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ABSTRACT 

SYSTEMS IDENTIFICATION OF  
SENSORIMOTOR CONTROL  

FOR VISUALLY GUIDED  
WRIST MOVEMENTS 

 
 

Chintan Poladia, B.S. 
Department of Biomedical Engineering 

Master of Science 

The sensorimotor control system is a complicated system in which the neural 

controller uses the feedback information from sensory modalities (visual, proprioceptive, 

vestibular, auditory, etc.) to actuate the musculo-skeletal system in order to execute 

intended movements. It has been an ongoing research to decode this sensorimotor 

integration. The current study utilized a systems identification approach in conjunction 

with a one-degree-of-freedom robotic manipulandum to quantify (delays, noises, wrist 

dynamics and controller parameters) a simplified (linear time-invariant) model of 

sensorimotor control for visually guided wrist stabilization movements.  

Four sensorimotor tasks were used to characterize the parameters of the 

sensorimotor control model. Open loop visual and proprioceptive delays along with 

effective feedforward delay (associated with motor processing and feedforward 

conduction) were estimated from subject’s response to perturbation (Exp. 1) using cross-

correlation analysis. Multiplicative feedforward (motor) noise was estimated by 

measuring the force variability in isometric torque contractions at 5 different torque 

levels (Exp. 2). Frequency response analysis (Exp.3 and 4) was used to obtain estimates 

of wrist dynamics (inertia, viscosity and stiffness), the feedback (visual and 



 
 

proprioceptive) gains, the controller gains (proportional, integral and derivative) and an 

additive sensory noise. The experimental paradigms were validated by simulating and 

testing the experimental task along with the sensorimotor control model in SIMULINK®. 

The ability of the experiments to characterize the model was tested over a range of 

parameter values to determine the robustness of the approach. Model performance was 

measured by characterizing the sensorimotor control system in 11 subjects. Variance 

Accounted For (VAF) by the model was used as a performance metric to compare 

model’s response (obtained using the parameters measured for each subject in the model) 

with subject’s performance (Exp. 5). 

The proposed model of sensorimotor control contained 13 parameters, which 

were measured successively to study their interaction during wrist stabilization in 11 

neurologically-intact subjects. The model parameters estimated for human subjects 

resulted in accurate predictions of hand position, with a high percentage of variance 

accounted for (VAF) across all subjects (78.3±3.3 %). Future studies will use these 

techniques to quantify how the sensorimotor control changes across tasks (tracking vs. 

stabilization), age and neuro-motor disabilities. 
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1 INTRODUCTION & SPECIFIC AIMS 

Sensorimotor control for posture and goal-directed movement is central to our 

ability to carry out activities of daily living (ADL), such as grasping and/or reaching for 

an object, driving, drinking and writing. Accurate and efficient execution of the 

stabilizing and tracking movements underlying such activities relies on feedback from 

sensory modalities (visual, proprioceptive, vestibular, auditory, etc.) to enable on-line 

corrections to errors in intended movement and changes in the environment. Deficits in 

the propagation and integration of sensory information to control movement can result in 

functional motor impairment within specific patient populations (e.g.  Multiple Sclerosis 

(MS)). Thus, developing targeted treatments and therapies to improve ADLs requires a 

more detailed understanding of how the neural systems that implement sensorimotor 

control interact to produce smooth and precise movement across tasks and within 

neurologically intact subjects.    

From the standpoint of control systems theory, sensorimotor control can be 

modeled in its simplest form as a negative feedback system consisting of a feedforward 

path and multiple feedback paths. Hitherto, investigators have developed qualitative 

models of sensorimotor control (Kawato 1999; Miall et al. 1993b; Wolpert and Miall 

1996a; Mehta and Schaal 2002), but few have attempted to systematically quantify the 

parameters that characterize the model (Peterka 2002; Schouten et al. 2008). The current 

study builds on the generalized sensorimotor control framework proposed for goal-

oriented stabilization and tracking (Miall et al. 1993b; Wolpert and Miall 1996a; Mehta 

and Schaal 2002; Peterka 2002) to develop a linear time-invariant model of sensorimotor 

control during visually guided wrist stabilization. 
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In the current study, a systems identification approach was developed to 

experimentally measure the temporal delays, internal noises, feedback gains, neural 

controller, and wrist dynamics that characterize sensorimotor control in human subjects. 

In a series of visually-guided wrist stabilization tasks, subjects used a one-degree-of-

freedom robotic manipulandum to maintain a user-controlled cursor on a visual target in 

the presence of externally applied perturbations. Cross-correlation and frequency 

response function analyses across experimental conditions were then used to estimate the 

parameters of the 1-D model of wrist control developed in parallel with the experiments. 

Accordingly, the aims of the research were: 

Aim 1: Develop a model of sensorimotor control for 1-D wrist movement. 

Aim 2: Use system identification techniques to develop a set of visuo-motor control tasks 

that can be used in conjunction with the model and a 1-D robotic wrist manipulandum to 

characterize sensorimotor control in neurologically-intact subjects.  

Aim 3: Validate the model and the subsequent experimental approach by comparing the 

results of subjects obtained experimentally with those obtained from model simulations 

on an individual performance basis. 

In the future, the methodological approach developed here will be used to 

characterize the sensorimotor control system in neurologically impaired patients (MS 

with tremors). Significant deviations in the parameter estimates of the patient population 

could help discern the underlying source(s) of tremor.  
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2 BACKGROUND & SIGNIFICANCE 

2.1 Motivation  

Human sensorimotor control is a highly complex system capable of performing 

goal-oriented movements with multiple degrees of freedom. To achieve smooth and 

precise movement, the brain utilizes feedforward planning and sensory feedback (visual, 

proprioceptive, vestibular, auditory etc.) of the intended movement, to actuate the 

musculo-skeletal system and make online corrections during movement. Multiple brain 

areas are involved in this process including the visual, somatosensory, parietal, pre-

motor, and motor areas of the cerebral cortex, cerebellum, spinal cord, basal ganglia and 

thalamus. The sensory information (about the location of the limb) processed by the brain 

then drives multiple groups of muscles to perform an intended movement. The accuracy 

and precision of the control system is time-varying as it changes with age, training and 

adaptation (Miall and Jackson 2006; Bock and Girgenrath 2006). Owing to input from 

multiple feedback modalities, multiple muscle groups involved in making the movement 

and various regions of the brain involved in processing, the sensorimotor system is, in its 

most general form, a highly complex, nonlinear time varying system.  

Of particular interest to a number of researchers has been to develop quantitative 

models of sensorimotor control and its interaction with physical systems. Early studies 

were focused on the development of human operator control models to explain the 

behavior of pilot-vehicle control systems (McRuer and Krendel 1959). The purpose of 

these models was to understand the control actions of the pilot, such that it could be used 

in conjunction with vehicle dynamics in forming predictions.  Other studies were more 

general wherein they modeled human operator dynamics to predict human performance 



16 
 

to different tracking tasks (Osafo-Charles et al. 1980; Shinners 1974). 

More recently, research has shifted toward characterizing sensorimotor control 

associated with activities of daily living The main motivation underlying most of these 

studies has been to decipher the function (sensorimotor integration, limb trajectories, 

interaction forces, joint torques, stability, muscle activations) of the complex system 

under different task conditions (Kawato 1999; Mehta and Schaal 2002; Peterka 2002; 

Flanders and Cordo 1989; Harris and Wolpert 1998; Wolpert et al. 1995). Other studies 

have focused on understanding the changes in control strategy that occur in response to 

neurological impairment (Beppu et al. 1984; Feys et al. 2003a; van Donkelaar and Lee 

1994) and developing focused rehabilitation strategies to account for dysfunctional 

behavior (Morgan et al. 1975; Kotovsky and Rosen 1998; Rocon et al. 2004). Hitherto, 

these studies have developed simplified qualitative models of the system (Kawato 1999; 

Miall et al. 1993b; Mehta and Schaal 2002; Miall and Reckess 2002; van Beers et al. 

1999; Wolpert and Miall 1996b), but few have attempted to fully quantify the parameters 

that together characterize the model (Peterka 2002; Schouten et al. 2008).  

Results from previous studies suggest that as a first order approximation, 

sensorimotor control can be considered to be a linear system (Mehta and Schaal 2002; 

Peterka 2002; Schouten et al. 2008; Fitzpatrick et al. 1996).  The current study builds on 

this approach to define and quantify a simplified (linear time-invariant) 1-D model of 

sensorimotor control during feedback stabilization of wrist position For the purpose of 

our model, the following simplifying assumptions were made: i) the system was 

considered to be a time-invariant such that learning or adaptation was minimized during 

an experimental session; ii) subjects’ performance was ergodic; iii) system properties 
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(e.g., conduction delays, noise sources) could be expressed as a single lumped parameter; 

iv) to a first order approximation, sensorimotor control could be modeled as linear 

system.   

  Relative to the shoulder and elbow joints, the selection of the wrist joint as a 

model to characterize sensorimotor control offers several advantages, including 

simplicity in devising the experimental setup and ease in performing 1-D movements. An 

additional advantage is that it is a more distal joint, and impairments such as tremor are 

disproportionately larger in the distal limb (Deuschl et al. 1998; Smaga 2003). Thus, the 

use of wrist movement to characterize a model for sensorimotor control will enable future 

studies to investigate the impact of such impairments on 1-D movement control.   

2.2 Visually-guided posture stabilization and goal-directed movements 

Hogan and Sternad have recently provided clear definitions of two distinct motor 

behaviors, limb posture stabilization and goal-directed movements (Hogan and Sternad 

2007). The tasks we are studying in these experiments is one of posture stabilization 

where an external stimulus drives the hand and/or the cursor representing the location of 

the hand from its intended target. As we will show, subjects respond by performing 

discrete corrective actions or in terminology of Hogan and Sternad, by performing goal-

directed movements. 

Daily activities including writing, drinking, reaching for an object, and using a 

computer mouse, can be classified as visually-guided goal-directed movements involving 

the use of sensorimotor control. From the viewpoint of control system theory, a visually-

guided goal-directed movement can be separated into two control phases: i) an initial 
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feedforward phase, which brings the limb to a position in the neighborhood of the target; 

ii) followed by a feedback directed phase, in which the limb homes in on the target 

(Woodworth 1899; Elliott et al. 2001; Ghez et al. 2007; Scheidt and Ghez 2007). During 

the feedforward phase, pre-planned movements are made by the limb and accompanied 

by movements of the eye, while during the feedback phase, movements are adjusted to 

compensate for errors in position (and/or velocity) detected via the sensory pathways 

(e.g., visual and proprioceptive).  

2.3 Sensory feedback for goal-directed movements 

Typically, an eye movement precedes the motion of the limb (Helsen et al. 1998) 

in order to bring the region of interest (external environment) into the foveal vision 

(Binsted and Elliott 1999). The information (about the external environment) flashed onto 

the retina in the form of patterns of lights is then converted into neural impulses which 

are processed in a hierarchical fashion by the eye, lateral geniculate nucleus, striate and 

extrastriate visual cortices, and subsequently used by higher brain areas to guide 

movement. During the movement, proprioceptive signals encoding the spatial location of 

the limb are fed back to the somatosensory cortex to update the intended movement. The 

visual and proprioceptive sensory modalities are the two primary sources for providing 

feedback during visually-guided goal-directed movement which is in turn compared to 

the desired movement to generate an error signal that is used by the neural controller to 

achieve the desired movement. For visually-guided movements, visual feedback plays a 

greater role in updating movement than proprioceptive feedback (Boff et al. 1986). 

However, it is still not clear how these weightings are assigned to each path. The 

weighting could depend on the precision of the information in each modality (van Beers 
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et al. 1999; Pick et al. 1969; Welch et al. 1979) or may be a function of the attention 

directed to each modality (Kelso et al. 1975; Uhlarik and Canon 1971; Warren and 

Schmitt 1978). Other studies have shown that the weightings change based on the 

experimental condition suggesting a dependence on the task at hand (Mon-Williams et al. 

1997; Plooy et al. 1998).  

Delay and noise are inherent properties within any physiological system including 

sensory processing. Prior to its use in motor action, the incoming sensory information is 

delayed.  The feedback delay, i.e. the delay in the incoming sensory information prior to 

its involvement in computing motor action, encompasses afferent delays associated with 

the propagation of signals from the peripheral nervous system and the delays associated 

with processing the sensory information in the cortex. Feedback delays typically range 

from 80-150 ms for proprioceptive control (Flanders and Cordo 1989; Paillard 1996) and 

200-500 ms for visuomotor control (Flanders and Cordo 1989; Paillard 1996; Keele and 

Posner 1968). Additionally, the representation of high-level spatial information within 

sensory systems is not exact.  Variations in the neuronal representation associated with 

nonlinear transduction, synaptic transmission and network (neuron) interactions (Faisal et 

al. 2008), as information propagates through sensory subsystems can manifest as 

uncertainties in sensory feedback estimates of position and velocity during goal-directed 

movement and can be attributed to the presence of noise sources within the sensory sub-

systems (Izawa and Shadmehr 2008).  

The current model is based on an implicit assumption that the position 

information propagated through the feedback paths consists of four components: an 

unbiased estimate of the limb’s actual position, lumped parameter models of the 
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propagation delays and additive internal noise sources within each path, and a gain 

(weighting) reflecting the relative contribution of different sensory sources to the position 

estimate. The current study aims to quantify these parameters in order to understand the 

interactions that occur between sensory feedback paths during the control of movement.  

2.4 Feedforward path 

Figure 2.1 shows a simplified block-diagram representation of the sensorimotor 

control system comprised of visual and proprioceptive feedback path and a feedforward 

motor path. In the model, the integrated feedback information is used by the neural 

controller (representing areas of the brain involved in error processing and initiation of 

corrective movement) to generate a set of motor commands to the muscles around the 

joint whose patterns of contraction produce the desired movement. Studies have shown 

- 

Proprioceptive 
Feedback 

+ 

+ 

+ 

Visual 
Feedback 

Neural  
Controller 

Controlled  
Object 

Motor Noise 

Actual 
Movement Desired 

Movement 

Feedforward Path 

Figure 2.1 Simplified block diagram representation of sensorimotor control. The 
current state of movement is measured by the sensory modalities (visual and 
proprioceptive) and combined to generate an estimate of the actual movement. The 
sensory estimate is compared to the desired or intended movement and the resulting 
error is processed by the neural controller to produce a set of motor commands to 
achieve the desired movement. 
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that in its most basic form, the feedforward path is comprised of a controller 

(corresponding to the cortical processing of and in-line correction for perceived error), 

the plant or controlled object (corresponding to the limbs and their mechanical 

environment) and the conduction delay associated with the time taken for the motor 

commands to reach the plant from the controller (Peterka 2002; Izawa and Shadmehr 

2008; Wolpert et al. 1998). Trial-by-trial variability in performing the same movement 

has been observed in a number of studies (Harris and Wolpert 1998; Jones et al. 2002a; 

van Beers et al. 2004) suggesting the presence of a (motor) noise source within the 

forward path between the neural controller and the plant (limb). The current study 

incorporates these elements into the sensorimotor control model and estimates the 

controller parameters, limb (wrist) dynamics and motor noise to characterize how they 

change across neurologically intact subjects and task conditions.  

2.5 Forward Model 

Owing to what are relatively large propagation and processing delays, if one were 

to rely solely on sensory feedback to control movement, fast movements such as catching 

a moving ball would not be possible. Understanding how the relative slowness of sensory 

feedback can be used for precise control has been the area of active research since 

Woodworth (1899) first proposed dissociating the target-directed movement into 

feedforward (ballistic) and feedback phases. Over the last three decades, studies to 

dissociate the role of feedforward and feedback paths in the execution of goal-directed 

movement have suggested the involvement of prediction mechanisms to compensate for 

the inherent delays in sensorimotor processing (Kawato 1999; Miall et al. 1993b; Wolpert 

et al. 1995; Wolpert et al. 1998). The prediction mechanisms, generally referred to as a 
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“Forward Models” (Mehta and Schaal 2002; Wolpert and Miall 1996b), models the 

behavior of the sensorimotor system to provide a noiseless estimate of  predicted position 

and/or velocity using an efference copy of the motor commands sent to the controlled 

limb (Wolpert and Miall 1996a). The predicted output is compared to the actual feedback 

response and if the two position estimates are not matched, a new set of motor commands 

based on the error between the two estimates is generated to correct for erroneous 

movement and stabilize the system. The advantage of this type of predictive system is 

that it eliminates the effect of feedback delays by predicting the output of the feedback 

system, thereby making it possible to generate faster movements.  

Neural implementation of the forward model has been attributed to the cerebellum 

(Miall et al. 1993b; Ito 1970). Cerebello-cortical circuits have also been shown to play an 

important role in the coordination and on-line control of visually guided movements 

(Miall and Reckess 2002; Stein and Glickstein 1992), especially in processing sensory 

information for, and resulting from, motor action. This has led to speculation that 

cerebellar systems may act as a comparator, contrasting intended movements with actual 

movement. Impairment of the cerebellum by disease can lead to improper functioning of 

the sensorimotor control system as a whole, potentially causing unstable movements. 

This is consistent with the reports of patients with cerebellar damage who have impaired 

goal-directed arm movements (Beppu et al. 1984; van Donkelaar and Lee 1994). As part 

of the research we test the assumption (based on previous literature) that the inclusion of 

the forward model acts to stabilize the system and successfully replicates human 

performance during a wrist stabilization task.   
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2.6 Current study 

In parametric studies of sensorimotor control, research has typically focused on 

specific aspects of sensory (van Beers et al. 1999) and motor (Jones et al. 2002a; Notley 

et al. 2007) systems while others have used an indirect approach to estimate the 

parameters of the system (van Beers et al. 1999).  Peterka (2001) proposed a system 

identification approach to characterize sensorimotor control for the maintenance of 

whole-body posture during stance. His model was structurally similar to that proposed 

here, however, it did not incorporate internal noises sources within the sensorimotor 

control system or attempt to isolate and estimate the delays within sensory feedback 

paths.  

In the current study, we propose a detailed model of single-joint (1-D) 

sensorimotor control that builds on and extends the techniques developed by Peterka 

(2002). We employ system identification techniques to experimentally characterize the 

parameters of the model control system. Through a series of computer simulations we 

first validate the experimental approach by comparing the known values of the 

parameters used in the model with those estimated through simulation of the experiments 

and data analyses. The ability of the experiments to characterize the underlying model 

parameters was subsequently tested over a range of values to quantitatively determine the 

robustness of the experimental and analytical techniques. Finally, the basic structure of 

the model was validated by fully characterizing the sensorimotor control system in 11 

subjects and measuring the Variance Accounted For (VAF), obtained by comparing the 

parameter–matched responses of the model with each subject’s actual performance. 
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2.7 Methodology  

Previously, a system identification approach has been used to quantify the 

contribution of sensory information to postural control (Peterka 2002) and proprioceptive 

reflexes during human arm control (Schouten et al. 2008). In system identification, an 

external disturbance (input to the system) is applied and the system’s response (output) to 

the disturbance is measured to identify the transfer function that parametrically relates the 

input to the output. Here, a grey box modeling approach was used, since a mathematical 

relationship between the input and the output was assumed. The general structure of the 

model was derived from the sensorimotor literature (Kawato 1999; Miall et al. 1993b; 

Peterka 2002; Flanders and Cordo 1989; Beppu et al. 1984) and the mathematical 

relationship was formulated from the resulting control model. In grey box modeling, the 

parameters of the model are treated as free variables and estimated using either time-

domain or frequency-domain analyses. In the current study, a time domain cross-

correlation analysis was used for the estimation of system delays, while a frequency 

response function analysis was used to estimate other system parameters. 

Tracking paradigms have been used previously to characterize human postural 

control (Peterka 2002), to measure adaptation in the subjects’ response to delayed visual 

feedback (Foulkes and Miall 2000), and to study intention tremor in Multiple Sclerosis 

patients (Feys et al. 2003a). The advantage of choosing a tracking paradigm is its 

similarity (in terms of the strategy used) with activities of daily living. Furthermore, it 

provides unmatched simplicity in terms of experimental setup and input signal 

implementation. Two kinds of tracking tasks have been reported in literature; pursuit 

tasks (Miall and Reckess 2002; Foulkes and Miall 2000; Feys et al. 2003b), wherein the 
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subject tracks a moving target, and compensatory tasks (Peterka 2002; Schouten et al. 

2008; Miall and Jackson 2006), wherein the error between the input and the output is 

displayed, and the subject’s task is to minimize the error. In the compensatory task 

(referred to subsequently as a stabilization task), the target is normally held static. Such 

tasks have been extensively studied for the purposes of modeling pilot-vehicle systems in 

which the pilot produces a control action based on the displayed error between a desired 

command input and the comparable vehicle output motion (McRuer et al. 1965); and also 

for modeling human operator performance (Osafo-Charles et al. 1980; Shinners 1974). 

Here we employ a similar methodology to characterize stabilization about the wrist 

through the introduction of continuous sensory perturbations that cannot be predicted á 

priori.  

