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ABSTRACT 
CHEMICALLY SENSITIVE POLYMER COATINGS FOR SH-SURFACE 
ACOUSTIC WAVE SENSORS FOR THE DETECTION OF BENZENE IN 

WATER 
 
 

Robert Lenisa, B.S. 
 

Marquette University, 2013 
 
 

 Polymer-coated shear horizontal surface acoustic wave (SH-SAW) 
sensors are investigated for the detection of benzene in aqueous samples.  
The SH-SAW sensors using three-layer geometry have a single polymer 
sensing layer which absorbs the analyte and interacts with the surface wave.  
Several polymers are identified as potential improvements over current 
sensing films based on glass transition temperature and Hildebrand solubility 
parameter.  The polymers investigated in this work include poly (methyl 
acrylate) (PMA), poly (butyl acrylate) (PBA), poly (ethylene co-vinyl 
acetate) (PEVA), bisphenol-A poly (dimethylsiloxane) (BPA PDMS), and 
bisphenol-A poly (hexamethyltrisiloxane) (BPA HMTS). 
 
 The polymers are spin coated on a lithium tantalate (LiTaO3) SH-
SAW dual delay-line device at thicknesses between 0.3 µm and 1.0 µm.  
Each film’s thickness is measured and the film is exposed to multiple 
concentrations of the aromatic hydrocarbons benzene, ethylbenzene, toluene, 
and xylenes (BTEX).  The added mass and viscoelastic changes in the 
sensing layer result in a change in center frequency and acoustic loss of the 
device.  The frequency change is measured and used to determine sensitivity 
of the coated sensor to each analyte. 
 
 BPA PDMS and BPA HMTS show larger sensitivities to each of the 
BTEX analytes than PBA, PMA, or PEVA.  However, both BPA PDMS and 
BPA HMTS were observed to lose sensitivity during the aging process.  It is 
shown that the aging effect on BPA HMTS can be mitigated by baking the 
film after it is applied to the device. 
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1 INTRODUCTION 

1.1 Problem Statement 

The goal of this thesis is to help develop an improved sensor for detecting 

benzene in water samples.  Benzene is a chemical that occurs in nature and as a result of 

several industrial processes, and is a known carcinogen to humans.  Current EPA limits 

for drinking wells require benzene concentration to not exceed 5 parts per billion (ppb) 

[1].  Methods in place for measuring benzene concentration in water in drinking wells, 

which require transporting a sample to a laboratory for analysis, are expensive and time 

consuming.  This process can be improved by using an on-site chemical sensor.  This 

sensor would be able to determine the concentration of benzene in the water without the 

cost and time of transporting the sample away from the source.  Such a chemical sensor 

can be made by using a shear horizontal surface acoustic wave (SH-SAW) device with a 

thin chemically selective coating [2].  The sensors made with the current sensing polymer 

layers respond quickly but have a limit of detection of 200 ppb [3].  This thesis 

investigates several sensor coatings for the detection of smaller concentrations of benzene 

using SH-SAW device platforms. 
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1.2 Background 

Benzene is a naturally occurring organic chemical.  It is clear, colorless, volatile, 

and aromatic.  According to the United States Department of Health and Human Services 

(HHS), benzene is mainly produced from petroleum.  Benzene exists in crude oil, 

gasoline, cigarette smoke and is naturally produced by volcanoes and forest fires. [4] 

The harmful effects of benzene on human health are well known.  Benzene is 

potentially harmful through inhalation, consumption, and exposure to skin [1] [5].  Its 

volatility will cause it to be present in the air and therefore skin contact may also result in 

inhalation [4].  HHS has labeled benzene as a carcinogen which can increase the risk of 

leukemia. 

There are several sources of benzene in our environment such as cigarette smoke 

and car exhaust, but the one of greatest concern is underground gasoline storage.  

