
Marquette University
e-Publications@Marquette

Master's Theses (2009 -) Dissertations, Theses, and Professional Projects

Electroluminescence from ZnO Nanostructure
Synthesizes between Nanogap
Cheng Jiang
Marquette University

Recommended Citation
Jiang, Cheng, "Electroluminescence from ZnO Nanostructure Synthesizes between Nanogap" (2012). Master's Theses (2009 -). Paper
172.
http://epublications.marquette.edu/theses_open/172

http://epublications.marquette.edu
http://epublications.marquette.edu/theses_open
http://epublications.marquette.edu/diss_theses


 

ELECTROLUMINESCENCE FROM ZNO NANOSTRUCTURE 

SYNTHESIZED BETWEEN NANOGAP 

 

 

 

 

 

 

 

 

 

by 

 

Cheng Jiang 

 

 

 

 

 

 

 

 

 

 

A Thesis submitted to the Faculty of the Graduate School, 

Marquette University, 

in Partial Fulfillment of the Requirements for 

the Degree of Master of Science 

 

 

 

 

 

 

 

 

 

 

Milwaukee, Wisconsin 

 

December 2012 

 

 

  



 

ABSTRACT 

ELECTROLUMINESCENCE FROM ZNO NANOSTRUCTURE 

SYNTHESIZED BETWEEN NANOGAP 

 

 

Cheng Jiang 

 

Marquette University, 2012 

 

 

This thesis presents the investigation of a nanoscale light-emitting diode (LED) 

device. The nanoscale LED has a great potential to be used as a light source for 

biomedical screening and fluorescence lifetime spectroscopy. It can also be developed to 

a single photon emitter for the application of quantum computing. 

The nano-LED has the electrical structure of a metal-semiconductor-metal (MSM) 

junction. The MSM junction has been formed on the nanogap device that is fabricated on 

a SOI wafer by optical lithography and KOH solution silicon etching. The Ni evaporated 

on the surface of the nanogap device performs the metal contact for the junction. The 

ZnO made by evaporation and thermal oxidation of Zn serves as the semiconductor part 

to realize efficient excitonic emission.   

Photon emission phenomenon has been observed when bias is applied to the 

nano-LED device. The measured IV curve has confirmed the junction structure. The 

electroluminescence spectrum of the light has been obtained by using monochromator 

and CCD camera. The spectrum shows broad visual band wavelengths that are believed 

to result from some intrinsic defects of ZnO. The electroluminescence mechanisms are 

explained by the recombination of electrons and holes injected through thermionic 

emission, field emission, and thermionic-field emission.  
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1 INTRODUCTION 

 

 

The goal of this thesis is to investigate the properties and the light-emitting 

mechanisms of a nanoscale light-emitting diode (LED) device. The device has been 

fabricated on a silicon-on-insulator (SOI) wafer. A nanoscale gap has been formed by 

two silicon (Si) tips made on the top layer of the wafer. Nickel (Ni) has been evaporated 

on the tips and zinc oxide (ZnO) nanostructure has been synthesized between the 

nanogap. A metal-semiconductor-metal (MSM) junction is constructed by the Ni and 

ZnO. The device exhibits electroluminescence (EL) at moderate bias. 

Nano-LEDs have a potential to be used as light sources for telecommunication, 

chip components communication, fluorescence lifetime spectroscopy, time correlated 

single photon counting, biomedical screening, and optoelectronic devices testing such as 

PMTs
1-5

. Nano-LEDs can also be developed to single photon emitters, which are essential 

components for optical quantum computing
1, 6

.  

Researchers have developed various methods to make nano-LEDs
7-16

. Many of 

these nanoscale light-emitting devices have the diode structures consisting of 

semiconductors such as ZnO, gallium nitride (GaN), gallium arsenide (GaAs), and 

indium arsenide (InAs). The diodes are based on some nanoscale structures like quantum 

dots, nanowires, or nanorods. Various materials have been used as the substrate for the 

diodes
7-16

. Nadarajah et al have grown ZnO nanowires to form the LED on an indium tin 

oxide coated polyethylene terephthalate foil
9
. Chen et al have fabricated an n-p-n junction 

based on ZnO nanowires with an ITO/glass substrate underneath
10

. Tan et al have 

designed a CdS/ZnS quantum dots LED on top of a glass substrate
11

. Kwak et al have 

made quantum dot LEDs using a multilayer structure consists of aluminum (Al), 
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molybdenum trioxide, colloidal quantum dots, ZnO, and indium tin oxide
12

. However, 

since silicon is the predominant material of present electronic technology, it is more 

convenient to use silicon as the substrate because glass, polymer or complex multiplayer 

structures require hybridization with the silicon based circuitry. To grow II-VI or III-V 

compound semiconductors on silicon substrate may be a simple and direct method to 

integrate optoelectronics and CMOS circuits
8
. In addition, nanowire LEDs have the 

issues of poor crystalline quality and random entangle structures, which may limit the 

usage of the devices in practical applications
16

.  Plenty of nanoscale LEDs are designed 

to emit light at specific frequency or show a narrow emission band around certain 

wavelengths
7-8, 11-12

, whereas broad visible band light sources can be useful as well and 

may have applications not obtainable by single wavelength light sources such as visible 

light communication
17-18

.  A large amount of nanoscale light-emitting devices or single 

photon sources require optical excitation. Compared with optically driven devices, 

electrically driven light sources may be more suitable for chip-scale electronic circuit 

application. 

Our nano-LED devices have several advantages. The ZnO nanostructure is 

formed by thermal oxidation of evaporated Zn at 350 ℃, which is a lower temperature 

than the CMOS thermal budget of 400-450 ℃8
. The diode structure and electrical contact 

are monolithically integrated on a single silicon substrate, facilitating CMOS 

compatibility. The electroluminescence spectrum is in the visible band ranging from 450 

nm to 1000 nm and photons of different frequencies can be filtered for various 

applications. For a better understanding the characteristics of the device and exploring 
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potential applications, the electrical and optical properties of the nano-LED have been 

tested and the principles of the light emission phenomenon has been analyzed. 

 

1.1 Nanotechnology 

      

 

The development of nano-LED devices belongs to the field of nanotechnology. 

Nanotechnology is defined as the design, fabrication and application of materials, 

devices and systems with control at nanometer dimensions
19

. In the past few decades, 

nanotechnology has been playing an important role in various scientific areas.  

Currently, the research in the field of nanotechnology has three main directions: 

nanoscale science, nano-materials development, and modeling. At the nanometer level, 

both classical mechanics and quantum mechanics operate on objects.  Exploring the laws 

of physics at the nanoscale can help us understand the interactions of the objects. The 

investigation of the formation and properties of nanoscale materials is also of great 

significance. Many materials exhibit different structures and characteristics at the atomic 

level. The research in this aspect will give us a good idea of how these materials can be 

used in devices and systems to achieve unique functions that may not be realized by the 

materials in the bulk form. The modeling of the nanoscale materials, devices, and 

interactions is essential for nanotechnology as well. It can be used in predicting the 

behavior of the atoms in the nanoscale systems
20

.  

There are many advantages that we can benefit from nanotechnology. Firstly, for 

nanoscale materials, the surface-to-volume ratio is greatly increased because many of the 

atoms stay on the materials’ surface. The larger surface-to-volume ratio results in a 

dramatic improvement in the properties of the materials and devices whose performance 
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rely on specific surface area. Secondly, the miniaturization of the materials may bring a 

better change in the intrinsic properties of the materials. When the device is small enough, 

the energy levels become discrete, which allows the output energy to be adjusted 

according to the size of the material, especially for some electronic and photonic devices. 

Finally, the combination of diverse properties of different materials into one material 

could be achieved at the nanoscale level
19

.  

Nanotechnology has showed great impact in different industries that include 

electronics, optics, biomedical engineering, and so forth
19-52

.  

The most widespread application of nanotechnology in electronics is circuit 

miniaturization
19

. At present, microelectronics is recognized as a key technology for 

information systems. Electronic components and systems are downsized to micrometer 

dimensions. A wide variety of micro-electro-mechanical system (MEMS) products, such 

as accelerometers, gyroscopes, pressure sensors, and micromirrors, are utilized in a broad 

range of applications. The progress in microelectronics has indicated that the reducing of 

dimensions could bring faster, more powerful, more reliable and less expensive electronic 

circuits. The growing demands of more powerful integrated circuits for information 

technology lead to the transition to nanoelectronics
21

. At the same time, microscale 

electrical systems can perform as a platform for the integration of nanotechnology so that 

nanoscale systems can interact with the macroscale world
22

.  A main class of 

nanoelectronic devices is solid-state quantum effect devices. These devices usually rely 

on certain solid-state nanostructures such as nanotubes, nanowires, quantum wells, and 

quantum dots
23

. Research groups have reported using carbon nanotubes to achieve field-

effect transistors
24

, single-electron transistors
25

, logic circuits
26

, and memory storage 
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elements
27

. Nanowires, usually grown from semiconductors like silicon, silicon 

germanium, GaAs, gallium phosphide (GaP), InAs, and indium phosphide (InP) or metal 

like gold, silver, and copper, are considered as building blocks for nanoelectronic 

devices
1
. Recent research has demonstrated that nanowires are good candidates for 

making field effect transistors
28

, light-emitting diodes
9, 10

, resonators
29

, and 

nanomagnets
30

. Researchers have also been working on controlling the growth of the 

nanowires to make diodes and transistors and on integrating arrays of nanowires to form 

microelectronic circuits
 31-33

. Quantum dots with controllable electron spins are believed 

to be a promising method for realizing quantum computing
34

.  