The current study develops methods to experimentally characterize sensorimotor 

control through a series of four experiments which were designed to be similar in nature. 

External random perturbations were either introduced to the visual cursor (representing 

the limb position) or to the hand via a robotic manipulandum (force perturbation) and 

subjects were required to correct for the perturbation in order to place the cursor on a 

static target. Continuous perturbations were chosen over impulse perturbations to 

eliminate transient response effects and to constantly engage subjects in performing 

continuous online corrections.  

2.8 Significance 

Our results show that wrist stabilization using visual and proprioceptive feedback 

is essentially a linear process over the range of movements examined. This study also 

provides quantitative measures of the model parameters (delays, motor noise, feedback 
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gains, wrist dynamics and controller gains) associated with 1-D wrist stabilization. This 

study provided a better understanding of sensorimotor processing and integration, and 

demonstrated that the system for neurologically-intact subjects was inherently stable.   

The techniques developed here to characterize wrist stabilization can be extended 

to other tasks and movement conditions - to compare and differentiate the strategies used 

for different tracking paradigms (pursuit tracking vs. compensatory tracking), study 

sensorimotor integration in 2-D movements, characterize the effects of age on 

sensorimotor control and to create humanoid robotic applications. In the long term, the 

above approach will be used to characterize the contributions of impaired sensory and 

motor processing to the phenomena of instability (in form of tremors) during goal-

directed movement. Significant deviations in the parameter estimates of the patient 

population could help discern the underlying source(s) of tremor. This information could 

then be used to develop focused intervention and rehabilitation strategies for patients with 

movement disorders. 

2.9 Workflow of the Thesis 

The entire project was divided into different stages. The first stage was aimed 

towards developing the sensorimotor control model and a set of visuo-motor tasks that 

could be used in conjunction with 1-D robotic manipulandum to quantify the parameters 

of the model. The design and development of experimental tasks was an iterative process 

wherein an experiment was designed and tested via simulation using SIMULINK® until 

the error in the parameter estimation was within a predefined bound (of ± 25%). Pilot 

data was then collected on human subject to assess the sensorimotor control model and 

modifications were made in the model if its performance (measured in form of Variance 
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Accounted For (VAF) by the model) was not good (< 60%). Once the experimental tasks 

and the model were finalized, data was collected from a group of neurologically intact 

subjects to quantify the parameters of the sensorimotor control system. The model’s 

performance was then evaluated by comparing each subject’s performance with the 

model’s prediction (obtained using the estimated parameters from the subject) to the 

same perturbation sequence. Finally, the robustness of the experimental paradigms was 

tested via simulation over a range of parameter values encompassing the experimentally 

measured parameter estimates. 

2.10 Thesis Layout 

As part of the Methods, Chapter 3 details the proposed model, the experimental 

setup used and the experimental design structure. During the process, all experimental 

paradigms were designed and tested first, followed by human data collection. However, 

in order to maintain a proper flow and for better understanding, each experiment 

(Chapters 4-7) is presented separately as a chapter. Within each chapter, a detailed 

description of the experimental task and data analysis is followed by simulations and 

experimental results (of one representative subject) and discussion. In Chapter 9, the 

proposed model’s performance is evaluated by comparing its response to the human 

response.  A separate discussion of the overall model, its importance and possible 

applications is presented as an additional chapter (Chapter 10). Results of the EMG 

analysis and future directions are presented in Chapter 8 and 11 respectively.  
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3 METHODS 

3.1 Dual Feedback 1-D Model 

To characterize the contribution of visual and proprioceptive pathways to motor 

control, a feedback model of 1-D wrist movement is proposed whose parameters were 

measured experimentally.  

The “dual feedback” model (Figure 3.1) uses negative feedback from two sensory inputs, 

visual and proprioceptive, to determine the position of wrist at any point of time. The 

visual system provides feedback of the wrist position based on the location of a cursor 

presented on a computer screen. The proprioceptive system on the other hand is an 

Figure 3.1  “Dual Feedback” model of sensorimotor control for 1-D wrist 
movements. The model consists of two sensory feedback paths (visual and 
proprioceptive). Each feedback path consists of a weight (Kv, Kp) and delay (Tv, Tp). A 
common block of additive noise was incorporated to represent cumulative sensory noise 
(σS

2). The feedforward path consists of neural (PID) controller, signal dependent 
feedforward noise (α), conduction delay (Tff), plant (wrist) and a forward model. θd(t) 
and θa(t) indicate desired and actual movements respectively. External perturbations, 
Dext(t), were added to the cursor or the manipulandum depending upon the type of 
experiment.  
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Figure 3.2 Neural Controller 

interoceptive sense, which provides feedback of the wrist position based on the signals 

sent by the stretching of muscles. Each feedback path has a delay (T) and a weight (K) 

associated with it. The sensory noise (σS
2) is a lumped parameter that incorporates the 

cumulative noise within the feedback paths. In the current study, the sensory noise has 

been modeled as an additive source. The sum of the feedback weights is constrained to 

one, forming a unity-gain feedback system. The estimate of wrist position, θest(t),  

obtained from the feedback paths is compared to the desired wrist response, θd(t) to form 

an error signal, e(t), which forms the input to the feedforward path. The feedforward path 

consists of a controller (PID), multiplicative motor noise (α), feedforward conduction 

delay (Tff) and plant characterizing the dynamic properties of the wrist (inertia, J; 

viscosity, B; stiffness, K). The forward model acts as a prediction mechanism for making 

fast movements. The subject’s task was to stabilize the wrist in the presence of externally 

applied perturbations, Dext(t). 

3.1.1 Neural Controller 

Neural controller is part of the central nervous system which processes the error 

information of the limb and is involved in initiation of a movement. The neural controller 
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was modeled as a proportional-integral-derivative (PID; Figure 3.2) controller to allow 

simultaneous correction of transient response properties and steady state error. A PID 

controller attempts to correct the error, e(t), between a feedback signal and a desired 

response by generating a controlling torque signal, M(t), to the plant such that the error is 

reduced. The transfer function of the neural controller is 

�������� �  �	�
� ��� � �� �                           eq. (1) 

where Kd, Kpr and Ki correspond to the derivative, proportional and integral gains 

respectively.  

3.1.2 Plant 

Second order models have been used successfully to replicate the performance of 

1-d joint movements (Becker and Mote 1990; Bennett et al. 1992; Grey 1997). In this 

study, the flexion-extension movement of the wrist (plant) was modeled as a linear 

second order system having inertia, viscosity and stiffness. The parameters of the model 

were assumed to be constant over the time duration of the experiments. The net muscle 

torque sent from the neural controller is transformed by the plant into actual wrist 

position, θa(t) , by the transfer function  

��������� �  � ��
� �� � �                                             eq. (2) 

where J is moment of inertia, B is viscosity and K is stiffness of the wrist joint. 

3.1.3 Signal Dependent Feedforward Noise (α) 

The signal dependent feedforward noise was modeled as a multiplicative noise 
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(Harris and Wolpert 1998) which scaled linearly with the applied torque (Jones et al. 

2002a).  For the same task (for e.g. reaching) performed multiple times, the torque 

generated at the limb joint will thus be a stochastic variable whose variance is a function 

of the applied torque.  

3.1.4 The Forward Model 

The forward model compensates for the time delays in the system by predicting 

the output of the feedforward path based on the current command and an estimate of 

current plant state (e.g. ��). This type of predictive mechanism is common in systems 

with long feedback delays. In the brain, the existence of such mechanisms can be 

illustrated by the ability to catch a moving ball. Catching a ball can be considered in the 

context of a visually-guided tracking task in which the moving ball is the visual target. 

Sensory feedback of the target position is delayed due to visual information processing 

and feedback of the hand position relative to target is only available to the brain after this 

processing delay. Nevertheless, subjects are able to make a fast arm movement in order to 

catch the ball suggesting presence of prediction mechanisms. The brain could have 

multiple forward models for motor planning and online movement correction (Miall et al. 

1993b); however in our model the prediction mechanism is associated with instantaneous 

online correction of limb position (rather than motor planning).  

Several studies have proposed cerebellum as the underlying neural substrate for 

making feedforward predictions in visually guided tasks (Miall et al. 1993b; Wolpert et 

al. 1998; Ito 1970). In the current study, the forward model was formed from a cascade of 

two stages (Miall et al. 1993b). The first stage models the Plant, capturing the wrist 

dynamics and providing a prediction of instantaneous wrist position which is negatively 
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fed back to the neural controller. This stage excludes the delays present in the 

feedforward (Tff) and feedback (Tv and Tp) path. The output of the first stage forms input 

to the second stage. The second stage models the feedback gains along with the temporal 

delays (Tff, Tp and Tv) in the system, associated here with feedforward conduction, 

proprioceptive and visual information processing, and provides a delayed prediction of 

the noiseless wrist position. The output of the second stage is delayed and fed back 

positively matching temporally to feedback response. If the prediction is accurate, the 

output of the second stage cancels out the effect of the feedback response, thereby 

producing faster movements. If the prediction is not perfect, the controller generates 

command signals (based on the error between the two responses) to compensate for the 

error and the process continues.  

3.1.5 Transfer Function of Dual-Feedback model 

The overall transfer function relating desired wrist angle, θd(t), to actual wrist 

angle, θa(t) is given as 

����� �  ����� � �����   �!"�   �#$%&'((� )�*   +��   ��   ����   �!"�   �#, 

 -./0��� � �����   �!"�   �#$��1%&�'((�'2��$�)�*   +��   ��   ����   �!"�   �#$,
 34 5���6 7%&'((� 8)�*   +��   ��   ����     �!"�   �# 9 �����   �!"�   �#$��!%&�'((�'���  �1%&�'((�'2��$:�)��   +�   ���)�*   +��   ��   ����   �!"�   �#$ ;              
9 -< � �����   �!"�   �#$%&'((� )�*   +��   ��   ����   �!"�   �#,    

eq. (3) 

The equation can be broken down into four components. The first component 

corresponds to the transfer function associated with desired wrist position, θd(t). The 
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second component corresponds to the transfer function associated with external 

perturbations, Dext(t). The third component corresponds to transfer function associated 

with multiplicative feedforward noise, α, and the forth component corresponds to transfer 

function associated with sensory noise, DS. Here, DS is the average magnitude of the 

power spectrum of sensory noise (σS
2), used to estimate the sensory noise in the model. 

The relationship between the two is explained in detail in section 7.4.1. During 

stabilization against external perturbation, Dext(t), the desired wrist response, θd(t) = 0.  

3.2 Subjects 

Eleven healthy volunteers (3 female; Mean age – 24.3 yrs, SD – 2.1 yrs) 

participated in the study. Nine subjects were right-handed, one left-handed and one 

subject was ambidextrous according to the Edinburgh Handedness Inventory (Oldfield 

1971). Subjects taking psychoactive medications or those with neurological or psychiatric 

disorders were excluded from the normative study. Written informed consent was 

obtained from each subject in accordance with institutional guidelines approved by 

Marquette University and the experiments were performed in accordance with the 

Declaration of Helsinki. 

3.3 Experimental Setup 

All experiments were performed on a custom made robotic manipulandum 

(Figure 3.3). The system consisted of three main components: the robot (which includes 

wrist manipulandum, motors, external frame and instrumentation), the controller (data 

collection, real-time control, and safety monitoring) and the display screen for presenting 

target and cursor. The manipulandum rotated in the horizontal plane about a central axis 

that was aligned with the primary axis of the subjects’ wrist. 
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Figure 3.3 Experimental Setup (Top View). 1-D robot wrist manipulandum rotates in 
the horizontal plane. The rotation of the wrist was transformed into linear horizontal 
motion to control the position of a cursor presented on the display screen. The subject’s 
task was to use the wrist manipulandum to place a user-controlled cursor (red ring) on a 
target (black dot) presented on the display screen. Direct view of the wrist was 
obstructed by an opaque shield. EMG was collected from ten muscles of the upper arm. 

The robotic system recorded wrist position, velocity, and torque and could apply 

user defined torques to perturb wrist position. The wrist manipulandum was a planar one 

degree-of-freedom device that could generate a commanded torque at the handle using a 

DC motor. It consisted of an aluminum handle mounted above a Kollmorgen D061A DC 

brushless torque motor (Kollmorgen Inc., Radford, Virginia) such that the rotational axis 

of the handle and the motor are aligned with the subject’s wrist joint. The DC motor was 

capable of generating 16.9 Nm peak torque at the rotational axis in response to a 

command torque provided by a Kollmorgen Servostar CD motor drive. The motor could 
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be configured to operate in either ‘Position Mode’ or in ‘Torque Mode’ based on the 

movement parameter being controlled. In Position Mode, the motor (along with the wrist 

manipulandum) was either held fixed or moved to a predefined position with a constant 

angular velocity (used to bring the manipulandum to home position before start of each 

trial).  In torque mode, the motor could be rotated freely by the subject using the wrist 

manipulandum (to do tracking or stabilization tasks). In this mode, external torque 

perturbations could be applied to the wrist manipulandum by sending appropriate current 

commands to the motor. The angular position of the manipulandum was measured using 

a 19-bit optical encoder attached directly to the motor shaft. Forces and torques were 

measured at the manipulandum using a six-degree of freedom load cell with analog 

outputs (Model 67M25A-I40-A-200N12, JR3 Inc., Woodland, CA). The load cell 

measured forces in the x, y, and z direction, and moments about the x, y, and z axes. The 

robot housing contained all hardware related to data collection, signal conditioning, real-

time control, and safety monitoring. 

The experiments were controlled via two PCs: a target computer (mounted in the 

robot), which ran XPCTarget® for real-time control/data collection and a host computer 

running SIMULINK® and STATEFLOW®, which provided a GUI for controlling the 

experiment and was used to save recorded data to a file. The target PC communicated 

with the host PC via a dedicated 100Mbps Ethernet connection. Since powerful motors 

were being used with human subjects, it was necessary to take precautions to ensure 

subject safety. Safety features, in the form of electrical limit switches, software disable 

control signals and mechanical stops were implemented to protect the subject from injury 

by disabling the motors if the robot entered an unsafe operating mode or an unexpected 
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control state.  

During the experiments, the subject was seated on a height adjustable chair in an 

upright position. The subject rested his/her lower arm on the 1-D robot with their wrist 

placed on the manipulandum such that the wrist joint and the rotation axis of the 

manipulandum were vertically aligned. A target (black dot) and user-controlled cursor 

(red ring) were presented on a 19” monitor (spatial resolution of 1280 x 1024 pixels and a 

refresh rate of 60 Hz), whose height was adjusted such that the center of the screen was 

aligned with the subject’s normal direction of gaze (Figure 3.3) and was placed at a 

viewing distance of 60 cm. The cursor position was yoked to the angular position of the 

wrist manipulandum controlled by the subject. The subject’s task was to place the cursor 

on the target by flexing and extending their wrist to control the manipulandum. The 

rotational motion of the wrist was translated into horizontal movement on the screen. For 

a viewing distance of 60 cm, the wrist angle of 1 degree corresponded to the visual angle 

of 0.286 degrees on the screen. The lower arm was constrained using three magnetic 

clamps to minimize elbow movement (Figure 3.3). Direct view of the wrist was 

obstructed by means of an opaque screen stand placed between the subject and the robot 

to prevent direct visual feedback of the subject’s wrist position.  

Data was collected at a sampling frequency of 1000 Hz. For each experiment, the 

following data was collected:  input signal (tracking and/or perturbation signal), x(t), the 

position of the wrist manipulandum, y(t), the torque generated at the wrist 

manipulandum, M(t), velocity and acceleration profile of the movement, v(t) and a(t), and 

EMGs from ten arm muscles. Cross-correlation and frequency response analyses across 

experimental conditions were used to estimate the parameters of the 1-D wrist control 
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model and validate the approach in neurologically intact subjects.  All data analysis was 

performed using MATLAB® and Simulink®. 

3.4 EMG Data Collection and Analysis 

During the experimental session, EMGs were recorded from ten arm muscles 

using differential surface electrodes (Delsys DE-2.1 electrodes and Delsys Bagnolli 16 

system; Delsys, Taunton, MA).  The EMG data were collected to measure the degree of 

antagonist muscle co-activity (CoA) at the wrist, elbow, and shoulder joints for each 

subject across different experimental conditions. Muscle CoA increases the stiffness in 

the joint (Kornecki 1992). CoA was estimated for two purposes; first was to make sure 

that the subjects’ were not co-contracting (or stiffening their wrist joint) during the tasks 

and second was to compare the CoA of the wrist muscles across experimental conditions 

to verify the homogeny of the dynamic properties of the wrist.  

The monitored muscles included wrist extensors and flexors (flexor carpi radialis 

(FCR); flexor carpi ulnaris (FCU); flexor digitorum superficialis (FDS); extensor carpi 

radials (ECR); extensor carpi ulnaris (ECU); and extensor digitorum communes (EDC)), 

single-joint elbow flexors and extensors (short head of biceps (BICS); brachioradialis 

(BRD); lateral head of triceps (TRILT)) and single-joint shoulder muscles (anterior 

deltoid (ADL); posterior deltoid (PDL)). EMG signals were band-pass filtered between 

10 and 450 Hz, amplified (x1000) and sampled with 16-bit resolution at 1000 Hz prior to 

being stored off-line for further analysis.  

Post processing of the EMG signals was performed using the approach employed 

by Suminski et al. (2007). After removing the residual offsets from the digitized EMGs, 
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the EMG data was rectified and low pass filtered at 4 Hz (4th-order Butterworth). Within 

each subject, EMG signals were normalized to facilitate comparisons across the study 

population for each muscle. For each subject, EMG signals were normalized to their 

respective maximum voluntary isometric contractions (MVIC) measured prior to start of 

the experimental session. Two MVIC trials each were obtained for wrist flexion, wrist 

extension, elbow flexion, elbow extension, shoulder flexion, and shoulder extension. 

During measurements of subjects’ MVICs, the wrist manipulandum was held 

fixed and the subjects were asked to produce maximum wrist flexion and extension, with 

their upper hand resting as shown in Figure 3.3. MVICs for the biceps were measured by 

having subjects flex their elbow against an opposing (restricting) force applied by the 

experimenter. MVICs for the triceps were measured by having subjects place their 

dominant hand on the center of their chest and then extend their arm about the elbow 

joint against an opposing force applied by the experimenter. MVICs for the anterior and 

posterior deltoids were measured by having subjects raise their shoulder in front and 

behind their torso respectively against restrictions applied by the experimenter. The peak 

value (average of 2 trials) of the rectified and filtered EMG signals for MVICs of each 

muscle was subsequently used for normalization. For our analysis, FCR and ECR 

muscles were considered as wrist antagonists, BIC and TRI as elbow antagonists, and AD 

and PD as shoulder antagonists. Co-activity was estimated by selecting the minimum 

value of the normalized EMG signals for each pair of antagonist muscles at each 

sampling instant such that co-activity at time nT was given by 

=>?�@A� �  BC@�DEFGH�IJ"KJ"L  ,  DEF�IN�K�J"KJ"L  $ 

where n is the temporal index and T is the sampling interval (= 1 millisecond). 
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3.5 Experimental Design 

The data were collected over two experimental sessions spanning two days. Each 

experimental session lasted for 90 min during which a series of experiments were 

performed in order to quantify the model parameters summarized in Table 3.1 . 

 

 

 

 

  

On day one, Exp. 1 and 2  along with experiments for proprioceptive stabilization, 

visuo-proprioceptive stabilization and a tracking task to estimate Variance Accounted For 

by the model (description and results of these experiments are not presented in this thesis) 

were tested. On day two (non-consecutive), Exp. 2, 3, 4 and 5 were tested. The subject’s 

task was to use the wrist-manipulandum to place a user-controlled cursor on a target 

presented on the display. Based on the experimental condition, visual feedback (via the 

cursor) was either provided (Kv + Kp =1) or not provided (Kp =1). Input sequences were 

Exp. Parameter 

Exp. 1 

Tv (ms) Visual feedback delay 
Tp (ms) Proprioceptive feedback delay 

Teff (ms) 
Effective Feedforward delay (Tff + Tcp) 
Tff (ms) � Feedforward conduction delay 
Tcp (ms) � Controller and plant delay 

Exp. 2 α Multiplicative feedforward noise 

Exp. 3 
J (kgm2) Wrist's Rotational Inertia 

B (Nms/rad) Wrist’s Damping coefficient 
K (Nm/rad) Wrist’s Stiffness coefficient 

Exp. 4 

Kv Visual feedback gain 
Kp Proprioceptive feedback gain 

Kd (Nms/deg) Derivative Gain 
Kpr (Nm/deg) Proportional Gain 

K i (Nms/deg.s) Integral Gain 
σS

2 (deg2) Sensory noise 
Exp. 5 VAF (%) Variance Accounted for by the Model 

Table 3.1 Model parameters measured experimentally 

Table 3.1. Model parameters measured experimentally 
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generated in frequency domain over the frequency and amplitude (SD) ranges specified 

for each experiment. Since the visual display updated every 16.6 ms (60 Hz refresh), 

input sequences were generated with the temporal resolution of 17ms.  For Exp.1, the 

high frequency cutoff of the perturbation sequence was set to 0.5 Hz to enable visual 

smooth pursuit (Leist et al. 1987). Previously, frequencies ranging from 0.06 Hz to 1.5 

Hz have been used effectively for visually-guided tracking paradigms (Miall and Jackson 

2006; Notley et al. 2007; Foulkes and Miall 2000; Hefter and Langenberg 1998) . Since, 

the refresh rate of the screen was 60 Hz, the maximum possible frequency of the visual 

perturbation was 30 Hz (Nyquist criteria). Hence, for Exp.3 and 4, the upper cutoff of the 

perturbation sequence was set to 30 Hz. 

