8181   -1.8998    0.0001    0.0000] 

×10
3 

   [0.0000    0.0000   -0.2441   -4.7390] 

×10
8
 

Bessel [-9.3977   -2.4466    0.0002    0.0000] 

×10
3
 

[0.0000    0.0000   -0.3466   -7.0167] 

×10
8
 

Butterworth [-5.2268   -0.7804    0.0000    0.0000] 

×10
4
 

[0.0000    0.0000   -0.0865   -2.2971] 

×10
9
 

Table 5- 3: Controller gains for Tsc=1 sec. and Observer gains for Tso=0.1 sec. for the Ball and Beam 

system

 

 

The integrator, pre-compensator, and unity gain output feedback are added in the same 

manner as previous systems. Figures 5-6 through 5-8 show the step response and observer 

state estimate error for the neoclassical controller with an observer with an initial 

estimate error of 0.2 m for the ITAE, Bessel, and Butterworth transfer functions, 

respectively. 
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Figure 5- 10: Discrete-time ITAE Neoclassical controller (a) step response and (b) state estimate 

error for the Ball and Beam system 
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Figure 5- 11: Discrete-time Bessel Neoclassical controller (a) step response and (b) state estimate 

error for the Ball and Beam system 
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Figure 5- 12: Discrete-time Butterworth Neoclassical controller (a) step response and (b) state 

estimate error for the Ball and Beam system 

In all three simulations, the error goes to zero in 0.1 seconds. But the effect of the 

estimation error on the system remains long after the error goes to zero. But the effect on 

the step response does diminish with time and the settling time is close to the desired 1 

second. 
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5.4: Conclusion 

 The discrete-time neoclassical control design has been shown to work for three 

systems with different open-loop properties. The implementation of the observer into the 

neoclassical control design has allowed state estimates to be used when the plant’s state is 

unknown. The error between the estimate of the state and the actual state is driven to zero 

in the specified observer settling time. The step response closely matches the step 

response for the desired standard transfer function. The settling time set by the controller 

is approximately 1 second in all simulations, as per design parameter. In conclusion, 

observers have been successfully incorporated into the discrete-time neoclassical control 

technique.  
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Chapter 6: Conclusion and Future Work 

This thesis has reviewed some previous work in neoclassical control. The original 

work on neoclassical control was done in continuous time. This thesis has defined the 

limits of continuous-time neoclassical control and has introduced two new standard 

optimal transfer functions, the Bessel and Butterworth to be used in design.  These 

standard transfer functions, along with the ITAE have been explained and shown to have 

differing properties that could be scaled to within the desired response time specification.  

This thesis has taken the previous neoclassical control work and converted it to 

discrete-time. The pieces of the neoclassical block diagram that have significant changes 

in discrete-time have been examined. Two types of discretization have been discussed, 

the ZOH and the Euler Approximation. The likelihood of zero-pole cancellation issues 

due to the numerator of the plant has been discussed thoroughly. The use of the Euler 

Approximation as a method to bypass the zero-pole cancelation issue has also been 

shown. The benefits and weakness of both techniques have been discussed. The discrete-

time neoclassical control theory has also incorporated an observer to estimate states that 

are not known or measurable. 

The discrete-time neoclassical controller has been tested without an observer on 

the Mass-Spring-Damper system, the Magnetic Levitation system, and the Ball and Beam 

system. The first two systems had been used in previous work for continuous-time 

neoclassical control.  The results of the discrete-time neoclassical control on the three 

systems show that the desired settling time is achieved and the steady state value is set to 

the reference input.  Furthermore, all time response simulations for the discrete-time 
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neoclassical controllers designed match the step response of the specified desired transfer 

functions. 

A full-order observer has been incorporated into the discrete-time neoclassical 

design and simulated. The results show that with small errors in the initial guess, the 

response closely matches the desired transfer functions, including having a settling time 

close to the desired settling time. The successful implementation of the observer into the 

neoclassical model is a large step towards real world applications of neoclassical control. 

6.1: Future Work 

Future expansion and exploration of the neoclassical control method should 

include systems with multiple inputs and multiple outputs (MIMO). Another important 

expansion of neoclassical control is to further investigate its application to systems that 

already have 1 or more poles at the origin in the s-domain (type-1 or higher type 

systems). It might be possible to use the neoclassical control technique without adding 

the additional integrator through partial state-feedback.  Neoclassical control needs to be 

tested for systems subjected to different types of inputs such as ramp, parabolic and even 

sinusoidal. To adapt neoclassical control for these inputs, the standard transfer functions 

chosen will need to have time responses which are optimized for the chosen input. The 

introduction of zeros outside of the unit circle must be investigated more formally in the 

future as well. Finally, the introduction of reduced-order observers should be 

investigated. 

  



82 
 

 Bibliography 
 

1. Holterman, Kathryn J. A Neoclassical Approach: More Efficient Controller Design. 

Milwaukee, WI : Marquette University, 2008. 

2. Dorf, Richard C. and Bishop, Robert H. Modern Control Systems. Tenth. Upper Saddle 

River, NJ : Pearson Education, Inc, 2005. 