In optics, the wavelength of light is in the nanometer domain. Optical studies in 

which light is confined and modulated in structures smaller than the wavelength are 

considered to be nanoscale science. The behaviors and properties of the particles or 

patterns in the wavelength size are often dominated by geometric parameters. 

Nanotechnology may revolutionize optics, photonics, and lighting and color technology
35

.  

A well-known application of nanotechnology in optics is fiber-optic communication, 

which is the method of transmitting information between two places by sending pulses of 

light through an optical fiber
36

. Two cardinal developments for the achievement of fiber-

optic communication are quantum well lasers based on InP that operate in single 

longitude mode and erbium doped fiber amplifiers and nanoscale fiber gratings that 

provide uniform amplifications
37

. Nowadays it is largely used to transmit telephone 

signal, Internet communication and television signals by many telecommunications due 

to its advantages of high data transmission rates and lower interference and attenuation 

for long distance communication compared with conventional copper wire
38

. New classes 
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of optical sources, guides and detectors based on semiconductor nanostructures have 

started to emerge. The quantum well lasers available in the market have the advantages of 

high temperature stability, good coherency, and low threshold current
23

. Researchers 

have also developed quantum dot lasers and quantum dot light detectors by means of 

assembling InGaAs quantum dots on GaAs substrates
39, 40

. The large optical gain of 

quantum dots results in lower threshold current densities and higher frequency limits for 

modulation
23

. Additionally, the emission wavelength from nanocrystals can be precisely 

tuned because the values of energy levels have direct relation to the size of the 

nanoparticle. Based on this property, new type of quantum dots fluorescence emitters has 

been developed. The characteristics of tunable spectral range, large absorption 

coefficients, and high levels of brightness and photostability make quantum dots emitters 

particularly attractive for the applications in live cell imaging, tissue labeling, and live 

animal imaging and targeting
41

.  A lot of research studies are aimed at making minuscule 

light-emitting devices and such devices are of great use in telecommunications. 

Researchers have shown that they use nanotubes to emit 1.5 micron infrared light and this 

wavelength is widely used in long-distance telecommunication. Another research group 

has found a way to make light-emitting diodes by crossing two types of nanowires and 

the emitted light is in the red and infrared ranges
1
. Tiny light-emitting diodes can be used 

to develop single photon sources as well. Of many physical implementations of quantum 

bits, single photons are considered to be a leading approach because they are less 

disturbed by noise and have the ability to be encoded in several degrees of freedom in 

polarization, time bin and path
6
. In 2001, Knill et al showed that quantum gates and 

optical circuits could be realized by using wave plate and beam splitters, which made 
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using only beam splitters, phase shifters single photon sources and detectors to achieve 

quantum computing possible
42

. As a result, single photon sources are a key component of 

quantum computing and quantum cryptography. 

Biomedical nanotechnology has led to advances in diagnostic techniques
43

. For 

example, quantum dots can be conjugated to biological molecules like proteins or 

peptides by some approaches, such as adsorption, electrostatic interaction, and covalent 

linkage without disturbing the biological function. These quantum dots will emit light 

after being excited, which can be used as biomarkers for detecting and labeling of 

molecules, cells or tissues. The detection sensitivity can be further improved by 

measuring the Stoke shifts, that is, the distance between the excitation and emission 

peaks, of the quantum dots
41

. 

With the development of nanotechnology, the size of the existing materials and 

devices can be reduced and the performance could be vastly enhanced. New type of 

devices and systems can be created, which may open up novel areas of applications. 

 

1.2 LED 

 

 

In this thesis, nanotechnology has been employed to develop a light-emitting 

diode. Basic knowledge about light-emitting diodes is introduced here.  

Light-emitting diodes are the devices that convert electrical energy into optical 

radiation. As important semiconductor light source, LEDs have found widespread use in 

myriad areas in our daily lives as well as scientific fields like communication and 

medicine
44

.  
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LEDs belong to the luminescent device family. Luminescence is the emission of 

optical radiation resulting from electronic excitation in a material
44

. There are three main 

optical processes for interaction between a photon and an electron in a solid: absorption, 

spontaneous emission, and stimulated emission. Of these three, spontaneous emission, in 

which a photon is emitted when the electron in the conduction band spontaneously 

returns to the empty state in the valence band, is the main process that happens in LEDs. 

Luminescence can be divided into four types by the source of the input energy: 

photoluminescence (PL) that is excited by optical radiation, cathodoluminescence (CL) 

that is excited by electron beam or cathode ray, electroluminescence that is excited by 

current or electric field, and radioluminescence that is excited by other fast particles or 

high-energy radiation
44

. LEDs are injection electroluminescent devices. The emission of 

radiation results from the combination of the minority carriers injected by the electric 

current with majority carriers
45

. More details about electroluminescence will be discussed 

later in chapter 4. 

A LED is a semiconductor p-n junction. When the junction is forward biased, 

minority carriers will be injected to the junction from both sides. Recombination will take 

place at the vicinity of the junction with the release of photons
44

. The ideal current-

voltage (I-V) characteristic of a p-n junction follows the equation: 

/

0( 1)qV kTI I e  ,                                               (1.1) 

where q is electron charge, k is Boltzmann’s constant, V is bias voltage, T is temperature, 

and I0 is reverse saturation current
45

. The energy of photons emitted from the 

semiconductor is approximately equal to the bandgap energy Eg, i.e. 

gE h ,                                                       (1.2) 
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where h is the Planks’ constant, v is the frequency of the photon
46

. The conservation of 

energy requires the energy of the injected electron is equal to the photon energy. So, the 

diode voltage Vd can be given by: 

g

d

Eh
V

e e


  .                                                (1.3) 

The emission corresponding closely in energy to bandgap is just one type of 

recombination transitions. There are also transitions involving chemical impurities or 

physical defects, in which the energy of the emitted light is smaller than the bandgap 

energy
44

. More details about defect related transitions will be discussed later in chapter 5. 

LEDs are often made from inorganic semiconductor materials include aluminum 

gallium arsenide, GaP, gallium arsenide phosphide, zinc selenide, and indium gallium 

nitride
47

. Some organic compounds can be used to develop organic LEDs, for example, 

molecules of tris(8-hydroxyquinolinato)aluminium, polymers of poly(p-phenylene 

vinylene), and some phosphorescent materials
48-50

. 

The LEDs available on the market have plenty of color options ranging from 

ultraviolet to infrared. The lights of different colors are related to different wavelengths. 

White LEDs with broad spectra have also been developed.  

The applications of LEDs can be categorized into three kinds. The first 

application is for illumination. LEDs have the advantages of high efficiency, higher 

reliability and longer lifetime over traditional incandescent light bulbs. Another 

application is for displays in electronic equipment and outdoor indicators. The third 

application is as light source for communication. GaAs LEDs can be applied in free-

space communication, such as remote control of appliances like television sets and 

http://en.wikipedia.org/wiki/Gallium_arsenide_phosphide
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stereos. Infrared LEDs are also good light sources for local area optical-fiber 

communication for low and medium bit rate
44, 51

.  

The progress in the area of light-emitting diodes has been breathtaking. The 

technology developed for LEDs enables the creation and improvement of nanoscale 

LEDs. As mentioned earlier, nanoscale LEDs based on quantum dots can offer size- and 

composition-tunable emission wavelengths. Nano-LEDs have the ability to be attached to 

biomolecules as well and the molecules can be detected by measuring the shifts of the 

wavelength before and after conjugation. The nano-LEDs with wide spectral range are 

appealing for multiple parameters imaging or tracking in biological and medical 

applications
41

. Nano-LEDs can be developed to generate single photons. The number of 

the photons emitted from faint laser pulses obeys Poissonian statistics
52

. True single 

photon sources could be realized by nano-LEDs, which are ideal light sources for 

quantum information and time correlated single photon counting
5-6

. Nano-LEDs can 

produce reliable nanosecond optical pulses, which are of great use in fluorescence 

lifetime spectroscopy
53-54

.  The development of nano-LED devices is very necessary 

because of these useful and promising applications. 

 

1.3 ZnO as a Light-emitting Semiconductor 

 

 

Many wide bandgap semiconductors such as silicon carbide (SiC), GaN, GaAs, 

and ZnO have been studied for LEDs or other optoelectronic applications. SiC has been 

used in LEDs for blue and ultraviolet light generation for a long time. But due to the 

unfavorable indirect bandgap of SiC, the efficiencies are very limited. SiC can no longer 

compete with III-V semiconductors like GaN and GaAs
55

. GaAs is a popular direct 



11 

bandgap material for light-emitting applications. Infrared LEDs and lasers based on GaAs 

have been reported
51

. However, GaAs has several drawbacks. GaAs is rare and hard to 

obtain. Arsenic is toxic, which may cause problems during handling and disposal 

processes of the material
56

.  Electronic devices based on GaAs cannot tolerate elevated 

temperatures or chemically hostile environments
55

. GaN is also a direct bandgap 

semiconductor and it is well known for the high efficiency. GaN can be operated as 

emitters and detectors in the blue-green, blue and ultraviolet region of the optical 

spectrum
55

. However, GaN is a relatively expensive material. Growing GaN in bulk is 

difficult and time-consuming. Exceedingly high concentration of extended defects may 

be produced because of the lattice mismatch between GaN and the sapphire substrate
57

.  

ZnO has been proposed as a promising material to substitute GaN. The most obvious key 

fact for using ZnO is that it is intrinsically inexpensive, easy to access, safe and stable
58

.  

ZnO is a wide and direct bandgap semiconducting material with Eg=3.3 eV at room 

temperature. The large bandgap brings ZnO the advantages of high breakdown voltages, 

lower noise and the ability to be operated under large electric field and high temperature
59

.  

