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ABSTRACT

BLENDING AS A MULTI-HORIZON TIME SERIES FORECASTING TOOL

Tian Gao, B.S.

Marquette University, 2014

Every day, millions of cubic feet of natural gas is transported through

interstate pipelines and consumed by customers all over the United States of

America. Gas distributors, responsible for sending natural gas to individual

customers, are eager for an estimate of how much natural gas will be used in the

near future. GasHourTM software, a reliable forecasting tool from the Marquette

University GasDayTM lab, has been providing highly accurate hourly forecasts over

the past few years. Our goal is to improve current GasHour forecasts, and my thesis

presents an approach to achieve that using a blending technique.

This thesis includes detailed explanations of the multi-horizon forecasting

technique employed by GasHour models. Several graphs are displayed to reveal the

structure of hourly forecasts from GasHour. We present SMHF (Smoothing

Multi-horizon Forecasts), a step-by-step method showing how a polynomial

smoothing technique is applied to current GasHour predications. A slightly different

approach of smoothing has also been introduced.

We compare RMSEs of both GasHour forecasts and smoothed ones.

Different comparisons resulting from different situations have been demonstrated as

well. Several conclusions have been reached. Based on the results, blending

techniques can improve current GasHour forecasts. We look forward to applying

this blending technique to other fields of forecasting.
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CHAPTER 1

Introduction to Natural Gas Consumption Forecasting

This chapter presents an overview of the natural gas industry and the

motivation for the study undertaken in this thesis.

1.1 Natural Gas and the Industry

Natural gas is a vital component of the American supply of energy.

According to the Energy Information Administration (EIA) [2; 53; 67], natural gas

accounts for 24 percent of total energy consumed in the United States. Gas utilities

across the country provide service to over 65 million residential customers and 5

million commercial enterprises [2]. Due to its growing popularity, natural gas

consumption is experiencing the fastest growth among all fossil fuels [61], and it is

expected to maintain that trend for the years to come [2; 3; 4].

Most of the natural gas demand comes from industrial use (32%), electric

generation (24%), and residential use (22%) [12; 53]. Applications of natural gas in

industry include providing base ingredients for certain products, metal preheating,

food processing, drying, dehumidification, and so on [53]. Electricity generators

contribute most to the current growth in natural gas demand [2; 4]. Estimates from

the EIA [53] show that between 2009 and 2015, over 20 percent of new electricity
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capacity will come from natural gas-fired power plants. Based on the analysis from

the Department of Energy (DOE) [53] in 2011, natural gas is the lowest cost

conventional energy source for residential customers. Heating (space heating, water

heating, and clothes drying) and cooking are the best known uses for natural gas

around the homes [5; 53]. The American Gas Association (AGA) indicates that 62

million homes in the U.S., are heated using natural gas [2; 53].

The process of getting natural gas from wellheads to end customers is a

complicated one, including exploration, extraction, production, transportation,

storage, and distribution [52]. In the final distribution part, a nationwide delivery

system, including 2.1 million miles of local utility distribution pipes and 0.3 million

miles of transmission lines, transports natural gas to households and businesses all

over the country [2]. Most of the consumers receive their natural gas from their

local distribution companies (LDCs), utilities engaged in natural gas retail sales and

delivery of gas to the end customers within a specific geographic area [2; 6].

Natural gas, as one of the cleanest, safest, and most useful forms of energy,

will play an increasingly important role in meeting the United States’ energy

demand in the future [3; 53]. To use it efficiently and wisely, accurate natural gas

demand forecasts attract more and more attention from pipeline and distribution

companies.
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1.2 Short-term Natural Gas Forecast

Natural gas demand forecasts can be classified as short-, medium- or

long-term forecasts, based on the time horizons of these forecasts. Diebold (2008)

defines forecast horizon as “the number of periods between today and the date of

the forecast we make,” which shares similarities with concepts built by Bes and

Sethi (1988). More generally, a forecast time horizon can be the time (or time

interval) between the time (or time interval) at which the forecasts are made and

the time (or time interval) for which they are made. The short-term demand

forecasts often refer to forecasts made 1-7 days ahead [37]. For gas suppliers and

distributors, forecasts are needed both hourly and daily [43]. Usually, short-term

demand for residential and commercial customers is influenced by many factors,

including temperature, wind speed, day-of-the-week, and so on [14; 43]. Among

them, temperature is the most significant factor, since natural gas is mostly used for

space heating [5; 14]. Also, buildings using gas for heating tend to lose more heat on

a windy day than a calm day, making wind speed a vital component affecting total

natural gas consumption [14; 43]. Some commercial and industrial customers may

shut down over the weekends, which explains why day-of-the-week should be

considered as well [43; 68]. Besides the factors mentioned above, future gas

consumption also is related to historical gas flow data and actual temperature

information [14; 57]. The historical flow data is also called measured flow data,
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which was recorded and reported through LDCs. These data are used to represent

actual flow data, which is unfeasible to access due to the structure of pipelines.

In the past decades, many approaches have been investigated to improve

energy consumption forecasting. These methods include artificial neural networks,

nonlinear regression, expert systems, stochastic models, and support vector

machines [14; 50; 57]. Based on past experience, forecasting accuracy can be

increased by proper understanding of the underlying principles of energy

consumption. These principles sometimes are called “domain knowledge” [13; 22;

57; 68]. For instance, knowing the categories of the customer base and the

characteristics of these categories can provide insightful assistance in identifying and

analyzing the data patterns of gas usage for such customers [68].

1.3 GasDay Lab in Marquette University

GasDayTM project was established by Dr. Ronald Brown in 1993. This lab

has an educational mission and also fosters research opportunities for undergraduate

and graduate students by licensing and supporting software that serves local

distribution companies (LDCs). GasDay has been developing and improving natural

gas demand forecasting technology for more than 20 years, with products covering

hourly, daily, monthly, and yearly gas demand forecasts. Currently, GasDay is
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providing service to 30 utilities in 24 states, accounting for more than one fifth of

industrial, residential, and commercial natural gas demand in the United States [31].

The work presented in the thesis has mainly focused on hourly gas demand

forecasts, although the methods developed can be applied to other forecasting fields.

1.4 Statement of the Problem

Natural gas price was capped and controlled before the early 1980s [1].

Starting in the year 1978 [51], a series of new acts intended to deregulate natural

gas market were passed on the federal level. With the elimination of artificial ceiling

prices on natural gas, demands from emerging customers have been greatly

satisfied [12]. Now, the wholesale price of natural gas is market-driven, which

sometimes contributes to high volatility in prices due to large swings in supply and

demand [1; 12]. In some cases, the cost of natural gas purchased on the spot market

can even be 10 times that purchased under contract [29]. This economic reality

pushes LDCs to make wise decisions on how much gas they should buy from natural

gas producers or traders, which is mainly based on the estimation of how much gas

they need to deliver to their customers. If an LDC overestimates consumption, then

they must either store the extra gas, for which most LDCs have no capacity, or pay

a penalty for leaving the gas in the pipelines. If an LDC underestimates the usage,
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they may have to purchase gas from spot market to maintain service to the

customers [29; 68].

GasHour, as an hourly gas consumption forecasting tool from the GasDay

lab, has been used by several LDCs in the past decade. It produces forecasts up to

106 hours ahead, using multi-horizon forecasting technology. For each forecasted

hour, an independent model with possibly different inputs is applied to obtain a

forecast [63]. With several years’ modification and enhancement, GasHour has

become increasingly accurate in hourly gas demand forecasting, yet there is still

much room for improvement.

