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ABSTRACT 

MINIATURE, HIGH EFFICIENCY TRANSDUCERS FOR USE IN ULTRASONIC 

FLOW METERS 

 

 

Meghna Saikia 

 

Marquette University, 2013 

 

 

 This thesis is concerned with the development of a new type of miniature, high 

efficiency transducer for use in ultrasonic flow meters. The proposed transducer consists 

of a thin plate of a suitable piezoelectric material on which an inter-digital transducer is 

fabricated for the generation and detection of plate acoustic waves. When immersed in a 

fluid medium, this device can convert energy from plate acoustic waves (PAWs) into 

bulk acoustic waves (BAWs) and vice versa. It is shown that this mode coupling 

principle can be used to realize efficient transducers for use in ultrasonic flow meters. 

This transducer can be mounted flush with the walls of the pipe through which fluid is 

flowing, resulting in minimal disturbance of fluid flow. A prototype flow cell using these 

transducers has been designed and fabricated. The characteristics of this device have been 

measured over water flow rates varying from 0 to 7.5 liters per minute and found to be in 

good agreement with theory. Another attractive property of the new transducers is that 

they can be used to realize remotely read, passive, wireless flow meters. Details of 

methods that can be used to develop this wireless capability are described. The research 

carried out in this thesis has applications in several other areas such as ultrasonic 

nondestructive evaluation (NDE), noncontact or air coupled ultrasonics, and for 

developing wireless capability in a variety of other acoustic wave sensors.  
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Chapter 1 

 

 

Introduction 

 
 
 The characteristics of acoustic waves propagating in a piezoelectric material 

which is in contact with a fluid medium were recently investigated in our laboratory [1]. 

Analysis showed that, under suitable conditions, a plate acoustic wave (PAW) traveling 

in the piezoelectric material can efficiently radiate a bulk acoustic wave (BAW) in the 

fluid. It was recognized that this effect can potentially be used to develop transducers for 

use in ultrasonic flow meters. This thesis started out with three main tasks in mind. (1) To 

carry out detailed experiments to see if the theoretical results predicted in reference [1] 

are true, that is, whether one can indeed convert energy effectively from plate acoustic 

waves into bulk acoustic waves. (2) In order to use this effect in a flow meter, then one 

needs to convert energy from PAW into BAW on one wall of the flow pipe, and back 

from BAW into PAW on the opposite wall of the pipe. So the second task was to 

investigate the coupling of energy back from BAW into PAW. (3) The third task was to 

use the results obtained from the first two tasks above to develop transducers suitable for 

use in ultrasonic flow meters. As will be seen from the work that follows, we were able to 

obtain very good results for all the above tasks. In particular, the work done in task 

number 3 has resulted in the development of miniature, high efficiency transducers which 

have many attractive properties for use in ultrasonic flow meters. While working on the 

above tasks, we recognized that our transducers have another interesting property, 
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namely that they can be used to realize flow meters with passive, wireless capability. So 

the scope of the thesis was expanded to include work on developing this capability.  

 This thesis is organized as follows. The first chapter provides a brief introduction 

to the subject of plate acoustic waves and discusses the prior theoretical work on the 

radiation of energy from plate acoustic waves in to bulk acoustic waves. The next chapter 

presents a detailed investigation of the coupling of energy between PAWs and BAWs. It 

is shown that, with proper design, one can convert energy efficiently from a PAW into a 

BAW and back from a BAW into a PAW. Chapter 3 discusses the use of this coupling to 

realize transducers for use in ultrasonic flow meters. It is shown that one can use this 

principle to develop miniature, high efficiency transducers that have many attractive 

properties. Chapter 4 is concerned with the use of our transducers to realize remotely read 

ultrasonic flow meters with wireless capability. The last chapter provides a summary of 

the work done in this thesis, the main results obtained, and suggestions for further work 

in this area.  

1.1 Plate acoustic waves 

 

 

 Acoustic waves propagate in solid materials can be divided into three main types 

of waves. These are: bulk acoustic wave (BAWs), surface acoustic wave (SAWs) and 

plate acoustic wave (PAWs). Bulk acoustic waves are elastic waves propagating in 

unbounded elastic media. Surface acoustic waves are elastic waves propagating in a 

semi-infinite elastic medium. Plate acoustic waves are elastic waves propagating in plates 

of finite thickness. A given plate can support a number of plate wave modes depending 

on the value of the ratio h/λ, where h is the plate thickness and λ is the acoustic 
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wavelength [2-3]. A typical plot of the dispersion characteristics for the first few modes 

is shown in Fig. 1. This figure refers to waves propagating along the X-axis of a 128 

degrees rotated Y cut lithium niobate plate [4]. The waves can be divided into three 

families of modes. These are the anti-symmetric (A), symmetric (S), and shear horizontal 

(SH) modes. The modes have these names for the following reasons. The particle 

displacement of the A mode is anti-symmetric about the mid plane of the plate. The 

particle displacement of the S mode are symmetric about the mid plane and the particle 

displacement of the SH mode is predominately in the shear horizontal direction. There 

are three all pass modes, A0, SH0, and S0, that have no cut off frequency and propagate all 

the way down to h/ = 0. From Fig. 1 it can be seen that if h/ is less than 0.3, then only 

these three modes will propagate while the higher order modes will be cut off. This is the 

region that is of interest in this thesis.  

  

Figure 1: Dispersion characteristics for acoustic waves in a thin piezoelectric plate 
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1.2 Prior theoretical work 

 

The problem that is of interest in this thesis is that of plate acoustic waves 

propagating in a piezoelectric material which is in contact with a fluid medium. The cross 

sectional view of the geometry of interest is shown in Fig. 2. It can be shown here that if 

vp, velocity of plate acoustic wave in the substrate is less than vB, velocity of bulk 

acoustic wave in the fluid, then the plate wave will not radiate any bulk wave in the fluid. 

On the other hand, if vp is greater than vB, then the plate wave will radiate a bulk wave in 

the fluid at an angle θ, where θ is given by the equation θ = cos
-1

(vB/vp). 

 

 

   

Figure 2: Cross-sectional view of a piezoelectric plate in contact with a fluid medium.  

 

 

 In order to determine as to which plate wave mode will be most efficient in 

radiating its energy in to a bulk wave in the fluid, we note that the particle displacement 

of the A0 mode is predominantly normal to the plate surface, that of the S0 mode is along 

the direction of propagation, and that of the SH0 mode is in the shear horizontal direction. 

A non-viscous fluid can support only a compressional (longitudinal) wave. A plate wave 
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with particle displacement along the direction of propagation or in the shear horizontal 

direction cannot launch a compressional wave in the surrounding fluid. On the other 

hand, the component of particle displacement normal to the plate surface can generate 

longitudinal acoustic wave in the surrounding fluid. This indicates that the strongest 

coupling to bulk waves will be provided by the A0 plate wave mode.  
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Figure 3: Velocity (a) and attenuation per wavelength (b) for A0 plate waves propagating 

in a 128 Y-X lithium niobate plate in the presence of water contacting one of 

the plate surfaces. Dashed line in the velocity plot shows wave velocity in the 

absence of water loading [1]. 
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In order to determine the effectiveness of converting PAW energy into BAW 

energy the problem of plate acoustic waves propagating in a piezoelectric substrate which 

is in contact with a fluid medium has been investigated. Details of the method used to 

analyze the generation of BAW by means of PAW have been described in [1]. Fig. 3 

shows the results for the velocity and attenuation of the A0 mode propagating in a 128 Y- 

X lithium niobate plate which is in contact with water on one of its surfaces. The 

horizontal axis here is the product hf where h is the plate thickness and f is the acoustic 

wave frequency. The velocity of bulk acoustic waves in water vB is approximately 1500 

m/s. In the absence of water loading, the velocity vp of the A0 wave becomes equal to vB 

at hf ≈ 220 m/s. The presence of water loading causes the velocity plot to have a 

discontinuity at this value of hf. For hf less than 220 m/s, vp is less than vB, whereas for 

hf greater than 220 m/s, vp becomes greater than vB. The plate wave will not radiate 

energy in the liquid, and hence not suffer any attenuation, when its velocity is less than vB 

(hf ≤ 220 m/s). On the other hand when vp becomes greater than vB (hf ≥ 220 m/s), then 

the plate wave will radiate bulk wave in the fluid and therefore suffer attenuation. The 

attenuation coefficient is a measure of effectiveness of converting energy from PAW into 

BAW. Fig. 3 shows that values of attenuation coefficient greater than 2 dB per 

wavelength can be obtained for values of hf lying between 220 and 750 m/s. Values of 

attenuation coefficient greater than 2 dB per wavelength indicate that there is strong 

coupling between the A0 plate wave mode and bulk acoustic wave propagating in water.  
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 The theoretical results presented in Fig. 3 form the starting point for this thesis. 

The next chapter will carry out detailed investigation of the coupling of energy from plate 

waves in to bulk waves and back from bulk waves in to plate waves.  
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Chapter 2 

 

 

Coupling of Energy between Plate Waves and Bulk Waves 

 

 
The aim of this chapter is to investigate the coupling of energy between plate 

acoustic waves and bulk acoustic waves. In order to study this topic we designed and 

fabricated a suitable delay line for the generation and detection of plate acoustic waves. 

The electrode structure of the delay line can be seen in Fig. 4 . It consists of two identical 

interdigital transducers T1 and T2 with period p, aperture W, and number of finger pairs 

N.  