ZnO has high exciton binding energy of 60 meV, which ensures efficient excitonic 

emission at room temperature
60

. The high electronic energy of band-to-band transitions 

allows emission in the green, blue and UV spectra. Functional oxides of wide bandgap 

semiconductors like ZnO can arrange to form novel nanostructures such as nanowires, 

nanotubes, nanorods, which are the fundamental building blocks of small and smart 

devices. ZnO is also a bio-safe and biocompatible material that can be used for 

biomedical applications. In addition, as an important piezoelectric material, ZnO attracts 

great attention for the applications of piezoelectric transducers, varistors, surface acoustic 
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wave devices, and so on
58-63

. These favorable features of ZnO drive us to choose ZnO as 

the semiconductor material for our nano LED devices. 

ZnO is a II-VI compound semiconductor. The ionicity of ZnO is between ionic 

and covalent semiconductors. ZnO has three crystal structures: wurtzite, zinc blende and 

rocksalt. Zinc blende structure can only be stably grown on cubit substrates and rocksalt 

structure may be obtained under high pressure. Normally, ZnO forms in the wurtzite 

crystal structure under ambient conditions due to some intrinsic or extrinsic defects such 

as Zn interstitial and O vacancy, but the subject is still under debate
59

. As shown in 

Figure 1-3-1, wurtzite ZnO has a hexagonal unit cell with lattice parameters a=3.25 Å 

and c=5.2 Å. The wurtzite structure has alternating planes consisting of tetrahedrally 

coordinated Zn
2+

 and O
2-

 ions that are stacked alternatively along the c axis. The 

tetrahedral coordination causes a non-central symmetric structure
59

. 

 

 

Figure 1-3-1. Wurtzite ZnO structure. 
 
 



13 

ZnO is a relatively soft material. The approximate hardness of ZnO on the Mohs 

scale is 4.5. The elastic and bulk moduli of ZnO are small. Experiments have shown that 

ZnO becomes softer against shear-type distortions. ZnO exhibits plastic deformation 

when relatively low loads are applied. The Young’s modulus of ZnO remains essentially 

constant with E = 111.2±4.7 GPa. The non-central symmetric structure also results in 

piezoelectricity, pyroelectricity and spontaneous polarization along the c-direction
59

. 

Some basic physical properties of ZnO have been shown in Table 1-3-1
63

. 

 

Table 1-3-1. Properties of wurtzite ZnO. 
 

                       Properties                      Value 

 Lattice parameters at 300 K 
 a0 

 c0 
 Density 
 Melting point 
 Relative dielectric constant 
 Gap Energy 
 Exciton binding energy 
 Electron effective mass 
 Electron mobility (T = 300 K) 
 Hole effective mass 
 Hole mobility (T= 300 K) 

 
              0.32469 nm 
              0.52069 
              5.606 g/cm3 
              2248 K 
              8.66 
              3.3 eV 
              60 meV 
              0.24 
              200 cm2/V s 
              0.59 
              5-50 cm2/V s 

 

Different techniques can be used to achieve the growth of ZnO nanostructures, 

such as metal organic chemical vapor deposition (MOCVD), vapor liquid solid (VLS), 

aqueous chemical growth (ACG), thermal oxidation, sputtering, molecular beam epitaxy 

(MBE), pulsed laser deposition, and so forth
64-71

.  

The studies of the optical properties of ZnO are conducted by various methods 

based on different luminescence mechanisms that are photoluminescence, 
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electroluminescence, and cathodoluminescence. The spectra obtained from ZnO vary 

when the growing and measuring methods are different
64-71

. The ZnO spectra will be 

further discussed in chapter 5. 

 

1.4 Thesis Outline 

 

 

The content of this thesis is organized in the following way. Chapter 1 introduces 

the object and the background of the thesis. Chapter 2 describes the design and 

fabrication of the nano-LEDs. Chapter 3 presents the setup and the results of the 

experiments for testing properties of the nano-LEDs. Chapter 4 discusses the analysis of 

the electron transport mechanisms in metal-semiconductor junctions. Chapter 5 presents 

the electroluminescence mechanism in nano-LEDs and the source of the ZnO spectrum. 

At last, chapter 6 summarizes the work and chapter 7 gives suggestions for future work.  
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2 NANO-LED DEVICE FABRICATION 

 

 

The fabrication process of the nano-LED devices is explained in this chapter. The 

process includes making nanogap devices and growing ZnO nanostructures between the 

nanogaps. Sharp tips are formed on the top silicon layer of the wafer by wet chemical 

etching. The silicon tips are then suspended by removing the SiO2 underneath. The tips 

are covered with Ni after evaporation and Ni acts as the electrical contact for the nano-

LED. The nanogap between the tips is filled with Zn after another evaporation process. 

The Zn is converted to ZnO by thermal oxidation, which is the semiconductor part of the 

nano-LED for emitting light.     

 

2.1 Fabrication of Nanogap Devices 

 

 

The nanogap devices are fabricated on a SOI wafer by optical lithography and 

anisotropic wet chemical silicon etching with a unique double-layer etch mask
72

.  

The substrate of the SOI wafer consists of a layer of Si with the thickness of 3 μm 

on the top, a layer of silicon dioxide (SiO2) with the thickness of 5 μm in the middle and 

a bottom layer of Si with the thickness of 500 μm. Before fabrication, a thermally grown 

SiO2 film with the thickness of 0.27 μm and a low stress LPCVD silicon nitride (SiN) 

film with the thickness of 0.5 μm are deposited on the substrate. The SiN and SiO2 films 

are used as masks for potassium hydroxide (KOH) etching. The structure of the substrate 

before fabrication is shown in Figure 2-1-1. 
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Figure 2-1-1. Wafer structure before fabrication. 

 

The overall fabrication process includes three times of optical lithography, with 

the first one for SiN etching and the following two for Si etching.  

To begin the lithography, the wafer is cleaned using piranha (H2SO4 and H2O2) 

solution and dehydrated on the hot plate at 300 °C for five minutes. 

Hexamethyldisilazane (HMDS) vapors are applied to the wafer surface to enhance the 

adhesion of photoresist (PR). The wafer is then coated with a layer of photoresist and soft 

baked on the hot plate at 110 °C for one minute. After being exposed to UV light for 12 

seconds with the first layer of the etch mask aligned on the top, the wafer is put into the 

developer to dissolve the exposed part. The remaining photoresist functions as the mask 

for the SiN etching using tetrafluoromethane (CF4) plasma in a vacuum chamber for 20 

minutes. Figure 2-1-2 shows the top view of the device after the first lithography.  
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Figure 2-1-2. Top view of the device after the first lithography: (a) before SiN etching;  
(b) after SiN etching. 

 

Another lithography process is conducted for the first step of Si etching. After 

being coated with photoresist and soft baked at 110 °C for one minute, the wafer is 

aligned under the second layer of the etch mask and exposed to UV light for 8 seconds. 

The second time of baking is conducted at 130 °C for two minutes. The wafer is then 

exposed to UV light without the etch mask for 30 seconds. After developing, the 

remaining photoresist has the pattern of the inverse image of the etch mask. The exposed 

portion of the SiO2 is removed with buffered oxide etch (BOE) solution. The underlying 

Si is etched by KOH solution. The KOH solution has the concentration of 30% and the 

etch rate is 0.31μm per minute at 60 °C. Figure 2-1-3 shows the structure of the device 

after the second lithography. The KOH solution keeps etching the Si layer until the width 

of the Si cantilever beam in the middle of the top Si layer is about 2.5 to 3μm. A thermal 

oxidation process is conducted and a layer of SiO2 is formed on the surface of the 

exposed part of the Si layer in order to prevent the Si from being further etched in the 

second KOH etching. 
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Figure 2-1-3. Top view of the device after the second lithography: (a) before SiO2 etching; 
(b) after SiO2 etching; (c) after removing photoresist; 

(d) after Si etching with KOH solution. 
 

The next step of fabrication is the third lithography. The processes of wafer 

cleaning, photoresist coating and soft baking are similar as those in the first lithography. 

The second layer of the etch mask is used during the exposure to the UV light for 20 

seconds. After being developed, the remaining photoresist has the exact copy of the 

pattern on the etch mask. The uncovered SiO2 is etched using BOE solution and the Si 

underneath is etched by KOH solution for about 1 hour. After etching, the surface layer 

of the bare Si is converted to SiO2 by another oxidation process. The purpose of the 

oxidation is to protect the Si from being etched during the following SiN etching. Then 
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the SiN layer is removed by phosphoric acid. The SiO2 layer under the SiN and the 

uncovered portion of the SiO2 on top of the bottom Si are both removed by BOE solution. 

Figure 2-1-4 shows the structure of the device after the third lithography. 

 

 

Figure 2-1-4. Top view of the device after the third lithography: (a) before SiO2 etching; 
(b) after SiO2 etching; (c) after removing photoresist and Si etching  

with KOH solution; (d) after removing SiN and SiO2. 
 

The nanogap device is shown in Figure 2-1-5. As can be seen in the figure, sharp 

tips are fabricated on the top Si layer of the device. The tips are formed by the (111) 

silicon crystal plane created during the first KOH etching and (100) plane created during 
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the second KOH etching. There are nanoscale gaps between the sharp tips and the 

average size of the gaps is a few tens of nanometers.  

 

 

Figure 2-1-5. Top view of the S1 nanogap device and close up view of the nanogap. 
 

Four different designs of nanogap devices are fabricated together on one wafer. 

The configuration shown in Figure 2-1-5 is named as S1 device. Figure 2-1-6 shows the 

configuration of the S2 nanogap device. 

