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ABSTRACT 
COMPARING THEVERTICAL MISFIT OF CASTS PRODUCED BY TWO 

VERFICATION JIGS  
 

Abdulaziz Alqahtani, B.D.S. 
 

Marquette University, 2014 
 
 

Purpose: To compare the dimensional accuracy between master casts fabricated 
with verification jigs made of acrylic resin and light cure Triad. 

 
Materials and Methods: 10 GC Pattern resin Pattern verifications jigs and 10 

Triad gel verification jigs fabricated of a master cast of a mandibular model of 4 internal 
hex implants. A stone base was fabricated for each verification jig. One screw test was 
used to evaluate the vertical gap at the terminal abutment using a digital micrometer with 
an accuracy of 1µm to record the vertical gap for each sample. 

Results: Triad Gel group has the lowest average distortion value which is 27.8 
µm and GC Pattern Resin  group has an average value of 29.71 µm. There was no 
statistical significance difference between the two groups (p=.42) 

 
Conclusions: The Triad gel jigs did not produce superior fit compared to GC 

Pattern resin pattern in a master cast with four implants and with an internal connection.  
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CHAPTER I 
 
 

INTRODUCTION 
 
 

The importance of creating passively fitting implant framework has been 

emphasized since the introduction of osseointegrated implants in dentistry. All the 

definitions of passive fit are empirical and not based on scientific evidence. However 

framework misfit will cause stresses in implant components and in the surrounding bone 

which may give concerns as to how this may affect the long term osseointegration. 

Mechanical complications such as gold screw loosening or fracture, abutment screw 

fracture, and framework or veneering material fracture have been attributed to poor fit. It 

has been noted that achieving an ideal fit is not possible and a scientifically proven 

definition of clinically acceptable level of fit should be identified. It is always easier to 

evaluate the fit of the framework in the master cast than to evaluate it in the patient 

mouth. It is important to make a cast that accurately reproduces the dimensional position 

of implants intraoraly since a framework that fits that cast will fit in the patient mouth. 

Use of verification jigs has been suggested for the purposes of producing accurate master 

models and to verify the implant position. This study was designed to compare the 

accuracy of verification jigs made using two different materials. 
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CHAPTER II 
 
 

LITERATURE REVIEW 
 
 

I. Fit of the Framework: 
  
 
The need for passive fit: 
 
 

Osseointegrated implants have significantly different clinical mobility as 

compared to natural teeth. It was found that the mobility range for osseointegrated 

implant 17 to 58 µm labially and 17 to 66 µm lingually with loads of 2.0 kg which is 

caused by bone deformation. This is in contrast with natural teeth where mobility ranges 

from 100 to 200 µm [1].  

Due to the rigid connection between dental implants and bone, stresses caused by 

framework misfit will not dissipate over time. Some publications have stressed the 

importance of achieving a passive fit of implant frameworks because of this rigid 

connection [2]. 

 

Passive fit definition: 

 
Passive fit is assumed to be one of the important prerequisites to maintain bone 

level around the implants. Theoretically, passive fit is defined as simultaneous and even 

contact between the whole inner surface of all retainers with all abutments without 

inducing any strain on the supporting implant components and surrounding bone 

structure in the absence of occlusal loads. Despite advancements in  dental technology, 

passive fit as defined previously has not yet been achieved [3].  
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Many authors have defined acceptable passive fit but these definitions are 

hypothetical and are not based on scientific evidence. Branemark was the first one to 

define passive fit. He suggested that it should be at the level of 10 µm to allow bone 

maturation and remodeling under occlusal loads [2]. Jemt suggested that the framework 

is considered to have a passive fit when the gap between framework and abutment is less 

than 150 µm. He also stated that when more than a half turn is needed to completely seat 

the screw after initial resistance was felt, the framework is considered to have poor fit [4]. 

Patterson defined passive fit as the absence of gap between framework and abutment and 

absence of unfavorable strain after torqueing the screws [5]. Karel et al. defined passive 

fit as an absolute lack of strain development after placement of framework [6]. Klineberg 

and Murray used precision metal shims of 30 µm thickness to evaluate the fit of the 

framework. They considered frameworks with a gap greater than 30 µm over 10 % of the 

circumference of the interface as unacceptable [7]. 

  
Outcomes of framework misfit 
 
 

Due to the rigidity of the connection between osseointegrated implants and 

surrounding bone, any stress caused by framework misfit will be transmitted to implant 

components and implant bone interface [3].  

A finite element study showed that the presence of 111 µm vertical gap had a 

significant impact on stress distribution in implant components and surrounding bone. 

The presence of a cantilever or excessive force increased the effect of the misfit. When 

passive fit is achieved a lower peak stress is produced in each component due to widely 
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distributed stresss in all components. Also, when the prosthesis has a misfit, the gold 

screw and the abutment screw bore more stress than when a passive fit is present [8]. 