 

 

 Figure 4: Electrode structure of a plate acoustic wave delay line.  

  

  

It will be shown in chapter 3(a) that for flow meter applications, the optimum 

value of angle θ at which the bulk wave should be launched into the fluid is θ = 45. So 

we designed the delay line to obtain this value of θ. Assuming that the fluid is water, the 

value of vB is approximately 1500 m/s. Then from equation θ = cos
-1

(vB/vp), the velocity 
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of plate acoustic waves should be vp = (vB/cos θ) = 2120 m/s. Then Fig. 3 shows that to 

obtain vp = 2120 m/s we should use hf = 500 m/s. The thickness of the lithium niobate 

plate available to us was h = 0.5 mm. So to operate at hf = 500 m/s, we get f = 1 MHz. 

Hence the period of the IDT was found as p = vp /f = 2.12 mm. The number of finger 

pairs N in the IDT was decided based on two considerations.  If the finger pairs are very 

few the IDT is very inefficient and if the finger pairs are too many then the IDT takes up 

a lot of space on the crystal. Therefore a moderate number was chosen as N = 4.  The 

aperture W was also chosen based on two considerations: too small an aperture leads to 

significant diffraction spreading and if it is too large, then it occupies too much space on 

the crystal. Therefore W was chosen to be 10 mm, which is approximately 5. The 

spacing between the IDTs is a crucial factor as well. There needs to be enough space 

between the IDTs for the plate and bulk waves to interact with each other but also we are 

limited by the length of the crystal. The crystal length that was available to us was 

between 40 to 45 mm. Therefore the spacing between the IDTs was chosen to be 15 mm. 

So, the distance between the outer edges of the IDT will be approximately 31 mm. 

The delay line was fabricated on a 128° rotated Y-cut lithium niobate substrate. 

Lithium niobate wafers of diameter 100 mm and thickness 0.5 mm were purchased from 

two different vendors. The wafers from Crystal Technology, Inc., had one surface 

polished optically flat and the other surface was lapped. The wafers from Precision Micro 

Optics were polished on both sides. The wafers were cut by outside companies to provide 

us rectangular plates of width 20 mm. The length of the plates varied between 40 to 45 

mm.  



10 

 

 

The delay line was fabricated using thin film and photo lithographic techniques. 

The main steps in the fabrication process are shown in Fig. 5. First a thin film of 

aluminum approximately 200 nm thick was deposited on the crystal. This was done either 

in house (in Dr. Lee’s lab) or obtained from outside vendor (LGA thin films, Santa Clara, 

CA). After Aluminum deposition the substrate was coated with a thin film of AZ 5214-E 

IR photo resist. This was done by spinning the wafer using Headway Research Inc., 

model PM101D photo resist spinner. The wafer was spun at 1500 rpm for one minute. 

The wafer was then soft baked in an oven for one minute at 100 C. The substrate was 

then exposed to ultra violet light through a photo mask. The photo mask pattern was 

designed using the software L-edit and then sent to Valley Type Design Inc, Fresno, CA 

for fabrication. The exposure time used was 8 minutes. The cross-sectional view of this 

step is shown in Fig. 5(d). Positive photo resist was used therefore the region exposed 

will dissolve in the photoresist. The photo resist pattern was then developed by dipping 

the plate in AZ 400K developer. The thin film of aluminum was then etched with 95% 

phosphoric acid + 5% nitric acid solution. The cross-sectional view of the wafer after this 

step is shown in Fig.5(e). Residual photo resist was then removed with Microposit 

remover 1165 stripper. The final IDT pattern is then obtained and this is shown in Fig. 

5(f). The delay line was then mounted on a suitable test fixture. Electrical connections 

were made to the IDTs by means of thin gold or copper wires bonded to the transducer 

contact pads using a conducting silver paint.  
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Figure 5: Basic steps in the lithographic process.  
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2.1 Electrical characteristics of delay line 

 

 

The response of the delay line in the time domain can be studied by applying a 

radio frequency (r.f.) pulse to the input transducer. The block diagram of the 

experimental arrangement is shown in Fig. 6. A continuous wave is generated from the 

signal generator which is sent to the mixer. A rectangular pulse from the pulse generator 

is also sent to the mixer. The output of the mixer is the modulated signal which is sent to 

the amplifier. This is then sent to the input of the device for excitation of the transducer. 

The output of the amplifier is also sent to channel A of the oscilloscope. The output of the 

device goes to channel B of the oscilloscope. The response of one of our delay lines is 

shown in Fig. 7. Here the upper trace is the input rf pulse applied to the delay line, while 

the lower trace is the output of the device. The delayed acoustic output is the signal 

labeled b. The delayed acoustic signal has a trapezoidal envelope. It starts at a time delay 

of approximately 8 s after the application of the input r.f. pulse and it reaches its 

maximum value at approximately 14 s after the input pulse..  It can be seen that the 

device shows several unwanted (spurious) responses in addition to the desired response. 

The signal labeled a is the direct rf leakage, which occurs due to direct radiation of 

electromagnetic energy by the IDT, the connecting wires, etc. This signal can be reduced 

by the following methods. (1) Keeping the connecting wires as short as possible, (2) 

Minimizing resistance between the IDT contact pad and ground and (3) Shielding 

transducer T1 from T2. The signals appearing after the desired acoustic signal occur due 

to reflections from crystal edges, generation of other plate wave modes, etc. The 
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reflections from crystal edges can be reduced by putting suitable acoustic wave absorbers 

such as two-part epoxy on the crystal edges.  

 

 

 
Figure 6: Block diagram of the experimental set up used for testing PAW delay line. 

 

 

Figure 7: Pulse response of a PAW delay line. Upper trace: input 5 V/div, lower trace: 

output 20 mV/div. Horizontal axis = 10 s/div.  
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For the first device made, the resonant frequency of the IDTs was found to be 

0.94 MHz as compared to the design frequency of 1.0 MHz. So it seems that the actual 

value of vp is somewhat lower than the theoretical value shown in Fig. 3. So we made a 

new photo mask with IDT period p = 2.014 mm. The resonant frequency of the new 

device was found to be 1.01MHz. Since a resonant frequency of exactly 1.0 MHz is not 

critical in our application, we have used either of these devices, that is, those with p = 

2.12 mm and p = 2.014 mm in our work.   

 In order to calculate electrical characteristics of the delay line we first look at the 

characteristic of the individual IDTs. The electrical equivalent circuit of the IDT valid at 

frequencies in the vicinity of the fundamental resonant frequency is shown in Fig. 8. Here 

CT is the electrostatic capacitance of the IDT, Ga is the acoustic conductance, and Ba is 

the acoustic susceptance. The equations to calculate these parameters are as follows [5].  

WNCC
OT


     (1) 

where Co is capacitance per pair per unit width of the IDT, N is the number of finger 

pairs, and W is the aperture of the IDT. 

 

   
   Figure 8: Shunt equivalent circuit of the IDT. 
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The radiation conductance Ga varies with frequency and is given by  

  2

aoa N

Nsin
G)f(G 














    (2)  

Here Ga0 is the value of Ga at f = f0 and  is the fractional frequency deviation given by  

    o

o

f

f-f


      (3) 

Here f0 is the resonant frequency of the IDT given by f0 = v/p and 0 = 2 f0 

The value of Ga0 can be calculated from the equation 

    
o T

ao

e

C
G

Q


       (4) 

where electrical quality factor Qe is given by  

    NK4

Q
2e




     (5) 

Here K
2
 is the electromechanical coupling coefficient. For 128 Y-X lithium niobate, the 

value of C0 is 4.54 x 10
-10

 F/m [6] and the value of K
2
 for the A0 plate wave mode at hf = 

500 m/s is 0.07 [7]. Using the above values for our IDTs, we get CT = 18.15 pF and Ga0 = 

42.8S. The acoustic susceptance Ba is also a function of frequency and is given by 

    




















2aoa
)N(2

N2)N2sin(
G)f(B

                   (6)       

The equation of Ba(f) is of the form (sin(2x) –(2x))/(2x
2
) where x is N. By Taylor 

series expansion of sin(2x), we get sin(2x) = [2x – (2x)
3
/3! +(2x)

5
/5! - .... ] 

Thus we get Ba(f) = Gao [(2x – (2x)
3
/3! +(2x)

5
/5! .... – 2x) / (2x

2
)] = Gao[ (1/6)x +...] 
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Substituting the value of x we get Ba(f) = Gao[ (1/6) N +...].  

        Therefore, at the resonant frequency f0, Ba = 0 from above. Therefore the equivalent 

circuit of the IDT valid at f = f0 becomes as shown in Fig. 9. 

   

Figure 9: Equivalent circuit of the IDT valid at f = f0. 

 

 

 The capacitance and conductance of the IDT were measured using an HP 4129A 

impedance analyzer. This analyzer has several measurement selections, one of which is to 

measure input capacitance C and conductance G of the device. This option was used in 

our measurements. The electrostatic capacitance CT is a constant independent of 

frequency. In order to measure CT we recognized at frequencies far below from 

resonance Ga and Ba vanish and the IDT acts like a simple capacitor of value CT. So we 

determined CT by measuring the value of IDT capacitance at a frequency of 10 kHz 

which is far below the value of f0. The measured and calculated values of CT and Gao for 

the device having f0 = 1.01 MHz are shown in Table 1 below.  
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Table 1: Measured and calculated values of IDT parameters.  