Numerous papers and articles published in the past half century have shown

that by combining multiple individual forecasts, forecasting accuracy can be

improved significantly [19; 34]. Most research focuses on the aggregation of different

sources of information, such as different forecasting methods or data. For example,

some experts [74] use several mathematical models to make forecasts for the same

time horizon and average them using different weights. The final forecast for that

horizon is a combination of all forecasts from those models [7; 19; 27; 72]. The idea

of combining methods, along with the multi-horizon forecasting technology GasHour

is using, suggests a potential direction to improve the accuracy of GasHour

forecasts. More specifically, the gas consumption forecast for one individual hour

can be improved by combining forecasts generated for nearby hours, using
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approaches such as polynomial smoothing or filtering. Forecasting skill will be

evaluated using RMSE and MAPE, measurements of forecast errors [26].

1.5 Outline and Organization

The first chapter presents a concise description of the problem and potential

solution. The whole thesis contains four chapters.

In Chapter 2, we will review some literature regarding basics about

forecasting, multi-horizon technology, and combining methods. Chapter 3 will

present the approach, which is polynomial smoothing. The results of measurement

and analysis, including RMSE, along with conclusions and future work, will be

introduced in Chapter 4.
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CHAPTER 2

Review of Forecasting Literature

In this chapter, we will introduce background information about technologies

related to the field of forecasting.

2.1 Forecasting

Forecasting can be viewed as the process of stating what a future event looks

like when the outcome of that event has not been observed yet. For instance,

predicting the prices of the stock market at some specific future date is one kind of

forecast [8; 70]. Weather forecasting, as another common example, dates back

thousands of years when early civilizations used astronomical and meteorological

events to monitor seasonal changes [28].

Modern forecasters use several forecasting methods which can be classified as

either subjective or objective. Judgemental (Subjective) methods are used widely

for important forecasts. Statistical (Objective) methods include extrapolation (such

as moving averages, linear regression against time, or exponential smoothing) and

econometric methods (typically using regression techniques to estimate the effects of

causal variables) [8; 69].

Judgemental forecasting, in which instinct plays an important role in
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predicting what may happen [24], suffers from divided opinions over the past

decade. Some authorities suggested that “judgement cannot be trusted” [69].

Others provided evidence that “judgement was strongly preferred as the most

important method of practical sales forecasting” [69]. Usually, judgemental forecasts

can be made with or without domain knowledge. However, evidence indicates that

the quality of the forecasts improves with increasing accuracy of the provided

information [58].

Statistical forecasting, often compared with judgemental forecasting, focuses

on predicting the future based on the past information by developing a forecast

through identifying inner patterns of the data. Since it uses mathematical formulas

to identify the inner patterns and tests the results by mathematical standards, the

forecast mentioned above is referred to as a statistical forecast [62].

Both statistical and judgemental forecasting have weaknesses and strengths.

Considerable findings show that the accuracy of statistical forecasting can be

improved by making judgemental adjustments based on domain knowledge [8]. In

the field of energy consumption forecasting, domain knowledge is especially helpful.

It would be easier for forecasters to select and apply forecasting methods with

knowledge about customer behavior, industry operation processes, and data

characteristics [22].

Econometric forecasting is also an important part of the field of forecasting.
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In economics, forecasting methods include “guessing, expert judgement,

extrapolation, leading indicators, surveys, time-series models, and econometric

systems” [21]. Econometric methods rely on statistical procedures to estimate

relationships for models specified on the basis of theory, prior studies, and domain

knowledge. Given good prior knowledge about relationships and good data,

econometric methods provide an ideal way to incorporate expert judgemental and

quantitative information [8].

Armstrong [8] lists some principles which should be followed in the process of

forecasting, including:

1. Use quantitative methods rather than judgemental methods, if enough data

exists. If no data exist, use judgmental methods. When enough data exist,

quantitative methods are expected to be more accurate.

2. Use simple methods unless substantial evidence exists that complexity helps.

One of the most enduring and useful conclusions from research on forecasting

is that simple methods are generally as accurate as complex methods.

3. Match the forecasting methods to the situation. All the guidelines and

principles are based on the situation.

Forecasting plays an important role in many aspects of people’s lives. For

individuals, prediction of future activities is the key to personal success. For
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organizations, an accurate forecast of the future trends in the financial market

means great increases in revenue. For government agencies, forecast results of both

domestic and international affairs may cause enormous impact on current policies,

which may influence many people [8]. After the oil crisis in the 1970s, climbing

energy cost contributed to attracting more attention to the forecasting of future

consumption [23]. When it comes to the natural gas industry, prediction made for

future natural gas markets significantly impact related government policies,

economic activities, and people’s everyday life. China, as a rising economic power

which consumes large amounts of energy resources, is facing grave environmental

issues. One of the solutions, replacing traditional power plants with gas-fired

generators, is hindered by uncertain opinions on future gas demand and prices [30].

It would cast enormous influence on the current process if accurate forecasts of

future gas markets can be obtained.

Knowledge regarding forecasting has increased a lot. Many papers are

published every year in different industries [8]. These studies help us broaden our

horizons in applying different methods to various areas. The quality of forecasting

also has improved over time. For example, errors in weather forecasts and political

poll result forecasts have decreased for the past decades [8].

There are several performance criteria which can be used to measure

accuracy of forecasts. Assume the forecast for time horizon h is represented as ŝh,
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and the measured value is sh. The error is

eh = ŝh − sh . (2.1)

Notice that in Equation 2.1 the errors are calculated by subtracting measured flow

values from forecasted values, which may be the opposite of other people’ work. The

reason GasDay lab adopts this definition is that when the errors are positive

numbers, it indicates overforecasting, while negative numbers correspond to

underforecasting. Mean absolute percentage error (MAPE) and root mean square

error (RMSE) are used to assess accuracy of the forecasts. Suppose there is a series

of N forecasts. Then MAPE can be represented as [26; 55]

MAPE =

(
N∑
h=1

∣∣∣∣ehsh
∣∣∣∣
)

∗ 1

N
∗ 100% . (2.2)

Then RMSE can be represented as

RMSE =

√√√√√ N∑
h=1

e2h

N
. (2.3)

In the following section, we introduce linear regression, an important

technique for building models.
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2.2 Linear Regression

“Forecasting is inextricably linked to the building of statistical models.” [26]

Before forecasting a variable of interest, one must build a model for it and estimate

parameters of that model using observed historical data. The model built presents

the dynamic patterns in the data and the characteristics of the links between

present and past [26]. As a basic approach for forecasting, we use linear regression

to build models.

Linear regression is a widely used and powerful approach in modeling the

relationship between a dependent variable Y and one or more independent variables

X [73]. If there is only one independent variable X, then a simple linear regression

process takes the form

Y = β0 + β1X + ε , (2.4)

where β0 is an offset, β1 is the coefficient for X, and ε is an error term. The error

term often is assumed to be independent and identically distributed following a

normal distribution with mean 0 and variance σ2. In our work, we make no such

assumptions about the error.

At the same time, this process can be modeled as

Ŷ = β0 + β1X , (2.5)
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where β0 is an offset, and β1 is the coefficient for X.

When there are more than one independent variable X, multiple regression

has the form

Y = β0 + β1X1 + ...+ βnXn + ε , (2.6)

where β0 is an offset, βi is the coefficient for Xi (i = 1, . . . , n), and ε is an error

term. Then the dependent variable Ŷ is modeled as

Ŷ = β0 + β1X1 + ...+ βnXn . (2.7)

As a basic approach for forecasting, we use linear regression to build models used in

this work.