When the concept of implant osseointegration was established it was thought that 

having poor fit will have a detrimental effect on established osseointegrated implants [2]. 

In an animal study done by Carr et al., they found no difference in bone response between 

screw retained prostheses with two levels of misfits; 38 µm and 345 µm in the absence of 

occlusal loading [9]. In a retrospective study done by Kallus et al., they examined 236 

patients who were wearing an implant supported prosthesis for at least 5 years. It was 

found that gold screw loosening was related to framework misfit.  There were no clinical 

or radiographic findings that would indicate framework misfit will cause bone loss 

around implants [10]. Jemt and Book measured in vivo framework misfit in two groups of 

patients. One group was prospectively followed for one year, and the second group was 

followed retrospectively for five years. They found no statistical correlation between 

marginal bone loss and framework misfit with an average gap of 111 µm for one year 

group and 91 µm for the five year group and with a maximal discrepancy of 275 µm for 

both groups [11]. 

Previous studies have indicated the presence of bone tolerance around implants. 

However, no studies have scientifically measured or quantified the amount of this 

tolerance [12]. Several publications suggest that poor implant framework fit may cause 

mechanical complications such as gold screw loosening or fracture, abutment screw 

fracture, and framework or veneering material fracture [10, 13, 14]. When the framework 

misfit is excessive large external stresses will be introduced in screws and implant 

abutments which may lead to loosening or fracture of screws or fracture of the framework 
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if it does not possess enough bulk. The loosening of the screws is attributed to inadequate 

counteracting torque to the bending of an ill-fitting framework when tightened to the 

implant abutment [3].  

  
 
II. Measurement of the Framework Misfit 

 
 
1. Clinical Assessment 
  
 
Different methods have been proposed to evaluate the fit of the framework. 

Clinically there are different methods to evaluate the fit of the framework; however, none 

of these methods is accepted as the standard test. The accuracy of these methods can be 

affected by implant distribution and number, margin location, framework rigidity, 

eyesight, lighting, angle of vision, and experience of the dentist [12]. 

 The alternate finger pressure technique is a simple technique to detect a gross 

misfit by  applying pressure in an apical direction alternatively at each end of the 

framework to detect the presence of any fulcrum [15]. Adell et al. suggested that the 

observation of saliva movement at the framework-abutment junction increases the 

accuracy of this technique [16].  Direct vision and tactile sensation, with the use of an 

explorer is another technique that can be improved by the use of ample lighting and 

magnification [14, 15, 17]. Sensitivity of this method is affected by the size of the 

explorer tip, location of margin, and the dentist’s visual acuity. Christensen showed that 

clinicians would accept a subgingival margin with an opening up to 119µm, while 

supragingival with a 26µm opening were rejected [18]. Dental explorers are more 

efficient in detecting horizontal gaps compared to vertical ones [19].  
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Periapical radiographs are another method to evaluate framework fit especially 

when connections are subgingival. The radiographic film should be perpendicular to the 

long axis of the implant-abutment junction [20].  

The one screw test was suggested by Jemt for evaluation of framework fit. [4] In 

this test, one screw is tightened at one terminal abutment and any discrepancy is observed 

at the other abutments [21, 22]. It is effective for long span frameworks. It is used in 

conjunction with direct vision and an explorer when the margins are supragingival or 

with radiograph for subgingival margins. One of its drawbacks is that it cannot detect 

discrepancies in three dimensions and often distortion is masked if it is occurs in a 

horizontal plane [21, 22]. Another screw test introduced by Jemt is based upon a vertical 

misfit of 150µm or less.  In this test, every gold screw is tightened individually until 

initial finger resistance is achieved. If more than a half turn is needed to torque the gold 

screw from 10 to15 N-cm then it is a misfit [23, 24].  

Disclosing materials, such as wax, elastomeric material, and pressure indicating 

paste have been used to evaluate framework fit [17, 25]. They can be used with both 

supragingival and subgingival margins. Materials of measurable thickness like unwaxed 

floss (12 µm) and shim stock (10-12 µm) can also be used to assess the fit of the 

framework [12].  

 
2. Laboratory Assessment 
 
 
When the framework is fabricated, the lab technician should check the fit on the 

cast before the dentist tries it in the patient’s mouth. A framework that does not fit the 

master cast will not fit in the mouth. Several different methods may be used to assess the 
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fit of framework in the laboratory. Few of them are practical and cannot be used in a 

commercial laboratory. 

One screw test: if no detectable gap exists between the implant analogs and the 

framework when one screw in the distal abutment is completely tightened we can say the 

framework has an acceptable fit. The presence or absence of the gap can be assessed by 

explorer, direct vision, micrometer, or magnification [26]. 

Microscope measurements: microscopes of different magnifying powers can be 

used to measure inter-implant distances or to measure vertical gaps in conjunction with 

one screw test. To use this method effectively reference points should be used to 

standardize measurement [27]. 