A brief practice session preceded the experimental session in order to familiarize 

the subject with the experimental setup and the tasks. The order of the experiments was 

randomized for each subject in order to minimize any sequential bias. In order to avoid 

fatigue, brief rest periods were provided between the trials and experiments. In the 

subsequent chapters we describe each of the experimental conditions tested and the 

corresponding analysis used to estimate control model parameters. 

3.6 Simulations for Validation of Experimental Methods 

To validate the systems identification approach, the experiments and model (see 

Appendix F for SIMULINK® implementation of the model) were simulated and tested in 

SIMULINK ®. Extensive simulations were performed to characterize the robustness of the 

approach over a range of parameter values (Table 3.2). Nominal values of the parameters 

are shown in Table 3.2 based on results from the human subject studies. The high-

dimensional parameter space was coarsely explored on an experiment-specific basis 
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Table 3.2 Nominal values and range of the parameters explored in the model 
simulations. For each experimental condition, the fitted parameters were varied over the 
ranges specified to assess the robustness of the approach. Parameters not fit by a 
particular experiment were held fixed at their nominal values. 

 

using the ranges specified in Table 3.2. Parameters not fit by a particular experiment were 

held fixed at their nominal values.  

Parameter Nominal Value Range 
Tv (ms) 200 50-600 
Tp (ms) 60 20-240 
Tff (ms) 30 10-100 
J (kgm2) 0.009 0.001-0.1 

B (Nms/rad) 0.2 0.03-0.7 
K (Nm/rad) 1 0.5-5 

Kv 0.8 0.5, 0.75, 1 
Kd (Nms/deg) 0.001 0.0001-0.01 
Kpr (Nm/deg) 0.05 0.005-0.5 
K i (Nm/deg.s) 0.5 0.02-5 

α 0.03 0.01-0.1 
σS

2 (deg2) 0 1-1000 
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4 EXPERIMENT 1: SYSTEM DELAYS 

The proposed model contains three explicit delays, a visual delay (Tv), 

proprioceptive delay (Tp) and feedforward conduction delay (Tff). The feedback delays 

(Tv and Tp) reflect a cumulative delay comprising of the afferent delays associated with 

the propagation of signals from the peripheral nervous system and the delays associated 

with processing the sensory (visual and proprioceptive respectively) information in 

cortex. The feedforward conduction delay is associated with the time taken for the motor 

commands to reach the wrist muscles and the excitation/contraction coupling delay 

associated with the generation of force within the muscle fibers. In addition to these 

delays, the system contains an implicit delay associated with controller and the plant.  

This implicit delay (Tcp) along with the feedforward conduction delay (Tff) forms the 

effective feedforward delay (Teff) of the system.  

4.1 Experimental Task 

Experiment 1 was divided into 3 sub-experiments to estimate the open loop visual 

delay (Tv+Teff), open loop proprioceptive delay (Tp+Teff), and effective feedforward delay 

(Teff) respectively. The subsections below detail each experimental task. 

4.1.1 Experiment 1a: Estimation of open loop visual delay (Tv + Teff) 

In this experiment, subjects were required to stabilize the cursor on the target 

(held static at the center of the screen). Pseudorandom visual perturbations (Bandwidth = 

0.05 – 0.5 Hz; SD = 5 degrees) were added to the cursor position. To perform the task, 

subjects were required to continuously correct for the perturbation by applying counter 

movement in order to keep the cursor on the stationary target. Since, the perturbations 
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were applied to the visual feedback path, and the output was measured at the end of 

feedforward path, the delay measured between input and output was Tv + Teff. Subjects 

completed ten trials of 20 seconds each which were individually correlated with the 

underlying perturbation sequence to estimate the open loop visual delay.  

4.1.2 Experiment 1b: Estimation of open loop proprioceptive delay (Tp + Teff) 

In this experiment, subjects were required to stabilize the wrist manipulandum so 

as to place a virtual cursor on the target (held static at the center of the screen). No visual 

feedback (cursor) was provided. Pseudorandom torque perturbations (Bandwidth = 0.05 – 

0.5 Hz; SD = 0.25 NM) were applied to the wrist manipulandum during the task and 

subjects were required to continuously correct for the applied torque by applying counter 

torques in order to keep the wrist manipulandum at the center of the display. Since, the 

perturbations were applied to the proprioceptive feedback path, and the output was 

measured at the end of feedforward path, the delay measured between input and output 

was Tp + Teff. Subjects completed ten trials of 20 seconds each which were individually 

correlated with the underlying perturbation sequence to estimate the open loop 

proprioceptive delay. 

4.1.3 Experiment 1c: Estimation of effective feedforward delay (Teff) 

In this experiment, subjects performed rhythmic tracking task in which the target 

moved back and forth at a frequency of 0.5 Hz (Amplitude = 20 degrees). Rhythmic 

tracking ensured the use of prediction mechanism by the subjects, thereby eliminating the 

feedback delays associated with perceiving the target. In order to avoid anticipation, 

subjects were instructed not to lead the target. It was assumed that the subjects’ perfectly 

predicted the target motion and did not anticipate the target. Subjects completed ten trials 



44 
 

of 20 seconds each which were individually correlated with the underlying tracking 

sequence to estimate the effective feedforward delay. Subjects typically required 5 

seconds to adapt to the synchrony of the input signal and therefore first five seconds of 

the data was discarded from the analysis for each trial.  

4.2 Data Analysis  

Cross-Correlation analysis is conventionally used to estimate time delays between 

two signals (Figure 4.1). In our study, we used cross-correlation analysis to estimate the 

delay parameters (Tv, Tp and Teff) of the sensorimotor control model. The cross-

correlation, OPIQ3@6, between two discrete signals, x(N), and y(N) delayed by T samples is  

OPIQ3@6 � R ST3B6 U3B  @6LVW
LV &W  

OPIQ3@6 will be maximum at @ � A (Figure 4.1 inset). Hence A can be estimated from the 

position of the maximum peak in  OX IQ3@6. When OPIQ3@6 is normalized (obtained by 

dividing OPIQ3@6 by product of the square root of autocorrelation of x and y) to range from 

-1 to 1, the cross-correlation coefficient provides a measure of the similarity between the 

two signals such that identical signals have a cross-correlation coefficient of 1 and 

random signals have a coefficient near zero. 

Prior to analysis, the position data was low-pass filtered at 30 Hz using a 4th order 

Butterworth filter to eliminate the noise induced by the motor of wrist manipulandum. 

The cross-correlation was computed using the MATLAB function “xcorr” to return a 

normalized cross-correlation vector. Measurement of the peak and position of the peak of 

the cross-correlation was used to estimate the co-variation between the perturbations and 
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Figure 4.1 Cross-Correlation Analysis. The Output signal (blue) is a delayed (by 300 
ms) version of input signal (red). [Inset] The cross correlation plot illustrates that the 
maximum peak occurs at T = 300 ms with a correlation coefficient = 1 for the noiseless 
signals illustrated here. 

subjects’ responses and the time delay associated with the initiation of corrective 

movements following the perturbation. 

In Exp. 1a the open loop visual delay (Tv + Teff), was measured by applying visual 

perturbations to the cursor and comparing subjects’ corrections via the position of the 

wrist manipulandum position. The shift in the peak of the cross-correlation signal 

between the visual perturbation sequence and subject’s correction was used to measure 

the open loop visual delay. Since, the perturbations were applied to the visual feedback 

path, and the output was measured at the end of feedforward path, the delay measured 

between input and output was Tv + Teff (Figure 4.2A).   

 



 

Figure 4.2 Block diagram representation of the control subsystems isolated in Exp 1 
to measure open-loop delays.
the subject’s response to the perturbations applied to visual feedback. B) Similarly, open 
loop proprioceptive delay was estimated by measuring the subject’s torque response to 
the torque perturbations 
delay was estimated by measuring subject’s response to a sinusoid of 0.5 Hz

Similarly, proprioceptive delay (T

perturbations (Exp. 1b) to the wrist manip

(counter torque measured by the torque sensor) to the perturbation as the output. Cross

correlation between the torque perturbation sequence and the subject’s counter torque 

was used to measure the open loop propr
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Block diagram representation of the control subsystems isolated in Exp 1 
loop delays. A) Open loop visual delay was estimated by measuring 

the subject’s response to the perturbations applied to visual feedback. B) Similarly, open 
loop proprioceptive delay was estimated by measuring the subject’s torque response to 
the torque perturbations applied to proprioceptive feedback. C) Effective feedforward 
delay was estimated by measuring subject’s response to a sinusoid of 0.5 Hz

Similarly, proprioceptive delay (Tp + Teff) was measured by applying torque 

perturbations (Exp. 1b) to the wrist manipulandum and measuring subject’s correction 

(counter torque measured by the torque sensor) to the perturbation as the output. Cross

correlation between the torque perturbation sequence and the subject’s counter torque 

was used to measure the open loop proprioceptive delay. Since, the perturbations were 
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Block diagram representation of the control subsystems isolated in Exp 1 
A) Open loop visual delay was estimated by measuring 

the subject’s response to the perturbations applied to visual feedback. B) Similarly, open 
loop proprioceptive delay was estimated by measuring the subject’s torque response to 

applied to proprioceptive feedback. C) Effective feedforward 
delay was estimated by measuring subject’s response to a sinusoid of 0.5 Hz 

) was measured by applying torque 

ulandum and measuring subject’s correction 

(counter torque measured by the torque sensor) to the perturbation as the output. Cross-

correlation between the torque perturbation sequence and the subject’s counter torque 

ioceptive delay. Since, the perturbations were 
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Figure 4.3 Estimation of open loop visual delay via simulation of Exp. 1a. Visual 
perturbations (red line) were applied to the cursor and the model (e.g. subject) response 
(blue line) was measured. Cross-correlation (inset) between the two signals yielded the 
open loop visual delay. 

applied to the proprioceptive feedback path, and the output was measured at the end of 

feedforward path, the delay measured between input and output was Tp + Teff. (Figure 

4.2B).  

In order to estimate the effective feedforward delay (Teff), subjects were required 

to perform a rhythmic tracking task (Exp. 1c). Cross-correlation between the target 

sequence and the subject tracking response (wrist manipulandum position) gave an 

estimate of effective feedforward delay (Figure 4.2C). The reason for selecting rhythmic 

tracking (single frequency of 0.5 Hz) was to completely predict the feedback delays 

thereby allowing estimation of Teff alone. The initial five seconds of the data was 

discarded from analysis to account for time required by the subject to become 

familiarized with the single frequency target movement. 

4.3 Simulation  
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In order to validate the experimental approach to estimate the delays, Exp. 1 in 

conjunction with the model was tested via simulations in SIMULINK®. Figure 4.3 shows 

a simulated wrist response to visual perturbation for one trial. For this simulation, the 

visual delay (Tv) was set to 200 ms, feedforward conduction delay (Tff) was set to 30 ms 

and the delay associated with the plant and the controller (Tcp) was 40 ms, corresponding 

to open loop visual delay (Tv +Teff) of 270 ms. The cross-correlation (inset) analysis for 

this trial resulted in an estimate of 270.6 ms. The high cross-correlation coefficient (r2 = 

0.98) indicates that the two signals were identical (Figure 4.3 inset). Simulations over ten 

trials resulted in a mean delay of 268.4 ms and a standard deviation of 5.02 ms.  

Validation over a range: 

Figure 4.4 Validation of Exp. 1 used in conjunction with cross-correlation analysis to 
estimate open-loop delays. The experimental approach proposed to estimate the delays 
was tested over a range of values; Tv = 50-600 ms (red squares), Tp = 20-240 ms (blue 
triangles) and Tff = 10-100 ms (black circles). The estimated delays were linearly related 
to the expected delays. A least-squares linear fit returned a slope of 1(r2 >0.99) and an 
offset of 40.5 ms corresponding to the delay associated with the controller and plant (Tcp).  
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The simulations were repeated for visual delays (Tv) ranging from 50 ms to 600 

ms in step of 50 ms while all other parameters where kept constant. Figure 4.4 (red 

squares) shows the relation between the estimated and expected open loop visual delays. 

A linear fit resulted in a slope of 1 (r2>0.99) and an offset of 41 ms corresponding to 

delay associated with the plant and the controller (Tcp).  

Similarly, simulations were performed to estimate open loop proprioceptive delay 

(Tp +Teff; Exp. 1b) and effective feedforward delay (Teff; Exp. 1c). Figure 4.4 shows 

simulation results for a range of proprioceptive delays (20-240 ms in steps of 20 ms; blue 

triangles) and feedforward delay (10-100 ms in steps of 10 ms; black circles). The best-fit 

lines relating the estimated to the expected delays had slopes of 1 (r2>0.99) and 0.99 

(r2>0.99) with offsets of 41.9 ms and 40.1 ms corresponding to delay associated with the 

plant and the controller (Tcp) respectively (refer Appendices A1, A2 and A3 for 

simulation results).  

4.4 Experimental Results 

Figure 4.5 shows a typical position response of a subject to the addition of a 

visual perturbation to the cursor (Exp. 1a). For this trial the open loop visual delay (Tv + 

Teff) estimated using cross-correlation analysis was 286 ms. The cross correlation (Figure 

4.5 inset) coefficient between the visual perturbation and the subject’s position response 

was high (r2 = 0.92), suggesting that the estimate of the delay was reliable. An average 

over ten trials for the same subject yielded a mean of 293.5 ms with a standard deviation 

of 25.3 ms. Figure 4.7 shows the estimated (mean ± std) system delays  for the 11 

subjects tested. The open loop visual delay (black circle) ranged from 232 to 375 ms 

across subjects with a mean of 287.1±42.1 ms. The average cross correlation coefficient 
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Figure 4.5 Estimation of open loop visual delay (Tv + Teff) from Exp. 1a for a 
subject. Visual perturbation (red solid line) was applied to the cursor and subject’s 
response (blue dashed line) was measured. For this trial, the delay estimated was 286 
ms with a correlation coefficient of 0.96  

 

(r2) across trials for all subjects was greater than 0.7 with the exception of one subject 

whose correlation coefficient was 0.47 (refer Appendix B for experimental results of all 

subjects). 

 

Estimates of open loop proprioceptive delays (Tp + Tff; red square in Figure 4.7) 

were obtained by cross correlating the applied torque perturbation and subject’s response 

(counter torque; Figure 4.6A), (Exp. 1b). The torque perturbation signal profile was 

similar to that shown in Figure 4.7. Across subjects, the open loop proprioceptive delay 

ranged from 80 to 155 ms with a mean of 121.8±18.8 ms. The average correlation 

coefficient was high (r2 = 0.77-0.92) for all the subjects (refer Appendix B for 

experimental results of all subjects). 
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Effective feedforward delays (Teff; blue diamond in Figure 4.7) were measured 

using the shift in the cross correlation between the sinusoidal target motion and subject’s 

Figure 4.7 Estimated open loop delays across subjects. The system delays were 
measured using Exp. 1 for 11 subjects. Black circle denotes the open loop visual delay 
(Tv+Teff), red square denotes open loop proprioceptive delay (Tp+Teff) and blue 
diamond denotes effective feedforward delay (Teff) estimated from 11 subjects 

Figure 4.6 Proprioceptive stabilization (Exp. 1b) and target tracking (Exp. 1c) 
trials for a single subject. A) Subject’s response to torque perturbation used to 
measure open loop proprioceptive delay (Tp+Teff) B) Subject’s response to a rhythmic 
moving target used to measure effective feedforward delay. 

A B 
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cursor position as they tracked the target (Exp. 1c; Figure 4.6). For 11 subjects, the 

effective delay ranged from 49 to 80 ms with a mean of 61.1±9.7 ms. The mean 

correlation coefficient was high (r2 = 0.92 to 0.98) for all the subjects (see Appendix B 

for experimental results of all subjects). 

4.5 Discussion 

Open loop delays (visual and proprioceptive) were measured from the subjects’ 

responses to external perturbations introduced within the visual (Exp. 1a) and 

proprioceptive (Exp. 1b) feedback paths respectively. A stabilization task was used to 

ensure the continuous use of feedback mechanisms with minimal dependence on the 

prediction mechanisms inherent in visually-guided tracking. External perturbations were 

applied within a particular feedback path whose delay was to be measured. This allowed 

us to make accurate measurements of the open-loop feedback delays that were 

combinations of the respective sensory feedback delay and the effective feedforward 

delay associated with initiation of corrective action. Estimates of the effective 

feedforward delay were obtained using a sinusoidal tracking task (Exp. 1c), which 

enabled the prediction of the feedback delays. Simulations of Exp. 1c suggested that the 

forward model was able to predict feedback delays only, thereby giving us an estimate of 

the effective feedforward delay.  For experimental data, it was assumed that the subject’s 

perfectly predicted the target motion thereby eliminating the feedback delay associated 

with target perception. Also, we assumed that our instruction to not lead the target 

avoided anticipation of the target by the subject. Further, it was assumed that tracking and 

stabilization are inherently similar in nature requiring use of same strategy. This 

assumption was important as the task for measuring open loop delays (visual and 
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proprioceptive) was stabilization, whereas the task to measure effective feedforward 

delay was tracking. 

The simulation results suggested that the stabilization and tracking tasks in 

conjunction with the cross-correlation analysis can be successfully used to characterize 

the delays within human sensorimotor control system. The open loop delays measured 

across subjects ranged from 232 - 375 ms and 80 – 155 ms for visual and proprioceptive 

delays respectively. Flanders and Cordo (1989) reported a similar range wherein the 

measured open loop visual delay varied from 186 - 285 ms and open loop proprioceptive 

delay varied from 108 – 175 across six subjects. Subtraction of the effective feedforward 

delay from the open loop delays resulted in estimates of visual and proprioceptive delays 

ranging from 170 – 307 ms (mean = 226.1±46.7 ms) and 14 – 87 ms (mean = 79.8±20.2 

ms) respectively. For one subject, the feedback delays were relatively high (307 ms for 

visual feedback and 87 ms for proprioceptive feedback) compared to others. It is 

interesting to note that this subject was the only ambidextrous participant in the study, as 

measured by the Edinburgh Handedness Inventory.  

Previously, feedback delays have been estimated by measuring the reaction time 

to initiate a movement (Flanders and Cordo 1989; Keele and Posner 1968). The current 

study used a continuous task enabling a direct and accurate measurement of the feedback 

delays. Based on our review of the sensorimotor literature, estimation of effective 

feedforward delay by means of non-invasive methods is novel. Using the model, the 

feedforward conduction delay can be estimated by subtracting out the phase shift induced 

by the controller and the plant (Tcp) from the estimate of effective feedforward delay 

(Teff).  We discuss this point in more detail in Chapter 10 (see section 10.3).  
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5 EXPERIMENT 2: FEEDFORWARD NOISE 

Studies have shown that the motor-unit variability in muscle responses (labeled as 

feedforward noise in the model), is a function of the mean torque generated by the 

muscles (Jones et al. 2002a; Slifkin and Newell 2000). Jones et al. (2002) showed that 

this relationship was linear; though the motor-unit variability was studied in isolation. In 

the current study this variability was incorporated as a part of a sensorimotor control 

model to replicate variable (noisier) human performance. 

  In our study we replicated the experimental approach used by Jones et al. (2002) 

to estimate multiplicative feedforward noise. The experimental paradigm is explained in 

detail in the section below, followed by the simulation and experimental results. 

5.1 Experimental Task 

In experiment 2, subjects flexed their wrist to produce a constant isometric torque 

contraction while the position of the wrist manipulandum was held fixed at center. The 

visual cursor was controlled by the amount of torque applied to the manipulandum by the 

subject.  A static target displaced from the center (corresponding to a pre-defined torque 

level) was shown on the screen and subjects were required to place the cursor on the 

target by applying the appropriate isometric contraction (Jones et al. 2002). Visual 

feedback of the target and cursor was shown for the first 3 seconds after which the target 

and cursor were removed and subjects were required to maintain that torque level for next 

5 seconds. Only the last 5 seconds of data (corresponding to feedforward control) was 

used for the estimation of multiplicative feedforward noise. Subjects performed five trials 

for each of five torque levels ranging from 20% to 60% of their MVIC.  
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5.2 Data Analysis 

Torque measurements (output data) were low pass filtered at 30 Hz using a 4th 

order Butterworth filter to remove high frequency noise induced by the motor system of 

the manipulandum. A drift in the torque measurements was observed for most subjects 

when visual feedback was removed; consistent with a previously reported study by Jones 

et al. (2002).  In order to remove the drift, trend removal using a second order polynomial 

(Jones et al. 2002) was performed on each 5 second trial. Standard deviation in the force 

measurements about the constant torque level was measured to estimate the variability in 

torque commands as a function of torque level. Estimates were averaged over 5 trials for 

each force level. A scaling factor (α) relating the torque level and measured standard 

deviation was used to estimate the variability in the multiplicative feedforward noise. 