 

 

Transducer Capacitance CT, pF   Conductance Ga0, S 

 Measured  Calculated Measured  Calculated  

T1 27.2 18.15 58.0 42.8 

T2 25.4 18.15 47.0 42.8 

 

The measured values of Ga versus frequency for the two IDTs are shown in Fig. 

10 and Fig. 11. The general trend of measured values is in agreement with the theoretical 

plot. The theoretical plots of G are from Eq. (2). But there are significant ripples in the 

experimental plots. Also, the Ga versus frequency plots for the two IDTs are not identical. 

The theoretical plots shown in Fig. 10 and Fig. 11 are for the ideal case with no spurious 

signals. However in our device we have a number of spurious signals such as r.f. leakage, 

reflection form crystal edges etc. Under continuous wave (CW) conditions these spurious 

signals can combine with the direct acoustic signal to produce large peaks and values in 

the output. This can account for the large ripples that are seen in Fig. 10 and Fig. 11 

below.  
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Figure 10: Plot of acoustic radiation conductance versus frequency for transducer T1.  

 

 

 
Figure 11: Plot of acoustic radiation conductance versus frequency for transducer T2. 
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The equivalent circuit of the IDT can be used to calculate various parameters of 

the delay line such as output over input voltage ratios, insertion loss, etc. Consider the 

experimental set up shown in Fig. 12. Here the delay line is excited by a voltage source 

having internal resistance Rs. A load impedance ZL is connected across the output of the 

delay line. To calculate the output to input voltage ratio and insertion loss we replace the 

IDTs with their equivalent circuits. The equivalent circuit for the generating transducer 

T1 has already been discussed in Fig. 8.  The equivalent circuit for the receiving 

transducer T2 is slightly different and is shown in Fig. 13. Here the current source I2 

accounts for the conversion of acoustic energy into electrical energy. It can be shown that 

if the transducers are identical, then I2 = I1, where I1 is the current flowing through the 

radiation conductance of T1 [6,8]. Replacing the transducers by their appropriate 

equivalent circuits we get the following circuit shown in Fig. 14.  

 

 

Figure 12: Circuit used to measure performance of delay line.  
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  Figure 13: Equivalent circuit of receiving transducer T2. 

 

 

 

  
Figure 14: Circuit used to calculate output to input voltage ratio. 

 

 

This figure can now be used for calculating the voltage ratios and insertion loss. The 

equations used are as follows.  

    I1 = V1 G1      (7) 

    V2 = I2/ Ytotal  = I1/Ytotal, where   (8) 

    Ytotal = G2 + jC2 +YL     (9) 

Therefore we get 
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    V2/V1= G1/Ytotal     (10) 

In our work the voltage ratioV2/V1 was measured for two different cases. In the first 

case the output was connected to the oscilloscope by means of a coaxial cable about 1 m 

long. The capacitance of the cable was measured to be 88 pF. The input capacitance of 

the oscilloscope is 20 pF. So the total load on the transducer is a capacitance of value 108 

pF. In the second case, the cable was terminated in its characteristic impedance of 50 .  

In this case, the effective load on the transducer is a resistive load of 50 . The measured 

and calculated values of V2/V1 for these two cases are shown in Table 2 below. The 

calculated values shown below are obtained using the calculated values of parameters 

shown in Table 1.  

 

Table 2: Measured and calculated values of voltage ratio. 

 

 

 

The insertion loss of the delay line is given by the equation 

    IL = 10log10(Pmax/PL) dB     (11) 

where Pmax = maximum power available from the source and PL = power delivered to the 

load. To calculate the insertion loss it is convenient to replace the voltage source by its 

equivalent current source as shown in Fig. 15. Consider the case where the load on 

Load Measured (V/V) Calculated (S/S) 

Capacitive load of 108 pF 3.6 x 10-2 5.39 x 10-2 

Resistive load of 50  1.67 x 10-3 2.13 x 10-3 



22 

 

 

transducer T2 is a resistive load RL. Then to calculate PL, we do the following. From the  

input circuit we get 

    I1 = Is G1/(Gs+G1+jwC1)    (12) 

 

 
Figure 15: Circuit used to calculate insertion loss of delay line. 

 

 

From the output circuit we get 

V2 = I2/(G2+GL+jwC2)    (13) 

Here I1 = I2, therefore from Eq. (12) and Eq. (13), we get 

    V2 = Is G1/((Gs+G1+jwC1) (G2+GL+jwC2))  (14) 

PL = |V2|
2
GL      (15) 

     = |Is|
2
 G1

2
. GL/ (((G1+Gs)

2 
+ (wC1)

2
)((G2+GL)

2
+(wC2)

2
)) 

Pmax = Is
2
/ 4Gs      (16)  

Therefore, 

Pmax/PL = (((G1+Gs)
2
+(wC1)

2
)((G2+GL)

2
+(wC2)

2
)) / 4G1

2
Gs

2
  (17) 

For insertion loss in a 50 Ohms system Rs = RL = 50 . Using the values for G1, C1, Gs 

etc. we get Pmax/PL = 30053.27. Therefore we get insertion loss IL = 10log10 (Pmax/PL) dB 

= 44.7 dB. 
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The insertion loss was measured using the substitution method. The delay line 

was replaced by a variable attenuator and the attenuator setting was adjusted to get the 

same output as in the case of the delay line. The experimental arrangement is shown in 

Fig. 16 below. The measured value of insertion loss was found to be 51 dB, which is 

close to the calculated value of 44.7 dB.  

 
Figure 16: Experimental arrangements used to measure insertion loss.  

 

 

We note that the measured values of IDT and delay line parameters differ 

somewhat from the calculated values. The reasons for these discrepancies are not 

investigated here, because they are outside the scope of this thesis. The function of plate 

wave delay line in this thesis is to generate and detect plate acoustic waves. The delay 

line designed here is adequate to serve that purpose.  
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2.2 Conversion of energy from plate waves into bulk waves 

 

 The theoretical analysis discussed in chapter 1 show that when a delay line is 

immersed in water, the plate wave will suffer attenuation due to radiation of energy in the 

form of bulk waves. To verify this we performed the following experiments. The first 

experiment performed is shown in Fig. 17(a).  A part of propagation path of length d 

between the input and output transducers, was immersed in water. A suitable fixture was 

designed such that d could be varied by moving the delay line up and down. The 

photograph of the fixture is shown in Fig. 17(b).  The insertion loss of the delay line was 

measured as d was varied from 0 to about 14 mm. The data is plotted in Fig. 18. It is seen 

that, as expected, the plate wave suffers attenuation as it comes in contact with water. 

 

 
Figure 17(a): Experimental arrangement used to measure insertion loss of a PAW delay 

line as a function of d, length of propagation path immersed in water. 
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Figure 17(b): Photograph of experimental set up used to perform experiment shown in 

Fig. 17(a). 

 

 

Figure 18: Plot of attenuation versus d, length of propagation path immersed in water. 
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From the slope of the plot in Fig. 18, the measured value of attenuation was found 

to be 1.68 dB/mm. The acoustic wavelength  for our device is 2.12 mm. This means that 

the measured attenuation is 3.56 dB/. From Fig. 3 the calculated value of attenuation is 

3.3 dB/. At first glance, it seemed that the measured and calculated values are in good 

agreement. However it was later recognized that the calculated value shown in Fig. 3 is 

for water only on one side of the device. In the actual experiment however it can be seen 

from Fig. 17(b) that water is on both sides of the device. We used de-ionized (DI) water 

having resistivity greater than 10
7
 -cm that prevented electrical shorting of the 

transducer immersed in water. For water on both sides, the calculated attenuation 

according to reference [1] is 6.6 dB/. So it seems that the experimental value is off from 

the calculated value by nearly a factor of two. More work is needed to investigate the 

reasons for this difference. Nevertheless, the experimentally observed attenuation is 

sufficiently large to indicate efficient conversion of energy from plate acoustic wave to 

bulk acoustic wave. To illustrate this point, suppose there was water only on 1 side of the 

device (this will be the case when the device is used in the flow meter) 1.68/2= 0.84 

dB/mm. Then in a propagation path of say 20 mm, the plate wave will suffer attenuation 

greater than 16 dB. Therefore, we can write that 10 log (P2/P1) = 16 dB where P1 is plate 

wave energy before attenuation P2 is plate wave energy after attenuation. We get P1/P2 = 

39.8, therefore P2/P1 = 0.025, which means P2 = 0.025 P1 or P2 = 2.5% P1. Assuming that 

this attenuation is due to radiation of bulk waves, we can thus say that more than 97 

percent of plate wave energy will be converted into bulk wave energy.  
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In order to verify that plate wave energy is indeed converting into bulk acoustic 

wave energy, the following experiments were performed. The photograph of the fixture 

used is shown in Fig. 20 and the experimental set up is explained in Fig. 20. The fixture 

essentially consists of two tracks parallel to each other separated by a distance of 40 mm. 

The PAW delay line is mounted in one track and the BAW transducer in the other track. 

The bulk wave transducer used was a 1 MHz immersion transducer, model ICMF014 

obtained from NDT Systems, Inc., Huntington Beach, CA. The diameter of the 

transducer was 12.5 mm. When input signal was applied to transducer T1 of the PAW 

delay line, an output signal was observed on the BAW transducer as seen in Fig. 21(a). 