Photogrammetric technique: it was introduced by Lie and Jemt to analyze the fit 

of implant frameworks. This technique measures the three dimensional orientation of the 

abutment cylinders on the implant analogs. It involves the use of a small standard camera 

with a wide angle lens modified by placing a glass plate with cross mark in the film plane 

and two parallel mirrors in the front of the lens. This modification will result in the 

production of 3 images of every object from one exposure. The images produced by this 

camera will be measured by an analytic plotter under stereoscopic vision and with the aid 

of computer software. This technique can provide an accurate three dimensional 

measurement that can measure a gap as small as 30 µm. It is a technique sensitive 

procedure that requires standardization of the position of the camera [23]. 

Coordinate measuring machine: this machine consists of a probe which can travel 

in the x,y,z axes and record the dimension of the framework or inter-implant analogue 

distances and height when it touches a surface. The distances that the probe travels is 
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calculated by computer software and transformed into measurable data. When using this 

machine to measure framework misfit it is important to have a verifiable datum and a 

coordinate reference system before any comparison between different measurement sets 

[28]. Although this machine has high accuracy, it is not feasible to use this machine due 

to its high cost which make its use limited to dedicated metrology oriented research 

laboratories [26]. 

Strain gauge analysis: strain gauges consist of fine wires or foils arranged in a 

grid pattern which are attached to the framework. These gauges are sensitive to strains 

caused by inaccuracy of framework misfits. One of the drawbacks of this method is that 

strain values are measured only where the gauges are attached, which make detection of 

strain dependent on where  the gauges are attached and not where the highest strain is. 

They are also sensitive to temperature [29]. 

Finite element analysis (FEA): is a computer-based technique for calculating 

strength and behavior of structures [30]. It is a good tool to evaluate the behavior of peri-

implant structure and stresses affecting screws and implant bone interface caused by 

framework fitting and occlusal loading. The clinical significance of the information 

provided by the FEA is dependent on the assumptions and boundary conditions in the 

hypothesized model [26]. 

 

 
III. Factors affecting the framework fit accuracy 

 
 
Each step for framework fabrication has an effect on the final fit of the framework 

starting from impression making. Clinical factors include impression material and 
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impression technique, while laboratory factors include die material, die fabrication 

technique, and  materials and techniques used to fabricate the framework. 

 

1. Impression material: 

Impression materials are used to record a negative form of the intraoral structure 

for the fabrication of stone casts that replicate the intraoral structure where the prosthesis 

is fabricated. The accuracy of the impression is very important for the construction and 

the fit of the implant-supported prosthesis. Ideal dental implant impression should 

produce an accurate impression, resist tearing without traumatic removal, has enough 

working time, sets within a reasonable time, biocompatible, pleasant order, taste and 

acceptable color, easy to use, easily wets oral tissue, dimensionally stable, compatible 

with die materials, and have enough rigidity to prevent displacement or rotation of 

impression coping [31].  

Alginate impression material are hydrophilic in nature and has the ability to work 

in wet environments with blood or saliva with good accuracy. It can reproduce good 

surface details as it has a low wetting angle. It can be easily removed from the patient's 

mouth. Due to its lack of rigidity, alginate impressions must be supported by rigid trays. 

Alginate can be considered as the most flexible impression material which makes it not 

useful for dental implant impression. It is relatively low in cost compared to other 

impression materials. Alginate impression materials are dimensionally unstable, 

asimbibition or desication can occur therefore alginate must be poured no more than 10-

12 minutes after impression making and it can only be poured once. It has relatively a 

low tear strength therefore it can tear easily[31]. 
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Polyether impression materials are moderately hydrophilic, have low wetting 

angle, accurate, dimensionally stable, and can be poured after 1-2 weeks after impression 

making and allows multiple pours. Polyethers have the highest tear strength therefore it 

does not tear easily and can be used in subgingival areas. Polyethers are rigid materials 

therefore difficult to remove from the patient's mouth; however, "soft" polyethers can be 

removed more easily. It has a short working time (4-5 minutes) and setting is not altered 

by latex. Polyethers taste bad; however its bitter taste can be masked by flavors [31]. 

Polyvinyl siloxanes are hydrophobic in nature therefore less accurate in the 

presence of moisture; a surfactant might be needed to reduce the high wetting angle. 

They are dimensionally stable allowing for multiple pours and can be poured weeks after 

impression making, but require a wait of at least 30 minutes before pouring to allow the 

setting reaction to be completed to avoid porosity. They are rigid with high tear strength 

but not more than polyether; however, they can be removed more easily than polyethers.  

It is thermally sensitive, sets slower upon cooling and faster upon heating. Polyvinyl 

siloxanes can be contaminated by sulfur or sulfur compounds from latex gloves and 

rubber dams and from the oxygen inhibited layer found after curing resins [31].  