3. Vaccaro, Richard J. Digital Control: A State-Space Approach. New York : McGraw-Hill,Inc, 

1995. 

4. Stefani, Raymond T., et al. Design of Feedback Control Systems. Fourth. New York : Oxford 

University Press, 2002. 

5. D. Graham and R.C. Lathrop, "The Synthesis of "Optimum" transient response: Criteria and 

Standard Forms, Part 2", Transactions of the American Institute of Electrical Engineering 

(AIEE) 72, Nov 1953, pp. 273-288. 

6. Williams II, Robert L. and Lawrence, Douglas A. Linear State-Space Control Systems. 

Hoboken, NJ : John Wiley & Sons, Inc, 2007. 

7. Chitode, J. S. Digital Signal Processing. First. Pune, India : Technical Publications, 2008. 

8. Kuo, Benjamin C. Digital Control Systems. Second. New York : Oxford University Press, 

1992. 

9. Kuo, Bengamin C. and Golnaraghi, Farid. Automatic Control Systems. Eighth. New York : 

John Wiley &Sons, Inc, 2003. 

10. William Messner and Dawn Tilbury. Control Tutorials for Matlab. 

http://www.engin.umich.edu/class/ctms/examples/ball/ball.htm. [Online].  

11. M. Haeri and M. S. Tavazoei, Comparison of the Existing Methods in Determination of the 

Characteristic Polynomial. 2005, Proceedings of World Academy of Science, Engineering, and 

Technology, Vol. 6, 2005, pp. 130-133.  

 

  



83 
 

 Appendix A: MATLAB Code 

Mass-Spring Damper code 

clear 
s1=1;   %Controller settling time 
s=0.1 ; %Observer settling time 
T=0.01; %Sample Time 
t=0:T:2*s1; %Time Scale 
xi=[0,0,.0,0];   %Initial Conditionv for Observer 
u=ones(size(t))/T;    %Input (Step for t>0) 
int=ss(0,1,1,0);   %State Space Integrator in CT 
intd=c2d(int,T,'zoh');   %Digital SS integrator 

  
% % % % System % % % % 
m=1;k=9; b=3; A=[0,1;-k/m,-b/m];B=[0;1/m]; C=[1 0];D=0; 
[P,G,C,D]=c2dm(A,B,C,D,T,'zoh'); 
[n,d]=ss2tf(P,G,C,D);   %Defines the denominator of the Pre-compensator 
[yk,xk]=dlsim(P,G,C,D,u); 
% figure(10); plot(t,xk) 
sysod=ss(A,B,C,D) 
% figure(3) 
% rlocus(sysod) 
% % % % Bessel Poles % % % % % % % %  

  
% Observer(nth order) 
poB1=exp((1/s)*(-4.053-2.34*1i)*T); %ZOH equivilant of Bessel 

Polynomial 
poB2=exp((1/s)*(-4.053+2.34*1i)*T);%ZOH equivilant of Bessel Polynomial 

  
%Bessel Transfer function 
q=poly([-4.053-2.34*1i,-4.053+2.34*1i]); 
w=tf(q(:,3),q) 
stepinfo(w) 
% Controller((n+1) order) 
dpb=(1/s1)*[-5.0093;-3.9668-3.7845i;-3.9668+3.7845i]*.96; 
dtf=poly(dpb);  %Denominator of desired transfer function-ct 
num=dtf(:,4);den=dtf;Tsb=tf(num,den);  %Desired Transfer function 
Tsbd=c2d(Tsb,T,'zoh'); 
Tssbd=ss(Tsbd);   %SS Model of Desired Transfer function 
[numbd,denbd]=ss2tf(Tssbd.a,Tssbd.b,Tssbd.c,Tssbd.d);   %Defines 

Numerator of Pre-compensator 

  
% % % % % % ITAE zero position error Pole Polynomials % % % % % % % %  

  
%Observer(n) 
wno=5.979827684396857; %natural frequency  
ITAEpoly=[1 1.4*wno wno^2]; 
poi=roots(ITAEpoly)'; 
poid=exp((T/s)*poi); 

  
%Controller(n+1) 
wn=7.54 
tfi=[1 1.75*wn 2.15*wn^2 wn^3]; 
Pid=roots(tfi)/s1; 
dtfid=poly(Pid); 
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numid=dtfid(:,4);denid=dtfid; 
Tsi=tf(numid,denid);  %Desired Transfer function 
Tsid=c2d(Tsi,T,'zoh'); 
Tssid=ss(Tsid);   %SS Model of Desired Transfer function 
[nd,dd]=ss2tf(Tssid.a,Tssid.b,Tssid.c,Tssid.d); 

  
% % % % % % % Butterworth Polynomials % % % % % % % % % 

  
%Observer(n) 
BWpoly=[1 1.4142 1]; 
pBW=roots(BWpoly)'; 
BWTs=5.9633; %Settling time of normalized butterworth polynomial 
pBWd=exp((pBW/(1/BWTs))*T/s); % 2nd order butterworth 