This scaling factor was estimated by performing a linear fit to the data (Constant torque 

level vs. Standard Deviation).  

5.3 Simulation 

Using Exp. 2, multiplicative feedforward noise was characterized by performing 

isometric torque contraction and measuring the variability in the torque output. Figure 5.1 

shows simulation results for the estimation of multiplicative feedforward noise (α). The 

simulation consisted of five trials for each of five torque levels. For the simulation results 

shown, α was set to 0.03. The measured α estimated from the slope relating the variability 

(SD) in the torque output to constant torque level was 0.0302. The variability in estimate 

of SD across trials for same torque level was less than 1.2% of the average torque. The 

red dots in Figure 5.1 obscured the variability in SD such that the corresponding error 

bars are not visible. 
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Validation over a range: 

 

Figure 5.1 Estimation of Multiplicative Feedforward Noise (α) via simulation of 
Exp. 2. The standard deviation (SD) of the torque output was linearly related to the 
average torque level being maintained. The estimated slope (α) of 0.0302 was well-
matched to the expected slope of 0.03.  

Figure 5.2 Validation of Exp. 2 and the linear fit estimate of α. The approach to 
estimate signal dependent (multiplicative) feedforward noise was tested over a range 
of values (0.01-0.1). The estimated α was linearly related to the expected α with a 
slope of 1. 
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The approach to estimate the multiplicative noise was tested over a range of α 

value from 0.01 to 0.1. Figure 5.2 shows the relation between the estimated and expected 

estimates of α used to characterize the multiplicative feedforward noise. A linear fit 

returned a slope of 1 (r2 >0.99), meaning the approach was able to estimate the expected α 

with minimal error (see Appendix A4 for additional simulation results).  

5.4 Experimental Results 

        

Figure 5.3 shows the analyzed data obtained from one subject (#10) performing 

voluntary isometric torque contraction (Exp. 2) to measure the feedforward noise (α). 

Figure 5.3A shows a time plot (de-trended) of torque output for 5 seconds when no visual 

feedback was present. For clarity, the plot shows 3 of the 5 torque levels used for the 

task, where each line corresponds to a trial. For this subject, the variability in torque 

Figure 5.3 Estimation of Multiplicative Feedforward Noise (α) from Exp. 2 for a 
subject. A) Torque output (5 trials each) after de-trending for three torque levels (20% 
(blue), 40% (red) and 60% (black) of MVC for clarity) for subject #10. Output is for 
last 5 seconds when no feedback was provided. SD was calculated over the de-trended 
trials. B) The SD (Standard Deviation) of the torque output was linearly related to 
Torque level to be maintained (plot representative of data from one subject). The slope 
(α) estimated was 0.017. 

A B 
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response, expressed as standard deviation, during steady-state contraction increased 

linearly with mean torque level (Figure 5.3B). Similar results were obtained for all 

subjects. For this subject, torque SD increased linearly (r2 = 0.933, p=0.008) with mean 

torque with a slope (α) of 0.017, which corresponds to the multiplicative scaling between 

the torque signal and variability associated with the torque signal. Table 5.1 shows the 

measured scaling factors (α) and results of the regression analyses across subjects. 

Subject # α r2 
1 0.0207 0.948 (p=0.005) 
2 0.0354 0.835 (p=0.030) 
3 0.0210 0.934 (p=0.007) 
4 0.0354 0.956 (p=0.004) 
5 0.0592 0.900 (p=0.014) 
6 0.0280 0.924 (p=0.009) 
7 0.0378 0.925 (p=0.009) 
8 0.0270 0.974 (p=0.002) 
9 0.0152 0.985 (p=0.001) 
10 0.0170 0.933 (p=0.008) 
11 0.0196 0.964 (p=0.003) 

5.5 Discussion 

The simulation results suggested that the isometric torque contraction task could 

be successfully used to characterize the feedforward multiplicative noise within human 

sensorimotor control system. The experimental results indicate that the torque variability 

(SD) is linearly related to the mean torque level (Table 5.1), consistent with Jones et al. 

(2000). In our study  ranged from 0.017 to 0.06 for neurologically intact subjects. At 

100% MVC, this value of α results in torque variability  from 1.7 to 6, which is well 

matched with the values (0.8 to 4.6) reported by Jones et al (2000).  

Table 5.1 Estimated feedforward noise (α) and regression analysis results for 11 
subjects.   
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The signal dependent (multiplicative) nature of the feedforward noise has been 

argued to optimize motor performance and minimize error. With repetition, movements 

tend to become smoother which can be attributed to a decrease in the driving signal 

coming from the brain (Harris and Wolpert 1998).  As a consequence, the variability in 

the output position due to motor-unit noise scales linearly, reducing the impact of 

feedforward noise in neurologically intact subjects during repetitive movements.  

Studies have shown that this motor-unit variability (Laidlaw et al. 2000) increases 

with age. However, the underlying source of this variability is not well understood. 

Within the model, multiple factors could result in an increased error signal going into the 

neural controller and/or control signal coming from the controller; either of which would 

lead to an increase in motor unit variability, vis à vis the signal dependent noise (). 

Characterizing the sensorimotor control model as a function of age using the current 

approach could thus provide important insights into the driving factors responsible for the 

increased variability observed in motor responses.    
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For the proposed sensorimotor control system, the wrist (plant) was modeled a

second order linear time invariant system consisting of inertia (J), viscosity (B) and 

stiffness (K). Frequency domain analysis was used in conjunction with a passive wrist 

perturbation experiment, to characterize the wrist model. The sections below de

experimental task and explain the frequency response analysis employed to estimate the 

parameters of the wrist model. Simulation results are subsequently presented to validate 

the experimental approach, followed by experimental estimates of the wr

subjects and discussion of the results. 

6.1 Experimental Task 

In experiment 3, subjects were asked to hold the wrist manipulandum passively, 

using the same grip and levels of co

were instructed “do not intervene” in response to force perturbations applied by the robot. 

Pseudorandom band-limited torque perturbations (Bandwidth = 0.033 

Nm) were applied by the manipulandum and the wrist angle (

as a function of time. Passive wrist movements were recorded across five trials (30 

seconds each) and the resulting power spectra were averag

response analysis.  

Figure 6.1 Block diagram representation of Exp 3 
dynamics. Force perturbations were applied 
maintained a normal grip without making corrections.

 EXPERIMENT 3: WRIST DYNAMICS 

For the proposed sensorimotor control system, the wrist (plant) was modeled a

second order linear time invariant system consisting of inertia (J), viscosity (B) and 

stiffness (K). Frequency domain analysis was used in conjunction with a passive wrist 

perturbation experiment, to characterize the wrist model. The sections below de

experimental task and explain the frequency response analysis employed to estimate the 

parameters of the wrist model. Simulation results are subsequently presented to validate 

the experimental approach, followed by experimental estimates of the wr

subjects and discussion of the results.  

Experimental Task  

In experiment 3, subjects were asked to hold the wrist manipulandum passively, 

using the same grip and levels of co-contraction applied in the other experiments,

were instructed “do not intervene” in response to force perturbations applied by the robot. 

limited torque perturbations (Bandwidth = 0.033 – 30 Hz; SD = 0.25 

Nm) were applied by the manipulandum and the wrist angle (Figure 6.1) was measured 

as a function of time. Passive wrist movements were recorded across five trials (30 

seconds each) and the resulting power spectra were averaged to facilitate frequency 

Block diagram representation of Exp 3 used to characterize p
Force perturbations were applied to the wrist manipulandum while subjects 

maintained a normal grip without making corrections.  
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For the proposed sensorimotor control system, the wrist (plant) was modeled as a 

second order linear time invariant system consisting of inertia (J), viscosity (B) and 

stiffness (K). Frequency domain analysis was used in conjunction with a passive wrist 

perturbation experiment, to characterize the wrist model. The sections below detail the 

experimental task and explain the frequency response analysis employed to estimate the 

parameters of the wrist model. Simulation results are subsequently presented to validate 

the experimental approach, followed by experimental estimates of the wrist model across 

In experiment 3, subjects were asked to hold the wrist manipulandum passively, 

contraction applied in the other experiments, and 

were instructed “do not intervene” in response to force perturbations applied by the robot. 

30 Hz; SD = 0.25 

) was measured 

as a function of time. Passive wrist movements were recorded across five trials (30 

te frequency 

used to characterize passive wrist 
to the wrist manipulandum while subjects 
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6.2 Frequency Response Analysis (Exp. 3 and 4) 

Frequency response analysis was used to estimate wrist dynamics, controller 

parameters, feedback gains and sensory noise (Exp. 3 and 4). For Exp. 3, frequency 

response functions (FRF) and coherence functions were calculated over the frequency 

range of the perturbing signal (0.033 – 30 Hz (in steps of 0.033 Hz) for each trial and an 

average FRF calculated across trials. The parameters characterizing the passive wrist 

dynamics (inertia, J, viscosity, B and stiffness, K) were then obtained by fitting the model 

(Eq. 2) to the magnitude of the averaged FRF.  A bootstrap analysis was then performed 

to characterize the statistics and uncertainty (mean/median, standard deviation/percentile, 

skewness and kurtosis) in each of the parameter estimates. 

6.2.1 Frequency Response Function (FRF) 

The Frequency Response Function (FRF) describes the input-output relationships 

of a LTI system. For our analysis, pseudorandom (uniform band-limited) torque or visual 

perturbations were the input, x(t), and the position of the wrist manipulandum was the 

output, y(t). To calculate the FRFs, position and perturbation sequences in the time 

domain were transformed to the frequency domain using a Fast Fourier Transform (FFT). 

The FRF was calculated from the power spectra of the input and output signals.  

YX�Z[� �  FPIQ�Z[�FPII�[�  

where H(jω) is the frequency response function, FPII�Z[� and FPIQ�Z[� are the average 

input spectral density and cross spectral density functions  
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FPII�[� �  1] R ^KT
W

KV� �Z[� ·  ^K �Z[� 

FPIQ�Z[� �  1] R ^KT
W

KV� �Z[� ·  K̀ �Z[� 

where N is the number of trials, and Xn(jω) and Yn(jω) are the input perturbation and 

output response of nth trial. Since, H(jω) is a complex term, it can be represented in 

terms of a  magnitude and phase response.  

aYX�[�a �  bYX�Z[�T ·  YX�Z[� 

cYX�[� �  tan&��gBhi�YX�Z[��/O%hk�YX�Z[��� 

where Real(H(jω)) and Imag(H(jω)) are the real and imaginary components of the FRF 

respectively. For parameter estimation, only the magnitude response was used. 

6.2.2 Coherence Function 

The Coherence function (γ2) provides a measure of the noise and non-linearity 

within the system.   

lm��[� �  aFPIQ�Z[�a�
FPII�[� ·  FPQQ�[�  

where FPQQ�Z[� is the average output spectral density. The coherence metric spans the 

range from zero to one, with 1 indicating a linear relationship between input and the 

output without the presence of noise, and 0 indicating no linear relationship between the 

input and the output.  

6.2.3 Parameter Estimation 

Experimental estimates of the control parameters were obtained by fitting the 
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Table 6.1 Sensorimotor control parameters estimated experimentally using 
frequency response analysis 

transfer function of the proposed model of 1-D wrist movement with the frequency 

response functions of individual subjects. In Exp. 3 and 4, combinations of parameters 

were isolated and estimated. Based on the experimental condition, parameters were kept 

as free variable for the curve fit. The other parameters (delays and feedforward noise) 

obtained from previous experiments were kept constant. In Exp. 4, J, B and K triplets 

were randomly selected from the distributions obtained via the Exp. 3 bootstrap analysis 

to account for the propagation of errors across successive parameter estimates. Table 6.1 

shows the parameters estimated from the FRF by experiment. Least-square curve fits to 

the FRF were performed for each subject using the lsqcurvefit function in MATLAB® to 

minimize the least square error between the FRF and the model transfer function. Due to 

presence of random noise sources in the system (Feedforward noise and Sensory Noise), 

the phase response contained abrupt phase transitions that could not be automatically 

unwrapped without imposing á priori assumptions regarding the phase profile. Therefore, 

curve fits were performed only on the magnitude component of the FRF. 

Experiment Parameters Estimated 
3 J, B and K 
4 FRF1 – Kv, Kd, Kpr and Ki 

FRF2 – σS
2 

 

6.2.4 Bootstrap Analysis 

A single least-squares curve fit of the FRF provides a single estimate of the model 

parameters, making meaningful interpretation of the accuracy of the estimates 

problematic within subjects. Bootstrapping allows characterization of the uncertainty in 

the curve fit process through successive rounds of data re-sampling and curve fitting to 
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assess the variation in parameter estimates arising from the combined variability of the 

data and least-squares estimates based on random initial conditions. The resulting 

distributions provide an estimate of the uncertainty in the fitted parameters that can be 

used to statistically test within and across subject differences.  

Bootstrapping is achieved by generating thousands of datasets, each of which is 

obtained by random sampling of the data points with replacement from the original 

dataset. A curve fit is then obtained for each dataset yielding thousands of estimates for 

each parameter whose distribution metrics (mean/median, standard deviation/percentile, 

kurtosis and skewness) can be used to quantify the uncertainty in the parameter estimate. 

For our analysis, ten thousand sampling iterations were performed to obtain a distribution 

of each parameter estimate. The initial parameter values for the curve fit were randomly 

selected (varying over an order of magnitude about the estimate) to minimize bias. Curve 

fits that exceeded the maximum iterations (400) or whose correlation between the data 

and fitted curve was less than 0.8 were discarded from further analysis. No á priori 

assumptions of the type of distribution were made for bootstrap results. Distribution 

metrics such as mean/median, standard deviation/percentile, kurtosis and skewness were 

then calculated for each parameter for each subject. 

6.3 Simulation 

Wrist dynamics (inertia, J, viscosity, B and stiffness, K) were characterized from 

the passive wrist response to the applied torque perturbations using the frequency 

response function analysis outlined for Exp. 3. 
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Figure 6.2 Characterization of Passive Wrist Dynamics via simulation of Exp. 3. 
A) Shows a typical Frequency Response Function (magnitude) plot (red solid line) for 
one simulated data set. The data was fitted (blue dashed line) in least squares sense to 
estimate J, B and K. B) Coherence plot for the same data set averaged over five trials. 
C) Distributions of J, B and K obtained from Bootstrap analysis performed over 10000 
iterations. The peak of the distributions coincided with the median (yellow dashed line) 
of the estimates obtained from bootstrap analysis. The median values of the estimates 
were approximately equal to the values used for simulations. 

       

 

Figure 6.2 shows the estimated FRF (Magnitude Response) of the passive wrist 

dynamics (Figure 6.2A) and the coherence plot (Figure 6.2B) for one simulation averaged 

over 5 trials. The FRF was estimated over the frequency range of 0.033-30 Hz. For the 

simulation shown, the coherence was high (γ
2>0.9) up to 10 Hz, after which it dropped 

systematically. The curve fit (r2 > 0.99) to the FRF using Eq. 2 (relating the motor input 

to the wrist and wrist position response) yielded estimates of J, B and K that were well 

matched to the values specified in the model (Table 6.2). Figure 6.2 shows the 

distributions of each of the three parameters obtained from a bootstrap analysis of the 

A B 

C 
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simulation results. For the bootstrap analysis, a dataset was discarded if the correlation 

coefficient between the FRF and the curve fit was less than 0.8 or if the curve fit function 

exceeded predefined number of iterations (400; default value of lsqcurvefit).  

To characterize the distributions obtained from the bootstrap analysis we 

measured the skewness and kurtosis of the resulting distributions. Skewness is a measure 

of asymmetry of the probability distribution. For a normal distribution the skewness is 

zero. A negative skew suggests that left tail is longer and the mass of the distribution is 

located on the right, while a positive skew would suggest that the distribution has a 

longer right tail with mass of the distribution is located to the left.  Kurtosis is a measure 

of peakedness of a distribution and is equal to three for a normal distributed random 

variable. As kurtosis increases (>3), the peak of the distribution becomes sharper and the 

tails become fatter, while as kurtosis decreases (<3), the distribution has a more rounded 

peak and shorter thinner tails. The kurtosis of the J, B, and K distributions was 2.95, 3.91 

and 3.03 respectively and the skewness was 0.04, 0.69 and 0.27, suggesting that the 

distributions (for J, B and K) for this simulation were close to normal.  

For the simulations using frequency response analysis (Exp. 3 and Exp. 4), 

median and percentiles (2.5% and 97.5%) of the distribution were estimated as opposed 

to mean and standard deviation to limit bias in the central estimates for skewed 

distributions (which were observed in a small number of cases). Table 6.2 shows the 

results for the same simulation. The median of the estimates (yellow dashed line) was 

well matched to the values specified in the simulations, indicating that the approach was 

able to estimate the parameters correctly. In Table 6.2, the percentiles (2.5% and 97.5%) 

define the ranges of J, B, and K within which 95% of the estimates fell.     
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Table 6.2 Expected versus estimated parameters, J, B, and K, of the wrist (plant) 
for a single simulation of Exp. 3. 

Parameters Expected 
Estimated 

Median 
 

Percentile  
[2.5 97.5] 

J 0.01 0.0099  [0.0091 0.011] 
B 0.17 0.174  [0.125 0.243] 
K 1.3 1.319  [1.139 152] 

 

Validation across the parameter space: 

To characterize the robustness of the approach to estimate passive wrist dynamics, 

a series of simulations were performed encompassing range of values for each parameter 

(J = 0.005-0.05; B = 0.03-0.7; K = 0.5-5). The range was selected such that it 

incorporated the estimates obtained from experimental data across the 11 subjects tested 

(See Section 6.4). The sample space formed a cube encompassing the ranges specified for 

J, B and K. 125 triplets of J, B and K were sampled from this space (5 values per 

parameter) for the subsequent simulations. Figure 6.3 shows the percentage error in 

estimating each parameter (median obtained from bootstrap analysis) as a function of the 

expected value across simulations. Each triangle represents the median obtained from 

bootstrap analysis of one simulation. In the figure, simulation results are collapsed across 

two dimensions (parameters) to characterize the error in third dimension (parameter). As 

seen in Figure 6.3A, the percentage error in estimation of J increased with increasing 

values of J (results collapsed across B and K). Similarly, Figure 6.3B shows percentage 

error in estimation of B collapsed across J and K. The percentage error increased with 

decreasing values of B. Figure 6.3C shows that the error estimation in K increased with 

decreasing values of K. 
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While Figure 6.3 provides insight into the errors in estimating the parameters of 

the wrist model, this representation makes it hard to comprehend the effect of one 

parameter on the estimates of another. In order to visualize this effect, we did a surface 

plot of error in one parameter as function of the other two parameters (refer Appendix A5 

Figure 6.3 Validation of Exp. 3 used in conjunction with frequency response 
analysis to characterize passive wrist dynamics (Exp. 3). The approach to estimate 
passive wrist dynamics was tested over a range (J = 0.005-0.05; B = 0.03-0.7; K = 0.5-
5) of values. The sample space formed a cube encompassing the range of J, B and K.  
Figure A, B and C show percent error in the median estimates of the J, B and K 
respectively. In each plot, simulation results were collapsed across two dimensions 
(parameters) to characterize the error in third dimension (parameter). Highlighted areas 
indicate the ranges of parameter estimates obtained across 11 subjects. 

A B 

C 
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Figure 6.4  The temporal profile of applied torque and wrist position in Exp. 3 is 
shown for a representative trial in subject # 10. Each trial was 30 seconds long. In the 
plot, a 10 second subset of the trial is shown for clarity.  

for surface plots). Percentage error for each value of J (e.g. for J = 0.05) as a function of 

B and K suggested that at low values of B (< 0.1) and K (< 1), J was underestimated by 

as much as 40%. Similarly the viscosity, B, was systematically underestimated as the 

moment of inertia (J) of the system increased. For low values of the plant stiffness, K, the 

error in the estimated values systematically shifted from a 15% overshoot to a -40% 

undershoot as the moment of inertia varied across an order of magnitude. However, it is 

important to note that for the (J, B, K) triplets estimated experimentally (see Section 6.4), 

the percentage error in the estimated parameters was less than 10 % (highlighted in 

Figure 6.3). These results suggest that Exp. 3 accurately estimated the wrist model 

parameters within neurologically intact subjects.   