 

 

Figure 2-1-6. Top view of the S2 nanogap device and the close up view of the nanogap. 
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The size of the nanogap can be estimated using Simmon’s Model. A MATLAB 

program has been made to calculate the gap size. Details about the Simmon’s Model and 

the program are in the appendix.  

 

2.2 Growth of ZnO Nanostructures between Nanogaps 

 

 

ZnO nanostructures are synthesized between the nanogaps by thermal evaporation 

of Ni and Zn and thermal oxidation of Zn.  

After making nanogap devices, a layer of Ni with the thickness of 30 nm and a 

layer of Zn with the thickness of 50 nm are thermally evaporated on the devices in a 

vacuum of ~10
-7

Torr. After that, the Zn film on the devices is oxidized to ZnO film at 

350 °C in a quartz tube furnace with an oxygen flow of 5 sccm (Figure 2-2-1). Figure 2-

2-2 shows the cross-sectional view of the device before and after the metal evaporation 

and the Zn oxidation. 

 

 

Figure 2-2-1. Lindberg/Blue M quartz tube furnace. 
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Figure 2-2-2. Cross-sectional view of the device: (a) nanogap device; (b) device after 
evaporation of Ni and Zn; (c) device after Zn oxidation. 

 

Different kinds of metals have been considered as the electrode material for the 

nano-LED devices. However, alloy may be formed between Zn and other metals like 

aluminum and copper during the thermal oxidation process because of the high 

temperature. Compared with them, Ni reacts less with Zn at elevated temperature. As a 

result, Ni is preferred to perform the electrical contact for our device. 

The images of the nanogap taken by scanning electron microscope (SEM) are 

shown in Figure 2-2-3.  
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Figure 2-2-3. SEM images of the nanogap: (a) close-up view of the gap;  
(b) after evaporation and oxidation. 

 

As can be seen in the picture, the nanogap is filled with ZnO after the evaporation 

of Ni and Zn and the Zn oxidation. 
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3 EXPERIMENT METHODS AND RESULTS 

 

 

To investigate the nano-LED, the electrical properties and optical properties of the 

devices have been tested. Emission of light has been observed from the ZnO 

nanostructure when bias is applied to the nano-LED device. The Current-Voltage 

characteristics of the nano-LED have been tested. The spectrum of the light has been 

measured in order to analyze the source of emitted light. The intensity of the light with 

respect to different voltage levels has been measured as well, which proves that the nano-

LED device can possibly be used as a single photon source. In this chapter, the details of 

the experiment methods will be presented and the results of the experiments will be 

shown. 

 

3.1 Electroluminescence from Nano-LED 

 

 

As a light source, the nano-LED is electrically biased for the light-emitting test. 

To test the electroluminescence (EL) from the nano-LED, a Keithley 2400 Source 

Meter is used to apply current to the device. On the device, the Ni layer serves as the 

electrodes to the ZnO nanostructure between the nanogap. Two probes connected to the 

Keithley land on the two sides of the nanogap and the current passes the ZnO 

nanostructure through the Ni electrodes. Figure 3-1-1 is the picture of a S2 nanogap 

device under test taken by an optical microscope that has the magnification of 100. The 

cross-sectional view of the device under test is shown in Figure 3-1-2. 
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Figure 3-1-1. Device under test under optical microscope. 
 

 

 

Figure 3-1-2. Cross-sectional view of the device under test. 
 

When the device is under bias, high electric field exists between the tips and 

carrier transport will happen at the metal-semiconductor interface. Only the ZnO 

nanostructure between the nanogap is electrically active and electroluminescence may 

happen from the nanostructure. 

The result of the electroluminescence test is shown in Figure 3-1-3.  
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Figure 3-1-3. Electroluminescence of the ZnO nanostructure between the nanogap. 
 

In the test, the Keithley provides a current of 10μA to the ZnO nanostructure 

through the probes. When light of the microscope is turned off, emission of light is 

observed right from the position of the nanogap, which proves the happening of 

electroluminescence of the ZnO nanostructure between the gap. 

 

3.2 Spectrum of the Light Emitted from Nano-LED 

 

 

ZnO is a II-VI direct bandgap semiconductor
59

. The emission spectra of ZnO 

strongly depend on the preparation methods and the growth conditions. In this research, 

the X-ray diffraction (XRD) data (Figure 3-2-1) of the oxidized Zn film has shown that 

the ZnO prepared by thermal oxidation of Zn possesses polycrystalline wurtzite crystal 

structure. However, since the width of the gap is only several tens of nanometers, the size 

of the synthesized ZnO nanostructure could be smaller than the mean grain size of the 

polycrystalline ZnO film. The ZnO nanostructure may have the structure of single crystal, 

which allows radiative recombination to occur in the direct bandgap. Thus the 
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electroluminescence could be explained. To find out the source of the photon emission, 

the spectrum of the light has been measured. 

 

 

Figure 3-2-1. X-ray diffraction data of the thermally oxidized Zn film. 
      

An Acton MicroSpec 2300i monochromator with a Princeton Instruments 

Cascade 512B (CCD 97) camera is used to get the spectrum of the light emitted from the 

nano-LED.  

The working principle of the monochromator is explained in Figure 3-2-2. A 

polychromatic light is aimed at the entrance slit of the monochromator. When the light 

encounters the grating inside, it is dispersed and different wavelengths will reflect at 

different angles. The grating rotates slowly and the dispersed light is reimaged so that 

each wavelength could be directed to the exit slit and detected by the CCD camera. By 

comparing the intensity of the light of different wavelengths, the spectrum can be 

obtained. 
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Figure 3-2-2. Working principle of monochromator. 
 

The setup of the experiment is shown in Figure 3-2-3. The sample devices are 

bonded on an acrylic plate that has two testing probes mounted on it. After adjusting the 

position of the probes under optical microscope, the plate is mounted on an optical stage. 

The stage can be moved back and forth to adjust the focus of the image to the camera. 

The device can be located on the screen by moving the stage left and right. The stage 

with the sample on it is then put into a big box that is covered with aluminum foil (Figure 

3-2-3 (a)). The probes are connected to the Keithley outside the box through wires 

(Figure 3-2-3 (c)). A lens with the magnification of 20 is used to acquire the image of the 

focused device. The light emitted from the sample will pass through the lens to the 

monochromator and finally reaches the CCD camera (Figure 3-2-3 (b)). During the 

experiment, the box is covered by a piece of black cloth to reduce the interference from 

the light outside (Figure 3-2-3 (d)). 
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(a)                                                                (b) 
 

    

(c)                                                               (d) 
 

Figure 3-2-3. Experiment setup of the spectrum test: (a) device is fixed on the stage 
inside the box; (b) top view of the sample in the box; (c) device is connected 

 to Keithley; (d) box is covered during the measurement. 
 

The image that acquired by the CCD camera through the optical lens and the 

monochromator can be seen in the Winspec program in the computer. Figure 3-2-4 shows 

a focused S2 device with probes landing on it. The picture taken by the CCD camera has 

relatively low brightness. To make the image clear, the profile of the device and position 

of the probes are depicted. 
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Figure 3-2-4. Image of the S2 device taken by CCD camera. 
 

Figure 3-2-5 shows the electroluminescence from the position of the ZnO 

nanostructure of a S2 device when the whole box is covered with black cloth. 

 

 

Figure 3-2-5. Image of the electroluminescence of the ZnO nanostructure  
taken by the CCD camera. 
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In the experiment, the light of wavelengths ranging from 200 nm to 1000 nm is 

set to be guided to the CCD camera. The test result is shown in Figure 3-2-6. It shows the 

spectrum of the light obtained from the nano-LED under four different current levels. 

 

 

Figure 3-2-6. Spectrum of the light emitted from the device at different current levels. 
 

The electroluminescence spectrum of the nano-LED is in the visible band ranging 

from 450nm to 1000nm. The major wavelengths are between 580nm and 850nm. When 

the current applied to the device increases, the intensity of the light increases, but the 

wavelengths are still the same. The visual spectrum is attributed to some intrinsic and 

extrinsic defects such as oxygen vacancies and Zn vacancies in ZnO. The mechanism of 

the visible wavelengths emitted from the device will be analyzed in the next chapter. 

 

3.3 Intensity of the Light Emitted from Nano-LED at Different Voltage Levels 

 

 

The intensity of the light emitted from the nano-LED is very low. Since the 

intensity of light is related to the number of photons, the nano-LED can be used to 
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generate small amount of photons or even single photon. With the number of photons that 

emitted from the device per second measured, if the frequency of the applied bias is high 

enough, it is possible for the nano-LED to emit only one single photon at a time. As the 

smallest unit of quantum computing, a single photon can store quantum information and 

it is potentially free from decoherence. Single photon emitters are essential components 

for realizing optical quantum computing
6
.    

With the same setup as in the spectrum test, the intensity of the emitted light with 

respect to different levels of applied voltage is measured. The voltage ranges from 10 to 

40V. When the bias voltage is further increased, the ZnO nanostructure between the 

silicon tips may be broken by the high electric current that passes through it. At each 

measurement point, the light is integrated for several seconds. The values of the intensity 

obtained by the camera are then normalized to the intensity per second. The test result is 

shown in Figure 3-3-1. 

 

 

Figure 3-3-1. Measured intensity of the light emitted from the device  
at different voltages. 
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The turn-on voltage of the nano-LED for light emission is ~12 V. The intensity in 

the semi-log plot has two near linear slopes. It indicates that the light intensities are 

exponentially increasing. The break point voltage may result from the carrier injection 

saturation at one junction. The inset in Figure 3-3-1 shows the photon rate converted 

from the measured intensity. The photon rate at 12.5 V is estimated to be ~ 9000/s. When 

an ultra-short pulse near the turn on voltage is applied to the device, emission of one 

photon at a time could be possible.  