This shows that the plate acoustic wave is indeed generating a bulk acoustic wave. The 

bulk wave transducer was tilted to observe the output and it was noted that the output was 

maximum when the transducer surface was normal to the incoming bulk wave. The exact 

value of tilt angle  shown in Fig. 20 could not be measured in this fixture. However, as 

expected, it was found that when the tilt angle was varied from its maximum value, the 

output decreased. This is shown in Fig. 21(b).  
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       Figure 19: Photograph of fixture used to observe generation of bulk waves. 

 

 

 
Figure 20: Set up of delay line and bulk acoustic wave transducer used to observe 

generation of bulk waves. 
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Figure 21(a): Oscilloscope picture of the output obtained at the bulk wave transducer. 

Upper trace: Input to applied to transducer T1, 5 V/div; Lower trace: output of BAW 

transducer; 0.1 V/div; horizontal axis: 10 s/div.  

 

 

 
Figure 21(b): Oscilloscope picture when BAW transducer is tilted. Upper trace: Input to 

applied to transducer T1; 5 V/div. Lower trace: output of BAW transducer; 0.1 V/div, 

horizontal axis: 5s/div.  
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 Next, an acoustic absorber was placed between the PAW delay line and the bulk 

wave transducer. It can be seen from Fig. 22(a) that the output has disappeared verifying 

that the bulk wave generated by the plate wave is no longer reaching the bulk wave 

transducer. When the absorber was removed the signal recovered as can be seen in Fig. 

22(b). The above experiment confirms that the plate acoustic wave is indeed generating a 

bulk acoustic wave in the fluid.  

Next, we wanted to observe how the amplitude of plate acoustic wave changes 

along the propagation path. For this purpose we proposed to perform the following 

experiment, the setup of which is shown in Fig. 23. We wanted to move the bulk wave 

transducer in the direction shown. 

 

 
Figure 22(a): Oscilloscope picture when acoustic absorber is placed between bulk wave 

transducer and delay line. Upper trace: Input to applied to transducer T1; 5 

V/div. Lower trace: output of BAW transducer; 0.1 V/div, horizontal axis: 

5s/div. 
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Figure 22(b): Oscilloscope picture when absorber is removed and output is recovered. 

Upper trace: Input to applied to transducer T1; 5 V/div. Lower trace: output 

of BAW transducer; 0.1 V/div, horizontal axis: 5s/div. 

 

 

 
Figure 23: Proposed set up where bulk wave transducer moves in direction y.  
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However, it is difficult to move the BAW transducer because it is rather heavy, 

and also the tilt angle of the transducer could change as it is moved. On the other hand 

moving the plate wave delay line is relatively easy. Therefore an equivalent set up of the 

above experiment was performed. This was done by keeping the BAW transducer fixed 

and moving the PAW delay line and the level of water. This simulation is now discussed. 

Keeping the BAW transducer fixed at the bottom of the tank, the first measurement was 

obtained at the position shown in Fig. 24(a). In this case the BAW transducer receives the 

bulk wave generated from point A on the PAW delay line. Next, the delay line was 

moved up and the level of water in the tank was increased. In this case the BAW 

transducer receives the bulk wave generated from point B on the PAW delay line. This is 

shown in Fig. 24(b). In the third step, the delay line was moved still further up and water 

level was increased. In this case the BAW transducer receives the bulk wave generated 

from point C on the PAW delay line. Now since d1 is less than d2, and d2 is less than d3, 

the output in Fig. 24(a) will be greater than the one obtained in Fig. 24(b), and that in Fig. 

24(b) will be greater than that in Fig. 24(c).  The oscilloscope photos shown in Fig. 25(a) 

through (c) confirm this fact. Also as expected, the time delay increases as we move from 

Fig. 24(a) to Fig. 24(c) as expected. From Fig. 24(a) to Fig. 24(c) the path length traveled 

by the wave through water is the same but the path length traveled by the wave on the 

crystal will increase as we go from Fig. 24(a) to Fig. 24(c) therefore the time delay will 

increase. This is indeed what we observe in the pictures. 
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Figure 24(a): Simulation of set up where plate wave travels distance d1. 

 

 

  
Figure 24(b): Simulation of set up where plate wave travels distance d2. 
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Figure 24(c): Simulation of set up where plate wave travels distance d3. 
 
 

 
Figure 25(a): Oscilloscope picture of output obtained for set up shown in Fig. 24(a).  
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Figure 25(b): Oscilloscope picture of output obtained for set up shown in Fig. 24(b).  

 

 

 
Figure 25(c): Oscilloscope picture of output obtained for set up shown in Fig. 24(c).  
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Table 3: Output of bulk wave transducer for different cases in Fig. 24  

 

 

Case Height of water in tank Output, mV Time delay, us 

A 9.4 cm 140 36 

B 10.3cm 90 40 

C 11.3 cm 48 45 

 

 

 

The output in case B is 3.84 dB below that in case A and the output in C is 5.46 dB below 

than that in case B. The difference in water height from A to B is 0.9 cm and that from B 

to C is 1 cm. From Fig. 18 the attenuation from A to B would have been 1.68 dB/mm x 9 

mm = 15.12 dB and that from B to C is 1.68 dB/mm x 10 mm = 16.8 dB but the 

attenuation observed in table 3 is much less than these values. This is due to the diameter 

of the BAW transducer (12.5 mm) that was being used instead of a point receiver, 

therefore the output gets averaged.   

2.3 Conversion of energy from bulk waves into plate waves 

 

 

Now we turn our attention to the conversion of energy from bulk waves into plate 

waves. The photograph of the experimental arrangement that was used to observe this is 

shown in Fig. 19. Here input was applied to the BAW transducer and the output was 

taken from transducer T1 of the PAW delay line. The oscilloscope output of this 

experiment is shown in Fig. 26. This confirms that the device is able to convert bulk 

acoustic wave back into plate acoustic wave. 
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        Figure 26: Oscilloscope photo showing generation of plate wave from bulk wave.  

 

 

 
Figure 27: Proposed set up where bulk wave transducer moves in direction y. 
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Next, we wanted to observe as to how the amplitude of the generated plate wave varies as 

it travels along the surface of the crystal. For this purpose we wanted to perform an 

experiment in which the BAW transducer is moved up in the direction y as shown in Fig. 

27. However, as mentioned previously moving the BAW transducer is difficult. Instead 

am equivalent set up of the experiment was performed. This was done by keeping both 

the BAW transducer and the PAW delay line fixed and varying the water level. Let us 

now consider the cases shown in Fig. 28 (a) through (c). In Fig. 28(a), the plate wave is 

generated and travels distance d1 in water before reaching the output transducer T1. In 

Fig. 28(b), the plate wave travels distance d2 before it reaches the output transducer T1, 

while in Fig. 28(c), the plate acoustic wave has to travel distance d3 before reaching the 

output transducer T1.  

 

   
 Figure 28(a): Simulation of set up where plate wave travels distance d1.  
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 Figure 28(b): Simulation of set up where plate wave travels distance d2. 

 

 

  

 Figure 28(c): Simulation of set up where plate wave travels distance d3. 
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The outputs for these three cases are shown in Fig. 29(a) through (c). We observe that the 

output for Fig. 28(b) is lower than that for 28(a) and that for Fig. 28(c) is further lower 

than that for 28(b). We wonder why does this happen? The explanation for this is as 

follows. In case of Fig. 28(b), as the plate wave travels through distance d2, a part of it 

also gets converted into bulk waves, therefore some energy of plate wave is radiated into 

bulk waves before it reaches T1 of the delay line. Therefore the output in Fig. 29(b) is less 

than that in Fig. 29(a).  In case of Fig. 28(c), the plate acoustic wave has to travel a 

distance of d3 where d3 is greater than d2 and hence more plate acoustic energy gets 

converted into bulk waves and therefore the output in case of Fig. 29(c) is even lower 

than that Fig. 29(b). 

 The oscilloscope photos shown below confirm that measurement. Unlike in Fig. 

25 (a,b,c, - plate acoustic to bulk waves), the time delay stays constant as the water level 

changes. This is because the distance traveled by the wave in water and on the crystal 

remains the same in all three cases.  

 
Figure 29(a): Oscilloscope picture of output obtained for set up shown in Fig. 28(a).  
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Figure 29(b): Oscilloscope picture of output obtained for set up shown in Fig. 28(b). 

 

 

 
Figure 29(c): Oscilloscope picture of output obtained for set up shown in Fig. 28(c).  
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Table 4: Output of delay line for different cases in Fig. 28  

 

 

Height of water in tank Output, mV 

10.3 300 

10.7 200 

11.4 20 

 

 The work described in this chapter shows that the mode coupling principle 

can be used to convert energy efficiently from plate wave into bulk wave and vice 

versa. This indicates that this principle can be used to realize efficient transducer for 

use in ultrasonic flow meters. This is topic that is investigated in the next chapter.  
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Chapter 3 

 

Development of Transducers for Use in Ultrasonic Flow 

Meters 

 

 The aim of this chapter is to use the results obtained in the previous chapter to 

develop transducers for use in ultrasonic flow meter. The chapter will begin with a brief 

introduction to the subject of ultrasonic flow meters. An ultrasonic flow meter is an 

instrument that uses ultrasonic waves to measure flow rate of fluids [9]. It has no moving 

parts, does not produce any pressure loss, and provides maintenance free operation – 

important advantages over conventional mechanical meters such as positive displacement 

meters (PDs), turbines, vortex meters, etc. Moreover, ultrasonic flow meters are 

invariably more accurate and reliable than many traditional or non-ultrasonic methods 

such as venturi tubes, orifice plates, pitot tubes, turbine, magnetic, coriolis, thermal or 

target meters, etc [10-12]. Due to these advantages, ultrasonic flow meters are finding 

increasing use in various applications. Some of the conventional non-ultrasonic flow 

meters are described below.  