Since the method used here combines forecasting at multiple time horizons,

an introduction to multiple time horizon forecasting will be given in the next section.

2.3 Multi-horizon Forecasting

Literally, multi-horizon (period) forecasting means forecasts generated for

multiple time horizons ahead [15; 33; 56]. Time horizon indicates a specific period of

time, which can be a year, a season, a month, a week, a day, or even an hour. While

one-period-ahead forecasting is usually the focus, multi-horizon forecasts attract

much less attention [33; 41].
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Under most circumstances, there are two methods to construct multi-horizon

forecasts. One way is to estimate a horizon-specific model and apply it repeatedly

over future time horizons. More specifically, one model is used iteratively at

different time horizons in the future. If the model is autoregressive, the previously

forecasted value is used as an input. This “plug-in” method, adopted by most time

series forecasters, is often called “iterated multi-step” (IMS) forecasting [11; 17; 20;

33; 38; 39; 41; 49].

Suppose there are five time horizons from h to h+ 4. If we choose to use a

simple linear regression model (one constant and one input) to demonstrate IMS

forecasts, it will take the form as follows.

LR models from h to h+ 4:

Ŷh = β0 + β1Xh, (2.8a)

Ŷh+1 = β0 + β1Xh+1, (2.8b)

Ŷh+2 = β0 + β1Xh+2, (2.8c)

Ŷh+3 = β0 + β1Xh+3, (2.8d)

Ŷh+4 = β0 + β1Xh+4. (2.8e)

Although IMS predication has been widely accepted and applied in different

fields of forecasting, research results suggest that a “direct multi-step” (DMS)
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method can contribute to better and more accurate forecasts. Unlike IMS models, a

new set of parameters, often with different input factors, is estimated for each time

horizon in DMS forecasting. Evidence and proofs have suggested that in most

situations, especially with high-order autoregressions and long forecasting horizons,

multi-horizon forecasts generated from separated models for each forecast horizon

achieve lower RMSE and MAPE than those generated using a single iterated

model [11; 16; 17; 18; 33; 36; 41; 49; 59; 66].

Assume there is a one-step-ahead, order n autoregressive model,

Ŷh = β0 + β1Yh−1 + ...+ βnYh−n . (2.9)

When this model is used to make a multi-horizon forecast as an IMS model, it takes

the form

Ŷh = β0 + β1Yh−1 + ...+ βnYh−n , (2.10)

Ŷh+1 = β0 + β1Ŷh + ...+ βnYh−n+1 , (2.11)

...

Ŷh+n = β0 + β1Ŷh+n−1 + ...+ βnŶh . (2.12)

Note that to forecast Ŷh+1 requires Yh, which is unknown, so we take the forecasted

value Ŷh instead. It is clear that every time a new forecast is obtained using
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previous forecasts. This affects accuracy since forecasting errors get accumulated in

the process and may contribute to larger errors for newly-generated forecasts.

Ensemble forecasting, as an increasingly used method of weather forecasting,

allows for uncertainties concerning initial conditions and the the role of chance [32].

This thesis draws on the insights of ensemble forecasting and applies them to

multi-horizon forecasting.

2.4 Ensemble Forecasting

Ensemble techniques have become established recently as methods for

generating probabilistic weather forecasts [54; 77]. The idea for ensemble forecasting

is that repeated forecasts are made from the same initial time, with the initial

conditions varied by an error whose magnitude reflects the degree of uncertainty of

the observations [32]. Also, it implies different models for weather evolution. It has

been discovered that ensemble forecasting not only can enable better weather

forecast, but also can provide access to forecast future uncertainty [77]. Ensemble

techniques combine multiple forecasts (same model with different initial conditions

or different models) for the same time horizon, for example, temperature at 8:00

A.M. tomorrow. In contrast, our multi-horizon technique is to combine forecasts at

6:00 A.M., 7:00 A.M., 8:00 A.M., 9:00 A.M., and 10:00 A.M. to get an improved

forecast for the temperature at 8:00 A.M.
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Figure 2.1 presents a rough picture of the example above. The red stars are

original temperature forecasts. To get a better forecast for 8:00 A.M., surrounding

points are considered to generate a new forecast at 8:00 A.M. (blue cross).

Figure 2.1: Example of multi-horizon ensemble forecasting

Ensemble forecast techniques are used widely in weather forecasting systems.

They are recognized as an important component for real time prediction [75]. The

primary implementation for ensemble forecasts under current circumstances is

combining multiple models from different sources.
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2.5 GasHour Software

Since the day GasDayTM lab was founded, Dr. Brown and his students have

committed to develop more accurate and reliable tools generating gas consumption

forecasts for hourly, daily, monthly, and yearly flow. GasDay’s flagship product,

GasDayTM software, generates highly accurate natural gas demand forecasts over a

rolling eight-day period, allowing Local Distribution Companies (LDCs) sufficient

time to plan gas supply for the week. Reliable estimates of natural gas consumption

are critical for avoiding excess supply or shortages of natural gas, making GasDay a

valuable product.

GasDay’s hourly gas flow forecasting tool, GasHourTM, generates hourly

forecasts for time horizons 0 – 105 hours. These forecasts currently use no

ensembling and rely on multi-horizon forecasting for accuracy. A set of 106 linear

regression models, one for each time horizon, includes the only models currently

used by GasHour. GasHour forecasts are accurate, although there is still room for

improvement.

Since GasHour is using multi-horizon forecasting, it is important to express

it appropriately. For multi-horizon models, there are three dimensions that need to

be addressed: different time horizons, different inputs, and different parameters.

Accordingly, we develop proper notation for each.
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Currently, h used in GasHour models stands for a one-hour interval of time

for which time horizon 0 is forecast. We label the model used for time horizon 0 as

model 0. Based on different situations in which GasHour is fired, three cases need to

be discussed. First comes the normal case. Assume now is 1:30 P.M., and there is

no measured flow data starting at 1:00 P.M. After firing GasHour, the first forecast

we get is for the time interval between 1:00 P.M. to 2:00 P.M., which is time horizon

0 in this case. Most LDCs use a bottom-of-the-hour designation, which means that

they refer to this forecast as the 2:00 P.M. forecast. Measured flow data from 1:00

P.M. to 2:00 P.M. won’t be available until 2:00 P.M. In another scenario, several

hours’ measured flow data are missing before GasHour is fired. For example, assume

it is 1:30 P.M., and we do not have measured gas flow starting from 10:00 A.M. on

the same day. When we fire GasHour, the first forecast we get is for the time

interval between 10:00 A.M. and 11:00 A.M., which is time horizon 0. The third

scenario is backtesting, where we fire GasHour for a time period for which we have

measured gas flow. For example, assume it is 1:30 P.M., August 1st, 2013. We can

adjust the time to be one year ago, which is 1:30 P.M., August 1st, 2012, and fire

GasHour as if the time were 1:30 P.M., August 1st, 2012. In this case, the first

forecast we get will be for the time horizon between 1:00 P.M. and 2:00 P.M.,

August 1st, 2012, and this time interval is called time horizon 0.

When GasHour is generating forecasts for the next 106 hours, it is using a
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unique and independent model for each hour, with possibly different inputs.

Researchers from GasDay have created and mentioned different notations in their

papers, yet their notations lack consistency and need to be unified.

To inform our development of appropriate notation for various inputs,

Table 2.1 gathers what others have used.