 

3.4 I-V Curve Analysis of Nano-LED 

 

In electronics, the current-voltage characteristic of a device is the relationship 

between the voltage across it and the current passes through it. The I-V characteristic of 

an electrical element can be used to determine a device’s fundamental parameters and to 

analyze its behavior in electrical circuits. The shape of the I-V curve is determined by the 

transport of charge inside the device. For a diode, the current increases exponentially 

with forward bias while the current becomes negligible with reverse bias
73

. To explore 

the electronic structure of the nano-LED, the I-V curve of the device needs to be 

measured.  

In a similar method as of the EL test, the I-V curve is measured by a HP4140B pA 

Meter/DC Voltage Source. The applied voltage from the source ranges from -25V to 25V 

with an increment of 1V and the value of the current is measured at each test point. The 

test result has been plotted in Figure 3-4-1.  
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Figure 3-4-1. Measured I-V curve of the ZnO nanostructure between the nanogap. 
 

The measured I-V data is fitted by the PKUMSM program
74

. As can be seen in 

Figure 3-4-1, the exponential curve shows typical characteristics of a diode structure. The 

semiconductor parameters of the device can be extracted from the fit. The values are 

listed in Table 3-4-1, where 1  and 2  are barrier heights of the junctions, R is the 

resistance of the nanostructure, dN
 
is the doping concentration, and 

p  
is the carrier 

mobility. 

Table 3-4-1. Extracted electrical parameters of ZnO nanostructure. 

       1(eV)         2 (eV)       (MΩ)R       -3(cm )dN  2(cm / (V s))p   

         0.53           0.57             104      
173.86 10       

21.81 10  

 

The extracted barrier heights are asymmetrical and the values deviate from the 

calculated barrier heights, which may result from the formation of the Ni-Zn alloy during 

the thermal oxidation process to convert Zn to ZnO. 
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4 ANALYSIS OF ELECTRON TRANSPORT MECHANISMS IN METAL-

SEMICONDUCTOR JUNCTIONS 

 

For the nano-LED device, the emission of light can be explained by the 

electroluminescence mechanism from a metal-semiconductor-metal junction formed by 

Ni and ZnO. The electroluminescence requires injection of electrons and holes into the 

semiconductor. The source of the carrier transport in metal-semiconductor junctions 

needs to be investigated. In this chapter, the three main components of electron transport 

in Schottky diodes will be presented. 

Electroluminescence is a light emission phenomenon caused by the electric 

current passing through a material. In semiconductors, electrons can be accelerated by a 

strong electric field. Electrons and holes will be excited and separated by the energetic 

electrons. When electrons and holes recombine in the material, the energy of the excited 

electrons will be released in the form of photons
45

. 

When Ni and ZnO are brought together, a Schottky barrier is formed. As can be 

seen in Figure 4-1, when a metal with work function qΦm is in contact with a 

semiconductor with work function qΦs (Φm > Φs), charge will transfer until the Fermi 

levels align at equilibrium. The electrostatic potential of the semiconductor is raised 

relative to that of the metal. A depletion region W is formed near the junction. In the 

depletion region, the positive charge due to uncompensated donor ions matches the 

negative charge on the metal. The equilibrium contact potential V0 will prevent electron 

diffusion into the metal from the semiconductor. The potential barrier height ΦB for 

electron injection into the semiconductor from the metal equals to Φm – χ, where qχ is the 

electron affinity. FmE  and FsE are the Fermi level energy of the metal and the 
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semiconductor. CE  and
 VE

 
are the conduction band and valance band energy  of the 

semiconductor
75

. 

 

 

Figure 4-1. A Schottky barrier formed by contacting an n-type semiconductor with  
a metal (a) band diagrams of the metal and semiconductor before  

contacting; (b) band diagram for the junction at equilibrium. 
 

When a Schottky barrier is under forward or reverse bias, the contact potential 

will change (Figure 4-2). When a forward-bias is applied to the Schottky barrier, the 

contact potential is reduced to V0 – V and V is the applied voltage. Electrons in the 

semiconductor conduction band can diffuse across the depletion region into the metal. 

Contrarily, the barrier height will increase by a reverse bias, which makes electron flow 

from semiconductor to metal negligible
75

. 
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Figure 4-2. Forward and reverse bias on a Schottky barrier:  
(a) forward bias; (b) reverse bias. 

 

The transport of electrons in a Schottky diode consists of three components: 

thermionic emission, field emission and thermionic-field emission
76

. Figure 4-3 shows 

the qualitative current flow in a Schottky diode under bias. 

 

 

Figure 4-3. Energy-band diagram showing currents flow in a Schottky diode  
under bias: (a) forward bias; (b) reverse bias. TE = thermionic emission.  

FE = field emission. TFE = thermionic-field emission 
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Electrons transported by these three mechanisms together contribute to the current 

flow in the Schottky diode.  

 

4.1 Thermionic Emission Theory 

 

Thermionic emission is the charge carriers flow over a potential-energy barrier 

caused by the temperature. In ordinary condition, free electrons in the metal cannot leave 

the metallic surface. They are attracted by a strong force called surface barrier energy 

(EB). When the temperature increases, some of the electrons inside the metal would 

obtain sufficient kinetic energy to overcome the surface barrier. The energy that needed 

for the emission of electrons to take place is the work function (W), that is 

B FW E E  .                                                         (4.1) 

In the equation, EF is the Fermi level of energy of the metal. The relation between the 

number of electrons emitted by a unit area of the metallic surface and the temperature of 

the emitting materials is derived by Richardson and Dushman on the basis of Fermi-Dirac 

Statistics as in the equation below: 

2 /W kTJ AT e ,                                                      (4.2) 

where J is the thermionic emission current density, 2 3/4 hA mek is the emission 

constant, T is the temperature, W is the work function of metal, k is the Boltzman 

constant,  e is the electron charge, m is the electron mass, and h is the Plank’s constant. 

The emission constant is the same for all the metals but the work function varies from 

metal to metal
77

.  

For a Schottky barrier formed in a metal-semiconductor junction, thermionic 

emission theory is applied as well. The theory assumes that the energetic carriers, which 
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have the energy larger than that at the interface of the junction, will cross the barrier and 

contribute to the current flow
76

.  

When a forward bias is applied to the Schottky barrier, the contact potential 

between the metal and the semiconductor is decreased. As can be seen in Figure 4-1-1, 

mobile electrons will flow from semiconductor to the metal, which result in the great 

increase in the cross barrier current. At the same time, a constant cross barrier electron 

flow from metal to semiconductor occurs since the potential barrier height (ΦB) is not 

affected by the applied bias, but the resulting current is relatively small in the case of 

forward bias
76

.  

 

 

 

Figure 4-1-1. Thermionic emission in a Schottky barrier that is forward biased. 
 



40 

When the Schottky barrier is reverse biased, the cross barrier current attributed to 

electron flow from semiconductor to metal will decrease a lot, whereas the metal to 

semiconductor electron flow become visible as the saturation current
76

. Figure 4-1-2 

shows the thermionic emission in a reverse biased Schottky barrier. 

 

 

Figure 4-1-2. Thermionic emission in a Schottky barrier that is reverse biased. 
 

The cross barrier current density from semiconductor to metal ( s mJ  ) is restricted 

by the concentration of electrons with kinetic energy (E) sufficient to surpass the barrier 

in the direction (x) of transport: 

Fm B

s m x

E q

dnJ qv








  ,                                                 (4.3) 

where Fm BE q  is the minimum energy needed for electrons to inject into the metal 

because of thermionic emission,
 xv  is the carrier velocity in the direction of transport. 

The electron density between E  and E dE  is given by: 
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( ) ( )dn N E F E dE ,                                                (4.4) 

where  

3
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                                         (4.5) 
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 is the effective electron mass. And  
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is the Fermi-Dirac distribution function with n C Fsq E E   . Assuming all the energy of 

electrons in the conduction band is kinetic energy, then: 
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2
CE E m v  ,                                                 (4.7) 
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2
CE E v m  ,                                            (4.8) 

dE m vdv .                                                (4.9) 

The electron density is given by: 
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The above equation describes the number of electrons per unit volume that have 

velocities between v  and v dv  distributed over all directions. By resolving the velocity 
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into its components along the axes with the x-axis parallel to the transport direction, we 

have: 

2 2 2 2
x y zv v v v   ,                                              (4.11) 

24 x y zdv dv dv dv v  ,                                             (4.12) 
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The velocity 0xv  is the minimum velocity required in the x direction to surmount the 

barrier, which is given by: 

2

0 0

1
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2
xm v q V V   .                                          (4.14) 
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we have:  
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and 
2

3

4 qm k
A

h

 
   is the effective Richardson’s constant. Since there is no net current 

flow at equilibrium, the cross barrier current density from semiconductor to metal ( m sJ  ) 

should be exactly opposite to the s mJ   when V=0, which is 

/2 Bq kT
m sJ A T e 
   .                                          (4.17) 

Therefore, the total current density equation of the thermionic emission ( nJ ) for a metal-

semiconductor junction is 

/2 /( 1)Bq kT qV kT
n s m m sJ J J A T e e

     .                   (4.18) 

It can also be written as 

/( 1)qV kT
n TEJ J e  ,                                         (4.19) 

where /2 Bq kT

TEJ A T e
  is the barrier height dependent thermionic emission 

component
76

. In Equation 4.19, the exponential term describes the electron flux from 

semiconductor to metal and the -1 term describes the electron flux from metal to 

semiconductor. 