  
%Controller(n+1) 
BWpoly3=[1 2 2 1]; 
pBW3=roots(BWpoly3)'; 
BWTs3=6.639867870220427; 
pBW03d=(pBW3/(1/BWTs3))/s1; 
dtfbwd=poly(pBW03d); 
numbwd=dtfbwd(:,4);denbwd=dtfbwd;Tsbw=tf(numbwd,denbwd); 
Tsbwd=c2d(Tsbw,T,'zoh');%Desired Transfer function 
Tssbwd=ss(Tsbwd);   %SS Model of Desired Transfer function 
[nbwd,dbwd]=ss2tf(Tssbwd.a,Tssbwd.b,Tssbwd.c,Tssbwd.d); 

  
% % % % % % % % % % Neoclassical controller observer % % % % % % % % 

  
% % % % % % Break Down % % % % % % % 

  
%Bessel 
Gsbd=minreal(Tssbd/((1-Tssbd))); %Removes feedback loop 
Gssbd=minreal(Gsbd/intd);       %Removes integrator 
pbd=eig(Gssbd);  
Kbd=place(P,G,pbd); 

  
%ITAE  
Gsid=minreal(Tssid/(1-Tssid)); 
Gssid=minreal(Gsid/intd); 
pid=eig(Gssid); 
Kid=place(P,G,pid); 

  
%Butterworth Function 
Gsbwd=minreal(Tssbwd/(1-Tssbwd)); 
Gssbwd=minreal(Gsbwd/intd); 
pbwd=eig(Gssbwd); 
Kbwd=place(P,G,pbwd); 

  

  
% % % Observer Design % % % 

  
    L1=place(P',C', [poB1;poB2])'; 
    L2=place(P',C', poid)'; 
    L3=place(P',C', pBWd)'; 
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    Pbt = [P-G*Kbd   G*Kbd; zeros(size(P))  P - L1*C]; 
    Pit = [P-G*Kid   G*Kid; zeros(size(P))  P - L2*C]; 
    Pbwt = [P-G*Kbwd   G*Kbwd; zeros(size(P))  P - L3*C]; 
    Gt = [G ;zeros(size(G))]; 
    Ct = [ C   zeros(size(C))]; 

  
    [ykcob,xkcob]=dlsim(Pbt,Gt,Ct,D,u,xi); 
    xcob=[xkcob(:,1) xkcob(:,2)]; 
    ecob=[xkcob(:,3) xkcob(:,4)]; 
    xkhatb=xcob-ecob; 

  

    [ykcoi,xkcoi]=dlsim(Pit,Gt,Ct,D,u,xi); 
    xcoi=[xkcoi(:,1) xkcoi(:,2)]; 
    ecoi=[xkcoi(:,3) xkcoi(:,4)]; 
    xkhati=xcoi-ecoi; 

  
    [ykcobw,xkcobw]=dlsim(Pbwt,Gt,Ct,0,u,xi); 
    xcobw=[xkcobw(:,1) xkcobw(:,2)]; 
    ecobw=[xkcobw(:,3) xkcobw(:,4)]; 
    xkhatbw=xcobw-ecobw; 

  
    emaxcb=max(abs(ecob(:,1))) 
    emaxci=max(abs(ecoi(:,1))) 
    emaxcbw=max(abs(ecobw(:,1))) 

  
    tecb=t*abs(ecob(:,1)) 
    teci=t*abs(ecoi(:,1)) 
    tecbw=t*abs(ecobw(:,1)) 

  
%%%%%%%%Rebuild %%%%%%%%%%%%%%%%% 

  
Hssbd=ss(Pbt,Gt,Ct,D,T);  %State-feedback Controller w/ Observer 
Prebd=tf(numbd,n,T); %Pre-compensator 
Hsbd=(Hssbd*minreal(intd*ss(Prebd))); 

sysbd=feedback(Hsbd,1/T); 

  

  
Hssid=ss(Pit,Gt,Ct,D,T); %State-feedback Controller w/ Observer 
Preid=tf(nd,n,T);%Pre-compensator 
Hsid=Hssid*minreal(intd*ss(Preid)); 
sysid=feedback(Hsid,1/T); 

  
Hssbwd=ss(Pbwt,Gt,Ct,D,T); %State-feedback Controller w/ Observer 
Prebwd=tf(nbwd,n,T);%Pre-compensator 
Hsbwd=Hssbwd*minreal(intd*ss(Prebwd)); 
sysbwd=feedback(Hsbwd,1/T); 

  

  

  

  

  
% % % Plots % % % 
figure(11),hold on 
[Ybd,Xbd]=dlsim(sysbd.a,sysbd.b,sysbd.c,sysbd.d,u,[xi,0,0]); 
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rbd=[[Kbd,0,0,0,0]*Xbd']';%Control Input Bessel 

  
subplot(2,1,1), 
plot(t,Xbd(:,1),'b'),hold on,step(Tsbd,'g--',t) 
xlabel('Time(s)');ylabel('Displacement');grid on,title('Digital Bessel 

Neoclassical Observer Controllerof MSD'); 
% subplot(2,1,2),plot(t,Xbd(:,3),'b'),hold on;grid on,title('Digital 