There are various conventional non – ultrasonic flow meters available to measure 

flow. Some of the most common ones are turbine-type meters, thermal anemometer and 

magnetic flow meter. The turbine –type meter consists of rotating-wheel that is used to 

measure water flow in rivers and streams. Wheel motion proportional to flow rate is 

sensed by reluctance –type pick up coil. A permanent magnet is encased in the rotor 

body, and each time a wheel blade passes the pole of the coil, a change in the 
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permeability of the magnetic circuit produces a voltage pulse at the output terminal. 

Frequency converters are also available that convert flow meter pulses to a proportional 

d.c. output permitting use of simple meters for indication. Fig. 30 (a) shows a typical 

turbine-type flow meter [13]. 

 
 Figure 30 (a): Turbine type flow meter [14]. 

 

  

When an electrically heated wire is placed in a flowing stream, heat will be 

transferred between the two, depending on a number of factors, including flow rate.  This 

is popularly known as the hot-wire anemometer. The instrument consists of a short length 

of fine wire stretched between two supports. Two methods are used to measure flow. The 

first technique consists of passing a constant current through the sensing wire. Variation 

in flow results in changed wire temperature and thus changed wire resistance, which 

thereby becomes a measure of flow. The second technique uses a servo system to 

maintain wire resistance, hence wire temperature. In this case, a change in the servo 
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system is then interpreted as a flow analog. The two methods are called constant-current 

and constant-temperature, respectively. When hot wire is placed in a flowing stream, heat 

will be transferred from the wire, primarily by convention. Radiation and conduction are 

normally negligible. Fig. 30(b) shows a typical hot wire anemometer [13].  

 
 Figure 30(b): Hot-wire anemometer [14]. 

 

 

Another popular flow meter is the magnetic flow meter. The flowing fluid is 

passed through a pipe, a short section of which is subjected to a transverse magnetic flux. 

Fluid motion relative to the magnetic field causes a voltage to be induced proportional to 

the fluid velocity. The electromagnetic field is detected by electrodes placed in the 

conduit walls. Either an alternating or direct magnetic flux may be used. Two types of 

magnetic flow meter have been developed. In the first case, the fluid needs to be only 

slightly conductive, and the conduit must be of glass or some similar non-conducting 

material. The electrodes are placed flush with the under conduit surfaces making direct 

contact with the flowing fluid. Output voltage is quite low and an alternating magnetic 

field is used for amplification and to eliminate polarization problems. The second form of 
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magnetic flow meter is primarily intended for use with highly conductive fluids such as 

liquid metals. This meter operates on the same basic principle but may use electrically 

conducting materials for the conduit. Stainless steel is commonly used. A permanent 

magnet supplies the necessary flux, the electrodes may simply be attached to 

diametrically opposite points on the outside of the pipe. The output of this type is 

sufficient to drive ordinary commercial indicators or recorders and zero output for no 

flow conditions.  Fig. 30(c) shows a magnetic flow meter [13]. 

 

  Figure 30(c) : Magnetic flow meter [15]. 

 

 

Next, we describe ultrasonic flow meters. There are two main types of ultrasonic 

flow meters: Doppler flow meter and transit time flow meter. Doppler flow meters are 

designed to measure the flow of liquids that contain sound reflectors- suspended solids or 

gas bubbles. In the Doppler flow meter, an ultrasonic transducer is used to generate a 
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sound wave in the flowing liquid. The wave is reflected by sonic reflectors suspended in 

the liquid, and the reflected wave is received by a second transducer. If the reflectors are 

moving within the sound transmission path, sound waves will be reflected at a frequency 

shifted from the transmitted frequency (Doppler shift). The difference between the 

reflected and transmitted frequencies is directly proportional to the speed of the sonic 

reflectors. Thus by measuring this frequency shift, one can determine the velocity of the 

flowing liquid and then use it to calculate other related flow parameters. Successful 

application of Doppler flow meter requires that the liquid contain sufficient 

concentration, typically 100 ppm or greater, of particulate matter or gas bubbles that can 

cause acoustic reflection. Note that dissolved solids do not generate reflections and are 

not useful for this purpose [9].  

 In the transit time ultrasonic flow meter, two transducers are placed on opposite 

walls of a pipe through which the fluid is flowing. Acoustic waves generated by one 

transducer travel through the fluid and reach the other transducer. The time taken by the 

acoustic wave to travel from one transducer to the other, the transit time, is a function of 

the flow velocity of the fluid. Thus by measuring this time, one can determine the fluid 

velocity and other relevant flow parameters. The basic principle can be understood by 

referring to Fig. 31(a) which shows transducers A and B placed on opposite walls of a 

pipe [9].  
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 Figure 31 (a): Block diagram of ultrasonic flow meter using the transit time principle [9]. 

 

 

 Let us assume that a fluid with velocity V is flowing through the pipe and let vB 

denote the velocity of bulk acoustic waves in the fluid. From Fig. 31(a) it can be seen that 

effective velocity of the ultrasonic wave traveling from A to B will be equal to vB 

+Vcos), whereas the effective velocity if the wave traveling from B to A will be vB -

Vcos), Therefore t1, the transit time of acoustic waves to travel from A to B will be 

given by t1 = L/(vB +Vcos), where L = acoustic path length between transducers A and 

B, and  is the angle between the direction of acoustic wave propagation and the 

direction of fluid flow. The transit time of acoustic waves to travel in the opposite 

direction, that is, from B to A, t2 will be given by t2 = L/(vB -Vcos). If we define a 

parameter α by the Equation α = (1/t1-1/t2), we get 

    α = (1/t1-1/t2) = 2Vcos/L                                              (18) 

Eq. (18) shows that α is independent of vB, and depends only on fluid velocity V, angle  

and distance L. Thus by measuring this quantity one can determine the flow velocity V of 

the fluid. This can then be used to find other flow related parameters. The fact that α is 
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independent of vB is very advantageous because parameters that affect vB such as density 

or temperature of the fluid, presence or absence of particulate matter in the fluid, will not 

affect the output of the flow meter.  

In order to find the best possible value for angle , let us look at Eq. (18) again. We note 

that the acoustic path length L = D/sin, where D is the diameter of the pipe. Substituting 

for L into Eq. (18) we get 

    α = 2Vcossin/D     (19) 

    α = Vsin2/D      (20) 

Eq. (20) shows that  becomes maximum at  = 45º. So the optimum angle to launch the 

acoustic wave in the fluid is  = 45º. 

In the transit time flow meter, the ultrasonic transducers can be mounted outside 

the pipe (clamp-on transducers) or inside the pipe (wetted transducers). Clamp-on method 

has the advantage that there is no need to cut the pipe or drill holes in it. This method is 

suitable for portable flow meters and in applications where the existing piping cannot be 

disturbed. However, the clamp-on method has certain limitations. The transducer is 

acoustically coupled to the outside of the pipe using grease or RTV couplant. Maintaining 

the integrity of this contact over long periods of time can be a challenge. Another 

limitation is that the pipe material must be such that acoustic waves can pass through the 

walls of the pipe without suffering significant attenuation. Most pipes constructed of 

solid, homogeneous materials can meet this qualification. Pipes that cause application 
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difficulty include concrete pressure pipes, Teflon coated pipes, and fiberglass reinforced 

pipes.  

Transit time flow meters using transducers mounted inside the flow tube (wetted) 

are somewhat more expensive than clamp on flow meters. But they offer superior 

performance in terms of accuracy, long term reliability, zero maintenance, and tamper 

proof construction in which all the parts including the transducers are inside the pipe. In 

view of the characteristics, advantages, and limitations of the different types of flow 

meters considered above, the ultrasonic flow meter which is finding increasing 

applications today is the transit time flow meter using wetted transducers. This thesis will 

therefore focus on this type of flow meter. In the discussion that follows, unless stated 

otherwise, the term flow meter will mean transit time flow meter using wetted 

transducers.  

3.1 Transducers for use in ultrasonic flow meters 

 

 

  The transducers that are used to generate and detect acoustic waves in the flowing 

liquid play an important role in the operation and performance of the flow meter. The 

structure of the conventional transducer used to generate acoustic waves in fluids is 

shown in Fig. 31(b). It consists of three main parts: the piezoelectric crystal element 

which generates/detects the acoustic wave, the impedance matching layer which is 

required in order to match the high acoustic impedance of the piezoelectric crystal to the 

low impedance of the liquid, and the acoustic damping layer which is required in order 

to obtain a reasonable frequency bandwidth for the transducer. The packaged transducer 

has the shape of a cylinder whose diameter and length depend on the operating 
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frequency, bandwidth, and aperture of the acoustic wave that is to be launched in the 

fluid. The cylindrical shape of the transducer and the fact that it has to be mounted at an 

angle to the pipe wall causes problems. This can be seen from Fig. 32. The transducers 

protrude a considerable distance inward from the pipe walls and into the path of the 

flowing fluid. This causes disturbance of the flow stream and can result in erroneous 

flow data. The use of the recessed arrangement shown in Fig. 33 reduces the severity of 

the problem, but does not eliminate it.  