 

4.2 Field Emission Theory 

 

 

The field emission process is the emission of electrons induced by high electric 

field. Emission of electrons from solid or liquid surfaces into any non-conducting or 

weakly conducting dielectric and the promotion of electrons from valence band to 

conduction band in semiconductors can be regarded as field emission. The field emission 

is due to quantum mechanical effects, in which the potential barrier is narrowed by high 

electric field and electrons have the probability of tunneling through the barrier. Fowler-
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Nordheim theory provides the quantitative description of this process. The current density 

J is given by the equation: 

0
( ) ( , )x x xJ e n E D E F dE



  ,                                   (4.20) 

where e is the electron charge, n(Ex) is the number of electrons per second having 

energies between Ex and Ex + dEx on 1 cm
2
 of the barrier surface from within the metal,  

F is the applied electric field, Ex = px
2
/2m is the electron kinetic energy carried by the 

momentum component px, m is the free electron rest mass, and D(Ex,F) is the probability 

for the electron to tunnel through the potential barrier
78

.  

The tunneling may become significant for heavily doped semiconductors and for 

operation at low temperature. For a Schottky barrier, the tunneling current from 

semiconductor to metal ( ( )s m FEJ  ) is proportional to the tunneling probability ( ( )T E ) 

multiplied by the occupation probability in the semiconductor and the unoccupied 

probability in the metal. The following equation describes this current: 

( )

2

( )(1 )
Fm B

Fm

E q

s ms m FE
E

J F T E F dE
kT

A T 





  ,                 (4.21) 

where mF  and sF  are the Fermi-Dirac distribution functions for the metal and the 

semiconductor. The tunneling probability depends on the width of the barrier at a 

particular energy. The tunneling current from metal to semiconductor ( ( )s m FEJ  ) can also 

be written in similar form: 

( )

2

( )(1 )
Fm B

C

E q

m sm s FE
E

J F T E F dE
kT

A T 





  ,                  (4.22) 

The sum of ( )s m FEJ   and ( )s m FEJ   is the net current density of field emission in a 

Schottky barrier
76

. Figure 4-2-1 shows field emission process in a Schottky barrier. 
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Figure 4-2-1. Field emission in a Schottky barrier that is reverse biased. 
 

The current density ( )s m FEJ   induced by electrons tunneling from semiconductor 

to metal in the x-direction is  

0

( ) ( )x x x xJ q v n v T E dv



  ,                                    (4.23) 

where ( )xT E  is the probability that one electron having energy xE  along the x-axis goes 

through the potential barrier. ( )x xn v dv  is the density of electrons with velocity between 

xv  and x xv dv  along the x-axis
78

. xv , 
yv  and zv  are the components of the electron 

velocity ( v ), the total kinetic energy is 

2 2 2 21 1
( )

2 2
t x y z x y zE m v E E E m v v v        ,             (4.24) 



46 

where xE , 
yE  and zE  are the electron kinetic energy components along three axis. ( )xn v  

can be obtained by the expression: 

2 21 1
( ) ( )[1 ( )]

2 2
x y z s mn v dv dv F mv F mv

 

 

   ,                    (4.25) 

where sF  and mF  are the Fermi-Dirac distribution function, which are 
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The coordinates (
yv , zv ) can be considered in the polar coordinate ( rv , ), which are

cosy rv v   and sinz rv v  . So we will have:  

2 2 21 1
( )

2 2
r r y z y zE m v E E m v v      ,                      (4.28) 

and  

r r rdE m v dv .                                              (4.29) 
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Considering 
21

2
x xE m v  and 

x x xdE m v dv , the current density then becomes 
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Considering the variable change FsE E
x

kT


 , the second integral becomes 
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The tunneling probability ( )xT E  depends on the potential barrier shape and it can be 

calculated by the Wentzel-Kramers-Brillouin (WKB) approximation as 

2 *
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h
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where ( ) xq x E  is the difference between the energy of the potential barrier at the 

position x and the electron energy in the x-direction. The first two terms of Taylor’s 

series expansion of the function ( ) ( )x xg E q x E   around the Fermi level of the 

metal can be expressed as 
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The tunneling probability becomes 
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. (4.35) 

 

 

Figure 4-2-2. Electrical potential of the barrier. 
 

Assuming that the barrier shape is triangular (Figure 4-2-2), the resultant potential 

for the triangular barrier at a distance x away from the origin can be expressed as 

( ) B Fmq x q E q x     ,                                     (4.36) 

where ( )q x  is the energy at point x and   is the effective electric field. We also have 

0Bq q Ttun   , so ( )FmT E  can be calculated as 
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The current density then becomes 
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Further calculation of the above equation would be complex.  

A widely used analytical approximation of the field emission was proposed by 

Padovani and Sratton in 1966
80

. A rough criterion to evaluate the relative contributions of 

the components of thermionic emission, field emission and thermionic-field emission can 

be set by comparing the thermal energy kT  with the energy 00E , which is defined as 

00
2 s

q N
E

m 
 ,                                                 (4.39) 

where s  is the dielectric constant of the semiconductor and N is the doping 

concentration of the semiconductor
76

. When 00kT E , thermionic emission is the 
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dominant mechanism. When 00kT E , field emission dominates. When 00kT E , the 

main mechanism is thermionic filed emission. Under forward bias, the field emission 

current can be expressed as 
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[1 exp( )]
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 . Under reverse bias, the field emission current can be 

expressed as 
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The above equation can be used to estimate the field emission current in a Schottky 

barrier. 

 

4.3 Thermionic-Field Emission Theory 

 

 

Thermionic-field emission of electrons takes place when a high electric field is 

applied on a solid body under relatively high temperature. Compared with the sum of the 

thermionic emission and field emission current densities, the current density of the 

thermionic-field emission could be several orders of magnitude larger than it. While field 

emission usually happens near the Fermi level, thermionic-field emission happens at the 

energy between thermionic emission and field emission. The thermally excited carriers 

see a thinner barrier than field emission
81

.  

Figure 4-3-1 shows the thermionic-field emission of electrons in a reverse biased 

Schottky barrier. 
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Figure 4-3-1. Thermionic-field emission in a Schottky barrier that is reverse biased. 
 

 Under forward bias, thermionic-field emission current can be expressed as 
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where 00
0 00 coth( )

E
E E

kT
 . Under reverse bias, the current is given by: 
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where 00

00 00

'
( / ) tanh( / )

E

E kT E kT
 


. The above equations are proposed by Padovani 

and Sratton
80

. They can be used to calculate the current of thermionic-field emission in a 

Schottky barrier. 
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In our nano-LED devices, it is believed that the three mechanisms presented 

above together contribute to the electron transport. However, since the dielectric constant 

of the oxidized ZnO and its temperature are unknown, the dominant mechanism of these 

three cannot be determined.  
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5 DISCUSSIONS 

 

 

Based on the analysis in the previous chapter, the light-emitting mechanisms of 

the nano-LED device and the source of the EL spectrum are going to be investigated in 

this section. When the bias is applied to the Ni-ZnO-Ni junction, electrons and holes are 

injected into the ZnO nanostructure. Photons are emitted from the nanostructure when the 

electrons and holes combine. The EL spectrum is believed to result from some intrinsic 

defects.  

 

5.1 Metal-Semiconductor-Metal Junction  
 
 

For the nano-LED, the Ni on the suspended silicon tips and the ZnO nanostructure 

between the nanogap form a metal-semiconductor-metal (MSM) junction.  

A typical MSM junction can be seen in Figure 5-1-1. 

 

 

Figure 5-1-1. Schematic diagram of a metal-semiconductor-metal junction. 
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Basically, the MSM junction has the structure of two Schottky barriers connected 

back to back. When a voltage is applied, one of the contacts is reverse biased and the 

other is forward biased. As the voltage increases, the depletion widths of the junctions 

(W1 and W2) will also increase until the sum of the depletion widths equals to the length 

of the semiconductor (L) in the middle. The voltage at this point is called reach-through 

voltage. Figure 5-1-2 shows the potential profile of the MSM structure under a bias with 

negative side on the left. The left contact (C1) is reverse biased and the right contact (C2) 

is forward biased
82

. 

 

 

Figure 5-1-2．Potential profile of the MSM structure under bias 
with positive bias on contact 2. 

 

The two contacts share the applied voltage V, with  

1 2V V V                                                      (5.1) 
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As derived before, the current density of C1 due to thermionic emission is 

1/ /2
1 (1 )Bq kT qV kT

nJ A T e e    .                              (5.2) 

The current density of C2 due to thermionic emission is 

2/ /2
2 ( 1)Bq kT qV kT

nJ A T e e    .                             (5.3) 

For current continuity, we will have: 

1 2n nJ J .                                                      (5.4) 

By solving Equation 5.1 and Equation 5.4, the current density can be acquired. 

Before the reach-through voltage, thermionic emission of electrons from C1 is the 

main cause of the current flow. With further increase in the applied voltage, the current 

results from the injection of holes at the forward-bias contact increases rapidly because of 

the lowering of hole barrier. Thermionic emission of the holes from metal to the 

semiconductor constitutes the hole current (Figure 5-1-3). 