Bessel Neoclassical Observer Controller Error'); 

  
subplot(2,1,2), 
plot(t,rbd);grid on,title('Digital Bessel Neoclassical Observer 

Controller Feedback Gain');hold on 
% hold on 

  
[Yid,Xid]=dlsim(sysid.a,sysid.b,sysid.c,sysid.d,u,[xi,0,0]); 
rid=[[Kid,0,0,0,0]*Xid']';%Control Input ITAE 

  
figure(12), hold on 
subplot(2,1,1), 
plot(t,Xid(:,1),'r'),hold on 
step(Tsid,'g--',t) 
xlabel('Time(s)');ylabel('Displacement');grid on,title('Digital ITAE 

Neoclassical Observer Controller of MSD'); 
% subplot(2,1,2),plot(t,Xid(:,3),'r'),hold on;grid on,title('Digital 

ITAE Neoclassical Observer Controller Error'); 
subplot(2,1,2),plot(t,rid,'r-.');grid on,title('Digital ITAE 

Neoclassical Observer Controller Feedback Gain');hold on 

  
hold on 
[Ybwd,Xbwd]=dlsim(sysbwd.a,sysbwd.b,sysbwd.c,sysbwd.d,u,[xi,0,0]); 
rbwd=[[Kbwd,0,0,0,0]*Xbwd']';%Control Input Butterworth 

  
figure(13), hold on 
subplot(2,1,1), 
plot(t,Xbwd(:,1),'k'), 
hold on,step(Tsbwd,'g--',t) 
ylabel('Displacement');grid on,title('Digital Butterworth Neoclassical 

Observer Controller of MSD'); 
% subplot(2,1,2),plot(t,Xbwd(:,3),'k'),hold on;grid on,title('Digital 

Butterworth Neoclassical Observer Controller Error'); 
subplot(2,1,2),plot(t,rbwd,'k--');grid on,title('Digital Butterworth 

Neoclassical Observer Controller Feedback Gain');xlabel('Time(s)');hold 

on 
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Magnetic Levitation code 
clear all 
s1=1;   %Controller settling time 
s=0.1 ; %Observer settling time 
T=0.01; %Sample Time 
t=0:T:2*s1; %Time Scale 
xi=[0,0,0,0.075,0,0];   %Initial Conditionv for Observer 
u=ones(size(t));    %Input (Step for t>0) 
int=ss(0,1,1,0);   %State Space Integrator in CT 
intd=c2d(int,T,'zoh');   %Digital SS integrator 

  

% % % % System % % % % 
m=0.015;g=9.81;R=.615;L=.143;x10=0.125; 
A=[0 1 0;g/x10 0 -2*sqrt(g/(m*x10));0 0 -R/L]; 
B=[0;0;1/L]; 
C=[1,0,0]; 
D=0; 

  
% [P,G,C,D]=c2dm(A,B,C,D,T,'zoh'); 
P=(eye(3)+A*T); 
G=B*T; 
syso=ss(P,G,C,D,T) 
[n,d]=tfdata(tf(syso),'v');  %Defines the denominator of the Pre-

compensator 
[yk,xk]=dlsim(P,G,C,D,u); 
% figure(10); plot(t,xk) 

  
% % % % Bessel Poles % % % % % % % %  

  
% Observer(nth order) 
pobd=exp((T/s)*[-5.0093;-3.9668-3.7845i;-3.9668+3.7845i]); 

  
% Controller 
dpb=(1/s1)*[-4.0156-5.0723i;-5.5281-1.6553i;-4.0156+5.0723i;-

5.5281+1.6553i]*0.9613 
dtf=poly(dpb);  %Denominator of desired transfer function-ct 
num=dtf(:,5);den=dtf;Tsb=tf(num,den);  %Desired Transfer function 
% Tsbd=c2d(Tsb,T,'zoh'); 
Tssb=ss(Tsb); 
TsbA=eye(4)+Tssb.a*T; 
TsbB=Tssb.b*T; 
Tsbd=ss(TsbA,TsbB,Tssb.c,Tssb.d,T); 
Tssbd=ss(Tsbd);   %SS Model of Desired Transfer function 
[numbd,denbd]=ss2tf(Tssbd.a,Tssbd.b,Tssbd.c,Tssbd.d);   %Defines 

Numerator of Pre-compensator 
[dnb,ddb]=tfdata(Tsbd,'v'); 
% % % % % % ITAE zero position error Pole Polynomials % % % % % % % %  

  
%Observer(n) 
wn=7.54 
tfi=[1 1.75*wn 2.15*wn^2 wn^3]; 
Pid=roots(tfi); 
poid=exp((T/s)*Pid); 

  

%Controller 
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%Desired Poles 
wn=4.515840287456105; 
tfi=[1 2.1*wn 3.4*wn^2 2.7*wn^3 wn^4]; 
Pid=roots(tfi)/s1; 
dtfid=poly(Pid); 
numid=dtfid(:,5);denid=dtfid; 
Tsi=tf(numid,denid);  %Desired Transfer function 
Tssi=ss(Tsi); 
TsiA=eye(4)+Tssi.a*T; 
TsiB=Tssi.b*T; 
Tsid=ss(TsiA,TsiB,Tssi.c,Tssi.d,T); 
[dni,ddi]=tfdata(Tsid,'v'); 
% Tsid=c2d(Tsi,T,'zoh'); 
Tssid=ss(Tsid);   %SS Model of Desired Transfer function 
[dni,ddi]=tfdata(Tsid,'v'); 