Table 2.1: Previous GasDay and GasHour notations

Taware Kennedy Tenneti Kiware
1998 [64] 2006 [42] 2009 [65] 2010 [44]

Actual gas flow Sk sk Sk sk

Predicted gas flow Ŝk ŝk N/A ŝk

Heating degree hour dh N/A N/A N/A

Heating degree day Dk N/A HDDk N/A

Day of the week (sine) sdow N/A DOWs,1
k N/A

Heating degree day reference 65 HDD65 HDD65 N/A HDD65

Heating degree day reference 65 N/A HDDW65 HDDw65k HDDW65

adjusted for wind

There is a clear lack of consistency. Incorporating best practices in the

GasDay lab, small changes will be made to these notations, as shown in Table 2.2,

for some of the most important notations used in the forecasting models.
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Table 2.2: Notation used in this thesis

Explanation Symbols of components

Actual gas flow sh

Predicted gas flow ŝh

Heating degree hour, ref 65, adjusted for wind HDHW65h

Heating degree hour, ref 55, adjusted for wind HDHW55h

Hour of the day indicator (sine) sin

(
HODh∗2π

24

)
Hour of the day indicator (cosine) cos

(
HODh∗2π

24

)
Actual gas flow one hour ago sh−1

Actual gas flow twenty-four hours ago sh−24

...
...

With modified inputs, the next step is to build a direct and simple notation

for GasHour models. Following Lim [47] and taking forecast horizon hour 6 as an

example, the notation can be represented as

ŝh+6 = β0 + β1HDDW65h+6 + β2HDHW55h+6 + β3 sin

(
HODh+6 ∗ 2π

24

)
+ β4sh−24+6 + β5sh−48+6 + . . .+ βnOtherInput . (2.13)

With this model at hand, it is possible for us to compare models at other hours,

although they may use different inputs. For example, in Lim’s thesis [47], some of

the inputs for hour 6 are shown in Table 2.3. Other models at different hours may

use different inputs. Accordingly, they have different models and different
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coefficients. Table 2.3 uses Lim’s notation, “h” means hour 0 (current hour), “so”

stands for sendout flow, “hod” and “how” are the hour of the day indicator and the

hour of the week indicator, respectively.

Table 2.3: Some of the inputs for hour 6, using Lim’s notation [47]

Hour 6 input factors Hour 6 input factors Hour 6 input factors

1 offset 11 so(h-165) 21 so(h-19)

2 temp(h-163) 12 so(h-162) 22 so(h-18)

3 temp(h-139) 13 so(h-161) 23 so(h-5)

4 temp(h-92) 14 so(h-159) 24 so(h-1)

5 temp(h-20) 15 so(h-144) 25 (1 * hod)

6 temp(h-9) 16 so(h-138) 26 (2 * hod)

7 temp(h+2) 17 so(h-90) 27 (1 * how)

8 temp(h+4) 18 so(h-75) 28 (2 * how)

9 temp(h+5) 19 so(h-66)

10 temp(h+6) 20 so(h-25)

The models from the current GasHour are the basic models to be used in this

work, so it is necessary to understand them. The way to combine forecasts from

existing GasHour models using ensemble-like techniques across multiple time

horizons is referred to in the literature as “blending,” which we discuss in the next

section.
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2.6 Blending

One of the major findings of forecasting research over the last quarter century

has been that greater predictive accuracy often can be achieved by combining

forecasts from different methods or sources. Combination can be a process as

straightforward as taking a simple average of the different forecasts, in which case

the constituent forecasts are all weighted equally. Other, more sophisticated

techniques are available, such as trying to estimate the individual weights that

should be attached to the individual forecasts, so that those that are likely to be the

most accurate receive a greater weight in the averaging process [19; 34].

If we have access to forecasts from different sources or methods, combing

these forecasts is likely to be an effective way of improving accuracy [34]. Two

reasons contribute to that phenomenon. One is that different models use different

sets of information, and each model is likely to represent an incomplete view of the

process that is driving the variable of interest. Therefore, combined forecasts are

able to draw on a wider set of information. The other is that some of the constituent

forecasting methods may be biased, in the sense that they consistently forecast too

high or too low [34]. When several methods are combined, it is likely that biases in

different directions counteract each other, thereby improving accuracy [8].

Combining forecasts is especially useful when forecasters are uncertain about
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the situations, uncertain about which method is most accurate, and when they wish

to avoid large errors [8]. Armstrong [8] suggests the following steps for combining

forecasts:

1. Use different data or different methods: Using several sources of data can add

useful information and may also adjust for bias.

2. Use at least five forecasts when possible: When inexpensive, it is sensible to

combine forecasts from at least five methods. As might be expected, adding

more methods leads to diminishing rates of improvement.

3. Use formal procedures to combine forecasts: Combining should be done

mechanically, and the procedure should be fully described.

4. Absent strong evidence to support unequal weighting of forecasts, use equal

weights.

5. Use trimmed means.

6. Use the track record to vary the weights if evidence is strong.

7. Use domain knowledge to vary the weights on methods.

“Combining forecasts improves accuracy to the extent that the component

forecasts contain useful and independent information” [8]. For this reason, it is ideal
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if the errors of the forecasts combined are uncorrelated with one another. Yet,

forecasts are “almost always positively correlated and often highly so” [8].

It is unclear when the term “blending” first appeared in the forecasting

literature. However, several papers from meteorology have already used it [10; 46].

In most of these papers, “blending” is referred to as the combination of several

forecasts at the same time horizon, which is called ensemble forecasting by most

authors.

For the purpose of this thesis, blending is a process by which multiple models

are combined over multiple time horizons to produce one forecast for one time

period, as illustrated in Figure 2.2. Here, forecast horizon H can be regarded as

h+ k, where k is a time period between when the forecasts are made and the time

(time interval) these forecasts are made for. This means that H is k periods ahead

of current time. Also, as the primary method in this thesis, blending is the key in

showing that through combining temporally neighboring forecasts, the accuracy of a

forecast for a certain time horizon may improve.

More generally, we also use the term blending for any ensemble-like

technique combining multiple forecasts at each of several neighboring time horizons.

The idea of blending presents us with a general picture of future solutions. In
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Figure 2.2: Blended forecast for time horizon H

the following sections, several methods useful for implementing a blending process

are introduced.

2.7 Filtering

In signal processing, a filter is a device or a process that removes from a

signal some unwanted component or feature [60]. Filtering is a class of signal

processing algorithms. The defining feature of filters is the complete or partial

suppression of some aspect of the signal. Often, this means removing some

frequencies and not others to suppress interfering signals and reduce background

noise [60].

For electrical data that are continuous in time (analog data), low-pass RC
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filters are used to clean the data [40]. Since the data here (hourly flow) is discrete, a

digital filter should be applied.

The basic filter for the smoothing process is assumed to be a linear weighting

of the input data values. The weighting factors are the coefficients of the filter.

Thus the smoothed output data yn are calculated from the original input data xn by

the weighting

yn =

Np∑
k=−Np

bkxn−k , (2.14)

where bk = filter weighting coefficients, 2Np = span of the filter in samples, and 2Np

+ 1 = total number of terms in the filter. The output, yn, is the convolution of the

input, xn, with the filter coefficient sequence, bk.

Polynomial smoothing, which is a particular class of digital filters, will be

introduced in the next section.