 

Figure 31(b) : Geometry of conventional transducer used to generate ultrasonic waves in 

fluids. 
 
 

 
Figure 32: Use of conventional transducers in ultrasonic flow meter. 
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Figure 33: Recessed transducer arrangement used to minimize perturbation of fluid flow. 

 

 

 A novel approach to overcome the transducer protrusion problem mentioned 

above is provided by the theoretical and experimental work described in the previous 

chapter. That work has shown that one can couple energy from a plate acoustic wave into 

a bulk acoustic wave, and vice versa. This fact can be used to develop the transducer 

whose geometry is shown in Fig. 34. The proposed transducer consists of a thin plate of a 

suitable piezoelectric material on which inter digital transducer (IDT) is fabricated to 

generate plate acoustic waves. As shown previously, if the velocity of plate waves in the 

substrate vp is greater than the velocity of bulk waves in the fluid vB, then the plate wave 

propagating in the substrate will radiate a bulk wave in the fluid at an angle θ given by 

the equation θ = cos -1 (vB/vp). A similar device can be used to convert energy back from 

bulk waves to plate waves. Here bulk wave incident from the fluid will generate plate 

acoustic wave on the substrate. We refer to this type of transducer, which depends on the 

coupling of energy between plate acoustic waves and bulk acoustic waves, as mode 

coupling transducer or mode conversion transducer (MCT). 
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Figure 34: Geometry of the proposed mode coupling transducer (MCT).  

 

 

One important point to note about the mode coupling transducer is the following. 

We note that the energy of a plate acoustic wave is available on both plate surfaces. So in 

Fig. 34, the IDT does not have to be on the top surface, but can be on the bottom surface 

of the plate. That is, the IDT can be located on the surface opposite from that which is in 

contact with the fluid. This has the advantage that transducer electrodes will not come in 

contact with the fluid, and so they will not be affected by it. It also simplifies the job of 

making electrical connections to the IDT.  

3.2 Use of mode coupling transducers in a flow meter 

 

 

 In order to confirm that the proposed transducer arrangement can work in a flow 

meter, we fabricated a simple plastic box. The box was fabricated using a slab of acrylic 

plastic of dimensions 150 mm x 20 mm x 100 mm. A slot was milled in the center of the 

slab enabling us to pour water in the box. Fig. 35 shows the three-dimensional view of 

this box. There were two recessed slots cut in the opposite walls of the box where our 

transducers were mounted at an offset of 14.14 mm. A photograph of the box with the 
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transducers mounted is shown in Fig. 36. The box was then filled with water from the top 

opening.  When electrical input was applied to one of the transducers, we were able to see 

output on the other transducer at the expected time delay. This is shown in Fig. 37. The 

output of the device shows very high rf leakage and many other spurious signals. But the 

fact that we are getting output on the other transducer is very promising and shows that 

the proposed transducers can indeed work in a flow meter arrangement. 

 

 
Figure 35: Three dimensional view of the plastic box used to test mode conversion 

transducers. 
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Figure 36: Photograph of plastic box with transducers mounted.  

 

 

 
Figure 37: Oscilloscope picture showing input and output obtained from the box. 

Upper trace: Input to applied to transducer T1; 5 V/div. Lower trace: output of 

BAW transducer; 50 mV/div, horizontal axis: 5s/div. 
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Now we turn our attention to developing an arrangement that is close to what can 

be used in a practical flow meter. After several design iterations, we were able to develop 

a flow cell which is fairly close to what can be used in a practical flow meter. The cell 

was fabricated using a square aluminum tube having outside dimensions of 1” x 1”. The 

tube has wall thickness of 3/16”, so that the dimensions of the channel through which 

fluid can flow are 5/8” x 5/8”. Mode coupling transducers were mounted on slots cut in 

opposite sidewalls of the cell. A photograph of the fabricated cell (referred to as device 

D5) is shown in Fig. 38. A detailed view of the region in which transducer action takes 

place is shown in Fig. 39. This figure shows thin piezoelectric plates A and B mounted on 

the slots. Inter digital transducers T1 and T2 are fabricated on these plates for the 

generation and detection of plate acoustic waves. Input signal applied to transducer T1 

generates a plate acoustic wave, which is converted in to a bulk acoustic wave which 

travels through the fluid and reaches plate B. There the bulk wave is converted back in to 

a plate wave and is then detected by transducer T2. The plates A and B are mounted in 

recessed regions cut in the walls of the flow tube. The depth of the recessed region is 

1/8”. The dimensions D1 through D3 shown in Fig. 39 are as follows. D1 = 1” = 25.4 mm, 

D2 = 1 – 2 x (3/16) = 5/8” = 15.87 mm, and D3 = 1 – 2 x (1/8) = 3/4” = 19.05 mm. The 

length of the slots is 20 mm and they are offset from each other by a distance equal to D3. 
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Figure 38: Photograph of flow cell. 

 

 

The output has almost no rf leakage as seen in Fig. 40. There are a few spurious 

signals occurring after the main acoustic signal. More work will be needed to reduce the 

strength of these signals.  

 

 Figure 39: Top view of flow cell in the region where transducers are mounted.  
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Figure 40: Oscilloscope picture showing response of the flow cell. Upper trace: Input to 

applied to transducer T1; 5 V/div. Lower trace: output of BAW transducer; 50 mV/div, 

horizontal axis: 5s/div. 

 

 

Now let us consider the time delay of this device. If we consider the operation of this 

device, we recognize that the signal travels mostly as bulk acoustic wave through the 

fluid, but partly also as plate acoustic wave on the crystals. So the time delay td is given 

by  

     td = tf + tc      (21) 

where tf is the time delay through the fluid and tc is the time delay on the crystal. Now 

     tf  = L/vB     (22) 
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where L is the path length through the fluid. From Fig. 39, L = D3/sin. Here D3 = 

19.05mm and  = 45, therefore L = 26.9 mm. Using vB = 1500m/s, we get tf = 17.9 s. 

Now let us look at tc. Here tc is given by 

     tc = Leff/vp     (23) 

where Leff is the effective length the wave travels on the crystals. To calculate Leff, we 

consider the following. The interdigital transducers T1 and T2 are actually distributed 

sources. We can replace each IDT by an effective source located at the geometric center 

of the IDT. Then the effective path length Leff, will be equal to  

     Leff = (20 - Lp )    (24) 

where Lp is the length of the IDT along the propagation path. Here Lp = Np = 8.04mm, 

therefore Leff = 11.96mm. Using vp = 2120 m/s we get tc = 5.64 s. Thus the total time 

delay comes to td = tf + tc = 23.54 s.  

To measure td the oscilloscope response in Fig. 40 gives us the approximate value, but is 

not suitable for accurate measurements. To get more precise results we have to use CW 

(continuous wave) method. The time delay equation is given by 

    )     (25) 

where  is the phase shift through the device and f is the frequency. To use Eq. (25) we 

need a plot of phase shift versus frequency. This can be obtained by measuring the 

transfer function S21 of the device. Results of such measurement using Agilent 8714E5 

RF Network Analyzer are shown in Fig. 41. In this figure the upper plot is the magnitude 
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and the lower plot is the phase angle S21. For an ideal device, the phase plot will be 

perfectly linear. For our device, we find that the plot is very close to linear, but shows 

some ripples. These are due to the small spurious signals observed in Fig. 40. From the 

phase plot, we find the following, 1 = 179.2º at f = f1 = 0.926 MHz, 2 = -177.3º at f = f2 

= 0.965 MHz, 3 = 178.59º at f = f3 = 1.004 MHz. Taking slope between f2 and f1, we get 

td = 25.38 s; and taking slope between f3 and f2 we get td = 25.12 s. This compares to 

the calculated value of 23.54 s.  

 
Figure 41(a): Magnitude plot of transfer function S21 of device D5.  
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Figure 41(b): Phase angle plot of transfer function S21 of device D5.  

 

 

Next let us consider the insertion loss of the device. In this device the transduction 

process takes place in four steps. First, the input signal applied to transducer T1 gets 

converted into plate acoustic wave travelling on a delay line A. Second the plate acoustic 

wave converts into bulk acoustic wave in the fluid. Third, the bulk acoustic wave 

converts back into plate acoustic wave on delay line B and finally, the plate acoustic 

energy is converted into electric signal by transducer T2. Therefore the insertion loss will 

consist of four different parts. The overall insertion loss (in decibel) of this device can be 

written as 

Insertion loss IL = L1 + L2 +L3+L4    (26) 

where L1 = insertion loss of the input transducer T1, L2 is the mode conversion loss in 

delay line A converting PAW to BAW, L3 is the mode conversion loss in delay line B for 
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converting BAW back into PAW, and L4 is the insertion loss of  the output transducer T2. 

Measuring each of these losses individually is very difficult. For example to measure L1 

we need to measure the acoustic power generated by transducer T1, which is very 

difficult. To measure L2 we need to measure plate and bulk acoustic powers which are 

also very difficult. Nevertheless, we can find the total mode conversion loss LM by 

rearranging Eq. (26). This can be done as  

IL = LT+LM      (27) 

where LT = (L1 +L4) = insertion loss due to two IDTs,  and LM = (L2 +L3) = total mode 

conversion loss incurred in going from PAW to BAW and back from BAW to PAW. 