  
% % % % % % % Butterworth Polynomials % % % % % % % % % 

  
%Observer(n) 
BWpoly3=[1 2 2 1]; 
pBW3=roots(BWpoly3)'; 
BWTs3=6.639867870220427; 
pBWo=(pBW3/(1/BWTs3)); 
pBWd=exp(pBWo*T/s); 

  
%Controller 
BWpoly=[1 2.613 3.414 2.613 1]; 
pBW=roots(BWpoly)'; 
BWTs=9.869155358643168; %Settling time of normalized butterworth 

polynomial 
pBWod=(pBW/(1/BWTs))/s1; 
dtfbwd=poly(pBWod) 
numbwd=dtfbwd(:,5);denbwd=dtfbwd;Tsbw=tf(numbwd,denbwd); 
Tssbw=ss(Tsbw); 
TsbwA=eye(4)+Tssbw.a*T; 
TsbwB=Tssbw.b*T; 
Tsbwd=ss(TsbwA,TsbwB,Tssbw.c,Tssbw.d,T); 
[dnbw,ddbw]=tfdata(Tsbwd,'v'); 
% Tsbwd=c2d(Tsbw,T,'zoh');%Desired Transfer function 
Tssbwd=ss(Tsbwd);   %SS Model of Desired Transfer function 
[dnbw,ddbw]=tfdata(Tsbwd,'v'); 

  
% % % % % % % % % % Neoclassical controller observer % % % % % % % % 

  
% % % % % % Break Down % % % % % % % 

  
%Bessel 
Gsbd=minreal(Tssbd/((1-Tssbd))); %Removes feedback loop 
Gssbd=minreal(Gsbd/intd);       %Removes integrator 
pbd=eig(Gssbd);  
Kbd=place(P,G,pbd); 

  
%ITAE  
Gsid=minreal(Tssid/(1-Tssid)); 
Gssid=minreal(Gsid/intd); 
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pid=eig(Gssid); 
Kid=place(P,G,pid); 

  
%Butterworth Function 
Gsbwd=minreal(Tssbwd/(1-Tssbwd)); 
Gssbwd=minreal(Gsbwd/intd); 
pbwd=eig(Gssbwd); 
Kbwd=place(P,G,pbwd); 

  

  
% % % Observer Design % % % 

  
    L1=acker(P',C', pobd)'; 
    L2=acker(P',C', poid)'; 
    L3=acker(P',C', pBWd)'; 

  
    Pbt = [P-G*Kbd   G*Kbd; zeros(size(P))  P - L1*C]; 
    Pit = [P-G*Kid   G*Kid; zeros(size(P))  P - L2*C]; 
    Pbwt = [P-G*Kbwd   G*Kbwd; zeros(size(P))  P - L3*C]; 
    Gt = [G ;zeros(size(G))]; 
    Ct = [ C   zeros(size(C))]; 

  
    [ykcob,xkcob]=dlsim(Pbt,Gt,Ct,D,u,[xi]); 
    xcob=[xkcob(:,1) xkcob(:,2)]; 
    ecob=[xkcob(:,3) xkcob(:,4)]; 
    xkhatb=xcob-ecob; 

  
    [ykcoi,xkcoi]=dlsim(Pit,Gt,Ct,D,u,[xi]); 
    xcoi=[xkcoi(:,1) xkcoi(:,2)]; 
    ecoi=[xkcoi(:,3) xkcoi(:,4)]; 
    xkhati=xcoi-ecoi; 

  

    [ykcobw,xkcobw]=dlsim(Pbwt,Gt,Ct,0,u,[xi]); 
    xcobw=[xkcobw(:,1) xkcobw(:,2)]; 
    ecobw=[xkcobw(:,3) xkcobw(:,4)]; 
    xkhatbw=xcobw-ecobw; 

  
    emaxcb=max(abs(ecob(:,1))) 
    emaxci=max(abs(ecoi(:,1))) 
    emaxcbw=max(abs(ecobw(:,1))) 

  
    tecb=t*abs(ecob(:,1)) 
    teci=t*abs(ecoi(:,1)) 
    tecbw=t*abs(ecobw(:,1)) 

  
%%%%%%%% Rebuild %%%%%%%%%%%%%%%%% 

  
Hssbd=ss(Pbt,Gt,Ct,D,T);  %State-feedback Controller w/ Observer 
[nbd,dbd]=tfdata(tf(Hssbd),'v'); 
Prebd=tf(dnb,nbd,T);%Pre-compensator 
Hsbd=Hssbd*ss(intd*Prebd/T);  

sysbd=feedback(Hsbd,1); 
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Hssid=ss(Pit,Gt,Ct,D,T); %State-feedback Controller w/ Observer 
Preid=tf(dni,n,T);%Pre-compensator 
Hsid=Hssid*intd*Preid/T; 
sysid=feedback(Hsid,1); 