2.8 Polynomial Smoothing

Experimental data generally contain random noise [76]. A least squares

technique is often used to fit a function to the data. The purpose of fitting a

function rather than directly using raw data points is to decrease the error which

results from the noise in the data points. The smoothing function, i.e., the function

used for the least squares fit, should be chosen to provide a good fit to any real
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perturbations that exist in the data. For example, if it is known that a physical law

demands the data to follow an exponential path, then nothing but an exponential

function should be used [48].

If the data is sampled over a large period of time, and the trend of the data

cannot be explained by a simple physical law, then the smoothing function is fit

over a smaller segment of the data, and the newly evaluated midpoint of the

segment should be picked out as the desired result. By sliding the smoothing

interval (i.e., adding new points to the end of the interval while discarding points

from the beginning of the interval), newly evaluated midpoints are obtained

throughout the data, as Figure 2.3 shows. In this case, the choice of both a

smoothing interval and a smoothing function must be considered [48]. In Figure 2.3,

the smoothing interval contains five points. A parabola is fit through five original

data points (stars in the Figure 2.3), and the newly generated point in the middle of

the sliding window is acquired (cross points in Figure 2.3).

In most applications, a polynomial is chosen as the smoothing function [48].

Least-square polynomial smoothing, known as the Savitzky-Golay convolution

method, commonly is used to eliminate random noise in data [76]. If the smoothing

interval is fixed, a stepwise regression analysis can be used to determine the proper

degree polynomial. In the more general case, both the smoothing interval and the

polynomial degree are allowed to vary, and the optimum combination is to be
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Figure 2.3: Sliding the smoothing interval

determined [48]. In the proposed method, low degree (degrees from 2 to 5)

polynomials will be used with the number of points ranging from 4 to 9.

In the next chapter, detailed explanations and demonstrations of polynomial

smoothing technology will be given.
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CHAPTER 3

Smoothing Multi-horizon Forecasts (SMHF)

To obtain an accurate forecast, good models need to be constructed. To

create these models, clean and abundant data are necessary for training these

models. Much work has been done in improving the quality of data and building

new models to increase the accuracy of forecasting. However, in the approach

presented below, smoothing multi-horizon forecasts (SMHF), is the primary way

reported here to improve forecast results. We emphasize finding interconnections

between current forecasts, as suggested by Armstrong’s advice for ensemble

forecasting [8], and using polynomial smoothing or filters to combine these forecasts

(blending).

In the first few sections, we introduce background information about

smoothing techniques. Then, step by step, we unveil the components of the

technology used in this thesis.

3.1 Smoothing in Forecasting

There always exists some random variation in collected data [76]. These

irregular components can be neutralized or cancelled to some extent using a

technique called “smoothing” [9].
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The smoothing technique, which is different from traditional model-based

methods, has been applied in the field of forecasting for a long time. It works well,

especially when the number of samples is limited or the forecasting task is

enormous [25]. People also use this technique when the time series is stable, without

significant trend, seasonal, or cyclical effects [45].

In practice, moving average smoothing and exponential smoothing methods

are mostly used. The first method is suitable for stationary time series data by

discovering its underlying mean. Exponential smoothing generates forecasts using

an exponentially weighted moving average of all previously observed values [25; 35].

In this thesis, the basic approach is not using smoothing as a forecasting

technique, but as an approach to improve the quality of existing forecasts obtained

through other methods. This process is achieved using least-square smoothing of

the forecasts at multiple time horizons.

3.2 Least-square Smoothing

As a basic approach in estimating parameters in regression analysis, the

method of least squares plays an important role in curve fitting. The best “fit” of

the data can be found by minimizing the sum of squared deviations between actual

and smoothed values. If the data to be fit has a linear trend, a least-square line
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should be employed. For complicated shapes involving high-degree polynomials, a

least squares fit also can be used for approximation [71].

Suppose we use a polynomial of degree n to approximate a set of data

(t1, y1), (t2, y2), ..., (tm, ym), taking the form

f(t) = α0 + α1(t− tj) + α2(t− tj)
2 + ...+ αn(t− tj)

n , (3.1)

where tj is one of the points from the dataset. It is assumed that n+ 1 ≤ m. To

find the best fitting polynomial, we minimize the squared errors between actual and

smoothed values

m∑
i=1

[yi− f(ti)]
2 =

m∑
i=1

[yi− (α0 +α1(ti− tj) +α2(ti− tj)
2 + ...+αn(ti− tj)

n)]2 , (3.2)

to yield coefficients α of the best fitting polynomial. With the coefficients of the

polynomial, we can evaluate at the desired point(s), which will be the central point

in our work.

The purpose of using SMHF is to improve the quality of hourly gas

consumption forecasts generated by GasHour, which is explained and demonstrated

in detail in the following section.
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3.3 GasHourTM Data

Every hour when GasHour is fired, it generates a series of forecasts for the

next 106 hours, including the hour when these forecasts are made. We can retrieve

actual hourly flow data and hourly forecasts made by GasHour for the past year.

These hourly forecasts are stored in an 8761*106 table, with rows of 106 forecasts

made in each of the past 8761 hours. For better visual illustration, a 24-hour period

time of GasHour forecasts obtained from a real operating area is displayed in

Figure 3.1, except that the flow values have been scaled to hide the identity of the

customer.

Figure 3.1: GasHour forecasts made during a 24-hour period on January 1, 2012.
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The forecast time horizon axis stands for the 106 hourly forecasts made each

hour when GasHour was fired. The time stamp axis corresponds to each hour of the

day at which GasHour was fired, and the vertical axis shows the predicted scaled

flow. Consider the hourly forecasts made at 11 A.M., as Figures 3.2 and 3.3 show.

Figure 3.2: Cross-section showing relative position of GasHour forecasts made at 11

A.M. on January 1, 2012.

When run at 11 A.M., GasHour generated hourly gas consumption forecasts

for the next 106 hours (Figure 3.3). The forecast made at time horizon 0

corresponds to the forecast made at 11 A.M.

Next, we view Figure 3.1 from another perspective. The cross-section in

Figure 3.4 contains forecasts for the time horizons 6 hours from the time they were
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Figure 3.3: Cross-section of the surface shown in Figure 3.2 for forecasts made at 11

A.M.

made. To be more specific, the 25 forecasts in Figure 3.5, made at each hour from 9

A.M., January 1, 2012, to 9 A.M. on January 2, are actually for 3 P.M., January 1,

2012, to 3 P.M. on January 2.
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Figure 3.4: GasHour forecasts made for hour 6 starting 9 A.M. January 1, 2012, to 9

A.M. January 2, 2012.

Assume we want to make an hourly forecast for the time interval 24 hours

from now, and GasHour is fired for every hour between now and then. Then a set of

24 hourly forecasts made for that time interval are obtained. The forecast horizon

axis in Figure 3.6 represents the number of time horizons between the forecasted

hour and the hour when the forecast is made. Hence, forecast horizon 0 corresponds

to the forecast made during the designated hour, and 23 means the forecast made

was 23 hours before the designated hour. It seems that GasHour is doing a better

job when the number of intervening hours is declining, in other words, the forecasts

with shorter time horizons. Generally speaking, the forecasts made at the

designated hours (Flow value at forecast horizon 0 in Figure 3.6) are more accurate
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Figure 3.5: GasHour forecasts made for hour 6 starting 9 A.M. January 1, 2012, to 9

A.M. January 2, 2012.

than forecasts made at forecast horizon H (H is bigger than 0, for instance,

forecasts made at forecast horizon 20). The red line stands for actual flow number

for that particular hour, remaining constant, while forecasts vary.