 

 

Figure 5-1-3. Hole injection at the forward-biased metal-semiconductor junction. 
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The current density of the hole current at the forward-biased junction can be described by 

the following equation: 

0 2 )( /2
2

B V V

p

q kT
pJ A T e    .                                       (5.5) 

In the case of the Ni-ZnO-Ni junction, the work function of Ni (qΦm) is reported 

to be 5.15 eV. ZnO has the work function (qΦs) of 4.45 eV and the electron affinity (qχ) 

of 4.29 eV
83, 84

. At equilibrium, the depletion width of the Ni-ZnO junction can be 

calculated in the following equation
75

: 
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d

V
W

qN

 
 ,                                                (5.6) 

where 0 5.15eV 4.45eV 0.7eVm sqV q q       , 0

0.7eV
0.7VV

q
  ,

191.6 10 Cq   , 
14

0 8.85 10 F/cm  
 
is the permittivity of free space, 7.8s   is 

the relative dielectric constant of ZnO, and 
17 310 cmdN 

 
is the doping 

concentration of ZnO. So, the depletion width of a Ni-ZnO Schottky diode is 

calculated to be 

14
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77.7nm.
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Since the average size of the nanogaps is less than 100 nm. The Ni-ZnO-Ni junction 

is fully depleted at equilibrium (Figure 5-1-4).  
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Figure 5-1-4. Schematic diagram of the Ni-ZnO-Ni junction at equilibrium. 
 

Figure 5-1-5 shows the energy band diagram of the Ni-ZnO-Ni junction 

under bias. The electroluminescence mechanism is explained in Figure 5-1-6. 

 

 

Figure 5-1-5. Schematic diagram of the Ni-ZnO-Ni junction under bias  
with positive on the right side. 
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Figure 5-1-6. Schematic diagram of the electroluminescence of 
Ni-ZnO-Ni junction under bias. 

 

At the left contact which is reverse-biased, thermionic emission, thermionic-

field emission and field emission result in the electron current. At the right contact 

which is forward-biased, holes are injected from Ni to ZnO due to thermionic 

emission. When the injected electrons and holes combine in ZnO, photons are 

emitted.  

 

5.2 Source of ZnO Spectrum  

 

 

As mentioned earlier, ZnO exhibits dissimilar spectra in different conditions. 

Generally, ultraviolet (UV) near-band-edge emission and defect-related deep level 

emissions are observed from ZnO. The behavior and the position of the deep level 

emissions strongly depend on the growth methods of ZnO, the measurement techniques 



59 

of the spectrum, and specific parameters taken in each experiment by different 

researchers
64-71

. 

The photoluminescence spectra of ZnO are usually found to contain both near UV 

emission and deep level emissions
64-68, 85

.  

Wang et al. have measured the PL spectra from thermal oxidized Zn films 

deposited by filtered cathodic vacuum arc technique. They have observed UV emission 

peak at around 3.3 eV and a green band emission around 2.4 eV when the oxidation 

temperature is under 750 °C and a yellow emission band around 2.1 eV when the 

oxidation temperature is higher than 800 °C. The yellow luminescence is thought to be 

induced by intrinsic defects formed at high temperature
64

.  

Baca et al. have got the UV transition and a strong green band around 2.4 eV from 

ZnO films formed by thermal oxidation of polycrystalline Zn foils
65

.  

The PL spectra obtained by Hsieh et al from ZnO films deposited on SiO2/Si 

substrates by radio frequency (RF) magnetron sputtering have showed both UVemission 

and green emission that is located at 523 nm
66

. By comparing the spectra of the ZnO 

annealed at different conditions, they have concluded that the emission of green light 

results from oxygen vacancies.  

The PL studies of ZnO films made by oxidation of Zn films deposited on fused 

silica substrates by direct current magnetron sputtering are conducted by Cho et al
67

. 

They have observed a single peak around 390 nm that is corresponding to ZnO free 

exciton emission for wavelengths between 370 nm and 675 nm. The defects related deep 

level emission is negligible in their research. 
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Ahn et al. have investigated the PL spectra of ZnO layers grown by various 

methods
85

. For the ZnO film grown by RF magnetron sputtering, the visible emission 

consists of orange-red, green, and violet wavelengths. Oxygen interstitial (Oi), oxygen 

vacancy (Vo) and Zn interstitial (Zni) are responsible for these emissions respectively. For 

the samples grown by MOCVD, blue and green emissions are observed at a low oxygen 

rate while blue and orange-red emissions are observed in oxygen rich conditions. The 

blue emission is thought to be related to Zn vacancy (VZn) and the green and orange-red 

emissions are corresponding to Vo and Oi respectively. The PL spectra of ZnO nanorods 

grown by MOCVD exhibit intense UV emission. The PL spectra of ZnO nanorods grown 

by thermal oxidation show an intense green emission that is associated with Vo. 

The defect emissions from different ZnO nanostructures have been conducted by 

Djurisic et al using photoluminescence measurement method. The ZnO needles show 

orange-red defect emission, the ZnO shells show green defect emission and the ZnO rods 

exhibit yellow defect emission
68

. Possible explanation for the phenomena is that green 

and yellow emissions result from the excitation below the band edge while the orange-red 

emission comes from excitation above the band edge. 

The studies of cathodoluminescence spectra of ZnO are also conducted by many 

researchers
69-71

.  

The CL spectra of ZnO tested by Ohashi et al. consist of green emission at 2.2 eV 

and yellow emission at 2.0 eV
69

. They have claimed that donor-acceptor pair emissions 

involving VZn and lighium (Li) acceptors are attributed to the green and yellow emission 

respectively. 
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Radoi et al. have reported the CL spectra of mechanical milled ZnO samples
70

. 

Near band edge UV emission including shallow levels and dislocation related emission 

and green-yellow band deep level emission have been observed. 

Bano et al. have fabricated Au/ZnO Schottky light-emitting diodes by low 

temperature aqueous chemical methods
71

. EL and CL measurements have been 

conducted to study the optical properties of ZnO. Near band edge emission and a strong 

deep level emission centered at 690 nm exhibit in the CL spectra. The deep level 

emission is related to the defect concentration at the interface and self-absorbed UV 

emission. 

The EL spectrum from Bano’s research shows two deep level emission peaks. 

The green peak located at 533 nm is considered to result from oxygen vacancies and the 

read peak centered at 700 nm is related to zinc vacancies
71

. 

Although a lot of experiments and theoretic works have been done to find the 

origin of the visible spectrum from ZnO, no consensus has been reached
85-91

. More 

research needs to be conducted to solve this problem. 

In crystals, there are three basic classes of defects
92

. Point defects refer to the 

missing atoms or the atoms in irregular space in the lattice. Lattice vacancies, self-

interstitials, substitutional impurities, and interstitial impurities belong to point defects. 

Line defects, also known as dislocations, are groups of atoms in irregular positions. Two 

ideal types are edge dislocation and screw dislocation. In a material, grain boundaries, 

stacking faults and external surfaces are called planar defects.  

Point defects are the most common defects. When atoms change their positions 

frequently and randomly, empty lattice sites are left behind, which are known as 
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vacancies. When the temperature is high, the number of vacancies will be larger because 

atoms will jump between equilibrium positions more frequently. The number of 

vacancies increases exponentially with the absolute temperature and it can be described 

by the following equation: 

exp( / )V S VN N E kT  ,                                          (5.7) 

where VN  is the number of vacancies, SN  is the number of regular lattice sites, and VE  

is the energy required for a vacant lattice site. Interstitials refer to the atoms stay between 

regular lattice sites. Self-interstitial happens when the interstitial atoms and the lattice 

atoms are the same. Smaller foreign atoms such as carbon, nitrogen, hydrogen or oxygen 

atoms are called interstitial impurities. When a matrix atom is replaces by a foreign atom, 

the impurity is called a substitutional impurity. 

The spectrum of nanostructured ZnO is strongly affected by surface defects 

because of the large surface-to volume ratio. ZnO has a relatively open structure. 

Therefore ZnO has many sites to accommodate defects
91

. Zn interstitials are shown to be 

shallow donors. Zn interstitials are not stable at room temperature because they are fast 

diffusers with low migration barrier. It is shown that the oxygen vacancy is a deep donor. 

The level of the O vacancy is calculated to be 0.5-0.8 eV above the maximum value of 

the valence band. Other calculations estimate it to be 1-2 eV below the conduction band 

minimum. Zn vacancies are double acceptors. Calculations find the acceptor levels of Zn 

vacancies to be 0.1-0.2 eV and 0.9-1.2 eV above the valence band maximum. Oxygen 

interstitials are deep acceptors. The transition levels are derived to be 0.72 and 1.59 eV 

above the valence band maximum. Figure 5-2-1 shows some of the defect levels within 

the bandgap of ZnO
85-92

. 
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Figure 5-2-1. Energy levels of native defects in ZnO. 
 

In our research, the EL spectrum exhibits a broad visual band with major peaks 

between 580 nm and 850 nm. It is believed that the visual spectrum is attributed to some 

intrinsic and extrinsic defects such as oxygen vacancies and zinc vacancies. There is no 

near band edge UV emission observed, which maybe because the carrier density in EL is 

lower compared to that in PL. In this condition, the recombination of the carriers at defect 

levels surpasses the recombination of the carriers from the band edge in ZnO. 
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6 CONCLUSION 

 

 

In conclusion, nano-LED devices have been fabricated and investigated. Nanogap 

devices have been fabricated on SOI wafers by optical lithography and two-step KOH 

wet chemical silicon etching. ZnO nanostructures have been synthesized between the 

nanogaps after evaporation of Ni and Zn and the oxidation of Zn. Metal-semiconductor-

metal junctions are formed by Ni and ZnO. Electroluminescence has been observed when 

bias is applied to the device. I-V curve, EL spectrum and EL light intensity of the devices 

have been measured. The structure of the metal-semiconductor-metal junction is depicted 

as two back to back connected Schottky diodes. The electroluminescence mechanism has 

been analyzed.  When electrons from thermionic emission, field emission and 

thermionic-field emission from metal to semiconductor at the reverse-biased junction 

combine with the holes injected to the semiconductor from the metal at the forward-

biased junction, photons are emitted from ZnO nanostructure. The EL spectrum shows 

broad visual band wavelengths. The visual band wavelengths are believed to result from 

intrinsic defects of ZnO such as oxygen vacancies and zinc vacancies. The nano-LED 

devices have many potential applications as light sources in electronics and biomedicine. 