  
Hssbwd=ss(Pbwt,Gt,Ct,D,T); %State-feedback Controller w/ Observer 
Prebwd=tf(dnbw,n,T);%Pre-compensator 
Hsbwd=Hssbwd*minreal(intd*ss(Prebwd)/T); 
sysbwd=feedback(Hsbwd,1); 

  
% % % Plots % % % 
figure(11), 
[Ybd,Xbd]=dlsim(sysbd.a,sysbd.b,sysbd.c,sysbd.d,u,[xi,0]); 
rbd=[[Kbd,0,0,0,0]*Xbd']';%Control Input Bessel 
subplot(2,1,1),hold on, plot(t,-x10,'--r'),step(Tsbd,'g--',t) 
plot(t,Xbd(:,1),'b');xlabel('Time(s)');ylabel('Displacement');grid on, 
title('Digital Bessel Neoclassical Observer Controller For The Magnetic 

Levitation System');subplot(2,1,2),plot(t,Xbd(:,4)),grid 

on,title('Digital Bessel Neoclassical Observer Controller State 

Estimate Error');hold on 
% title('Digital Neoclassical Controller For The Magnetic Levitation 

System');  
% subplot(2,1,2),plot(t,rbd,'b:');grid on,title('Digital Bessel 

Neoclassical Controller Control Input');xlabel('Time(s)');hold on 

  

  

figure(12) 
[Yid,Xid]=dlsim(sysid.a,sysid.b,sysid.c,sysid.d,u,[xi,0]); 
rid=[[Kid,0,0,0,0]*Xid']';%Control Input ITAE 
subplot(2,1,1),plot(t,-x10,'--r'),hold on 
plot(t,Xid(:,1),'r-'),step(Tsid,'g--',t) 
% hold on,plot(t,Xid(:,2),'m:'); 
xlabel('Time(s)');ylabel('Displacement');grid on, 
title('Digital ITAE Neoclassical Controller Observer For The Magnetic 

Levitation System'); subplot(2,1,2),plot(t,Xid(:,4),'r'),hold 

on,plot(t,Xid(:,4),'r');grid on,title('Digital ITAE Neoclassical 

Observer Controller State Estimate Error'); 
% title('Digital ITAE Neoclassical Controller For The Magnetic 

Levitation System'),subplot(2,1,2),plot(t,rid,'r-.');grid 

on,title('Digital ITAE Neoclassical Controller Control Input');hold on 

  
figure(13) 
[Ybwd,Xbwd]=dlsim(sysbwd.a,sysbwd.b,sysbwd.c,sysbwd.d,u,[xi,0]); 
rbwd=[[Kbwd,0,0,0,0]*Xbwd']';%Control Input Butterworth 

  
subplot(2,1,1),plot(t,-x10,'--r'),hold on 
plot(t,Xbwd(:,1),'k-'),step(Tsbwd,'g--',t) 
% hold on,plot(t,Xbwd(:,2),'c:'); 
ylabel('Displacement');grid on, 
title('Digital Butterworth Neoclassical Controller Observer For The 

Magnetic Levitation System');subplot(2,1,2),plot(t,Xbwd(:,4),'k'), grid 

on,title('Digital Butterworth Neoclassical Observer Controller State 

Estimate Error'); 
% title('Digital Butterworth Neoclassical Controller For The Magnetic 

Levitation System');subplot(2,1,2),plot(t,rbwd,'k--');grid 
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on,title('Digital Butterworth Neoclassical Controller Control 

input');xlabel('Time(s)');hold on 

  
minreal(minreal(zpk(sysbd))/zpk(Tsbd)) 
minreal(minreal(zpk(sysid))/zpk(Tsid)) 
minreal(minreal(zpk(sysbwd))/zpk(Tsbwd)) 
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Ball and Beam code 
clear all 
s1=1;   %Controller settling time 
s=0.05 ; %Observer settling time 
T=0.01; %Sample Time 
int=ss([0],[1],1,0); 
intd=c2d(int,T,'zoh'); 

  
%System   
m = 0.0003;R = 0.01;g = -9.81;Jball = 2.88e-9;Jbeam=0.587e-3; 
H=m*g/((Jbeam/R^2)+m); 
A = [0      1              0           0; 
     0      0              H           0; 
     0      0              0           1; 
     0      0              0           0]; 
B = [0;0;0;1/Jbeam]; 
C = [1 0 0 0]; 
D = [0]; 

  

% [P,G,C,D]=c2dm(A,B,C,D,T,'imp'); 
P=(eye(4)+A*T); 
G=B*T; 
t=0:T:2*s1; 
xi=[0,0,0,0,0.2,0,0,0];   %Initial Condition 
u=ones(size(t));    %Input 
[yk,xk]=dlsim(P,G,C,D,u); 
figure(1) 
osysd=ss(P,G,C,D,T); 
% rlocus(osysd) 

  
Co=ctrb(P,G);rank(Co) 
Ob=obsv(P,C);rank(Ob) 