Imagine viewing Figure 3.1 from above, as Figure 3.7 shows. The lines show

the cross-sections discussed in the previous paragraphs.

The preceding discussion presents a picture of GasHour data. Next comes an

introduction to blending techniques.
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Figure 3.6: 24 GasHour forecasts made at different time horizons for one particular

period.

3.4 Five Point Polynomial Fitting

Parabola fitting has been explored and practiced. To improve accuracy of

forecasts at specific time horizons, we use parabolas to smooth them, using

information from neighboring points.
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Figure 3.7: GasHour forecasts made for a 24-hour period.

Suppose an improved gas consumption forecast for time horizon H is desired.

By running GasHour, a forecast for that time horizon has been generated.

Neighboring data points including forecasts for hour H + 1, H − 1, H + 2, and H − 2

are also accessible. We fit a parabola through the five forecasts (time horizons H,

H + 1, H − 1, H + 2, and H − 2) and obtain a smoothed forecast at time horizon H.

In Figure 3.8, red stars stand for the original forecasts. The blue cross is the

smoothed forecast for time horizon H after fitting the original five forecasts.
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Figure 3.8: Five point parabola fitting

The above process has been realized through MATLAB programming.

Algorithm 1 presents a basic idea of how it works.
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Algorithm 1: Five point least-square smoothing
Data: input

Five forecasts ŶH−2, ŶH−1, ŶH , ŶH+1, and ŶH+2 for time horizons H − 2,

H − 1, H, H + 1, and H + 2

Smoothing these five forecasts using a degree-2 polynomial:

f(t) = α0 + α1(t− ti) + α2(t− ti)
2 , (3.3)

Here, ti = H. Then, we evaluate f(t) at the midpoint

f(t = H) = α0 . (3.4)

Result: output

Improved forecast Ŷ ∗
H for time horizon H

3.5 Data Formats and Requirements

The polynomial fitting process described in Section 3.4 is a simple example

of smoothing five points with a quadratic polynomial. To apply the smoothing

technique on real forecast data (such as the forecasts from GasHour), certain

requirements must be met. First, the number of forecasts to be smoothed (for

instance, 106 points generated by GasHour every time it is fired) should be larger

than number of points to which the parabola is fitted (for instance, 5 points in the
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previous section). Let N be the total number of original data points needed to be

smoothed and n be the number of points the parabola can smooth at a time, then

n ≤ N . Secondly, it is expedient, but not essential, for the points being fit to be

equally spaced. The hourly forecasts from GasHour fit these criteria.

3.6 Polynomial Fitting

Generally, polynomial fitting can be applied under different circumstances,

based on the choices of how many points to smooth and what degree of polynomial

to deploy. Let p be the number of points to be smoothed each time and d be degree

of polynomial, which should be at least 1 and no bigger than p− 1. Additionally,

due to the characteristics of real GasHour data, p is usually an odd number and at

least 5.

For the sake of better explanation, the above process can be expressed as the

pseudo code in Algorithm 2.
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Algorithm 2: General least-square smoothing
Data: input

p forecasts made for p time horizons, including H − (p− 1)/2,

H − (p− 3)/2, ... H, ... H + (p− 3)/2, H + (p− 1)/2.

Smoothing these p forecasts using a degree-d polynomial:

f(t) = α0 + α1(t− ti) + α2(t− ti)
2 + ...+ αn(t− ti)

d . (3.5)

Here, ti = H. Then, we evaluate f(t) at the midpoint

f(t = H) = α0 . (3.6)

Result: output

Improved forecast Ŷ ∗
H for time horizon H

The polynomial fitting process in Algorithm 2 generates a smoothed value

(improved forecast Ŷ ∗
H) at the midpoint H of the segment (all p points). When we

slide a smoothing interval across the entire data set, the remaining points can be

smoothed as well. For instance, with N total points to be smoothed, we can use a

p-point smoothing interval across these points, which means adding new points to

the end of the interval while discarding points from the beginning of it. Every time,

a different set of p points is smoothed to yield a new evaluated value, replacing each

of the original data points.
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Take the following as an example. In Figure 3.9, the smoothing interval

contains five points. Every time, a new parabola is fit through five original forecast

points (red stars in Figure 3.9), and the newly generated point (blue cross and circle

in Figure 3.9) in the middle of the sliding window are obtained.

Figure 3.9: Sliding windows

As is shown in Figure 3.9, it is necessary to use additional points to smooth

the first two time horizons in the forecast period (time horizon 0 and 1), so we use

actual values Y−1 and Y−2 for “forecasts” Ŷ−1 and Ŷ−2. Similarly, when the sliding

window moves over the last few points inside the original dataset, it is impossible to

fit parabolas through them due to the lack of points. We either keep the original
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forecast points (which is actually adopted in our codes) or replace them using

smoothed values from the last parabola fitted.

Figure 3.10 presents an example when 106 original GasHour forecasts are

smoothed using quadratic polynomials. Since 5 points are chosen, we use two actual

flow values at t = −2 and t = −1 for smoothing at t = 0 and t = 1, the first two

forecasts in the dataset. For the last two forecasts (t = 104 and t = 105,

respectively), we use original GasHour forecasts.

Figure 3.10: 106 points smoothing

This whole chapter presents the smoothing method I applied using MATLAB

coding. Based on a certain number of points, least square is deployed to calculate

the coefficients of each polynomial, which help generate smoothed values for each
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group of points. However, another strategy implies a different way of generating

those smoothed forecasts through least square smoothing. This approach suggests

that coefficients in Equation 2.14 can be precalculated. Imagine a parabolic

approximation is applied to 5 points

yn = b0 + b1x+ b2x
2 , (3.7)

where x = −2,−1, 0, 1, 2, while b0, b1, and b2 are coefficients. Through a similar

process demonstrated in Section 3.2, the coefficients can be displayed as

b0 =
1

35
(−3x[−2] + 12x[−1] + 17x[0] + 12x[1] − 3x[2]) , (3.8)

b1 =
1

10
(−2x[−2] − x[−1] + x[1] + 2x[2]) , (3.9)

b2 =
1

14
(2x[−2] − x[−1] − 2x[0] − x[1] + 2x[2]) . (3.10)

When x is 0, the desired mid-point equals the value of b0. Thus for a parabola

through five points, when Np = 2, the coefficients of Equation 2.14 are b−2 = − 3
35

,

b−1 = 12
35

, b0 = 17
35

, b1 = 12
35

, and b2 = − 3
35

. Through this method, it won’t be

necessary for us to apply least squares every time a group of new points is

smoothed, thus saving some time for faster processing.

Additionally, when 7 points are smoothed each time (thus x = −3, −2, −1,
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0, 1, 2, 3), the value of b0 is

b0 =
1

21
(−2x[−3] + 3x[−2] + 6x[−1] + 7x[0] + 6x[1] + 3x[2] − 2x[3]) . (3.11)

For smoothing 9 points (thus x = −4,−3,−2,−1, 0, 1, 2, 3, 4), the value of b0

is

b0 =
1

231
(−21x[−4] + 14x[−3] + 39x[−2] + 54x[−1]

+ 59x[0] + 54x[1] + 39x[2] + 14x[3] − 21x[4]) . (3.12)

In the next Chapter, detailed graphs and results are given to show whether

this blending methods works in improving GasHour forecasts.
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CHAPTER 4

Improvement in Forecasting Accuracy with Blending

This chapter provides graphs and statistics to show the improvement of

accuracy in GasHour forecasts after using the blending technology described in

Chapter 3. RMSE results from different degrees of polynomials are displayed as well.