Polysulfide impression materials are low to moderately hydrophilic, have low 

wetting angle with excellent details, fair dimensional stability can allow multiple pours 

only with the presence of acceptable thickness of the material, not rigid and can be 

removed easily without tearing therefore can reproduce the subgingival margin 

accurately. It is inexpensive, not affected by latex, has bitter taste and it cannot adhere to 

itself therefore cannot be used in border molding [31]. 
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Impression plasters contains calcium sulfate hemihydrate as the main component. 

This material is rigid and cannot bend, and must be stored in an air tight container to 

prevent it from absorbing water from air. Impression plasters are rarely used nowadays; 

however, it is used as "wash" material in edentulous impressions[32]. 

Polyether and vinylpolysiloxane (VPS) are the preferred impression material for 

implant impressions [33-37]. Wee et al., evaluated torque resistance of different 

impression materials and found that (medium consistency) polyether has the highest 

torque value followed by VPS addition silicone (high consistency) and then polysulfide 

(medium consistency). Additionally, he reported that implant casts made from polyether 

and addition silicone impression materials were more accurate than polysulfide 

impression material [33]. Assunaco et al. evaluated four dental impression materials 

using three different impression techniques with different implant angulation for model 

with four implants. They found that condensation silicone has the least accuracy among 

materials tested and he suggested that the use of condensation silicone is contraindicated 

with dental implants. They also found that polyether and high viscosity addition silicone 

were the most accurate. Polysulfide had an intermediate accuracy [38].  

 Several other studies compared the accuracy of polyether and VPS impression 

materials and found no difference [33-36, 38-40]. 

 

2. Custom tray vs. stock tray: 

Multiple publications showed that custom trays consistently produced accurate 

impression compared with stock trays in prepared teeth. In dental implant impression 

Burns et al found that rigid custom trays for pick up impressions produced more accurate 
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impressions compared with flexible stock tray. It was possible to have accurate 

impression with stock tray but its accuracy was not consistent compared to custom tray 

[41, 42]. 

 

3. Impression technique: 

There are two implant impressions techniques used with most implant systems. 

The closed-tray technique uses tapered impression coping. The coping are connected to 

the implants and after making the impression the copings are removed from the mouth, 

connected to an implant analogue and then reinserted into the impression before pouring 

the final cast. The open-tray technique uses square and screw-retained impression 

copings.  The openings in the tray allow access to the impression coping screws so that 

the coping can be removed along with the impression.  

Liou et al. evaluated the accuracy of replacing three tapered impression copings in 

a transfer impression technique made from Impregum F and Extrude impression 

materials. It was found that none of the copings were replaced accurately and consistently 

by all five participating dentists [34]. Daoudi et al. found significant difference in implant 

position in the horizontal plane, implant inclination and rotation in casts produced by 

senior dentist, postgraduate student and dental technicians after they repositioned tapered 

impression copings into elastomeric closed-tray impressions [37]. 

Del Acqua et al. reported in his study that both splinted and unsplinted open-tray 

impressions are more accurate compared with closed-tray impression. When there are 

three or less implants, most studies showed no difference between closed-tray and open 

tray impression techniques [43]. However, when there are four or more implants several 
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studies have shown that open-tray impressions were more accurate [40]. Kim et al. 

compared the accuracy of implant impression in-vitro and found that the non-splinted 

technique showed less three dimensional linear displacements than the splinted technique 

during impression making while the splinted technique showed less three dimensional 

linear displacement than the non-splinted group during cast fabrication [44]. One study 

evaluated the accuracy of pick-up impressions made with an acrylic resin splint and 

without on a model with four internal connection implants using polyether impression 

material. It was found that splinting impression copings with acrylic resin produced more 

accurate casts [45].  

Assunaco et al. evaluated accuracy of transfer impressions for osseointegrated 

implants at various angulations. They evaluated four dental impression materials using 

three different impression techniques with different implant angulation situations for 

model with four implants. It was found that open tray impressions with splinted 

impression coping produced better results compared with open tray without splinting and 

closed tray impression [38]. More recent studies reported implant impression with 

splinted coping were more accurate than impressions made with non-splinted copings 

[38, 40, 46]. 

 

4. Die Materials: 

A definitive cast is the positive reproduction of the intraoral structure recorded by 

the impression material. Desirable qualities of die materials are accuracy, dimensional 

stability, ability to reproduce fine details, strength, resistance to abrasion, ease of 

adaptation to the impression material, color for contrast, and safety [31].  
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Gypsum is the most commonly used cast and die material. It is produced by 

calcining calcium sulfate dihydrate. The dihydrate is ground and heated to temperature of 

110º C to 120º C (230º F to 250º F) to drive off some of the water of crystallization and 

convert them to calcium sulfate hemihydrate. Depending upon heating conditions, 

different forms of calcium sulfate hemihydrate are produced [47].  