  
%%%Bessel Poles 
%Observer(nth order) 
poB=exp((T/s)*[-4.0156-5.0723i;-5.5281-1.6553i;-4.0156+5.0723i;-

5.5281+1.6553i]); 

  
%Controller((n+1) order) 
dpb=(1/s1*[-6.448;-4.1104+6.3142i;-5.9268+3.0813i;-4.1104-6.3142i;-

5.9268-3.0813i])*0.96549; 

  
%%%%%ITAE Polynomials 
%Observer(n) 
wno=4.515840287456105; 
ITAEpoly=[1 2.1*wno 3.4*wno^2 2.7*wno^3 wno^4]; 
poi=roots(ITAEpoly)'; 
poid=exp((T/s)*poi); 

  
%Controller(n+1) 
wnc=6.657; 
tfi=[1 2.8*wnc 5*wnc^2 5.5*wnc^3 3.4*wnc^4 wnc^5]*1.03; 

  
%%%%%%Butterworth Polynomials 
%Observer(n) 
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BWpoly=[1 2.613 3.414 2.613 1]; 
pBW=roots(BWpoly)'; 
BWTs=9.869155358643168; %Settling time of normalized butterworth 

polynomial 
pBWod=exp((pBW/(1/BWTs))*T/s); % 2nd order butterworth 

  
% Controller(n+1) 
BWpoly3=[1 3.236 5.236 5.236 3.236 1]; 
pBW3=roots(BWpoly3)'; 
BWTs3=10.8375; 
pBW03d=1/s1*(pBW3/(1/BWTs3)); 
%Neoclassical controller observer 

  
% % % % % % % % % % % % % % %Bessel Function 

  
dtf=poly(dpb); 
num=dtf(:,6);den=dtf;Tsb=tf(num,den); %Desired Transfer function 
Tssb=ss(Tsb); 
TsbA=eye(5)+Tssb.a*T; 
TsbB=Tssb.b*T; 
Tsbd=ss(TsbA,TsbB,Tssb.c,Tssb.d,T); 
[dnb,ddb]=tfdata(Tsbd,'v'); 
Tssbd=ss(Tsbd); 
Gsbd=minreal(Tssbd/((1-Tssbd))); 
Gssbd=minreal(Gsbd/intd); 
pbd=eig(Gssbd); 
Kbd=place(P,G,pbd); 

  
%Desired ITAE zero position error Pole 
Pid=roots(tfi)/s1; 
dtfid=poly(Pid); 
numid=dtfid(:,6);denid=dtfid;Tsi=tf(numid,denid);  %Desired Transfer 

function 
Tssi=ss(Tsi); 
TsiA=eye(5)+Tssi.a*T; 
TsiB=Tssi.b*T; 
Tsid=ss(TsiA,TsiB,Tssi.c,Tssi.d,T); 
[dni,ddi]=tfdata(Tsid,'v'); 
Tssid=ss(Tsid); 
Gsid=minreal(Tssid/(1-Tssid)); 
Gssid=minreal(Gsid/intd); 
pid=eig(Gssid); 
Kid=place(P,G,pid); 

  
%third order butterworth State Space model 

  
dtfbwd=poly(pBW03d); 
numbwd=dtfbwd(:,6);denbwd=dtfbwd;Tsbw=tf(numbwd,denbwd); 
Tssbw=ss(Tsbw); 
TsbwA=eye(5)+Tssbw.a*T; 
TsbwB=Tssbw.b*T; 
Tsbwd=ss(TsbwA,TsbwB,Tssbw.c,Tssbw.d,T); 
[dnbw,ddbw]=tfdata(Tsbwd,'v'); 
Tssbwd=ss(Tsbwd); 
Gsbwd=minreal(Tssbwd/(1-Tssbwd)); 
Gssbwd=minreal(Gsbwd/intd); 
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pbwd=eig(Gssbwd); 
Kbwd=place(P,G,pbwd); 

  
% % % % % % % % % % % The Observer % % % % % % % % % % % 
L1=place(P',C',poB)'; 
L2=place(P',C', poid)'; 
L3=place(P',C', pBWod)'; 

  
    Pbt = [P-G*Kbd   G*Kbd;  zeros(size(P))  P-L1*C]; 
    Pit = [P-G*Kid   G*Kid;  zeros(size(P))  P-L2*C]; 
    Pbwt =[P-G*Kbwd  G*Kbwd; zeros(size(P))  P-L3*C]; 
    Gt = [G ;zeros(size(G))]; 
    Ct = [ C  0 0 0 0]; 

  
    [ykcobd,xkcobd]=dlsim(Pbt,Gt,Ct,D,u,xi); 
    xcobd=[xkcobd(:,1) xkcobd(:,2)]; 
    ecobd=[xkcobd(:,5) xkcobd(:,6)]; 
    xkhatbd=xcobd-ecobd; 

  

    [ykcoid,xkcoid]=dlsim(Pit,Gt,Ct,D,u,xi); 
    xcoid=[xkcoid(:,1) xkcoid(:,2)]; 
    ecoid=[xkcoid(:,5) xkcoid(:,6)]; 
    xkhatid=xcoid-ecoid; 