4.1 Measuring GasHour Forecasts

Usually, the accuracy of GasHour forecasts can be measured in the form of

root mean square error (RMSE) or mean absolute percentage error (MAPE). We

illustrate using the data from one GasHour operating area, which comes in the

format described in Section 3.3. RMSEs for all 106 time horizons are calculated as

suggested in Figure 4.1, using the matrices containing the measured hourly gas flow

values and GasHour forecasts, from January 1, 2012, to December 31, 2012.

Figure 4.1: Measuring GasHour forecasts using RMSE
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Since we are in the process of backtesting, as mentioned in Section 2.5, all

the GasHour forecasts were generated using observed weather information. This is

justified since we are trying to reduce modeling error, and error due to weather

forecasting error is assumed to be uncorrelated with modeling error.

Due to the number of hours within a year, it is impractical to show all the

smoothed forecasts each time GasHour is fired. Figures 4.2 and 4.3 show two

examples from two individual hours inside that time period, each displaying 106

smoothed forecasts, along with their measured flow values and residues (smoothed

values subtract measured flow values). These two examples are chosen based on the

sum of the errors between smoothed forecasts and measured values for all 106 time

horizons. Figure 4.2 presents the hour with the least sum of errors, which is the best

performing set of 106 forecasts, while Figure 4.3 shows the hour with the worst

performing set of 106 forecasts.

Figure 4.2 indicates that original GasHour forecasts are doing a good job in

predicting hourly gas consumption, with a few exceptions. Those bigger-than-usual

differences may occur under various circumstances, such as a drastic change of

temperature or noisy data. On the other hand, Figure 4.3 exhibits a totally different

situation, where the original GasHour predications fail to forecast almost all of the

time horizons. Multiple factors may contribute to this phenomenon, including but

not limited to, extremely corrupted data and disruptive events, such as a power
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Figure 4.2: Smoothed forecasts, measured flow values, and residues for one particular

hour

outage. The smoothed forecasts resemble the same trends as the original ones.

After all, those smoothed forecasting values are obtained based on existing GasHour

forecasts. However, the differences between those two stand out at some time

horizons, such as around hour 24, an observation to which we will return later.

Figure 4.4 shows the RMSEs, summed over 8761 hours in the test year, for

each of the 106 time horizons for that operating area. This process can be expressed

as

e(H)h = Ŷ (H)h − Y (H)h , (4.1)

where H ([0 105]) corresponds to the time horizon, and h ([1 8761]) stands for the
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Figure 4.3: Smoothed forecasts, measured flow values, and residues for another par-

ticular hour

hour inside the test year. Then

RMSEH =

√√√√√8761∑
h=1

e(H)2h

8761
, (4.2)

which will generate the RMSE for each time horizon (H).

It is clear that as the forecasted time horizon increases, the RMSE becomes

larger, meaning that the accuracy of the forecasts are declining. At some point, the

RMSE appears to approach a relatively stable state.
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Figure 4.4: RMSEs for 106 time horizons

4.2 Measuring Smoothed GasHour Forecasts

Similar processes are applied when calculating RMSEs for smoothed

GasHour forecasts. Suppose we choose to use a quadratic polynomial to smooth 5

points in the neighborhood of each time horizon. Then Algorithm 3 shows how to

calculate the RMSEs for each time horizon (from time horizon 0 to time horizon

105) for the hourly forecasts, from January 1, 2012, to December 31, 2012.
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Algorithm 3: RMSEs for smoothed GasHour forecasts
Data: 106 hourly forecasts made in each of 8761 hours.

for hour 3:8761

for horizon 0:105

Ŷ ∗
H from Algorithm 1

for horizon 0:105

RMSE for horizon across 8759 hours

Result: 106 RMSEs for time horizon 0 to time horizon 105

Similar to Figure 4.1, Figure 4.5 presents the flow chart of Algorithm 3.

Notice that after smoothing 8761 hours of GasHour forecasts, there only exist 8759

rows of smoothed forecasts. Because for the first two hours inside the dataset, we

have to use actual values instead of forecasts, as explained in Chapter 3, and they

are not readily available to us in this dataset.

Figure 4.5: Measuring smoothed GasHour forecasts using RMSE
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The red curve in Figure 4.6 corresponds to the RMSEs calculated for

smoothed forecasts, while the blue curve stands for original ones.

Figure 4.7 is presented to illustrate the differences between them. The

difference at each time horizon is calculated as

DiffRMSE = RMSEOriginal − RMSESmoothed . (4.3)

RMSEOriginal stands for RMSE calculated for original forecasts, and RMSESmoothed

means RMSE calculated for smoothed forecasts.

Figure 4.6: RMSEs for both original and smoothed forecasts

As concluded before, the quality of hourly flow forecasts deteriorate quickly
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Figure 4.7: Differences between RMSEs for original and smoothed forecasts

with the increasing of time horizons, which can be seen from Figure 4.6. Also, the

relative stability in RMSEs after a certain time horizons implies that if needed, the

GasHour forecasting span can be extended to longer time horizons without losing

too much credibility for the accuracy for those forecasts. Both Figure 4.6 and

Figure 4.7 indicate improvement in accuracy, by showing that RMSEs for smoothed

forecasts are slightly smaller than those for original forecasts for most of the time

horizons. Those highly overlapped curves also show that smoothed forecasts are

very similar to the original forecasts. The notch around hour 24 appears to reveal

where polynomial smoothing might demonstrate its superiority. According to the t

statistical test, the differences between two RMSEs are not statistically significant.
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However, economically, these differences are meaningful to GasDay lab. Similar

conclusions can be drawn from Figures 4.8 and 4.9, which are depicted using data

from another operating area for the same time period.

After a certain time period (around time horizon 50), the differences shown

in Figures 4.7 and 4.9 begin to stay in a relatively constant state, implying a mild,

yet consistent, improvement. This suggests that our smoothing technique offers a

consistent, modest improvement for forecasts at longer time horizons.

Figure 4.8: RMSEs for both original and smoothed forecasts

Usually, for the first few (for instance, 2 in Figure 4.9) time horizons at

which the smoothed forecasts were generated by measured flow values and original

forecasts, the RMSEs are larger than the original forecast RMSEs. It is not quite
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Figure 4.9: Differences between RMSEs for original and smoothed forecasts

clear what leads to this phenomenon. However, a reasonable speculation is that two

different types of data (measured flow data and forecasts made by GasHour) are

smoothed at the same time. To be more specific, measured flow data, which is

recorded by gas providers on a certain time basis is often much more volatile, shares

nothing like forecasts generated by GasHour, which are calculated mainly through

linear regression models and are less volatile. The different characteristics between

these two data steams might contribute to the relatively poor performance of the

smoothing technique on the first few time horizons. Taking this uncertainty into

account, it is recommended that our smoothing technique should not be applied for
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the first few points. After all, hourly forecasts from GasHour are usually more

accurate when the time horizons are small.

For the last few (for instance, 2 in Figure 4.9) time horizons at which the

original GasHour forecasts are kept instead of getting replaced by smoothed values,

as discussed in Chapter 3, the RMSEs are the same for the original and the

smoothed forecasts, explaining why the differences become 0 in Figure 4.9 for time

horizons 104 and 105.

4.3 Measuring Smoothed GasHour Forecasts under More General

Circumstances

The results shown in Section 4.2 suggest that smoothing using a quadratic

polynomial in a five-point window can increase accuracy for current GasHour

forecasts. For the purpose of fully experimenting with polynomial smoothing on

GasHour data, the RMSEs when different degrees of polynomials, and different

fitting windows, also should be presented.