According to the American Dental Association specification number 25 dental 

gypsum products are available in five types: 

I    Plaster Impression. 

II   Plaster Model. 

III  Dental Stone, Model. 

IV   Dental Stone, Die, High Strength, Low Expansion. 

V    Dental Stone, Die, High Strength, High Expansion. 

The criteria used to classify types of gypsum products are setting expansion and 

compressive strength. All of these five types are made of the same chemical (calcium 

sulfate hemihydrate); however, the difference is in the amount of water remaining within 

the crystal. Water decreases as the temperature increases during the process of 

calcination.[48] 

After initial setting all gypsum products show measurable linear expansion this 

expansion could alter the positional relationship of implant replicas within the die 

material. American Dental Association Specification Number 25 defines setting 

expansion as percentage linear growth of the die material measured at two hours after 

initial mixing [48]. Heshmati et al. measured the linear setting expansion of six type IV 

and type V dental stones up to 120 hours. He found that for most of die materials, setting 
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expansion was complete at 96 hours and most of the expansion happened after 2 hours 

(22% to 71% of the total expansion). Die keen exhibited the highest total expansion [49].  

One of the disadvantages of gypsum is poor resistance to abrasion. To 

compensate for this disadvantage attempts were made to improve gypsum by including 

hardener in the gypsum products. Resin strengthened gypsum products such as Resin 

Rock is an example of attempt to strengthen the gypsum products [50].  

An alternative material to gypsum products are epoxy resin and electroplated dies. 

Epoxy resin die materials are used to overcome the low strength and poor abrasion 

resistance of die stone material. They exhibit polymerization shrinkage with values 

ranging from 0.1% to 0.3%. It has better detail reproduction compared with gypsum [50]. 

Electroplated die involves the deposition of a coat of pure silver or copper on the 

impression and then the coat is supported with type IV stone or resin. This technique has 

many disadvantages, it is time consuming to produce a cast with this technique as it may 

take up to eight hours to pour the cast, special equipment is necessary, it is  incompatible 

with many impression materials and when silver plating is used, and health safety is a 

concern because of the cyanide solution [50].  

Wee et al. measured the dimensional changes of implant casts fabricated with 

Vel-Mix, Die Keen, Resin Rock and a low fusing alloy. He also measured the amount of 

strain produced in implant framework which was secured to different experimental stone 

casts. Resin rock produced the least mean absolute strain on the implant framework and it 

also produced the least dimensional change among other die stone materials [51].  

Duke et al. compared the physical properties of two resin modified type IV 

gypsum die stone material (Resin Rock and Milstone), two conventional type IV gypsum 
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die materials (Silky Rock and Diestone) and an epoxy resin die material (Epoxy-Die). 

Epoxy die had a superior abrasion resistance, better detail reproduction, the highest 

transverse strength and the highest dimensional change. There was no significance 

difference between the properties of resin modified gypsum die materials and those of 

conventional die materials [52].  

Kenyon et al. compared the linear dimensional accuracy of seven die materials: 

type IV gypsum die (Vel-Mix), type V gypsum die ( Hard Rock), resin reinforced type IV 

gypsum die ( Resin Rock), epoxy resin (Die Epoxy), polyurethane resin (Model Tech), 

bis-acryl composite material (Integrity) and copper-plated supported with resin reinforced 

type IV gypsum die. All measurements were done 96 hours after separation from the 

impression. Resin reinforced type IV gypsum die and copper plated dies were more 

dimensionally accurate than all others. Epoxy resin material shrank the same as gypsum 

expanded. Polyurethane dies showed combination shrinkage and expansion which 

prevents it from being recommended as a die material [53].  

Linear expansion will affect the accuracy of the cast and hence the accuracy of the 

framework fit. All die material will exhibit some dimensional changes after setting. It is 

important that dentists and laboratory technicians select a die material with minimal 

dimensional changes for implant restorations. 

 

5.  Implant framework fabrication technique: 

Conventional casting: 

The fit of a cast implant framework is affected by pattern fabrication material, 

investment material, investing technique and casting [54]. Noble metal alloys produce 
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implant frameworks with better fit compared to base metals. Frameworks cast using a 

gold alloy has the most accurate fit among alloys, but the high cost of gold limits it use. 

Silver-palladium alloy is an economical alternative to gold and it has superior fit 

compared with base metal [55].  Noble alloys have a high density and low solidus 

temperature compared to base alloys which make them more easily castable. In addition, 

cast-to abutments can be only used with noble alloys. Cast-to abutments have a 

prefabricated machined surface that fits more accurately compared to burn out plastic 

sleeves used with base metals [56].  

Base metal alloys such as cobalt-chrome (Co– Cr) and nickel-chrome (Ni-Cr) are 

less expensive compared with noble alloys and have superior physical properties. 