  
    [ykcobwd,xkcobwd]=dlsim(Pbwt,Gt,Ct,0,u,xi); 
    xcobwd=[xkcobwd(:,1) xkcobwd(:,2)]; 
    ecobwd=[xkcobwd(:,5) xkcobwd(:,6)]; 
    xkhatbwd=xcobwd-ecobwd; 

  
% % % % % % %   Observer  Analysis   %%%%%%%%% 
    emaxcb=max(abs(ecobd(:,1))); 
    emaxcid=max(abs(ecoid(:,1))); 
    emaxcbwd=max(abs(ecobwd(:,1))); 

  
    tecbd=t*abs(ecobd(:,1)); 
    tecid=t*abs(ecoid(:,1)); 
    tecbwd=t*abs(ecobwd(:,1)); 

  

  
Hssbd=ss(Pbt,Gt,Ct,D,T); 
[nbd,dbd]=tfdata(tf(Hssbd),'v'); 
Prebd=tf(dnb,nbd,T); 

  
Hsbd=Hssbd*intd*ss(Prebd/T 

sysbd=(feedback(Hsbd,1)); 
minreal(zpk(sysbd))/minreal(zpk(Tsbd)); 
[Ybd,Xbd]=dlsim(sysbd.a,sysbd.b,sysbd.c,sysbd.d,u,[xi,0]); 
[Ybo,Tbo,Xbo]=step(Tsbd,2*s1); 
figure(1) 
subplot(2,1,1),plot(t,Xbd(:,1),'b');xlabel('Time(s)');ylabel('Displacem

ent'),hold on, step(Tsbd,'g-.');grid on 
title('Digital Bessel Neoclassical Observer Controller For The Ball & 

Beam System');subplot(2,1,2),plot(t,ecobd(:,1)),grid on,title('Digital 

Bessel Neoclassical Observer Controller State Estimate Error'); 
% rbd=[[Kbd,0,0,0,0,0]*Xbd']';%Control Input  
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% title('Digital Bessel Neoclassical Controller For The Ball & Beam 

System'); subplot(2,1,2),plot(t,rbd,'b');grid on,title('Digital Bessel 

Neoclassical Controller Control Input');xlabel('Time(s)');hold on 
hold on 

  
Hssid=ss(Pit,Gt,Ct,D,T); 
[nid,did]=tfdata(tf(Hssid),'v'); 
Preid=tf(dni,nid,T); 

  
Hsid=Hssid*intd*ss(Preid/T); 
sysid=(feedback(Hsid,1)); 
minreal(minreal(zpk(sysid))/zpk(Tsid)) 
[Yid,Xid]=dlsim(sysid.a,sysid.b,sysid.c,sysid.d,u,[xi,0]); 
[Yio,Tio,Xio]=step(Tsid,2*s1); 

  
figure(22) 
subplot(2,1,1),plot(t,Xid(:,1),'R');xlabel('Time(s)');ylabel('Displacem

ent'),hold on, step(Tsid,'g-.');grid on 
title('Digital ITAE Neoclassical Observer Controller For The Ball & 

Beam System');subplot(2,1,2),plot(t,ecoid(:,1),'R');grid 

on,title('Digital ITAE Neoclassical Observer Controller State Estimate 

Error'); 
% rid=[[Kid,0,0,0,0,0]*Xid']';%Control Input Butterworth 
% title('Digital ITAE Neoclassical Controller For The Ball & Beam 

System'), subplot(2,1,2),plot(t,rid,'r');grid on,title('Digital ITAE 

Neoclassical Controller Control Input');xlabel('Time(s)');hold on 

  
Hssbwd=ss(Pbwt,Gt,Ct,D,T); 
[nbwd,dbwd]=tfdata(tf(Hssbwd),'v'); 
Prebwd=tf(dnbw,nbwd,T); 

  
Hsbwd=Hssbwd*intd*ss(Prebwd/T);      
sysbwd=(feedback(Hsbwd,1));minreal(minreal(zpk(sysbwd))/zpk(Tsbwd)) 
[Ybwd,Xbwd]=dlsim(sysbwd.a,sysbwd.b,sysbwd.c,sysbwd.d,u,[xi,0]); 
[Ybwo,Tbwo,Xbwo]=step(Tsbwd,2*s1); 

  
figure(23) 
subplot(2,1,1),plot(t,Xbwd(:,1),'k');xlabel('Time(s)');ylabel('Displace

ment'),hold on, step(Tsbwd,'g-.');grid on 
title('Digital Butterworth Neoclassical Observer Controller For The 

Ball & Beam System');subplot(2,1,2),plot(t,Xbwd(:,5),'k');grid 

on,title('Digital Butterworth Neoclassical Observer Controller State 

Estimate Error'); 
% rbwd=[[Kbwd,0,0,0,0,0]*Xbwd']';%Control Input Butterworth 
% title('Digital Butterworth Neoclassical Controller For The Ball & 

Beam System'); subplot(2,1,2),plot(t,rbwd,'k--');grid on,title('Digital 

Butterworth Neoclassical Controller Control 

Input');xlabel('Time(s)');hold on 
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