The loss LT was measured by fabricating a delay line having input and output 

IDTs identical to those used in devices A and B. The delay line was operated in air 

therefore there was no mode conversion taking place. LT was measured as 51dB as shown 

in chapter 2. From Fig. 41, we note that the total insertion loss of our device is 58   1dB. 

Therefore the mode conversion loss LM = IL – LT = 7   1dB. These characteristics of the 

flow cell have been described in one of our recent publications [17]. 

 The fact that the total mode conversion loss is only 7dB indicates that the plate 

wave to bulk wave and bulk wave to plate wave mode conversion is taking place fairly 

efficiently. However we wished to investigate if the conversion efficiency can be 

improved further. For this purpose we revisit the transducer arrangement used in our flow 

meter. The essential parts of this arrangement are shown in Fig. 42 below.  
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Figure 42: Experimental arrangement used to study output variation as a function of 

coupling length. 

 

 

Here plate wave to bulk wave conversion takes place in delay line A while bulk wave to 

plate wave conversion takes place in delay line B. The bulk wave radiated by the first 

finger of transducer T1 intersects delay line B at the point x = x0. From Fig. 42 we note 

that x0 = D/tan , where  is the angle with which bulk wave is radiated into the fluid. In 

our experiments  = 45, so x0 = D.  Fig. 42 defines a length Lc. This is the length over 

which the plate and bulk waves are coupled with each other. We call this the coupling 

length. On delay line A as Lc increases, more and more plate wave energy will convert 

into bulk energy. So from this point of view, one would like to keep increasing Lc. The 

situation at delay line B is however different. The reason is as follows.  The bulk wave 

converts its energy into plate wave energy at the point where it intersects the surface of 

delay line B. The generated plate wave travels to the right towards the output transducer 

T2. However, as it travels along the plate surface, it re- radiates a bulk wave back into the 

fluid. This is shown in Fig. 42. at delay line B, if the coupling length Lc is small, not 

enough bulk wave energy will get converted into plate wave. If Lc is too large then lot of 
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plate wave energy will re-radiate into bulk wave. So there must be some value of Lc 

where the conversion of bulk wave energy to plate wave energy becomes maximum.  

 Now in order to see if this theory holds, we performed the following experiment. 

Two identical PAW delay lines A and B were fabricated. Next a fixture was designed 

such that the delay lines could be held parallel to each other as shown in Fig. 43. This 

fixture had dimensions 150 mm x 110 mm x 100 mm. The distance between the delay 

lines was 12.7 mm. Delay line A was kept fixed while delay line B could be moved along 

the x- direction. Input signal was applied to transducer T1 on delay line A and output on 

transducer T2 was observed as delay line B was moved. The delay line was moved along 

positive x-direction, starting at x = 0 as in Fig. 42. 

 
Figure 43: Three-dimensional view of fixture used in experiment shown in Fig. 42. 

 

 

First we noted that there was no output until its right most electrode reached the point x = 

x0. This is as expected. As we moved past the point x = x0, the output on T2 increased, 

reached a maximum and then started to decrease. This can be seen from the oscilloscope 
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pictures shown below in Fig. 44 (a) through (c). The pictures are taken at coupling length 

Lc of 7.93 mm, 15.0 mm and 25.4 mm.  

 

 

(a) 

(b) 



66 

 

 

 

Figure 44: Oscilloscope pictures showing output obtained for different coupling lengths 

Lc; (a) 7.93 mm, (b) 15.0 mm, and (c) 25.4 mm.  

 

 

A plot of output voltage obtained on T2 versus the coupling length Lc is shown in Fig. 45. 

The plot is similar to what was expected in our theoretical analysis. The output becomes 

maximum at Lc = 15mm. We also note that as Lc increases the time delay between T1 and 

T2 also increases. This is also an agreement with theory. From Fig. 42 we note that the 

path length traveled by wave is independent of Lc but the length traveled by the wave on 

the crystal increases as Lc increases. Therefore the time delay between input and output 

will increases as Lc increase. The time delay through the fluid is same in all cases but the 

path length on the delay line B increases as Lc increases accounting for increase in time 

delay. We note that the conversion of energy becomes maximum at Lc = 15mm. In the 

design of our flow cell device D5, we had used Lc = 20 mm. From Fig. 45 we note that 

the output on T2 will increase by a factor of 1.33 if we chance Lc from 20 to 15 mm. This 

(c) 
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corresponds to improvement in efficiency of 2.5 dB. Thus with optimal design we can 

reduce the total mode conversion loss from 7 dB to 4.5 dB.  

 
Figure 45: Output in mV versus coupling length in mm. 

 

 

 

3.3 Performance of the device under flow 

 

 

Now we study the performance of our device under conditions of water flowing 

through the device. Fig. 46 shows the setup we had for performing experiments under 

water flow. A rectangular tank was taken and filled with water. A small mechanical pump 

was used for pumping the water through the flow cell. The flow rate could be varied from 

0 to 7.5 liters per minute (LPM). A reference flow meter was attached which showed us 

the different flow rates. The valve enabled us to vary the flow rate. Water tubes are 
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connected to both ends of the flow meter and water is then flown in the direction as 

shown in Fig. 46.  

  
Figure 46: Block diagram of the flow set up used.  

 

 

When water begins to flow the time delay of the device will change. We note that the 

change in time delay is very small. For example let us calculate the change in time delay 

as flow rate changes from 0 to 1 LPM. The volume flow rate, U and the flow velocity, V 

are related by the equation 

    V = U/A      (28) 
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where A is the cross section area of the channel through which the fluid is flowing. For 

our device the channel cross section is 5/8” x 5/8” = 2.52 x 10
-4 

m
2
. Therefore for U = 1 

LPM = 1.66 x 10
-5

m
3
/s, we get V = 6.58 10

-2 
m/s. Therefore for V = 6.58 10

-2 
m/s, we get 

change in time delay,  td to be 0.56 ns. This is calculated by taking the difference of time 

delay when there is a fluid flow of 1 LPM and 0 LPM. Time delay is given by by (L / (vB 

+V cos)) where L is 0.0269 m, vB is 1500 m/s, V = 6.58 10
-2 

m/s and  is 45. At 0 

LPM, time delay becomes (L / vB) and therefore when we take the difference in time 

delay we get the  td to be 0.56 ns. In a practical flow meter, one is typically required to 

resolve changes in flow rates of the order of 0.1 LPM. This will correspond to change in 

time delay of less than 0.06 ns. Measuring such small changes can be quite challenging.  

We tried to measure this change in time delay using the phase method. The 

change in phase through our device is given by Eq. (29) 

 = - 2ftd,      (29) 

therefore a change in time delay will give a corresponding phase shift. The phase shift 

can be measured by using a vector voltmeter. The experimental arrangement is shown in 

Fig. 47. The device is excited by CW signals from the signal generator. The output of the 

signal generator is connected to channel A (reference channel) of the reference volt 

meter. The output of the device is connected to the channel B of the vector voltmeter. The 

vector voltmeter measures the phase shift through the device. The output of the vector 

voltmeter was connected to the strip chart recorder. Fig. 48 shows the results of our 

experiment. The figure shows that the phase does indeed change when flow rate is 

changed.  However we observed large ripples (noise) in the output of the phase meter. 
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Also there is constant upward drift in the phase meter output. The reasons for this 

behavior are not clear but we conclude that the phase meter method is not suitable for 

measuring the small changes in time delay.  

 

Figure 47: Experimental arrangement used for time delay measurement using phase shift 

method. 

 
  

 

Figure 48: Chart recorder results. 
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Fortunately we were able to get a flow meter instrument from Dynasonics Inc., 

(series DXN, model 2800), which allowed us to measure these small changes in time 

delay in our application. The principle of operation of this instrument is as follows. First 

input signal is applied to transducer T1 and the output waveform received on T2 is 

digitally stored. Next, input is applied to transducer T2 and the output waveform received 

on transducer T1 is stored. One then performs cross correlation of the signal waveforms 

received on the two transducers. If the fluid is at rest, the flow velocity V = 0 and t21 = t12. 

So the output waveforms on T1 and T2 will be in phase and the cross correlation is 

maximum at  = 0. On the other hand when the fluid begins to flow, t21  t12 and the two 

waveforms are slightly shifted with respect to each other. The time shift  at which the 

cross correlation becomes maximum is Equal to (t21-t12). Thus the instrument is able to 

precisely measure the very small time shift td = (t21 – t12).  

The flow rate was varied and the change in time delay was noted. Fig. 49 shows 

the experimental results for td versus flow rate. We note that the time delay changes by 

8.47 ns when the flow rate varies from 0 to 7.5 LPM. Fig. 49 shows that td has a non-

zero value of 1.5 ns for zero flow. This is mainly due to the fact that the co-axial cables 

going from the Dynasonics instrument to the transducers T1 and T2 are not equal in 

length. This problem can be easily corrected by choosing exactly equal length cables or 

in software.  

The calculated plot of td versus flow rate is shown in Fig. 50. For comparison 

the experimental plot (with the zero-offset removed) is also shown in this figure. We see 

that experimental plot is fairly close to the calculated plot.  
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Figure 49: Change in time delay in s versus flow rate in liters per minute (LPM). 