However, they are difficult to cast, finish, and polish. For base metal casting accuracy, 

titanium (Ti) alloy casting is more accurate than Ni-Cr and Co-Cr alloys, and Co-Cr alloy 

casting is worse than Ni-Cr. Single base alloy casting are not acceptable for implant 

frameworks and additional refinements to improve their fit are needed before they can be 

inserted [55].  

Sectioning and soldering is one way to improve the fit of cast frameworks, 

especially for noble alloys. The framework may be cast in multiple segments and then 

soldered together with the use of intraoral index [57]. The cast-to procedure is a 

modification of soldering technique where instead of using low fusing solder to connect 

the framework segments a similar framework alloy is used to connect the segments 

together. The cast-to method can be superior to the normal soldering technique [58].       

Laser welding is another technique to connect framework segments. It is an 

efficient method to improve the fit of base metal alloy frameworks. It doesn't require the 
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use of additional materials to connect the framework thus in theory it should not reduce 

the strength of the welded structure. However a 15 years retrospective study reported 

more fractures in laser welded frameworks compared to gold framework and all fractures 

happened in the laser welded joint [59].  

Spark erosion also known as electric discharge machining is a process that uses 

electric discharge to precisely contour metal or alloy by erosion [57].  Spark erosion can 

provide superior fit compared to sectioning and soldering gold alloy frameworks.  It 

improves the fit of base metal alloy frameworks more than it improves the ones with 

noble alloy.  It can be used on the framework even after porcelain application; however, 

it requires a special machine and training and it is an expensive procedure which hindered 

its universal use in commercial labs [55].  

Computer aided design and computer aided manufacture (CAD/CAM): 

CAD/CAM involves three steps, 1) scanning to record the 3D geometry of the 

dental cast and construct a virtual model; 2) CAD modeling by virtually design the 3D 

contours of implant framework, and 3) CAM production by milling the actual framework 

according to the virtual design [60]. Advantages of CAD/CAM fabrication process is it 

eliminates the use of wax patterns, investment and casting, and any inaccuracies that 

comes with these steps. In addition CAD/CAM titanium frameworks are milled from 

homogeneous blocks. They have better physical properties and the process is less labor 

intensive compared to conventional cast alloy [61]. CAD/CAM milled frameworks 

exhibit a superior and consistent fit compared with conventional cast frameworks even 

with sectioning and laser welding [55, 62]. Until now CAD/CAM milled frameworks 
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fabrication are the most accurate and consistent way to fabricate implant frameworks 

[55].  

 

IV. Verifying the accuracy of the master cast: 

 
Henry and Rasmussen described techniques to verify the accuracy of the master 

cast using a verification jig made of Duralay resin [15, 63].  Moreover, verification jigs 

can be used for fabrication of a corrected cast if the master cast was not accurate [15, 64], 

or it can be used to verify the fit of the metal framework [15, 65]. 

One in vitro study compared the accuracy of verification jigs to closed and open tray 

impression technique with elastomeric impression material. The model used in this study 

was of 3 parallel implants. It was found that there was no positive advantage for using a 

verification jig since the accuracy of verification jigs was not significantly superior to 

standard impression techniques [66].  

In a retrospective study done by Ercoli et al; he evaluated if there was a difference  

in the passivity between metal frameworks fabricated with or without a verification jigs, 

it was found that when a verification jig was used all frameworks achieved passive fit on 

all patients. While in the other group, where the frameworks were fabricated without a 

verification jig, only 2 frameworks achieved passive fit while 12 did not [67].  
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Statement of the problem: 

Accurate master casts are a prerequisite when fabricating a metal framework for 

implant restorations. Currently, all impression techniques may generate variable degree 

of inaccuracy of the master cast and final restoration which may lead to biological or 

mechanical failure. Several studies suggest the use of verification jigs to improve the 

accuracy of the master cast and hence the framework fitting. 

Aim of the study: 

To compare the dimensional accuracy of master casts fabricated with verification 

jigs made of acrylic resin and to master casts fabricated with verification jigs made of 

light polymerized Triad. 

Null hypothesis (H0): 

There is no difference between the accuracy of casts fabricated with light cured 

Triad verification jigs and casts fabricated with GC Pattern resin pattern verification jigs.  

Alternative hypothesis (H1):  

There is a significant difference between the accuracy of casts fabricated with 

light cured Triad verification jigs and casts fabricated with GC Pattern resin pattern 

verification jigs. 
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CHAPTER III 
 
 

MATERIALS AND METHODS 
 
 

Master Model: 

A stone model of a mandible with four implants analogs (Nobel Replace RP, 

Nobel Biocare) was fabricated  (Figure 1). From the stone model a CAD/CAM metal 

framework was fabricated to precisely fit the cast (Figure 2). This framework will be 

used later as a measuring reference for the sample casts. 

 

 

Figure 1: The master model. 
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Figure 2: CAD/CAM Framework fabricated from the master cast. 