Suppose a degree two polynomial is used to smooth over different numbers of

points, e.g., seven or nine points, for the same operating area and same period of

time as in Figure 4.1.

Figure 4.10 displays the differences of RMSEs between the original and the
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smoothed hourly forecasts based on Equation 4.3, using a quadratic polynomial to

smooth 7 points in each fitting window. As explained previously, the first few (3)

hours’ smoothed forecasts perform badly and should be ignored. In this case, the

original forecasts should be used. The peaks of differences around time horizon 24

echoes the previous conclusion that polynomial smoothing performs best for that

period. The constant state of the differences starting from about time horizon 50

leads to future application with GasHour forecasting span.

Figure 4.10: Differences between RMSEs for the original and the smoothed forecasts

when using a quadratic polynomial with 7 points in each fitting window

Figure 4.11 displays the differences of RMSEs between original and smoothed

hourly forecasts based on Equation 4.3, using a quadratic polynomial to smooth 9
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points each time. As explained previously, the first few (4) hours’ smoothed

forecasts perform badly and should be ignored. In this case, the original forecasts

should be used.

Figure 4.11: Differences between RMSEs for original and smoothed forecasts when

using quadratic polynomial with 9 points in each fitting window

Compared to Figures 4.7 and 4.10, Figure 4.11 demonstrates that a larger

number of points smoothed at once increases the forecasting accuracy to a certain

extent for most of the time horizons, which is shown in Figures 4.12. Similar to

previous observations, the outstanding differences around time horizon 24 add

weight to the suggestion that smoothing should be applied for that time period.

Figures 4.10 and 4.11 show the differences in RMSEs when smoothing over
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Figure 4.12: Differences between RMSEs for original and smoothed forecasts when

using quadratic polynomial with 5, 7, and 9 points in each fitting window

different numbers of points. Next, suppose 7 points are smoothed each time, using

different degree polynomials (3 and 4).

Figure 4.13 presents the differences of RMSEs between the original and the

smoothed hourly forecasts, using a degree three polynomial over 7 points each time.

As explained previously, the first few (3) hours’ smoothed forecasts perform badly

and should be ignored. In this case, the original forecasts should be used. The

distinguished differences at hour 24, along with the stable stretch starting from time

horizon 50, all correspond to previous results and conclusions.

Figure 4.14 presents the differences of RMSEs between original and
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Figure 4.13: Differences between RMSEs for the original and the smoothed forecasts

when using a degree three polynomial with 7 points in each fitting window

smoothed hourly forecasts, using a degree four polynomial over 7 points each time.

As explained previously, the first few (3) hours’ smoothed forecasts perform badly

and should be ignored. In this case, the original forecasts should be used.

When comparing Figures 4.10, 4.13, and 4.14, it is evident that different

degrees of polynomials do not essentially exert significant influences over the results,

as shown in Figures 4.15. Since the results from degree two and three are the same,

these two lines overlap each other, thus leaving two curves in total in the picture.
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Figure 4.14: Differences between RMSEs for original and smoothed forecasts when

using a degree four polynomial with 7 points in each fitting window

4.4 Conclusions

Graphs showing RMSEs from Section 4.2 and 4.3 have confirmed our

expectation that polynomial smoothing can improve the accuracy of current

GasHour forecasts. However, results in these pictures also indicate that

improvement is relatively small. If we use 5-, 7-, or 9-point sliding windows for

fitting, then the original GasHour forecasts, rather than the smoothed forecasts,

should be used for the first 2, 3, or 4 time horizons, respectively. This decision is

made due to the fact that smoothing different types of data at the same time may
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Figure 4.15: Differences between RMSEs for original and smoothed forecasts when

using degree two, three, and four polynomials with 7 points in each fitting window

contaminate or add to the uncertainty of the smoothed results, as discussed in

Section 4.2.

From Figures 4.10, 4.11, 4.13, and 4.14 shown in Section 4.3, different

numbers of points in our sliding fitting window and different degrees of polynomial

used for smoothing do not offer significantly different results. Overall, using a

parabola smoothing 5 points is the best choice for now, considering factors such as

performance results and convenience. Generally, we should use simple methods

unless more complex ones prove better.

Based on all the figures showing differences between original and smoothed



66

forecasts’ RMSEs, our blending technique performs best around time horizon 24.

The reason contributing to this phenomenon is related to the inputs GasHour

forecasting models use. Recall in Chapter 2 that GasHour uses different

independent variables in its models for each time horizon. Among the most

important independent variables is an autoregressive term representing the most

recently available measured flow value at the same time of the day. For example, if

now is 1:15 P.M., forecast made for time horizon 0 uses the measured flow from 1:00

P.M. yesterday (24 hours earlier). Time horizon 23 for noon tomorrow uses the

measured flow from noon today (24 hours earlier). However, time horizon 24 for

1:00 P.M. tomorrow cannot use the measured flow from 24 hours earlier (1:00 P.M.

today) because that flow is not yet available. Instead, time horizon 24 for 1:00 P.M.

tomorrow must use the measured flow from 1:00 P.M. yesterday (48 hours earlier).

This jump backwards in the best available autoregressive measured flow leads to

relatively larger errors in forecasts near 24 and 48 time horizons, which blending

helps to reduce. Figure 4.16 demonstrates this phenomenon.

Although GasHour generates 106 hourly forecasts each time it is fired, not all

of them are equally important to forecasters. The longer the time horizon, the less

important the hourly forecast. Hence, the most important use of our blending

technique is for the time horizons near 24 and 48.
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Figure 4.16: Measured flow value available after 24 hours

4.5 Future work

Polynomial smoothing has shown its promising role in increasing the

accuracy of hourly flow forecasts. Our literature review in Chapter 2 has shown that

ensemble forecasting generally produces quality forecasts. In this case, it is

reasonable to extend the application of this blending technique into other GasDay

forecasting tools, including GasDay, GasMonth, and GasYear, which correspond to

daily, monthly, and yearly gas consumption predictions, respectively.

Our blending technique neutralizes noise in forecasts already generated by

other forecasting tools. As stated before, forecasts from GasHour (or other GasDay

products) are mostly generated through multi-horizon linear regression models,

whose performance relies on the quality of their inputs, including weather

information and measured history flow values. This triggers an interesting and

potential point for us to explore the possibility of applying blending techniques over
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these model inputs. For instance, measured hourly flow values are always noisy,

mainly due to the nature of the natural gas transportation structure. Smoothing

those noisy data beforehand probably will help improve forecasting accuracy. The

same idea also can be used for other inputs inside various models employed by the

GasDay family of forecasting tools.

Generally speaking, our blending technique is a broader concept, including

the idea of polynomial smoothing. There are many different ways that can help

combine forecasting results, such as introducing a new set of models and weighting

the forecasts according to different circumstances. Also, it is plausible to use a new

filtering technique to deal with noise within either the forecasts or inputs.

Last but not least, we tend not to apply ensemble-like strategies, including

polynomial smoothing in this thesis, under conditions when extreme events have

occurred. Local maximal and minimal flow values appear when extreme events

happen, such as a sudden drop in temperature. Flow forecasts made for these

extreme situations are of vital importance to forecasters, which could help gas

suppliers avoid great losses. However, smoothing techniques introduced here, along

with other filtering methods, may moderate these extremes. Most of the time, we

should weight original forecasts more heavily to maintain accuracy.
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