6.4 Experimental Results 

 

Figure 6.4 shows time plot of subject’s response to the perturbation from one of 

the five trials. Figure 6.5A shows the estimated FRF (Magnitude Response) of the 

passive wrist dynamics (Figure 6.5A) and coherence plot (Figure 6.5B) for Subject 10 
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Figure 6.5 Characterization of Passive Wrist Dynamics using Exp. 3 for a subject. 
A) A typical frequency response function (magnitude) plot (red solid line) for data from 
one subject (Subject 10). A least-squares fit to the wrist model (Eq. 2) (blue dashed line) 
was used to estimate J, B and K. For the values reported, the measured dynamics 
included the combined effect of the wrist and wrist manipulandum B) Coherence plot 
for the same data set averaged over ten trials C) Distributions of J, B and K obtained 
from a bootstrap analysis over 10000 iterations. The peak of the distributions coincided 
with the mean (yellow dashed line) of the estimates (J = 0.008, B = 0.256 and K = 1.21) 
obtained from the Bootstrap analysis.  

averaged over 5 trials.  

     

    

As with the simulations, the FRF was estimated over the frequency range 0.033-

30 Hz. The coherence estimate is an indicator of linearity of the system, and for this 

subject, the coherence was high (>0.5) up to 15 Hz, beyond which it dropped 

systematically. This would support our assumption of a linear model for wrist dynamics 

over the specified range of frequency. The curve fit (r2=0.91) to the FRF using eq. 2 

(representing input-output relationship between torque command signal sent to the wrist 

A B 

C 
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and position response of the wrist) yielded estimates of moment of inertia, J, viscosity, B, 

and stiffness, K, of the wrist. During the bootstrap analysis, datasets were discarded if the 

correlation coefficient between the FRF and the curve fit was less than 0.8 or if the curve 

fit function exceeded predefined number of iterations (400). 

Figure 6.5C shows the distributions of each of the three parameters obtained from 

the bootstrap analysis. For the experimental data, the bootstrap distributions of all 

estimated parameters were normal or close to normal. Hence for the human subject 

studies we report the parameter estimates in terms of their means and standard deviations. 

For Subject 10, the estimated parameters of the wrist model were J = 0.008 ± 0.0003 

kgm2, B = 0.256 ± 0.035 Nms/rad and K = 1.21 ± 0.244 Nm/rad. For the values reported 

here, the measured dynamics included the combined effect of the human wrist and the 

manipulandum handle. The distributions were normal with kurtosis values of 2.97, 3.43 

and 3.11, and skewness values of 0.10, 0.49 and 0.04 for J, B and K respectively. In all 

distributions, the peak of the distribution coincided with the mean (yellow dashed line) of 

the parameter estimate 

Figure 6.6 shows the estimated parameters of the wrist model for all eleven 

subjects (Refer Appendix B for experimental results for all subjects). The distributions of 

parameters obtained from bootstrap analyses for each subject were normally distributed. 

Across subjects the kurtosis ranged from 2.96-3.01, 3.29-3.71 and 2.89-3.42, and the 

skewness ranged from 0.06-0.14, 0.44-0.63 and 0.04-0.58 for J, B and K respectively 

(refer Appendix B). 
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Figure 6.6 Passive wrist dynamics measured across subjects (Exp. 3). The 
estimates (mean ± std) of the wrist moment of inertia, J, viscosity, B and stiffness, K 
measured across 11 subjects. For the values reported, the measured dynamics 
included the combined effect of the wrist and wrist manipulandum. 

 

In order to segregate the passive dynamics of the human wrist and the wrist 

manipulandum, Exp. 3 was performed using just the manipulandum under a no load 

condition. Subsequent analysis (FRF, curve fit and bootstrap) yielded a JWM = 0.0066 ± 

0.0004 kgm2, BWM = 0.323 ± 0.057 Nms/rad and KWM = 0.215 ± 0.106 Nm/rad for the 

wrist manipulandum (WM). The passive dynamics of the human wrist (after removal of 

wrist manipulandum dynamics) ranged from 0.0007 to 0.0032 Kgm2, -0.001 to -0.14 

Nms/rad and 0.45 to 2.73 Nm/rad for J, B, and K respectively across subjects. 
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6.5 Discussion 

In the current study, the wrist dynamics were modeled as a linear second order 

system containing an inertia (J), viscosity (B) and stiffness (K). The usage of a second 

order linear model for wrist dynamics was justified by coherence measures > 0.5 for 

frequencies up to 15 Hz (Figure 6.5) in all subjects and by use of visual stabilization task 

(for which the reflex response was very minimal). These results are consistent with a 

previous study (Halaki et al. 2006), which showed that human wrist dynamics were linear 

over this range. The linear model was subsequently fitted to the frequency response 

function (FRF) for each subject to quantify the passive dynamics of the wrist. Results 

from the model simulations suggest that measurement of applied perturbations without 

conscious correction is a robust way to estimate the wrist dynamics, presuming the 

dynamics under tasks conditions are similar.  

When used in conjunction with a bootstrap analysis the systems identification 

approach returned accurate estimates across a wide range of parameter values with 

distributions that were  either normal or close to normal. The technique (of bootstrapping) 

thus provides an additional tool to quantify the underlying sensorimotor control 

properties by characterizing the uncertainty associated with applying a curve fit to a 

particular dataset.  The resulting distributions provide a means to apply parametric and 

nonparametric statistical analysis techniques to compare parameters across experimental 

conditions, tasks, subjects, or across subject populations (e.g., patients vs. neurologically 

intact subjects).  

Exploration of the three-dimensional (J, B, K) parameter space via simulation 

revealed regions of reduced accuracy in estimating the parameters of the wrist model. 
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Specifically, the FRF analysis began to break down for larger moments of inertia  (J>0.3 

Kgm2) and lower values of viscosity (B<0.05 Nms/rad) and stiffness (K<0.7 Nm/rad), as 

demonstrated by increase in percentage error (Figure 6.3). While current sampling of the 

parameter space was somewhat coarse (5x5x5), the results did show that the region of the 

(J, B, K) space encompassing the wrist dynamics of neurologically intact subjects was 

accurately estimated using the system identification approach. More extensive 

simulations, with finer sampling of the parameter space, will be required to allow 

accurate assessment of subjects and task conditions that fall outside normative range, 

however, the current simulations provide confidence that the values estimated in the 

neurologically intact population are accurate.   

The inertia (J), viscosity (B) and stiffness (K) measured experimentally varied 

from 0.0007-0.0032 Kgm2, -0.001 to -0.14 Nms/rad and 0.45-2.73 Nm/rad respectively. 

Grey (1997) obtained similar estimates (0.002-0.0041 Kgm2) for the moment of inertia 

about the wrist. In his study, the stiffness measured across ten subjects ranged from 4-8 

Nm/rad, which was generally higher than the values reported here. We believe this 

difference could be due to the type of task used to measure the parameters. Grey (1997) 

measured stiffness while performing a target reaching task (by means of 1-D wrist robot) 

using velocity feedback provided on the screen. This suggests that the stiffness was 

measured during active control of the movement as opposed to the passive control 

employed in our study. His interpretation is consistent with other studies, which have 

reported ranges of 2-5 Nm/rad (Gielen et al. 1984) and 1.5-4 Nm/rad (De Serres and 

Milner 1991), for the stiffness that are consistent with the values reported here.  

The negative viscosities estimated for all subjects were unexpected. The effect 
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may be due to reflex activity generated in response to the high frequency components of 

the applied torque perturbations. During the task, counter-torques resulting from reflex 

activity were delayed with respect to the input torque, potentially inducing movements in 

the direction of the perturbation at the current time-step. As a result, for higher frequency 

torque perturbations the resulting delay coupled with the fast changes in perturbation 

direction could end up assisting the movement instead of opposing it, giving rise to 

negative viscosity. A similar finding has been reported previously for the wrist (Grey 

1997) and elbow (Bennett 1994). Incorporation of a reflex path within the model may 

provide insight into the effect of reflex responses during continuous movement on the 

viscoelastic properties of the wrist. Future modeling efforts will incorporate a reflex path 

and additional experimental conditions to characterize the reflex model. 
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7 EXPERIMENT 4: CONTROLLER GAINS, FEEDBACK GAINS AND 
SENSORY NOISE 

 
 
In Experiment 4, a visual stabilization task was used in combination with 

frequency response analysis to estimate the controller gains, feedback gains and the 

sensory noise of the system. In the current study, the controller was modeled as a PID 

controller, having a proportional gain (Kpr), integral gain (Ki) and a derivative gain (Kd). 

Owing to the use of a unity feedback system, the feedback gains (Kv and Kp) summed to 

1 and where thus constrained to a single parameter. The internal noise within the sensory 

feedback path was lumped into a single noise source having a variance of σS
2.  

The sections below detail the experimental task and explain the frequency 

response analysis employed to estimate the parameters of the wrist model. Simulation 

results are subsequently presented to validate the experimental approach, followed by 

experimental estimates of the wrist model across subjects and discussion of the results. 

7.1 Experimental Task 

This experiment was similar to previously described Experiment 1a. In this 

experiment, subjects were required to stabilize the cursor on the target (held static at the 

center of the screen) as pseudorandom visual perturbations (Bandwidth = 0.0033 – 30 Hz 

filtered (1st order) at 1 Hz; SD = 15 degrees) were added to the cursor position. Filtering 

of the visual perturbation was done to make the task doable without losing the data points 

at high frequency (>1 Hz) which were required for curve fitting. To perform the task, 

subjects were required to continuously correct for the perturbation by applying counter 

movement in order to keep the cursor on the stationary target. To facilitate a subtraction 

analysis, stabilization responses were recorded across two sets of ten trials (32 seconds 



 

Figure 7.1 Block diagram representation of Exp 4 for characterization of 
controller parameters, feedback gains 
were added to the cursor and the subject’s task was to correct for the perturbations in 
order to place the cursor on a target located at the center of the display. 

each) and the resulting power spectra were averaged to improve the frequency response 

analysis (see Section 6.2).

7.2 Data Analysis (Subtraction Analysis)

In order to characterize the neural controller para

feedback gains (Kv and K

parts based on the form of the subtraction analysis. Estimates of K

(FRF1) were obtained from first part, whereas the second part was used to estimate 

(FRF2) as described below.

A single visual perturbation sequence (Bandwidth = 0.0033 

order) at 1 Hz; SD = 15 degrees) of 302 seconds was generat

sequences of 32 seconds each such that the last 2 seconds of the previous sequence (trial) 

overlapped with first 2 seconds of next sequence (trial). For estimation of sensory noise 

(σS
2), all (ten) trials were concatenated to fo

Block diagram representation of Exp 4 for characterization of 
controller parameters, feedback gains and sensory noise. Visual perturbations 
were added to the cursor and the subject’s task was to correct for the perturbations in 
order to place the cursor on a target located at the center of the display.  

each) and the resulting power spectra were averaged to improve the frequency response 

). 

Data Analysis (Subtraction Analysis) 

In order to characterize the neural controller parameters (Kd, Kpr and K

and Kp) and sensory noise (σS
2), the analysis was divided into two 

ased on the form of the subtraction analysis. Estimates of Kv, Kd, K

(FRF1) were obtained from first part, whereas the second part was used to estimate 

(FRF2) as described below. 

A single visual perturbation sequence (Bandwidth = 0.0033 – 30 Hz filtered (1

order) at 1 Hz; SD = 15 degrees) of 302 seconds was generated and broken down into ten 

sequences of 32 seconds each such that the last 2 seconds of the previous sequence (trial) 

overlapped with first 2 seconds of next sequence (trial). For estimation of sensory noise 

), all (ten) trials were concatenated to form a single continuous input-
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Block diagram representation of Exp 4 for characterization of 
Visual perturbations 

were added to the cursor and the subject’s task was to correct for the perturbations in 

each) and the resulting power spectra were averaged to improve the frequency response 

and Ki), 

), the analysis was divided into two 

, Kpr and Ki 

(FRF1) were obtained from first part, whereas the second part was used to estimate σS
2 

 

30 Hz filtered (1st 

ed and broken down into ten 

sequences of 32 seconds each such that the last 2 seconds of the previous sequence (trial) 

overlapped with first 2 seconds of next sequence (trial). For estimation of sensory noise 

-output sequence 
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of 300 seconds. For concatenation, the initial 2 seconds of each trial were discarded to 

minimize transient effects in the subject’s response to the trial onset. During 

concatenation, artifacts associated with discontinuities were introduced at (1/30) Hz and 

its harmonics. The power of these artifacts was small in comparison with that of the 

signal and hence had no impact on the analysis. If required, these frequencies could be 

masked from the analysis.  The purpose for using a single long sequence was to increase 

the frequency resolution (starting at 0.0033 Hz) used to estimate the sensory noise (σS
2), 

which was dominant at lower frequencies compared to the multiplicative feedforward 

noise (α). For estimation of controller and feedback gains, trials were separated into two 

groups of ten trials each and averaged within groups (similar to Exp. 3).   

In the Laplace domain, Eq. 3 (Section 3.1.5) can be written generally 

Θa(s)  = Θd(s) f1(Kd, Kpr, Ki, J, B, K, Tff)  

+ Dext(s) f2(Kd, Kpr, Ki, J, B, K, Kv, Tv , Tff)   

+ α M(s) f3(Kd, Kpr, Ki, J, B, K, Kv, Kp , Tv , Tp, Tff)  – DS f4(Kd, Kpr, Ki, J, B, K, Tff)  

where for the visual stabilization task, the desired position, θd(t) was zero. The third and 

the fourth terms can be combined to form a single term corresponding to overall noise, 

N(s), within the sensorimotor system, simplifying the above equation to  

�������# �  �n�IN���$#o����   ]��� 

where i indexes the group of trials (obtained either by averaging or concatenation of 10 

trials) , θa(s) is actual wrist position, Dext(s) is the applied visual perturbation, and f2(s) 

and N(s) are transfer functions associated with external perturbation, Dext(s), and 

sensorimotor noise(s) (Eq. 3). For our analysis, the two data sets 
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�������� �  �n�IN���$�o����   ]��)   � Set 1 

�������� �  �n�IN���$�o����   ]��)   � Set 2 

where used together with a subtraction analysis to segregate estimation of sensory noise 

and other parameters (Kd, Kpr, Ki and Kv). Solving simultaneously for f2(s) and N(s), in 

terms of the applied perturbations (input) and subjects’ wrist position (output), 

o���� � �������
&�������p�qrst����
&�qrst����p  � FRF 1                        …Eq. (4) 

]��� � �u��v��
�wrst�v��
& �u��v��p�wrst�v��pp�wrst�v��
& p�wrst�v��p
 � FRF 2                           …Eq. (5) 

where FRF1 was averaged over 10 trials (30 seconds each) and FRF2 was evaluated over 

one (concatenated) trial of 300 seconds. System delays measured in Exp.1 were held 

constant. During bootstrap analysis, fitted (J, B, K) triplets estimated from Exp. 3 were 

randomly selected from their respective bootstrap distributions and were kept constant 

during each bootstrap iteration in Exp. 4. This was done to propagate the uncertainty in 

estimates of J, B, and K to the subsequent parameter estimates in Exp. 4. Least-squares 

fits (see Section 6.2) to f2(s) for the FRF1 dataset were made over a frequency range of 

0.033-10 Hz (Frequency resolution = 0.033 Hz) to estimate Kv, Kd, Kpr and Ki. Least-

squares estimates of the sensory noise (DS), via FRF2, were made over a frequency range 

of 0.0033-0.2 Hz (Frequency resolution = 0.0033 Hz), keeping the parameter estimates 

from FRF1 constant. 
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Figure 7.2 Characterization of controller parameters and feedback gains via 
simulation of Exp. 4a. A) A typical Frequency Response Function (FRF 1 
magnitude) plot (red solid line) after subtraction analysis for one simulated data set. 
A least-square fit (blue dashed line) to the transfer function of the perturbing input, 
f2(s), (eq. 4) was used to estimate Kv, Kd, Kpr and Ki. B) Coherence plot for the same 
data set averaged over ten trials. C) Distributions of Kv, Kd, Kpr, and Ki obtained from 
bootstrap analysis performed over 10000 iterations. The peak of the distributions 
coincided with the median (yellow dashed line) of the estimates obtained from the 
bootstrap analysis.  

7.3 Estimation of controller parameters (Kd, Kpr, K i) and feedback gains (Kv, Kp) 

7.3.1 Simulation  

        

           

              

For this set of simulations, the delays and feedforward noise were held constant. 

Since the delay term was a multiplicative factor in the transfer function (Eq. 3; transfer 

C 

A B 
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function associated with Dext(t)), it did not contribute to the least-squares fit of  f2(s). This 

is advantageous because, unlike the estimation of J, B, and K, uncertainty in the estimates 

of the temporal delays in the model did not impact estimation of the visual feedback gain, 

Kv, derivative gain, Kd, proportional gain, Kpr, integral gain Ki and sensory noise, DS 

obtained from experiment 4.  

The first part of the FRF analysis estimated the controller parameters, Kd, Kpr and 

K i, and feedback gain, Kv. FRF1 was estimated over a frequency range of 0.033-10 Hz. 

Frequencies from 10 Hz to 30 Hz were discarded because the input signal at those 

frequencies was very small (caused by low pass filtering of the input signal at 1 Hz; see 

Section 7.1), resulting in increased noise in the FRFs at those frequencies. Figure 7.2 

shows the magnitude response and coherence of FRF1 and the corresponding least 

squares-fit to Eq. 4 (r2 = 0.94) for one set of simulations. For the current simulation, the 

coherence was high (γ2>0.95) up to 2.5 Hz, beyond which it systematically decreased. 

Since the model was assumed to have a unity feedback gain Kv was constrained to lie 

within [0, 1] for the curve fits. Figure 7.2C shows the distributions of each of the four 

fitted parameters obtained from bootstrap analysis of FRF1 shown in Figure 7.2A. The 

distributions were normally distributed with kurtosis values of 2.98, 3.66, 2.85 and 2.99, 

and skewness values of 0.09, -0.39, 0.15 and 0.14 for Kv, Kd, Kpr and Ki respectively. The 

peak of the distribution coincided with the median (yellow dashed line) of the parameter 

estimate which was in turn well matched to the values set in the sensorimotor model. 

Table 7.1 shows the median and the percentile ranges of the estimates of the bootstrap 

results shown in Figure 7.2C. 

 



82 
 

Table 7.1 Simulation results for estimation of feedback gain and controller 
parameters (median, percentile [2.5 97.5]) obtained using the bootstrapping 
analysis (Figure 7.2C). 

Parameters 
 
 

Expected 
 
 

Estimated 
Median 

 
Percentile 
[2.5 97.5] 

Kv 0.8 0.791 [0.744 0.841] 
Kd 0.001 0.0011 [0.0009 0.0013] 
Kpr 0.05 0.0396  [0.031 0.049] 
K i 0.5 0.526  [0.414 0.647] 

Validation across the parameter space: 

To validate the approach for estimating the controller parameters and feedback 

gains, a series of simulations were performed encompassing a range of values for each 

parameter (Kv = 0.5, 0.75 and 1; Kd = 0.0001-0.01; Kpr = 0.005-0.5; Ki = 0.02-5).  The 

range was selected such that it incorporated the estimates obtained experimentally from 

the the human subjects (see Section 7.3.2). The (Kd, Kpr, Ki ) space was sampled 

uniformly (five values per dimension) resulting in 125 triplets of Kd, Kpr and Ki. For this 

sample space, Kv was constant and set to 0.5. Additional simulations using the same 

sample space for Kd, Kpr and Ki were repeated for Kv values of 0.75 and 1.    

Figure 7.3 shows the percentage error in estimating each parameter (median 

obtained from bootstrap analysis) as a function of the expected value across simulations 

for Kv of 0.5. Each triangle represents one simulation and subsequent FRF bootstrap 

analysis where simulation results were collapsed across two parameter dimensions to 

characterize the error in third dimension. For example in Figure 7.3B, results were 

collapsed across Kpr and Ki to visualize the percentage error in estimation of Kd. As the 

value of Kd decreased the percentage error in the estimate systematically increased. 

Similar effects were seen for Kpr and Ki. The percentage error in estimation of Kv was 
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within 20% for all simulations (Figure 7.3A). Similar results were obtained for Kv values 

of 0.75 and 1 (refer Appendix A9 & A10). Over the range of the controller parameters 

estimated experimentally, the percentage error in the estimation was less than 25 % for 

Kd, Kpr Ki, and Kv. 

 

 

 

A B 

C D 

Figure 7.3 Validation of Exp. 4a used in conjunction with frequency response 
analysis to characterize controller and feedback gains. The approach to estimate 
controller parameters and feedback gain was tested uniformly (five values per parameter) 
over a range of values (Kd = 0.0001-0.01; Kpr = 0.005-0.5; Ki = 0.02-5) for Kv=0.5.  
Figure A, B, C and D show percent error in the median estimates of the Kv, Kd, Kpr, and 
K i respectively. In each plot, simulation results were collapsed across two parameter 
dimensions to characterize the error in third dimension. Similar results were obtained for 
Kv values of 0.75 and 1. Highlighted area indicates the range of parameter estimates 
obtained across 11 subjects. 
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Figure 7.4  Example of a visual perturbation sequence and a subject’s 
corresponding response for Exp. 4. For clarity, the plot shows 10 seconds of a 
typical 32 second trial.  