 

Test Samples: 

Twenty verification jigs were fabricated from the stone model to make twenty 

stone casts and were divided into two groups.  

Group 1: 10 verification jigs were made with autopolymerizing resin (GC Pattern 

Resin, GC America) using open tray impression copings. Four impression copings were 

hand torqued onto the implant analogs and dental floss was used to connect them. 

Subsequently, the impression coping were splinted using GC Pattern resin (Figure 3). 

After the resin polymerized, the jigs were sectioned between each coping with a thin disc 

to release stresses caused by resin shrinkage (Figure 4). After 24h, the sectioned jig was 

connected with a small amount of GC Pattern resin individually at each gap in 17 minute 

intervals.  After connecting all segments, a PVS index was made to help duplicate the 
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verification jig to ensure that every jig has the same dimensions (Figure 5). Then the jig 

was removed from the model and four implant analogs were connected to the impression 

copings and a stone model (Resin Rock; WhipMix Corp.) was poured using a base 

former(Figure 6).    

 

 

Figure 3: GC Pattern resin verification jig. 
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Figure 4: Sectioned verification jig. 

 

Figure 5: A PVS index was made to help duplicate the verification jigs. 
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Figure 6: Verification cast 

 

Group 2: Group 1: 10 verification jigs were made with light cured resin (Triad 

gel, Dentsply International, Inc.) using open tray impression copings. The PVS index 

Triad was connected to 4 impression copings that were torqued onto implant analogs. 

After the resin was polymerized for a 1 minute light cure cycle, the jig was sectioned 

between each coping with a thin disc to release stresses caused by resin shrinkage (Figure 

7). After that, the sectioned jig was connected with a small amount of Triad gel between 

each gap. The gaps were connected individually and light polymerized for 1 minute.  

After connecting all segments, the jig was removed from the model and four implant 

analogs were connected to the impression copings and a stone model (Resin Rock; 

WhipMix Corp.) was poured using a base former. 
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Figure 7: Triad Gel verification jig. 
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The right distal implant analogue used in every stone base, including the master 

cast, was modified by machining a dimple in its apical part for use as a reference point 

(Figure 11). This dimple allowed consistent positioning of the digital micrometer. 

A slot was cut with a carborundum disc (Red Flash Disc; Keystone Industries) on 

the superior surface of the framework, and at the right distal abutment to allow consistent 

positioning of the blade of the digital micrometer (Figure 12). 

 

Figure 8: Machined dimple. 
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Figure 9:  Groove was cut into the framework for measurement reference.  

 

Measurements: 

All measurements are made with a digital micrometer with an accuracy of ±1 µm 

(No. 342-271; Mitutoyo Corp.). The lengths of each implant analog were measured three 

times and mean values were calculated (Figure 13). The framework was secured on each 

stone model specimen by torqueing one screw on left distal implant analog to 35 N-cm. A 

light cured tray resin material (Triad, TruTray, Dentsply International Inc.) were placed 

between the right framework cantilever and stone model specimen and cured for one 

minute to prevent downward movement of framework when micrometer measurements 

were done (Figure 14). 

Vertical measurements were made with the digital micrometer. The blade end of 

the micrometer was placed at the framework slot and the anvil end was placed at the 
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dimple on the implant analog. Measurements were taken three times and mean values 

were calculated (Figure 15). The vertical misfit gap was calculated by measuring the 

overall vertical dimension of framework and the implant analog and subtracting the 

length of each implant analog. Vertical misfit measurements were subtracted from the 

measurement made on the master model to obtain a distortion value in each sample. 

 

Figure 10: Measuring implant analog length. 
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Figure 11: Light cured tray resin material between framework cantilever and stone model 

specimen to prevent downward movement of framework when measurements were done. 
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Figure 12: Measuring the overall vertical dimension of framework and the implant 

analog. 
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Statistical analysis: 

 

One examiner conducted all measurements. These measurements were recorded 

in Microsoft Excel (Excel 2010, Microsoft Corp.), and statistical analysis was also 

conducted using also Microsoft Excel. 

The distortion values compared among the two groups using Student’s t-test at an 

alpha level of 0.05.  

 
  

 



33 
 

CHAPTER IV 

 

 

RESULTS 

 
 

The distortion values for the two groups are presented on table 1. 

Group 1 (GC Pattern) has an average value of 29.71 µm (Figure 13). Group 2 (Triad Gel) 

has the lowest average distortion value which is 27.8 µm. There was no statistical 

significance difference between the two groups (p=.42) (table 2). 
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Table 1: Distortion values in µm for the samples. 
 