It is also shown that the devices have the possibility to work as single photon emitters for 

quantum computing. 
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7 FUTURE WORK 

 
 

More theoretical and experimental work need to be done in the future to optimize 

the devices.  

Detailed formation of the wavelengths of the spectrum needs to be explored. By 

comparing the spectrum of the devices that oxidized at different temperature for different 

periods of time, various colors of the wavelengths could be related to specific intrinsic 

defects. Devices of adjustable light wavelengths may be realized by controlling the 

parameters of the fabrication process.  

The dominant electron transport mechanism in MSM junctions needs to be 

investigated. According to the theories of thermionic emission, field emission and 

thermionic-field emission, electron transport in Schottky diodes depends on potential 

barrier height, temperature, doping concentration of ZnO, dielectric constant of ZnO, and 

the voltage applied to the junction. With one of the parameters mentioned above varied 

and others fixed, the current density of the three mechanisms may be quantified and the 

dominant mechanism can be determined. 

More research needs to be conducted to increase the quality of the devices, such 

as the stability, reliability, repeatability. For example, the efficiency of the light-emission 

from the device may be improved by choosing better material as the electrical contact for 

ZnO.  
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APPENDIX A   SIMMON’S MODEL 

 

 

The general formula of the tunneling current between electrodes separated by thin 

insulating film is derived by Simmon. 

 

 

Figure A-1. General barrier in insulating film between two metal electrodes. 
 

As can be seen in Figure A-1, the probability ( )xD E  that an electron can 

penetrate a potential barrier with barrier height ( )V x  can be given by the WBK 

approximation: 

2

1

4
( ) exp{ 2 ( ( ) ) }

s

x x
s

D E m V x E dx
h


   , 

where s1 ,s2 are the limits of barrier at Fermi level, and 21

2
x xE mv  is the energy 

component of the incident electron in the x direction. Number of electrons tunneling 

through the barrier from electrode 1 to electrode 2 is given by: 
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1
0 0
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( ) ( ) ( ) ( )

m mv E

x x x x x x xN v n v D E dv n v D E dE
m

   , 

where ( )x xn v dv  is the number of electrons with velocity between xv  and x xv dv  in unit 

volume  and E
m

 is the maximum energy of the electrons in the electrode. The number of 

electrons with velocity between the usual infinitesimal limits in unit volume is given by: 

3

3

2
( ) ( )x y z

m
n v f E dv dv

h
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   , 

where ( )f E is the Fermi-Dirac distribution function. Substituting the polar coordinates 

21

2
r rE mv  and 

2 2 2

r y zv v v  , we will have: 
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In a similar manner, the number of electrons tunneling through the barrier from electrode 

2 to electrode 1 is given by:  
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where V is the voltage across film, e is the electron charge, and h is Plank’s constant. The 

net flow of electrons through the barrier is  

1 2 3
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  , the above equation 

becomes 
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where 1 2    . 

With ( ) ( )V x x   , where   is the Fermi level of the electrode and ( )x  is the 

barrier height, the probability becomes 

2
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4
( ) exp{ 2 ( ) }
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x x
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D E m x E dx
h
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It can be proved that 
2

1

( )
s

s
f x dx f s  , where 

2

1

2

2

1
1 [ ( ) ]

8

s

s
f x f dx

f s
   

  . So we 

will have:  

( ) exp[ ]x xD E A E     , 

where 
2

1

1
( )

s

s
x dx

s
 

   is the mean barrier height above the Fermi level of the electrode 

that is negatively biased and 
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Substituting the above equation in the current density equation gives: 
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The first integral yields 
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The second integral yields 
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Summing these three equations, we will have: 
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For very low voltage, since 0eV  and eV  , above equation becomes 
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Consider a rectangular barrier. As can be seen in Figure A-2, for low voltage 

range ( 0V  ), s s  , 0  , and 1  . Substituting these values gives: 
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For high voltage range, 0 /s s eV  , 0
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(a) 

 

(b) 
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(c) 

Figure A-2.Rectangular potential barrier in insulating film between metal electrodes for: 

(a) 0V  ; (b) 0 /V e ; (c) 0 /V e . 

 

According to Simmon’s model, if the size of the insulator, the potential barrier 

height, and the junction area are known, the current can be calculated with respect to the  

voltage applied.  

 

Reference:  

 

[1] John G. Simmons. “Generalized Formula for the Electric Tunnel Effect between 

Similar Electrodes Separated by a Thin Insulating Film.” J. Appl. Phys. vol. 34, pp. 

1793-1803, 1963. 
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APPENDIX B  THE MATLAB PROGRAM TO CALCULATE THE SIZE OF THE 

NANOGAP 

 

 

A MATLAB program has been made to plot the tunneling current based on 

Simmon’s model. If the I-V curve of a device is measured, the size of the insulator 

between the electrodes can be estimated by fitting the data with the program. Therefore, 

the size of the nanogap can be obtained.  

To check if the program can accurately calculate the tunneling current, the 

program has been used to plot the data of other researchers’ work. 

A junction formed by Al and AlOx has been made by Schaefer et al. The junction 

has the area of 3*10
-7

 cm
2
. The barrier height is 1.4 eV. The size of the barrier is 1.8 nm. 

Figure B-1 shows the I-V curve and the fittings of the Simmon’s equation to the data 

presented in the paper. Figure B-2 is the plot of the I-V curve calculated by the 

MATLAB program in this thesis using the same parameters. As can be seen in the figures, 

the shape of the two plots and the current values are very similar. 

 

 

Figure B-1. I-V curve measured at room temperature and fittings of  
Simmons’ equation of the AlOx tunneling barrier. 
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Figure B-2. I-V curve of the AlOx tunneling barrier plotted by the MATLAB program. 
 

Fan et al. have fabricated a tantalum (Ta) granular oxide-metal junction. The 

barrier height is 0.56 eV.  The junction has the area of 15 nm
2
. The size of the barrier is 

1.787 nm. Figure B-3 shows the experimental and calculated I-V curve of the junction 

presented in the paper. Figure B-4 is the I-V curve plotted by the MATLAB program 

using the same parameters. The plot in the Figure B-4 is very close to the experimental 

data in Figure B-3 in the low voltage range. 
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Figure B-3. The experimental and calculated I-V curve of the Ta oxide-metal junction. 
 
 

 

Figure B-4. I-V curve of the Ta oxide- metal junction calculated by the MATLAB program. 
 

Based on the comparison of the experimental data and the calculated I-V curve 

plotted by the MATLAB program, it can be concluded that the program can work 
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effectively to plot the I-V curve of a metal-insulator-metal junction and the size of 

between the metal electrodes can be estimated as well.  

 

Reference: 

[1] D M Schaefer, P F P Fichtner, M Carara, L F Schelp, and L S Dorneles. “Dielectric 

breakdown in AlOx tunnelling barriers.” J. Phys. D: Appl. Phys., vol. 44, no. 13, 

135403, 2011. 

 

[2] Wenbin Fan, Jiwei Lu, and Stuart A. Wolf. “Electron conduction in lateral granular 

oxide-metal tunnel junctions.” Appl. Phys. Lett., vol. 97, no. 24, 242113, 2010. 
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APPENDIX C  THE CODES OF THE MATLAB PROGRAM 

 

 

clear all; 

syms a b c d f g e h s  V1 V2 V3 phi beta m  J1 J2 J3 a b c d; 

e = 1.6*10^(-19);  %C electron charge% 

h = 6.63*10^(-34);  %J/s planks constant% 

phi = (1.4)*1.6*10^(-19);  %J barrier height% 

s = 1.8*10^(-9);  %m gap size% 

m = 9.11*10^(-31);  %kg electron mass% 

beta = 23/24; 

A = 3*10^(-7)*10^(-4);%m^2 junction area%  

V1 = 0:0.001:0.02;      %V low voltage range% 

V2 = 0.02:0.001:1.4; %V medium voltage range% 

V3 = 1.4:0.001:1.8;      %V high voltage range% 

  

a = e/(2*pi*h*s^2); 

b = -4*pi*s/h; 

c = sqrt(2*m*(phi-e*V2/2)); 

d = sqrt(2*m*(phi+e*V2/2)); 

f = e^3/(4*pi*h*phi*s^2*beta^2); 

g = -4*pi*beta/e/h*m^(1/2)*phi^(3/2); 

  

J1= sqrt(2*m*phi)/s*(e/h)^2*V1*exp(b*sqrt(2*m*phi)); % current density - low voltage%  

J2 = a*((phi-e*V2/2).*exp(b*c)-(phi+e*V2/2).*exp(b*d)); % current density - medium 

voltage% 

J3 = f*(exp(g*s./V3)-(1+2*e*V3/phi)*exp(g*s*sqrt(1+2*e*V3/phi)/V3)).*V3.^2; % 

current density - high voltage% 

  

I1 = J1*A; %  current- low voltage% 

I2 = J2*A; %  current - medium voltage% 

I3 = J3*A; % current - high voltage% 

 

labelFontSize = 20; 

numberFontSize = 20; 

markerSize = 2; 

lineWidth = 2; 

  

hold on; 

  

plot(V1,I1,'r.-','LineWidth',lineWidth,... 

            'MarkerSize',markerSize),grid on; % I-V  low voltage%  

plot(V2,I2,'b.-','LineWidth',lineWidth,... 

            'MarkerSize',markerSize),grid on; % I-V  medium voltage% 

plot(V3,I3,'g.-','LineWidth',lineWidth,... 

           'MarkerSize',markerSize),grid on; % I-V  high voltage% 
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