 

Similar to Exp. 3, surface plots of error across two parameter dimensions were 

used to visualize the effect of one parameter on the estimate of the other (refer Appendix 

A6, A7 & A8). For some triplets of Kd, Kpr and Ki, the system became unstable 

(represented by white space in the plots shown in Appendix A6, A7 & A8). However, for 

the (Kd, Kpr, Ki) triplets measured experimentally, the system was stable. Simulations 

showed that the percentage error for low values of Kd (=0.0001) was high (>150%) for 

low values of Kpr (< 0.1) and Ki (< 1). For higher values of Kd (>0.0005), the error in Kd 

increased with increasing Kpr (refer Appendix A6). Error in the estimation of Kpr 

increased with large values of Kd (>0.005) and small values of Ki (<0.1) (refer Appendix 

A7). For Ki = 0.02 error increased systematically with Kd and Kpr. However, for other 

values of Ki, no specific trend was observed (refer Appendix A8). Not all distributions of 

Kd, Kpr and Ki were normal. For some triplet of Kd, Kpr and Ki, the distributions of Kd and 

K i were bimodal (but connected). In these simulations, the median of the principal 

distribution was approximately equal to the expected value of the model.  

7.3.2 Experimental Results 
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Figure 7.5 Characterization of controller parameters and feedback gains using 
Exp. 4a for a single subject.  A) A typical frequency response function (magnitude – 
FRF1) plot (red solid line) obtained from visual stabilization task (Exp. 4) for subject 
10. A least-squares fit to the external perturbation model (Eq. 4) (blue dashed line) was 
used to estimate Kv, Kd, Kpr and Ki. B) Coherence plot for the same data set averaged 
over ten trials C) Distributions of Kv, Kd, Kpr and Ki obtained from Bootstrap analysis 
over 10000 iterations. The peak of the distributions coincided with the mean (yellow 
dashed line) of the estimates (Kv = 0.63, Kd = 0.0023, Kpr = 0.083 and Ki = 1.71) 
obtained from the bootstrap analysis.  

     

 

                 

 

Figure 7.5 shows the estimated FRF1 (Magnitude Response; Figure 7.5A) and 

coherence plot (Figure 7.5B) for Subject 10, obtained using the subtraction analysis of 

two data sets averaged over 10 trials each (Exp. 4). Figure 7.4 shows time plot of 

A B 

C 
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subject’s response to the visual perturbation from one of the 20 trials. For all subjects the 

FRF1 was estimated over the frequency range 0.033-10 Hz. For this subject, the 

coherence was moderately high (>0.4) up to 1 Hz, beyond which it dropped 

systematically. Estimates of the neural controller parameters, Kd, Kpr and Ki and the 

visual gain, Kv, were obtained from the least-squares fit of Eq. 4 to FRF1 

(r2=0.72).Figure 7.5C shows the distributions of each of the four parameters obtained 

from bootstrapping analysis. The estimates (mean ± std) for this subject were Kv = 0. 63 

± 0.038, Kd = 0.0023 ± 0.0004 Nms/deg, Kpr = 0.083 ± 0.012 Nm/deg and Ki = 1.71 ± 

0.377 Nm/deg.s. For subject 10 the distributions obtained from the bootstrap analysis 

were normal with kurtosis values of 3.26, 3.23, 2.87 and 3.32, and skewness of 0.36, 

0.25, 0.16 and 0.51 for Kv, Kd, Kpr and Ki respectively. The peak of the distribution 

coincided with the mean (yellow dashed line) of the parameter estimate. In subjects 

whose estimated mean Kv was >0.9 (Subjects  1, 3, 5 and 8), the parameter distributions 

deviated from normal due to ceiling effects associated with an upper limit on the value of 

Kv of one. 

Figure 7.6 shows the estimated feedback gain and controller parameters for all 

subjects. The distributions of the parameters obtained from the bootstrapping analyses for 

10 subjects were normally distributed (except distribution of Kv for subjects 1, 3, 5 and 8) 

with kurtosis value ranging from 2.35-3.74, 2.85-3.75 and 3.04-3.74, and the skewness 

ranging from -0.42-1.28, -0.25-51 and 0.22-0.74 for Kd, Kpr and Ki. For subject # 11, the 

distributions of Kd, Kpr and Ki were not normal and they had kurtosis values of 6.29, 

5.16 and 3.70 and skewness values of -0.63, 1.34 and 0.82 respectively (refer Appendix B 

for detailed experimental results). 



87 
 

Figure 7.6 Estimated controller parameters and feedback gains across subjects. 
The estimates (mean ± std) of the controller parameters (derivative gain, Kd, 
proportional gain, Kpr and integral gain, Ki) and feedback gains (Kv and Kp) measured 
across 11 subjects were obtained using Exp. 4. Since the feedback had a unity gain, 
Kv+Kp was constrained to 1. 
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Figure 7.7 Mapping between the internal variance of the sensory noise (σS
2 ; 

degree2) and the average magnitude of the sensory noise power spectrum (DS). 

 

7.4 Estimation of Sensory Noise (σS
2) 

7.4.1 Simulation 

The second part of the analysis in Exp. 4, estimation of FRF 2 (Eq. 5; refer 

Section 7.2), was used to estimate the sensory noise (σS
2). During estimation of σS

2, all 

other parameters were fixed to the median bootstrap values determined from the previous 

experiments. Figure 7.8A shows the estimated magnitude response of FRF 2 for one set 

of simulations obtained using subtraction analysis. At lower frequencies the sensory noise 

was dominant while at higher frequencies the multiplicative feedforward noise dominated 

the response. Hence, FRF 2 was estimated over a much lower frequency range from 

0.0033-0.2 Hz. For the purposes of the model the additive sensory noise was assumed to 

be white and the mapping between the variance of the internal sensory noise source 

(degrees2) and the average magnitude of the corresponding power spectrum (DS) was 

determined to relate internal model variance (σS
2) to the average power of the noise in the 
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frequency domain (Figure 7.7).   

The sensory noise can also be defined in terms of its effective position variability 

at the output of the plant, more commonly referred to as end point variability. This 

measure not only depends on internal sensory noise variance, but also on the properties of 

the wrist and neural controller which are subject specific, making it difficult to directly 

compare internal noise sources across subjects using this measure. For this reason, here 

we focus on reporting the sensory noise in terms of internal variance (σS
2; degrees2). 

However, when interpreting the internal source variance (in degrees2) it is important to 

note that its value does not directly correspond to the level of variability seen in the 

position output of the system. For a given set of controller and plant parameters, an 

internal sensory noise variance of 200 degree2 could potentially correspond to an 

effective position variance of 3 degree2 at the output of the model. 

Figure 7.8A shows the estimate of FRF2 and the corresponding curve fit to Eq. 5 

used to estimate DS for a single simulation.  The estimated value of DS was subsequently 

converted to its equivalent internal noise variance (in degrees2) using a polynomial fit 

(2nd order) to the internal noise variance vs. average power spectrum (Figure 7.8). For the 

bootstrap analysis, datasets were discarded if the correlation coefficient between the 

FRF2 and the curve fit was less than 0.8 or if the curve fit function exceeded predefined 

number of iterations (400). 
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Figure 7.8B shows the distributions of σs
2 (estimated from Exp. 4 and obtained 

after conversion from DS) obtained from the bootstrapping analysis of the simulation FRF 

2 shown in Figure 7.8A. The distribution was approximately normal with a kurtosis of 

4.08 and skewness of 0.72 . The peak of the distribution coincided with the median 

(yellow dashed line) of the parameter estimate and was within 35 % of the noise variance 

simulated in the model. Table 7.2 shows the results for the same simulation. 

  

A 

B 

Figure 7.8 Characterization of the sensory noise via simulation of Exp. 4b. A) A 
typical Frequency Response Function (FRF 2 magnitude) plot (red solid line) after 
subtraction analysis for one simulated data set. A least-square fit (blue dashed line; Eq. 
5) to the transfer function of the internal sensory noise, N(s), was used to estimate DS. 
B) Distribution of σs

2 (obtained after conversion from DS) obtained from Bootstrap 
analysis performed over 10000 iterations. The peak of the distribution coincided with 
the median (yellow dashed line) of the estimates obtained from Bootstrap analysis.  
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Table 7.2 Simulation Results for estimation of sensory noise (median, percentile 
[2.5 97.5]) 

Parameters 
 
 

Expected 
 
 

Estimated 
Median 

 
Percentile 
[2.5 97.5] 

σs
2 30 39.31  [23.19 61.41] 

Validation across the parameter space: 

The method to estimate sensory noise, σS
2, was tested over a range of values (σS

2
 

= 10-2000 degree2). Figure 7.9 shows the plot of percentage error in the estimation of σS
2. 

The error in the estimation was less than 50 % for all values of σS
2. No systematic trend 

in the error was observed (see Appendix A11 for simulation results). 

Figure 7.9 Validation of Exp. 4b used in conjunction with frequency response 
analysis to characterize sensory noise. The approach to estimate the sensory noise 
was tested over a range of values (σS

2= 10-2000 degree2). The plot shows the percent 
error in the estimate (median) relative to the actual internal variance of the sensory 
noise. The percent error in estimation was less than 50% across simulations.  
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Figure 7.10 Characterization of the sensory noise using Exp. 4b for a subject. A) A 
typical Frequency Response Function (magnitude – FRF2) plot (red) for subject 10. The 
data was fitted (blue) in least squares sense to estimate DS. The correlation coefficient 
was r2=0.79. B) Distributions of σS

2 (obtained after conversion from DS) obtained from 
Bootstrap analysis carried over 10000 iterations. The mean (yellow dashed line) of the 
distribution was 1204.5 degrees2. 

7.4.2 Experimental Results 

Figure 7.10A shows the magnitude of the noise frequency response function 

(FRF2) for Subject 10 (Exp. 4) obtained using the subtraction analysis outlined in Section 

7.2. FRF2 was estimated over the frequency range of 0.0033-0.2 Hz for all subjects. For 

this subject, the correlation coefficient between FRF2 and the curve fit obtained using Eq. 

5 was high (r2=0.79), yielding an estimate of σS
2 = 1204.5 ± 294.9 deg2 (obtained after 

conversion from DS). The distribution was approximately normal (Figure 7.10B) having a 

kurtosis of 3.25 and a skewness of 0.04. When interpreting the internal source variance 

(in degrees2) it is important to note that its value does not directly correspond to the level 

A 

B 
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Figure 7.11 Sensory Noise across subjects. Estimate (mean ± std) of σS
2 across 11 

subjects. The estimate of sensory noise was large and was set to zero for evaluating 
model’s performance.   

of variability seen in the position output of the system (see Section 7.4.1). For subject 10, 

the effective position variability was 41.9±8.59 deg2. This variability was obtained by 

simulating the subject’s position response, θa(t) (using the parameters estimate 

experimentally), with desired positions, θd(t), and external perturbation, Dext(t) set to 0. 

Figure 7.11 shows estimate of sensory noise (σS
2) for eleven subjects. For all 

subjects except one, the correlation coefficient between FRF2 and the least-squares fit to 

the internal noise transfer function (Eq. 5) was high (r2>0.69; Appendix B). The 

distributions of the sensory noise estimate obtained from the bootstrapping analyses for 

all subjects were normally distributed with kurtosis value ranging from 2.59-3.84 and the 

skewness ranging from -0.53-0.51. Since the estimate of sensory noise was very large 

(see Appendix C), it was set to zero for all subjects when estimating variance accounted 

for by the model. 
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7.5  Discussion 

7.5.1 Controller parameters 

Based on sensory feedback signals, the neural controller processes the feedback 

information about the limb position and generates an output command to produce a 

desired movement. The current study implements a PID controller as a generalized 

surrogate for the processing and initiation of corrective movement in the brain. PID 

control is widely used in industrial applications and is capable of generating improved 

transient responses while simultaneously reducing steady state error; primary elements of 

online correction during goal-directed tasks encompassed by sensorimotor processing in 

the brain. That is not to say that PID control is implemented within a particular brain 

area, but rather that in the context of online error correction PID control is represented 

functionally as an aggregate control process within the brain. While this poses inherent 

challenges for interpretation of the controller parameters within a particular neural or 

cortical framework, it does provide a quantitative first approximation of the systems-level 

function that can be compared across subjects and task conditions.   

 Experiment 4 demonstrated the efficacy of using frequency response analysis in 

of subjects’ correction to visual perturbations to estimate the controller parameters. 

Exploration of the 3D parameter space via simulation identified a gain region, Kd 

(<0.0005), Kpr (<0.01) and Ki (<0.1), in which the accuracy of the parameters estimated 

via the bootstrap analysis began to systematically degrade as the overall system response 

to perturbations decayed to zero (Figure 7.3). At high values of Ki (>1), the system 

became unstable, resulting in inaccurate parameter estimates. We return to this point 

later. Here also, the sampling of the parameters was coarse, and more simulations (with 
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fine sampling of parameter values) are required to more accurately determine the range 

beyond which estimation using the proposed experiments begins to break down. For the 

range of controller gains estimated experimentally, (Kd = 0.0001 – 0.0034 Nms/deg, Kpr 

= 0.019 - 0.086 Nm/deg, and Ki = 0.02 – 2.75 Nm/deg.s), the percentage error in 

estimation (for simulations) was less than 20 % (see Figure 7.3 and Appendices A6, A7 

& A8), thereby giving confidence in the experimental results. The quantification of PID 

controller parameters during goal-directed wrist stabilization is novel, preventing 

meaningful comparisons with the literature.  

For all subjects, the coherence between the variability in the input and output 

response spectra decreased dramatically for frequencies greater than 1 Hz, suggesting the 

presence of either a non-linearity or noise. What could account for a non-linearity? As the 

frequency of the perturbation increased the task became harder, forcing subjects to utilize 

alternative mechanisms which may not typically be required for low frequency 

perturbations. As the frequency of perturbations increased, several subjects noted an 

increased tendency to rely on their memory to average across recent perturbations and 

make approximate (lower frequency) corrections. Previously, studies have shown that the 

occulo-motor smooth pursuit system operates best at frequencies below 1 Hz (Stark et al. 

1962; Leist et al. 1987; Hefter and Langenberg 1998), and switches to saccadic 

movements at higher frequencies (Hefter and Langenberg 1998) and this transition could 

potentially make a system non-linear.   

Alternatively the reduction in coherence could be driven by an increase in noise in 

the system associated with the need to make high frequency corrections. High frequency 

movements are more abrupt and abrupt changes require large driving signal (Harris and 
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Wolpert 1998). From the model, an increase in the driving signal at higher frequencies 

would lead to an increase in the multiplicative feedforward noise, reducing the co-

variation between input and output power spectra.  

Simulations showed that as Ki increased, a resonant peak formed at 2-3 Hz and 

for values of Ki >1, the system became unstable. Simulations also suggested that as Kpr 

increased, the amplitude at the resonant frequency peak decreased and stability increased. 

This suggests that in order to produce stable movements, a high value of Ki must be 

accompanied by a high value of Kpr. Interestingly, for the experimental data, a strong 

correlation (r2 = 0.67; see Appendix D for co-variation across parameters) existed 

between the two parameters (Kpr and Ki), suggesting that a common modulating gain 

could be driving the two parameters. Whether this could be an inherent strategy adopted 

by neurologically intact subjects and whether this strategy changes in patients suffering 

from tremors (a kind of instability) would be an area for future investigation.  

7.5.2 Feedback Gains 

In neural control models, systems having multiple feedback paths typically have a 

weight to each path whose value depends on how precise the feedback path is, how much 

attention is allocated to each path and/or the type of task at hand. Many studies have tried 

to decipher this mystery. A study by Welch et al. (1979) suggested that the weights are 

determined by the precision of the information in each modality. According to another 

idea, they are related to the attention that is directed to each modality (Welch et al. 1979; 

Kelso et al. 1975; van Beers et al. 1996). According to model proposed by van Beers et 

al. (1999), weights of visual and proprioceptive feedback are direction-dependent. The 

current study has quantified the relative weighting of visual and proprioceptive feedback 
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during visually-guided target stabilization. Simulation results (Figure 7.3A) indicate that 

the estimation of feedback gains was very robust (with less than 20% error in estimation).  

It was initially assumed, that for a visually guided movement, more weight would 

be assigned to the visual feedback pathway. Although we expected the visual feedback 

gain (Kv) to be high for all subjects, the variability in Kv across subjects (range = [0.43,1]) 

was unexpected. It suggests that there are many ways to setup the control system to 

achieve comparable performance across subjects. This could also suggest that the 

standard experimental approach of classifying tasks in terms of a common underlying 

mechanism across subjects may not be entirely appropriate in the context of high-

dimensional sensorimotor control.   

7.5.3 Sensory Noise 

Sensory processing in the human brain is not exact, such that the representation of 

sensory information is often corrupted by noise. While the underlying sources of noise 

may vary, e.g., due to nonlinear transduction, synaptic transmission and network (neuron) 

interactions during cortical processing (Faisal et al. 2008), their effect on the 

representation of information is cumulative. Thus in the model, the various sources of 

noise, and their propagation through the system were lumped into a single source of 

sensory noise.  

It is important to note that in the current study estimates of sensory noise are 

expressed in terms of the variability associated with the internal noise as opposed to end 

point variability (van Beers et al. 1998) which is normally used as an estimate to describe 

variability (noise) during sensorimotor tasks. Although an important measure, end point 
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variability is an aggregate of motor and sensory noise and their transformation by the 

controller and/or plant. As a result, end-point variability does not provide an independent 

estimate of the sensory noise.  Using a visual stabilization task (Exp. 4) and subtraction 

analysis (see Section 7.2), the sensory noise was quantified in terms of its internal 

variance.  

The robustness of the approach is demonstrated by the simulation results. 

Although, for the experimental results the curve fit had high correlation (r2 > 0.69 for all 

subjects except one), the estimate of the sensory noise was too high. This may be due to 

the way in which the sensory noise was modeled, i.e., as an additive noise. Previous 

studies of visual processing and perceptual learning (Dosher and Lu 1999; Dosher and Lu 

1998; Lu and Dosher 1998) have reported multiplicative, as well as additive, noise 

sources during visual processing. The lack of a multiplicative component to the sensory 

noise could account for such a large estimate of sensory noise obtained from human 

performance. When evaluating model performance (see section 9.2), the sensory noise 

was set to zero as the variability introduced due to the internal noise (estimated values) 

affected the model performance significantly. Although, estimation of internal sensory 

noise is important for understanding the sensorimotor control system, its presence when 

evaluating the model’s performance is insignificant.  

In the current study, the sensory noise was represented by a single source. Ideally, 

there should be separate sources for each feedback path. However, the current 

experimental design was limited in its ability to estimate the noise sources independently 

due to the use of visual perturbations to characterize the FRF. The characterization of 

separate sources requires two sources of perturbation (one visual and one visuo-
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proprioceptive). For example, introducing external perturbation simultaneously within 

each (visual and proprioceptive) feedback path provides a second estimate of the sensory 

noise that can be used to differentiate estimates of the internal visual and proprioceptive 

noise. Such perturbations can be introduced using externally applied torques, however, in 

the context of the proposed model their application and experimental characterization via 

the FRF requires the incorporation of a reflex model to properly account for the subject’s 

response.  Future work is aimed towards addressing this limitation in the current model 

with an eye toward dissociating the two noise sources and incorporating multiplicative 

sensory noise. 
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Figure 8.1 Comparison of EMG (CoActivation) across Exps. 3 and 4. CoActivity 
within wrist muscles (FCR and ECR) was measured for Exp. 3 (brown circles) and Exp. 4 
(blue circles). CoA level was less than 10% of the maximum value achievable for all 
subjects except one. A two-sample t-tests with repeated measures was performed within 
subjects to test for significant differences between experiments (* denotes significance at 
the alpha=0.05 level). Error bars were less than the symbol size and are not shown for 
clarity. 

8 EMG ANALYSIS 

 

 
Antagonist muscle co-activity (CoA) of the wrist (FCR and ECR) was measured 

for each subject across Exps. 3 and 4, to characterize the levels of co-contraction 

(achieved by stiffening the wrist joint) employed by subjects and to measure their 

similarity across experiments. Figure 8.1 shows CoA across subjects for Exp. 3 (averaged 

over 4 trials) and Exp.4 (averaged over 18 trials). Across subjects, co-activity was less 

than 10% for all subjects except one. A paired t-test across subjects showed that the CoA 

between experiments (3 and 4) was significantly different (t( 10) = -4.74, p<0.05). A 

within-subject repeated measures analysis of CoA across experiments showed a small yet 

significant difference (t( 20) = -2.3, p<0.05, two-tailed) in 8 out of 11 subjects. This is 
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due in part to the highly consistent average activity across trials within an experiment. 