 

 

 
Figure 50: Plot showing measured and calculated values of time delay change versus 

flow rate. Blue trace: calculated and red trace: measured with offset removed. 
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3.4 Use of backing plate 

 

 

The results presented above show that the new mode coupling transducer works 

well in an ultrasonic flow meter. However, there is one problem in the flow cell 

arrangement shown in Fig. 39. In many cases of interested the fluid flowing through the 

pipe would be under high pressure. The pressure inside the pipe will exert a force on the 

piezoelectric plates. Since our plates are very thin, they may rapture due to this force. 

One way to overcome this force is to attach a thick backing plate of a suitable material to 

the crystal. This is shown in Fig. 51. The backing plate will help the crystal to withstand 

the pressure inside the pipe. However attaching the backing plate could cause a problem. 

The cross-sectional view of the piezoelectric crystal mounted on the backing plate is 

shown in Fig. 52. From this figure one can see that it is possible that the plate acoustic 

wave can radiate its energy into bulk acoustic wave in the backing plate. Fortunately this 

problem doesn’t arise here. The reason for this is as follows. The backing plate is much 

thicker than the acoustic wavelength, so the acoustic wave that can propagate in the 

backing plate are bulk longitudinal and shear wave. The plate wave being used in our 

device is the A0 plate wave mode. The velocity of the A0 mode we used in our work is vp 

= 2120 m/s. the velocity of bulk acoustic waves in most solids are 3000 m/s or higher. 

Since vp is less than this value, the plate wave will not radiate into bulk wave in the 

backing plate. This fact was experimentally confirmed by attaching backing plates of 

brass to one of our PAW delay lines. The backing plates were attached both on the top 

and bottom surfaces of the piezoelectric plate. The presence of the backing plate had 

virtually no effect on the performance of the delay line. This can be seen from Fig. 53.  
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 Figure 51: Top view of flow cell with backing plates. 

 

 

   

       Figure 52: Cross-sectional view of piezoelectric plate mounted on backing plate. 
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Figure 53: Oscilloscope pictures of output obtained from a PAW delay line. (a) Without 

backing plate and (b) With backing plate.  

 

(a) 

(b) 
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 This chapter has shown that one can use the mode coupling principle to realize 

an efficient transducer for use in ultrasonic flow meters. The mode coupling transducer 

developed here has two main advantages over the bulk wave transducer. First, the new 

transducer is a thin, flat plate of piezoelectric material which can be mounted flush with 

the walls of  the pipe through which fluid is flowing. Thus the transducer will cause 

minimal disruption to the fluid flow. The second factor is cost. In the conventional 

transducer the layers shown in Fig. 31(b), have each got to be made separately by lapping 

and polishing and then the individual layers have to be acoustically bonded together. 

Therefore the fabrication tends to be expensive. On the other hand the fabrication of 

mode coupling transducer involves the simple steps of thin film deposition and 

lithography. So it can be mass produced at very low cost. It should also be noted here that 

the transducer based on coupling of energy between SAWs and BAWs have been 

developed in our laboratory previously [18, 19]. The transducer developed here uses a 

coupling between PAWs and BAWs. The use of PAWs provides the following 

advantages. Since the energy of plate acoustic wave is available on both plate surfaces, 

the IDT can be located in the surface opposite from that which is in contact with the fluid. 

For the flow cell experiments described in this thesis, the IDTs were located on the 

surface opposite to the fluid flow. This prevents the IDT electrode from coming in 

contact with the fluid. It also simplifies the job of making electrical connections to the 

IDT. The second advantage of using PAW has to do with the choice of piezoelectric 

substrate material. Using the SAW approach, one is restricted essentially to using only 

one substrate material, namely, lead zirconate titanate (PZT). Using the SAW approach, 
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we need a substrate whose SAW velocity will be approximately 2120 m/s. Most of the 

commonly used SAW materials such as quartz, lithium noibate etc. have SAW velocity 

3000 m/s or higher. Lead zirconate titanate (PZT) is the only material whose SAW 

velocity is close to required value of 2120 m/s. This material has significant acoustic loss 

and is also difficult to handle. On the other hand, using PAW approach, one can use any 

of the widely used substrate material such as lithium niobate, lithium tantalate, quartz, 

etc.  
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Chapter 4 

 

 

Summary and Conclusions 

 

 
 The main theme of this thesis is the development of miniature, high efficiency 

transducers for use in ultrasonic flow meters. The idea for this thesis originated from the 

theoretical work that was carried out in our laboratory about three years ago. That work 

had shown that a plate acoustic wave propagating in a piezoelectric substrate can couple 

its energy efficiently into a bulk acoustic wave propagating in an adjoining fluid medium. 

This suggested to us that this coupling of energy between plate acoustic waves and bulk 

acoustic waves can be exploited to realize transducers for use in ultrasonic flow meters. 

This thesis is a description of how that theoretical concept has been developed into a 

device useful for practical applications. 

 The following is a summary of the main topics covered in the individual chapters. 

Chapter 1 provides brief introduction to the subject of plate acoustic waves and 

summarizes the prior theoretical work on coupling of energy from plate waves into bulk 

waves. Chapter 2 describes detailed investigations that have been carried out to study 

conversion of energy from plate acoustic waves into bulk acoustic waves and back from 

bulk acoustic waves into plate acoustic waves. The experiments performed in this chapter 

indeed confirm the theory presented in ref [1], thus verifying that PAW converts into 

BAW and vice-versa under suitable conditions. The use of this coupling to develop 
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transducers for use in ultrasonic flow meters is described in chapter 3. Based on the 

results of the experiments conducted in Chapter 2, a prototype flow meter was designed 

and tested using suitable transducers. This confirms that the theory of conversion of 

energy from PAW to BAW and vice versa under suitable conditions can indeed be 

applied to ultrasonic flow meters. However, it must be noted that this prototype flow 

meter must be further improved to meet commercial needs. For example, in our 

experiments testing was done for flow rate range of 0-7.5 LPM. To make this flow meter 

ready for practical applications, testing should be done for flow rate range 0 – 150 LPM 

[20]. Powerful pumps can be used to achieve this higher flow range. The support of 

transducers used in the flow meter need to be improved further such that it can withstand 

higher pressures up to 200 psi [20]. This is left for future investigation.  

 It should be pointed out here that while the focus of this thesis has been on 

ultrasonic flow meters, the research described here has application to several other areas. 

For example, the mode coupling transducer developed here can be used to efficiently 

generate ultrasonic waves in fluids. Such transducers are very useful in the field of 

ultrasonic nondestructive evaluation (NDE). Another possibility is that these transducers 

may also be useful for generating ultrasonic waves in air. If so, then they will be useful in 

the field of noncontact or air coupled ultrasonics.   

 While developing this transducer idea it was realized that our transducer has 

another attractive property, namely that it can be potentially used to develop flow meters 

with wireless capability. This is briefly discussed below. The basic principle of a wireless 

sensor is shown in Fig. 54. A radio frequency interrogating signal is sent from a 
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transmitter to the sensor. The signal is sent back from the sensor, which is received by the 

receiver. The received signal contains information about the parameter that is being 

sensed. The use of SAW devices as passive, wireless sensors is well known since the last 

15 – 20 years [21-23]. These devices typically operate in the 300 MHz to 3 GHz 

frequency range. However, the transducers used in ultrasonic flow meters (and several 

other acoustic wave sensors) operate in the low MHz frequency range. The SAW 

methods cannot directly be used with these transducers, but will have to be modified.  

 

 Figure 54: Block diagram showing basic operation of a wireless sensor. 

 

 

This topic is discussed below. In order to build wireless capability into this flow meter, 

one should be able to excite transducer T1 and read the output from transducer T2 in a 

wireless fashion, that is, without connecting any wires to the transducers. The techniques 

used to achieve these objectives can be explained by means of Fig. 55 through 57 shown 

below. Fig. 55 shows that a low frequency signal that is required to excite transducer T1, 

is modulated onto a high frequency carrier wave and then transmitted by the transmitter.  
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Figure 55: Low frequency signal required to excite transducer T1 is modulated on to a 

high frequency carrier wave before transmission to the flow meter. 

 

 

At the sensor end, this signal is picked up by a suitable antenna; demodulated to recover 

the original low frequency signal, and the demodulated signal is applied to transducer T1 

(Fig. 56). After a certain time delay this signal will be received at transducer T2. Now one 

needs to send this signal back to the receiver. But this cannot be done directly, because 

this is a low frequency signal. So the idea is to modulate this signal onto the high 

frequency carrier wave, and then transmit it to the receiver. Using a suitable modulator 

circuit one can do this. But one needs to have the carrier frequency signal available for 

this purpose. One possible way is by using a suitable storage device, such as a high 

quality factor SAW resonator, to store the carrier frequency signal. As shown in Fig. 56, 

the original transmitted signal is also used to excite a SAW resonator, which will be able 

to store it for a long time. 
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Figure 56: Demodulator extracts the low frequency signal and applies it to transducer T1. 

The carrier wave signal is stored in a SAW resonator for later use for 

modulating the output of transducer T2. 

 

 

 
Figure 57: The output of transducer T2 is modulated on to the high frequency carrier 

wave and sent back to the receiver.  

 

 

The signal from the resonator is then taken and used in the modulator (Fig. 57). By using 

the methods outlined above, we see that transducers T1 and T2 work at their normal low 

frequency, while all the antennas work at the high carrier frequency, so that their size 

does not become too large. This wireless idea is left for future investigation.  
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