Group 1 (GC Pattern) Group 2 (Triad Gel) 
Cast number Distortion  Cast number Distortion 

1 41.00 1 11.33 
2 11.11 2 19.00 
3 18.33 3 12.33 
4 88.33 4 13.00 
5 13.67 5 29.33 
6 18.67 6 11.33 
7 18.67 7 72.00 
8 36.67 8 19.33 
9 13.67 9 33.00 
10 37.00 10 57.33 

Mean 29.71 Mean 27.80 
SD 23.33 SD 21.09 

 
 
  
  



 

Figure 13: Mean Distortion Values for each group.
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Table 2: Student’s t-test 
 

t-Test: Two-Sample Assuming Unequal Variances 

   

  GC  resin Triad gel   

Mean 29.711333 27.8   

Variance 544.40563 444.9926   

Observations 10 10   

Hypothesized Mean 

Difference 0     

df 18     

t Stat 0.1921546     

P(T<=t) one-tail 0.4248861     

t Critical one-tail 1.7340636     

P(T<=t) two-tail 0.8497723     

t Critical two-tail 2.100922     
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CHAPTER V 

 
 

DISCUSSION 
 

 
In this study, the null hypothesis that there is no difference between the accuracy 

of casts fabricated with light cured Triad verification jigs and casts fabricated with GC 

Pattern resin pattern verification jigs was accepted.  

Framework fabrication for implant supported restorations requires an accurate 

master cast that has the same implant position as the intraoral. Accuracy of the master 

cast is affected by factors such as impression material, impression technique, machining 

tolerance, stone expansion, and cast material. 

In this study resin modified type IV die stone (Resin Rock) with dimensional 

expansion of 0.08% was used to pour all stone samples because of it compressive 

strength and low linear expansion. Kenyon et al. compared the linear dimensional 

accuracy of seven die materials and found that Resin rock was more dimensionally 

accurate than other die materials. In this study, material used to fabricate the verification 

jigs were GC Pattern Resin and Triad Gel. GC Pattern Resin is a polymethyl-

methacrylate (PMMA) resin which is also a self-cure resin. All acrylic resin materials 

exhibit some polymerization shrinkage. It has been shown that 80% of polymerization 

shrinkage of PMMA occurs within 17 minutes at room temperature and after 24 hours 

there is no significant shrinkage that will happen [68]. The reported linear shrinkage for 

this material is approximately 0.4% [68]. To minimize in this study, the effect of 

polymerization shrinkage all GC Pattern Resin verification jigs were fabricated and 

sectioned with a thin disk 24 hours before using them and connecting them back for stone 
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base fabrication. Therefore, the only shrinkage that will affect the accuracy of GC Pattern 

Resin verification jigs is the shrinkage of the added resin used to reconnect the jigs which 

is estimated to be negligible. Triad Gel is a urethane-dimethacrylate resin (UDMA) that 

does not contain methylmethacrylate monomer. It is also a light cured resin. It has less 

polymerization shrinkage compared to PMMA acrylic [31]. The linear shrinkage of Triad 

gel is approximately 0.38 % [69]. Others reported that Triad has a linear shrinkage as 

small as 0.2% [70]. The small dimensional change of Triad and its good handling 

proprieties will make this a good material for fabrication of verification jigs. 

To make the measurement method represent the clinical situation, the one screw 

test was used to evaluate the vertical gap at the terminal abutment using a digital 

micrometer with an accuracy of 1µm to record the vertical gap. Although a one screw test 

is widely accepted as way to measure the clinical method. It has some shortcomings 

because rotational displacements and tilt direction of the analogs in the master cast may 

produce large vertical gaps or may camouflage it [71]. 

The use of CAD/CAM frameworks for implant restoration has increased due to 

the superior fit and decreased cost compared to cast framework using noble alloys. These 

frameworks require an accurate cast prior to scanning and are not designed to be cut and 

soldered. In the clinical situation, distortion of an implant impression may happen due to 

the presence of undercuts, improper seating of the impression, angulation of implants, the 

depth of implant placement, number of implants, and handling of the impression by the 

technician. In these situations, a dentist can benefit from the use of a verification jig to 

assess the accuracy of the master cast, to correct the master cast, or to make a new 

impression. 
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Using Triad Gel to fabricate a verification jig has an advantage over GC Pattern 

resin as it can be used in the same day or directly in the patient’s mouth. There is no need 

to wait for 24 hours as with GC Pattern resin. This will reduce number of appointments 

and cost. 

This study cannot be generalized for every implant situation. This study was made 

on a model of four implants. The Implants used were Nobel Replace RP with a tri-lobe 

internal connection which is a different situation from an abutment level impression or 

other implant brands. Every implant brand has a different design and different machining 

tolerance. 
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CHAPTER VI 

 
 

CONCLUSIONS 
 

 
The vertical gap misfit value in implant framework produced by cast fabricated using GC 

Pattern resin and Triad Gel verification jigs were measured using one screw test and 

compared. Triad Gel verification jigs did not produce superior fit compared to GC Pattern 

resin pattern verification jigs in a master cast with four implant with internal connection. 
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