The results of these analyses would seem to suggest a change in passive dynamic 

properties of the wrist across experiments, which would require separate estimates of B 

and K for each experiment. Separate studies of the biomechanical impact of changes in 

CoA indicate that the impact of a 1% change in overall CoA is small, which would tend 

to support the implicit assumption of constant biomechanical properties in the current 

tasks.  
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9 EXPERIMENTAL PERFORMANCE OF THE MODEL 

9.1 Variance Accounted For  

To measure the performance of the model, subjects’ responses were compared 

with that of the model using the specific control parameters (delays, gains, neural 

controller, plant, and noise sources) estimated for each subject. For this, a different 

experiment involving visual stabilization was performed. The subject’s task was same as 

described previously in Exp. 1a. However, a new set of ten trials of 20 seconds each were 

collected to measure the performance of the model. Variance Accounted For (VAF) was 

calculated to obtain a performance metric for the estimated parameters and the overall 

model. A VAF of 100% implies accurate prediction by the model. VAF of less than 100 

% would indicate presence of unmodelled behavior, such as non-linearities and 

uncorrelated noise (Schouten et al. 2008).   

To estimate VAF, the visual stabilization performance of the model (using the 

parameter estimates obtained from the experimental data analysis) was simulated for each 

subject in SIMULINK® and compared to subject’s performance, θa(t), for the same visual 

perturbation, Dext(t).   

x?y � z1 9 ∑ a|���}K�|�I!�"#L�KN�H 9  |���}K�|LJ��Ha�K ∑ a|���}K�|�I!�"#L�KN�Ha�K � � 100 

where n indexes the temporal samples. VAF was estimated for ten trials and averaged to 

evaluate mean and standard deviation of the estimate for each subject.  

 



103 
 

Figure 9.1 Model vs. Subject’s Performance on wrist stabilization task. One trial of 
the visual stabilization performance of the model simulated for Subject 10 and compared 
to subject’s performance for the same visual perturbation signal.  For this trial the VAF 
was 86.5% 

9.2 Model vs. Subject’s Performance on wrist stabilization task 

 

Figure 9.1 shows a time course of a subject’s (#10) response to visual 

perturbations and model’s prediction obtained using the sensorimotor control parameters 

measured for that subject. The predicted output was well matched to the subject’s 

response, as suggested by the high variance accounted for (VAF = 86.5%) for the same 

trial. For this subject, the VAF averaged over 10 trials resulted in a mean of 80.2±5.8 %. 

Figure 9.2 shows the VAF for all eleven subjects. The VAF for all subjects was high, 

varying from 73.3% to 82.9% with a mean of 78.3±3.3 % (see Appendix E). While 

evaluating the performance of the model, the internal sensory noise (σS
2) was set to zero 

since the large values of the sensory noise estimates affected the model’s performance 

dramatically.    
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Figure 9.2 Variance Accounted For (VAF) across subjects. The VAF (mean ± std) 
for each subject was obtained by comparing subject’s response with the model’s 
prediction obtained using the sensorimotor control parameters measured for that 
subject. The VAF for all subjects was high, varying from 73.3% to 82.9% with a mean 
of 78.3±3.3 %. 

 

9.3 Variance Accounted For (VAF) by the Model: Comparison across Sessions 

Since the data was collected over two different sessions, we wanted to ensure that 

the system parameters did not change across these two sessions. Since Exp. 1a (designed 

to measure open loop visual delay) and Exp. 5 (designed to compare subject’s 

performance with the model via VAF) were identical in nature and data for these two 

experiments were collected on different days (sessions), we compared the VAF by the 

model in Exp. 1a (Session 1) with that obtained in Exp. 5 (Session 2).  Figure 9.3 shows 

this comparison in VAF across sessions for all subjects.  

A within-subject two sample t-test (two-tailed, alpha=0.05) on repeated measures 

was performed to determine whether the VAF was significantly different between the two 

sessions. A significant difference in VAF between the two sessions (denoted by * in 

Figure 9.3) was observed in 3 of 11 subjects (t(18) = -3.62, p<0.05). For the subjects 
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Figure 9.3 VAF comparison across sessions. VAF (mean ± std) for each subject 
across two sessions. A two-sample t-tests on repeated measures was performed within 
subjects to test for significant differences between sessions (* denotes significance at 
the alpha=0.05 level).  

whose difference in VAF across sessions was significant, no specific trends in the change 

in VAF were observed. A paired t-test across subjects revealed no significant difference 

in VAF between sessions (t(10) = -0.219, p<0.05). These results suggest that the 

sensorimotor control performance as a whole in most subjects did not vary significantly. 

However, no definitive comments about the time-invariant properties of the parameters 

can be made as VAF was an indirect measure and sensitivity of VAF to each parameter 

was not determined here. 

 

9.4 Discussion 

The control parameters estimated for the human subjects resulted in accurate 

model prediction of position, as demonstrated by a high VAF for all subjects. This 

suggests that the proposed model accounts for human control of wrist movement. 

However, the fact that the VAF was less than 100% suggests the presence of additional 
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features inherent in the sensorimotor control system that was not accounted for by the 

model. Below we outline some possibilities which could account for the remaining 20-

25% of the variance not accounted for by the model. 

On examining the position response of human subjects, we found that subjects 

had a tendency to correct intermittently. It has been well established that visually guided 

tracking movements are not smooth (Miall et al. 1993a; Doeringer and Hogan 1998). 

Movement intermittency could be an inherent property of the central nervous system 

(CNS) which the current study failed to model. From the perspective of movement 

planning, the actual movement can be broken down into submovements (Miall et al. 

1993a; Neilson et al. 1988) which could give rise to intermittent behaviors that increase 

for random target as opposed to rhythmic tracking. In our experiments, the visual 

perturbations were random in nature, which could have contributed to the intermittent 

behavior. Miall et al (1993) modeled this intermittent behavior by incorporating an error 

deadzone within a feedback control loop. It would be interesting to incorporate this 

intermittent behavior in our model to see if VAF increases.  

Velocity, position and torque data also suggest that the robotic manipulandum had 

an inherent stiction (static friction) associated with it. The robotic manipulandum did not 

move if the torque command applied to it was less than 0.22Nm. This effect was most 

noticeable when changes in direction of the manipulandum occurred and likely 

contributed to the apparent intermittency of corrections to changes in position.  

Another possibility for this intermittent behavior could reflect the presence of 

internal (neuromuscular) noise. Though sensory noise was incorporated into the model, 
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its value was set to zero when measuring the VAF since the accuracy of the noise 

estimates was uncertain in the human subjects. Increased sensory noise would manifest at 

the output as low-frequency modulations which could contribute to the apparent 

intermittency of subjects’ responses by randomly opposing the subjects’ movement. 

Finally, the intermittent behavior could be due to the increased inertia associated with 

using the robotic manipulandum, which could have altered the strategy used for 

stabilization. The incorporation of active compensation (to nullify this inertia effect) 

within the robotic manipulandum could be implemented to test this hypothesis. 

EMG data was collected to measure the co-activation between FCR and ECR 

(flexor and extensor wrist muscles) while performing Exp.3 and Exp. 4. Statistical 

analysis across experimental conditions suggested that the co-activation across the two 

experiments was significantly different for 8 out of 11 subjects. This suggests that the 

dynamics of the wrist may have changed across experiments. To the extent that the 

assumption that wrist dynamics were constant was violated, the values of J, B and K may 

not have been optimal when estimating the parameters in Exp. 4, thereby affecting the 

VAF. Although, we used a more conservative approach by incorporating the variability 

of the wrist parameter estimates (J, B and K) when estimating the neural controller, 

feedback gain and noise sources in Exp. 4, the possibility that the wrist dynamics may 

have changed across experiments cannot be discarded.   

Another important and compelling factor affecting the VAF could be the 

variability in the position response itself. By this, we mean that a VAF of 100% may not 

be possible because of the inherent variability (noise) present in the system. If a subject is 

asked to perform a visual stabilization task multiple times with the same input 
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perturbation sequence each time, the position response will vary across trials .This 

variability places an upper bound on the VAF that could be practically achieved. For 

example, with a 100 deg2 internal variance in the position response, the maximum VAF 

that can be achieved is 90%. For the average VAF shown here (80%), the normalized 

VAF obtained by comparing model response to the subject’s response would be 88.89%.  
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10 DISCUSSION 

10.1 Summary 

In this study, a methodology was developed which utilizes systems identification 

techniques together with experimental measurements of wrist control to systematically 

characterize the sensorimotor control system for visually-directed wrist movements in 

neurologically-intact subjects. Fully characterizing the sensorimotor control system is a 

necessary step toward understanding of how different elements of the system interact to 

produce intended movement.  

The proposed model of sensorimotor control contained 13 parameters (including 

temporal delays, internal noises, feedback gains, wrist dynamics and controller gains) and 

was structurally similar to several qualitative models of sensorimotor control proposed in 

the literature (Kawato 1999; Miall et al. 1993b; Wolpert and Miall 1996a; Mehta and 

Schaal 2002; Peterka 2002). The parameters defining the model were characterized 

experimentally through a series of four stabilization tasks designed specifically to isolate 

elements of the control system and estimate the underlying parameters.  In Exp. 1, cross-

correlation analysis was employed to measure the implicit and explicit delays in the 

control system. Exp. 2 used isometric force contractions to estimate the signal-dependent 

(multiplicative) feedforward noise. In Exp. 3 and 4, wrist dynamics, controller 

parameters, feedback gains and sensory noise were quantified by fitting the model to the 

frequency response functions obtained from the subjects’ position response to input 

perturbations (visual and torque).  

A cross-validation approach was used to simultaneously assess the ability of our 
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approach to estimate the underlying model parameters and accurately reproduce subject 

responses to stabilization and tracking tasks. The experimental paradigm was validated 

by simulating the sensorimotor control model and experiments in SIMULINK® over a 

range of values for each parameter to characterize the robustness of the approach. Model 

validation was performed by characterizing the sensorimotor control system in human 

subjects, and subsequently using the estimated parameters in the model to predict subject-

specific performance on stabilization (and tracking) tasks. All but one parameter (σS
2) 

was found to be estimated reliably. The control parameters estimated for human subjects 

resulted in accurate model prediction of position, as demonstrated by a high VAF for all 

subjects. 

10.2 Model Assumptions 

Previous studies have estimated components of the sensorimotor control system in 

isolation (van Beers et al. 1999; Jones et al. 2002a; Notley et al. 2007), thereby making it 

difficult to make interpretations about the sensorimotor control system as a whole. To 

model a sensorimotor control system as a whole and study its interaction while 

performing a task, it was therefore necessary to characterize all the parameters of the 

model simultaneously in one experimental session. Further, based on the complexity of 

the sensorimotor system, it was necessary to make several simplifying assumption for the 

model and the parameters, which warrant further discussion.  

As a first order approximation, the model as a whole was assumed to be a linear 

time-invariant (LTI) system (Mehta and Schaal 2002; Peterka 2002) . The process of 

proprioception combines information from multiple sources including muscle stretch, 

force receptors, tactile receptors and the Golgi tendon. Visual processing is a complex 
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process spanning multiple cortical areas that systematically build up a representation of 

the visual space through a distributed hierarchy of processing stages. In our study, these 

feedback paths were highly simplified into lumped parameter models, each consisting of 

a weight, delay and a noise term based on an implicit assumption that the position 

information propagated through the feedback paths is an exact estimate of the limb’s 

actual position, and this position information is weighted, delayed and corrupted by 

sensory noise as it propagates through the sensory system. Similarly, the neural controller 

was modeled as a PID controller (Peterka 2002), which as generalized and robust 

controller has been widely used in control theory applications.  

The forward model was implemented as a Smith Predictor (Miall et al. 1993b), 

first developed for use in industrial control systems to predict large feedback delays. A 

Smith predictor in its truest sense is static (i.e. non-adaptive). However, previous studies 

have shown that the forward model is adaptive and its response can be altered or changed 

through learning (Miall and Jackson 2006). Our study assumes that over the realm of the 

experimental session, the forward model and in fact all the parameters in the model are 

time-invariant. This assumption is reasonable, as during the experimental session none of 

the sensorimotor behavior was changed or altered via learning. The task on which 

subjects were provided practice was different than the task used for characterizing the 

parameters, thereby making sure that no learning occurs. Also, fatigue effects were 

minimized by providing breaks between trials and experiments. These simplifying 

assumptions allowed us to model the dynamic behavior of the sensorimotor system for 

wrist movements. 

Four experiments were developed to estimate the 13 parameters that together 
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Table 10.1 Feedforward conduction delay across subjects. Feedforward conduction 
delay was estimated using an indirect method by subtracting Tcp from Teff. 

 

characterize the model. The model parameters were estimated successively across 

experiments such that the parameters estimated in Exps. 1 & 2 were used as constants to 

estimate the subsequent groups of parameters in Exps. 3 & 4. All the parameters (except 

Kpr and Ki) were independent of each other. This was observed from the co-variation 

matrix calculated across parameter estimates across subjects. Except for Kpr and Ki, co-

variation across parameters was less than 0.42 (refer Appendix D).  

10.3 Feedforward conduction delay 

Subject # 
Teff (ms) 
(Exp. 1c) 

Tcp (ms) 
(measured from the model) 

T ff (ms)  
(Teff - Tcp) 

1 66.4 37.9 28.5 
2 70.9 29.5 41.4 
3 59.4 213 -153.6 
4 49 58.8 -9.8 
5 65.3 81.8 -16.5 
6 79.7 11.4 68.3 
7 55 25 30 
8 67.7 16.7 51 
9 50.9 121 -70.1 
10 54.8 14 40.8 
11 52.2 199.9 -147.7 

 Using the model, we were able to indirectly measure the feedforward conduction 

delay by subtracting out the phase shift induced by the controller and the plant (Tcp) from 

the estimate of effective feedforward delay (Teff). This was achieved by using the 

parameter estimates (measured experimentally) for each individual subject in the model, 

with all the delays (Tv, Tp and Tff) set to zero, and simulating Exp. 1c to measure the 

delay (i.e. Tcp) between the input and the output. Results of the above approach are 

shown in Table 10.1. 
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The feedforward delay estimate obtained using above approach ranged from 28 to 

68 ms across subjects (6 out of 11). Although, this range seems plausible, one might 

potentially use other noninvasive methods such as EEG or MEG to obtain more accurate 

estimates. Surprisingly, the feedforward delay for the remaining 5 subjects was negative. 

Of these 5 subjects, 4 subjects (# 3, 5, 9 and 11) had a low Ki (< 0.26) estimated from 

Exp. 4. It should be noted that the error in estimation of Ki was high for lower values of 

K i (refer section 7.3.1). This would suggest that the negative feedforward delays could be 

an artifact due to inaccurate measurement of Ki.    

10.4 Forward Model 

Evidence in support of a forward model in sensorimotor control has been indirect, 

however, a number of studies point to its presence and use during goal-oriented tasks 

(Miall et al. 1993b; Wolpert and Miall 1996a; Mehta and Schaal 2002; Miall and Reckess 

2002). The forward model’s output can rarely be observed explicitly making it hard to 

fully characterize. In the current study, the forward model was based on a Smith Predictor 

topology (Miall et al. 1993b), such that instantaneous limb position was predicted based 

on the descending motor commands to make online corrections. In the model, the Smith 

Predictor was assumed to be quasi-static in nature and to perfectly predict the output of 

the sensory feedback based on the current torque commands. By perfect prediction we 

mean that the parameters values (J, B, K, Tv, Tp, Tff, Kp and Kv) in the Smith Predictor 

were identical to those of sensory and motor paths, and hence no additional experiments 

were required for its characterization. By quasi-static we mean that for the specified task 

and/or the duration of experimental session, the forward model did not change 

significantly unless forced to change via learning or adaptation. Miall et al. (2006) 
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showed that adaptation altered the properties of the forward model and argued against the 

forward model acting as a Smith Predictor, whose parameters are constant by definition. 

We do not claim that the Smith predictor is “the forward model” and that it cannot be 

altered. However, our results suggest that Smith predictor is a good quasi-static 

approximation of a forward model that has an inherent property to adapt with learning.  

An interesting hypothesis is that sensorimotor deficits in certain types of 

neurological disease could reflect an inability of the forward model to adapt, causing a 

mismatch in one or more parameters. Miall et al. (2000) demonstrated that closed-loop 

system can become unstable as a result of this kind of mismatch. A potential application 

of this study will be to test for this hypothesis in the context of deficits such as tremor.            

10.5 Importance of the Study and possible applications 

 The accurate model prediction of position (suggested by a high VAF) provides 

support for the proposed model of 1-D wrist movement and suggests that the 

experimentally measured model parameters can be used to investigate the characteristics 

of sensorimotor control for wrist movements specifically, and may be for goal-oriented 

tasks more generally. While we acknowledge that the model does not fully account for all 

aspects of sensorimotor processing involved in performing 1-D wrist movements, we are 

hopeful that this research will provide the framework for developing more sophisticated 

approaches to characterize sensorimotor control in the future.  

This finding could be easily translated to other 1-D movements (about elbow or 

shoulder joint) and can be even extended to decode the sensorimotor integration for 2-D 

movements.  Further, characterizing the sensorimotor control for a tracking paradigm, 
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and comparing the parameters across tracking and stabilization paradigms can help 

differentiate the strategies used in these paradigms.  Another application of the proposed 

method would be to characterize the changes in the sensorimotor control system that 

occurs with aging.  

The incorporation and quantification of the forward model, internal noises and 

temporal delays (as opposed to a single delay term) is a novel aspect of the research and 

one which we believe will facilitate identification of the sources of sensorimotor deficits 

resulting from neurological impairment. An underlying motivation of the project has been 

to study ataxia and tremor in Multiple Sclerosis (MS). Changes in the temporal delay of 

feedback signals is of special interest because it has been shown previously that these 

deficits slow down the responses of the patients having these symptoms (Demaree et al. 

1999). In case of MS patients, sensory delays (Tv and/or Tp) may be significantly greater 

than for neurologically intact subjects. In cases where the forward model is unable to 

update the increased sensory delay in patients suffering from Multiple Sclerosis, the 

subsequent mismatch in delays can lead to tremor.  

Figure 10.1shows the results of a simulation wherein kinetic tremor was obtained 

by creating a mismatch between the predicted (forward model) and actual visual delays. 

As seen the figure, the system becomes unstable as the mismatch between the two delays 

increases. This instability leads to tremulous response by the model. Interestingly, the 

frequency of the simulated tremors lies between from 2.5 – 3.5 Hz, which is one of the 

frequency bands of tremors reported for MS patients (Alusi et al. 2001). Given the 

complexity of the sensorimotor control system, variations in other parameters could lead 

to similar functional impairments in persons with MS. Therefore, the above approach will 



 

Figure 10.1 Simulating Tremors
each in the visual feedback path and the forward model) is created, while the other 
parameters were set to nominal values (measured experimentally in normal
B) Step response of the model is measured with varying levels of mismatch. This 
mismatch causes the system to become unstable and the level of instability increases 
as the mismatch increases.  

be used to characterize the contributions of impaired sensory and motor processing to the 

phenomena of tremor and ataxia during goal

A 

B 

Simulating Tremors. A) A mismatch in the two visual delay blocks (one 
each in the visual feedback path and the forward model) is created, while the other 
parameters were set to nominal values (measured experimentally in normal
B) Step response of the model is measured with varying levels of mismatch. This 
mismatch causes the system to become unstable and the level of instability increases 
as the mismatch increases.   

be used to characterize the contributions of impaired sensory and motor processing to the 

phenomena of tremor and ataxia during goal-directed movement. 
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A) A mismatch in the two visual delay blocks (one 
each in the visual feedback path and the forward model) is created, while the other 
parameters were set to nominal values (measured experimentally in normal subjects). 
B) Step response of the model is measured with varying levels of mismatch. This 
mismatch causes the system to become unstable and the level of instability increases 

be used to characterize the contributions of impaired sensory and motor processing to the 
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11 FUTURE DIRECTIONS 

In Experiment 4, the additive source for sensory noise used in the model was not 

able to account for the experimental data. Future work will model the sensory noise as 

combination of additive and multiplicative noise in line with the model proposed by 

Dosher and Lu (1999) for visual perception. The lack of a multiplicative component to 

the sensory noise could account for the inability of the model to account for human 

performance.     

For the current study, the sensory noise was represented by a single source. 

Ideally, there should be two noise sources; one corresponding to each feedback path. 

However, the current methodology had a limitation in estimating these noise sources 

independently. An additional experimental condition would be required to be 

implemented that could help in dissociating the two sources. One such experimental 

condition could be visuo-proprioceptive stabilization. The subject’s task would be to 

stabilize against the torque perturbations applied to the wrist manipulandum in the 

presence of visual and proprioceptive feedback. This experimental condition would 

provide a second estimate of the sensory noise sources, which could be used to separately 

estimate the noise source. Preliminary results suggest that reflexes may contribute to 

subjects’ overall position response. Accounting for these effects will require the 

incorporation and experimental characterization of a reflex pathway in the model.    

 Hence it is important to incorporate a reflex path within the plant (wrist) in order 

to model the reflex action generated in response to the torque perturbations applied to the 

wrist. Incorporation of reflex path will solve two problems. Firstly, it would help to 
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rectify the negative viscosity that was measured experimentally using Exp. 3 (if our 

hypothesis that the negative viscosity was due to reflex action is correct). Secondly, it 

would help us to implement stabilization task involving torque perturbations.  

 Stabilization against torque perturbation could be implemented under two 

different conditions, visuo-proprioceptive stabilization (in presence of visual feedback) 

and proprioceptive stabilization (no visual feedback available). Using subtraction analysis 

(refer Section 7.2), the controller parameters and the feedback gains could be estimated 

for each of the experimental condition. A comparison of these estimates across three 

experimental conditions (visual stabilization, proprioceptive stabilization and visuo- 

proprioceptive stabilization) will help decipher different strategies used when external 

perturbations are applied to a single and/or both feedback paths. 

The current study employed stabilization task as a means to estimate system 

parameters. Will the strategy used remain the same for a tracking task? To answer this 

question, all the experiments used in the current study could be replicated to incorporate a 

tracking task. The target will be moving back and forth in random manner (as opposed to 

the current study where it was static) and the subject’s task would be to try to keep the 

cursor onto the target in presence of external perturbations. The estimates obtained from 

tracking paradigm could then be compared to those obtained from stabilization paradigm 

for the same subject. This will help to compare the strategies used for each paradigm.   
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APPENDICES 

APPENDIX A1 

Sim # Expected 
(Tv + Teff) 

Estimated (Tv + Teff) 
r2 

Mean SD 

1 120 120.7 1.83 0.99 

2 170 171.0 1.05 0.99 

3 220 219.5 2.92 0.99 

4 270 270.6 2.63 0.98 

5 320 320.2 1.69 0.98 

6 370 369.7 4.30 0.97 

7 420 421.0 1.63 0.97 

8 470 471.5 1.18 0.98 

9 520 520.6 1.71 0.97 

10 570 570.3 2.06 0.97 

11 620 619.5 4.38 0.95 

12 670 670.7 1.70 0.96 

Simulation Results for Experiment 1a. The experimental approach to estimate the open loop visual delay (Tv+Teff) was tested 
over a range of values of  Tv = 50-600 ms. For the simulation feedforward conduction delay (Tff) was set to 30 ms and the delay 
associated with the plant and the controller (Tcp) was 40 ms corresponding to an effective feedforward delay (Teff) of 70 ms. 
Table below shows the estimated open loop visual delay and correlation between the visual perturbation and wrist response.  



126 
 

APPENDIX A2 

 

Sim # Expected 
(Tp + Teff) 

Estimated (Tp + Teff) 
r2 

Mean SD 

1 90 92.5 10.07 0.88 

2 110 114.1 12.76 0.88 

3 130 131.3 6.88 0.88 

4 150 150.7 6.34 0.88 

5 170 168.8 10.20 0.87 

6 190 190.2 4.61 0.88 

7 210 212.4 11.56 0.86 

8 230 231.8 9.34 0.89 

9 250 248.1 8.67 0.88 

10 270 271.1 5.59 0.88 

11 290 293.3 11.34 0.88 

12 310 311.3 9.52 0.88 

Simulation Results for Experiment 1b. The experimental approach to estimate the open loop proprioceptive delay 
(Tp+Teff) was tested over a range of values of  Tv = 20-240 ms. For the simulation feedforward conduction delay (Tff) was 
set to 30 ms and the delay associated with the plant and the controller (Tcp) was 40 ms corresponding to an effective 
feedforward delay (Teff) of 70 ms. Table below shows the estimated open loop proprioceptive delay and correlation 
between the torque perturbation and counter torque produced by the wrist.  
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APPENDIX A3 

 

Sim # Expected 
(Teff) 

Estimated (Teff) 
r2 

Mean SD 

1 50 50 0.00 1.00 

2 60 60 0.00 1.00 

3 70 70 0.00 1.00 

4 80 79.6 0.52 1.00 

5 90 89.2 0.42 1.00 

6 100 99 0.00 1.00 

7 110 109 0.00 1.00 

8 120 119 0.00 1.00 

9 130 129 0.00 1.00 

10 140 139 0.00 1.00 
 

Simulation Results for Experiment 1c. The experimental approach to estimate the effective feedforward delay (Teff = 
Tff + Tcp) was tested over a range of values of  Tff = 10-100 ms. For the simulation the delay associated with the plant and 
the controller (Tcp) was 40 ms. Table below shows the estimated effective feedforward delay and correlation between the 
sinusoid tracking signal and wrist position.  
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APPENDIX A4 

 

Sim # Expected (α) Estimated (α) r2 

1 0.01 0.0101 1.00 

2 0.02 0.0201 1.00 

3 0.03 0.0299 1.00 

4 0.04 0.0401 1.00 

5 0.05 0.0500 1.00 

6 0.06 0.0596 1.00 

7 0.07 0.0697 1.00 

8 0.08 0.0801 1.00 

9 0.09 0.0889 1.00 

10 0.1 0.1006 1.00 
 

Simulation Results for Experiment 2. The experimental approach to estimate the multiplicative 
feedforward noise (α) was tested over a range of values of  α = 0.01-1. Table below shows the 
estimated multiplicative feedforward noise and correlation between the data (SD vs. Mean Torque 
level) and a line having a slope of estimated α passing through origin.  
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APPENDIX A5 

 

 

 

 

 

 

 

Simulation Results for Experiment 3. The approach to estimate passive wrist dynamics was tested over a range 
(J = 0.005-0.05; B = 0.03-0.7; K = 0.5-5) of values. Figure below shows the surface plot of error estimation in one 
parameter as function of the other two parameters for one value of J (0.05), B (0.03) and K (0.5) for which the 
error is estimation was highest. 
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APPENDIX A6 

 

Simulation Results for Experiment 4 (Kd). The approach to estimate controller parameters was tested over a range (Kv = 0.5, 0.75 
and 1; Kd = 0.0001-0.01; Kpr = 0.005-0.5; Ki = 0.02-5) of values. Figure below shows the surface plot of error estimation in Kd as 
function of the Kpr and Ki for all values of Kd. White space denotes that the system became unstable for these values of Kd, Kpr and Ki. 
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APPENDIX A7 

 

Simulation Results for Experiment 4 (Kpr). The approach to estimate controller parameters was tested over a range (Kv = 0.5, 0.75 
and 1; Kd = 0.0001-0.01; Kpr = 0.005-0.5; Ki = 0.02-5) of values. Figure below shows the surface plot of error estimation in Kpr as 
function of the Kd and Ki for all values of Kpr. White space denotes that the system became unstable for these values of Kd, Kpr and Ki. 
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APPENDIX A8 

 

Simulation Results for Experiment (K i). The approach to estimate controller parameters was tested over a range (Kv = 0.5, 
0.75 and 1; Kd = 0.0001-0.01; Kpr = 0.005-0.5; Ki = 0.02-5) of values. Figure below shows the surface plot of error estimation in 
K i as function of the Kd and Kpr for all values of Ki. White space denotes that the system became unstable for these values of Kd, 
Kpr and Ki. 
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APPENDIX A9  

 

 Simulation Results for Experiment 4. The approach to estimate controller parameters was tested for Kv = 0.5, 0.75 and 1 
Figure below show percent error in the median estimates of the Kv, Kd, Kpr, and Ki for Kv = 0.75. 
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APPENDIX A10 

 

 

 Simulation Results for Experiment 4. The approach to estimate controller parameters was tested for Kv = 0.5, 0.75 and 1 
Figure below show percent error in the median estimates of the Kv, Kd, Kpr, and Ki for Kv = 1. 
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APPENDIX A11 
 

Sim # 
Expected Estimated 

r2 
 Mean STD 

1 10 8.25 2.85 0.98 
2 20 12.30 5.02 0.98 
3 30 37.96 10.67 0.94 
4 40 27.68 13.60 0.96 
5 50 74.92 14.94 0.96 
6 100 89.87 72.90 0.94 
7 200 128.15 31.87 0.94 
8 300 187.78 48.79 0.93 
9 400 409.70 121.39 0.88 
10 500 752.20 281.95 0.87 
11 1000 1017.20 237.21 0.76 
12 2000 2819.95 629.08 0.70 

 

  

 Simulation Results for Experiment 4. The approach to estimate sensory noise was tested over a range (σS
2 = 10-

2000 degree2. Table below shows the estimated sensory noise and r2 values. 
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APPENDIX B 

 

Experiments Parameters Subject 1 Subject 2 

  µ r 2 σ γ κ µ r 2 σ γ κ 

Experiment 1 

Tv + Teff 
(ms) 239.4 0.7056 22.2 - - 241.6 0.8649 27.2 - - 

Tp + Teff 
(ms) 80.6 0.7744 25.2 - - 129.2 0.8464 52.9 - - 

Teff 
(ms) 66.4 0.9801 13.9 - - 70.9 0.9604 10.3 - - 

Experiment 2 α 0.0207 - - - - 0.0354 - - - - 

Experiment 3 

J 
(kgm2) 0.0098 

0.964 

0.0004 0.09 2.97 0.0096 

0.969 

0.0004 0.09 2.98 

B 
(Nms/rad) 0.248 0.037 0.56 3.57 0.254 0.037 0.44 3.27 

K  
(Nm/rad) 2.189 0.165 0.05 3.09 1.095 0.127 0.3 3.28 

Experiment 4 

K v 0.998 

0.703 

0.0118 -6.15 48.27 0.774 

0.697 

0.0451 0.69 4.23 

K p 0.002 0.0118 6.15 48.27 0.226 0.0451 -0.69 4.23 

K d 
(Nms/deg) 0.0024 0.0002 0.36 3.6 0.0034 0.0004 0.27 3.14 

K pr 
(Nm/deg) 0.0518 0.0084 0.4 3.24 0.0375 0.008 0.46 3.28 

K i 
(Nm/deg.s) 1.085 0.1452 0.36 3.17 0.779 0.1799 0.55 3.48 

σS
2 

(degree2) 851.4 0.92 217.8 0.36 3.14 1009.9 0.84 373.71 -0.53 3.84 

Experimental Results. Table below shows the experimental results across all experiments for 11 subjects 



138 
 

Experiments Parameters Subject 3 Subject 4 

  µ r 2 σ γ κ Μ r 2 σ γ κ 

Experiment 1 

Tv + Teff 
(ms) 280.8 0.8836 27.5 - - 232.6 0.8281 27.5 - - 

Tp + Teff 
(ms) 118.5 0.8281 56.3 - - 106.9 0.8464 56.3 - - 

Teff 
(ms) 59.4 0.9604 19.6 - - 49.0 0.9604 19.6 - - 

Experiment 2 α 0.0210 - - - - 0.0354 - - - - 

Experiment 3 

J 
(kgm2) 0.0090 

0.977 

0.0004 0.09 2.95 0.0090 

0.953 

0.0004 0.09 3.01 

B 
(Nms/rad) 0.183 0.024 0.63 3.72 0.322 0.036 0.45 3.29 

K  
(Nm/rad) 2.912 0.205 0.08 2.98 2.940 0.266 0.12 2.98 

Experiment 4 

K v 0.993 

0.792 

0.0285 -4.72 28.14 0.906 

0.875 

0.0625 -0.19 2.28 

K p 0.007 0.0285 4.72 28.14 0.094 0.0625 0.19 2.28 

K d 
(Nms/deg) 0.0002 0.0001 -0.04 2.35 0.0001 0.0002 1.28 2.49 

K pr 
(Nm/deg) 0.0184 0.0024 0.51 3.75 0.0424 0.0055 0.49 3.05 

K i 
(Nm/deg.s) 0.164 0.0248 0.22 3.04 0.929 0.1657 0.67 3.54 

σS
2 

(degree2) 1608.2 0.92 311.0 0.21 3.02 1393.3 0.69 335.1 0.51 3.66 
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Experiments Parameters Subject 5 Subject 6 

  Μ r 2 σ γ κ µ r 2 σ γ κ 

Experiment 1 

Tv + Teff 
(ms) 301.9 0.4761 22.5 - - 285.3 0.8649 40.7 - - 

Tp + Teff 
(ms) 125.4 0.8836 48.7 - - 124.9 0.8836 37.7 - - 

Teff 
(ms) 65.3 0.9409 19.1 - - 79.7 0.9216 24.4 - - 

Experiment 2 α 0.0592 - - - - 0.0280 - - - - 

Experiment 3 

J 
(kgm2) 0.0095 

0.939 

0.0004 0.13 2.97 0.0092 

0.962 

0.0004 0.14 2.96 

B 
(Nms/rad) 0.264 0.043 0.53 3.54 0.245 0.035 0.56 3.59 

K  
(Nm/rad) 0.680 0.102 0.58 3.42 1.607 0.163 0.11 2.96 

Experiment 4 

K v 0.985 

0.786 

0.0308 -2.62 10.3 0.633 

0.838 

0.0475 0.38 3.07 

K p 0.015 0.0308 2.62 10.3 0.367 0.0475 -0.38 3.07 

K d 
(Nms/deg) 0.0003 0.0002 -0.17 2.42 0.0027 0.0006 0.61 3.51 

K pr 
(Nm/deg) 0.0339 0.0044 0.24 3.45 0.0598 0.0152 -0.25 3.47 

K i 
(Nm/deg.s) 0.203 0.0715 0.52 3.75 2.746 0.5999 0.74 3.62 

σS
2 

 (degree2) 1265.9 0.84 349.13 0.28 3.24 1228.0 0.92 218.6 0.25 3.16 
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Experiments Parameters Subject 7 Subject 8 

  µ r 2 σ γ κ Μ r 2 σ γ κ 

Experiment 1 

Tv + Teff 
(ms) 330.6 0.8836 65.3 - - 374.6 0.8464 64.5 - - 

Tp + Teff 
(ms) 109.5 0.9025 23.7 - - 155.2 0.8836 22.9 - - 

Teff 
(ms) 55.0 0.9409 17.1 - - 67.7 0.9409 39.5 - - 

Experiment 2 α 0.0378 - - - - 0.0270 - - - - 

Experiment 3 

J 
(kgm2) 0.0097 

0.949 

0.0004 0.13 2.98 0.0098 

0.966 

0.0004 0.11 2.97 

B 
(Nms/rad) 0.252 0.036 0.55 3.56 0.266 0.036 0.52 3.52 

K  
(Nm/rad) 1.390 0.176 0.19 2.89 1.768 0.165 0.13 3.02 

Experiment 4 

K v 0.411 

0.767 

0.0607 0.46 3.37 1 

0.822 

0 -1.71 5.41 

K p 0.589 0.0607 -0.46 3.37 0 0 1.71 5.41 

K d 
(Nms/deg) 0.0023 0.0008 0.39 3.74 0.0018 0.0003 -0.42 3.73 

K pr 
(Nm/deg) 0.0547 0.012 0.34 3.11 0.0796 0.0092 0.11 2.85 

K i 
(Nm/deg.s) 1.081 0.6215 0.57 3.37 2.0006 0.2389 0.59 3.65 

σS
2 

 (degree2) 921.9 0.88 251.5 2.59 -0.02 2071.5 0.90 525.35 2.53 -0.15 
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Experiments Parameters Subject 9 Subject 10 

  Μ r 2 σ γ κ µ r 2 σ γ κ 

Experiment 1 

Tv + Teff 
(ms) 271.9 0.7921 35.8 - - 293.5 0.9216 23.9 - - 

Tp + Teff 
(ms) 122.9 0.9025 22.9 - - 130.4 0.9216 47.3 - - 

Teff 
(ms) 50.9 0.9409 23.5 - - 54.8 0.9604 21.2 - - 

Experiment 2 α 0.0152 - - - - 0.0170 - - - - 

Experiment 3 

J 
(kgm2) 0.0097 

0.952 

0.0004 0.10 2.97 0.0080 

0.911 

0.0003 0.10 2.97 

B 
(Nms/rad) 0.270 0.036 0.53 3.48 0.256 0.035 0.49 3.43 

K  
(Nm/rad) 1.966 0.179 0.13 3.03 1.212 0.244 0.04 3.11 

Experiment 4 

K v 0.693 

0.795 

0.1043 0.66 3.41 0.629 

0.722 

0.0375 0.36 3.26 

K p 0.307 0.1043 -0.66 3.41 0.371 0.0375 -0.36 3.26 

K d 
(Nms/deg) 0.0002 0.0001 0.54 2.65 0.0023 0.0004 0.25 3.23 

K pr 
(Nm/deg) 0.0408 0.0073 0.36 3.1 0.083 0.0122 0.16 2.87 

K i 
(Nm/deg.s) 0.258 0.078 0.52 3.69 1.741 0.3664 0.51 3.32 

σS
2 

 (degree2) 1332.1 0.69 251.9 0.29 3.18 1204.5 0.79 294.9 0.04 3.25 
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Experiments Parameters Subject 11 

  µ r 2 Σ γ κ 

Experiment 1 

Tv + Teff 
(ms) 305.9 0.8281 23.9 - - 

Tp + Teff 
(ms) 137.8 0.8836 47.3 - - 

Teff 
(ms) 52.2 0.9604 15.1 - - 

Experiment 2 α 0.0196 - - - - 

Experiment 3 

J 
(kgm2) 0.0073 

0.908 

0.0003 0.06 3.00 

B 
(Nms/rad) 0.269 0.045 0.61 3.64 

K  
(Nm/rad) 0.876 0.137 0.37 2.96 

Experiment 4 

K v 0.923 

0.813 

0.1195 -1.38 3.71 

K p 0.077 0.1195 1.38 3.71 

K d 
(Nms/deg) 0.0003 0.0001 -0.63 6.29 

K pr 
(Nm/deg) 0.019 0.0057 1.34 5.16 

K i 
(Nm/deg.s) 0.023 0.0068 0.81 3.7 

σS
2 

 (degree2) 200.2 0.35 115.72 0.56 3.37 
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APPENDIX C 

 

  

 

 

 

 

 

 

 

 

  

Sub # 
σS

2 (degree2) E.V. (degree2) 
Mean STD Mean STD 

1 851.4 217.8 16.6 4.9 
2 1009.9 373.7 26.7 9.2 
3 1608.2 311.0 3.1 0.7 
4 1393.3 335.1 12.1 2.8 
5 1265.9 349.1 7.5 2.0 
6 1228.0 218.6 84.4 13.6 
7 921.9 251.5 17.8 5.3 
8 2071.5 525.4 61.3 14.9 
9 1332.1 251.9 5.8 1.1 
10 1204.5 294.9 41.9 8.6 
11 200.2 115.7 0.24 0.2 

Sensory Noise.  Experimental results across 11 subjects showing Internal Variance (σS
2) and 

corresponding end point variability (E.V.) 
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APPENDIX D 

 Tv+Teff Tp+Teff Teff α J B K K v Kp Kd Kpr K i σS
2 

Tv+Teff 1.00 0.42 0.00 0.01 0.00 0.02 0.13 0.01 0.01 0.00 0.14 0.06 0.08 

Tp+Teff 0.42 1.00 0.01 0.00 0.08 0.00 0.19 0.00 0.00 0.00 0.03 0.02 0.08 

Teff 0.00 0.01 1.00 0.06 0.16 0.12 0.05 0.01 0.01 0.40 0.05 0.32 0.04 

α 0.01 0.00 0.06 1.00 0.12 0.05 0.12 0.00 0.00 0.00 0.02 0.01 0.01 

J 0.00 0.08 0.16 0.12 1.00 0.00 0.05 0.00 0.00 0.07 0.04 0.03 0.26 

B 0.02 0.00 0.12 0.05 0.00 1.00 0.01 0.00 0.00 0.03 0.04 0.00 0.01 

K 0.13 0.19 0.05 0.12 0.05 0.01 1.00 0.07 0.07 0.09 0.01 0.00 0.20 

K v 0.01 0.00 0.01 0.00 0.00 0.00 0.07 1.00 1.00 0.19 0.12 0.11 0.04 

Kp 0.01 0.00 0.01 0.00 0.00 0.00 0.07 1.00 1.00 0.19 0.12 0.11 0.04 

Kd 0.00 0.00 0.40 0.00 0.07 0.03 0.09 0.19 0.19 1.00 0.31 0.42 0.01 

Kpr 0.14 0.03 0.05 0.02 0.04 0.04 0.01 0.12 0.12 0.31 1.00 0.67 0.16 

K i 0.06 0.02 0.32 0.01 0.03 0.00 0.00 0.11 0.11 0.42 0.67 1.00 0.12 

σS
2 0.08 0.08 0.04 0.01 0.26 0.01 0.20 0.04 0.04 0.01 0.16 0.12 1.00 

Covariance Matrix.  Table below shows the co-variation in one parameter with respect to other parameter(s) for all 13 parameters 
of the model 
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APPENDIX E 

 

Subject # 
VAF (%) 

Mean SD 
1 80.130 5.0100 

2 78.480 12.250 

3 73.320 9.2000 

4 82.490 6.0100 

5 78.310 4.9200 

6 82.920 4.7600 

7 79.890 7.8000 

8 74.190 14.010 

9 80.840 3.5400 

10 80.200 5.2900 

11 74.940 6.3100 
 

 

 

 

Variance Accounted For (VAF) by the Model.  Table below shows the VAF (mean ± std) for all subject 
obtained by comparing subject’s response with the model’s prediction obtained using the sensorimotor 
control parameters measured for that subject. 
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APPENDIX F 

 

Model implementation in SIMULINK.  Figure below shows the model as implemented in SIMULINK for 
performing simulations. 
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