Gasoline is stored underground in large tanks.  These storage tanks may fail and leak 

gasoline into the environment [6].  Leaks are a great concern because benzene is a 

component of gasoline (up to 5% [7]), and a leak can cause benzene to enter the soil and 

groundwater.  It is therefore necessary to monitor the area around gasoline storage tanks 

for benzene pollution.  The EPA requires that the concentration of drinking water not 

exceed 5ppb (five parts of benzene per billion parts water) [1] [5].  This affects the water 

directly, but also accounts for the amount of benzene that can evaporate from the water 

during other uses such as cleaning or boiling water for cooking.  A chemical sensor can 

be used to identify benzene contamination before it causes a health risk. [4] 
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1.3 Overview of Chemical Sensors 

A chemical sensor is a device which measures the presence or concentration of a 

substance and converts that information into an electrical signal.  Different sensor 

platforms receive a stimulus from the measured substance or parameter in different ways, 

such as measuring the change in a capacitance or resonant frequency.  To detect benzene, 

a chemical sensor must measure a response based on the concentration of benzene 

present. [2] 

A chemical sensor consists of a sensor platform, a sensing medium, and a data 

output system.  The sensing medium interacts with the targeted chemical, or analyte, and 

changes in a manner that perturbs a physical parameter of the sensing platform [8].  For 

example, the sensing medium may change its electrical properties, such as dielectric 

constant or conductivity, in the presence of the analyte.  The sensor platform is a device 

or system which responds to a change in the sensing medium.  In some examples, the 

sensor platform applies a swept voltage to the sensing medium to measure the current.  

The data output system converts the measured property of the sensing platform into an 

output readable by an end user.  This may be a computer system which records the input 

voltage and output current, and saves it to a hard disk in the form of a table and I-V 

curve. [8] 

Important parameters used to characterize or classify a sensor include its 

sensitivity, selectivity, linearity, and environmental stability.  To properly interpret the 

output of the sensor, a calibration curve is used [8].  The calibration curve is typically 
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plotted as an output parameter as a function of the input parameter.  The calibration curve 

is used to determine the sensitivity and partial selectivity of a sensor.  Sensitivity is 

described as how much the measured quantity changes for a given change in input 

perturbation.  The sensitivity of a device is measured as the slope of the calibration curve 

[8].  A large sensitivity is beneficial because it results in an increased signal to noise ratio 

and reduces the limit of detection [8].  Selectivity refers to how much of the response is 

caused by the specifically targeted measured quantity.  For chemical (e.g. benzene) 

sensing, it is more useful to discuss the partial selectivity of a sensor [9].  Partial 

selectivity in a chemical sensor refers to the relative magnitude of the sensor’s response 

(and therefore sensitivity) for a particular analyte compared to that of a different analyte 

[10] [11]. 

The linearity of a sensor describes the closeness between the calibration curve and 

a straight line [8].  A sensor is linear if the sensitivity is constant within the measurement 

range of interest.  In some cases, a non-linear sensor may exhibit hysteresis which 

prevents the system from accurately determining the measured quantity because the 

output depends on the values of the previous input [8].  One of the qualities investigated 

in this project is the reusability of a polymer film.  A film may exhibit hysteresis if it does 

not fully release the absorbed analyte between exposures. 

Environmental stability is particularly important because the environment in 

which this sensor will be used cannot be accurately controlled.  For example, temperature 

is an environmental factor which affects chemical sensors, and the temperature cannot 

accurately be controlled on site.  As will be discussed later, the viscoelastic properties of 

the polymer film are influenced by the temperature of the film [12].  A dual delay line 
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configuration is used in these experiments to compensate for changes in temperature by 

having a second film which does not respond to the analyte [11].  This film undergoes the 

same changes in temperature as the sensing layer and can be used to determine if changes 

in the sensing polymer are due to analyte absorption or temperature drift. [8] 

1.4 Overview of Acoustic Wave-Based Chemical Sensors 

Chemical sensors may use acoustic wave (AW) - based sensor platforms.  In these 

devices, a wave is generated and transmitted through a medium.  A chemically sensitive 

element alters the wave properties, and these changes are measured.  Information about 

the wave can then be used to find the concentration of the target substance because the 

changes in the wave depend on the analyte concentration.  Some AW sensors can operate 

in both gas (typically air) and liquid (typically aqueous solutions) environments.  This 

work focuses on the use of a liquid phase sensor in an aqueous solution.  Measuring the 

concentration of benzene in the headspace of a water sample requires additional energy to 

evaporate the benzene, or is potentially inaccurate.  A liquid phase sensor is able to 

operate in direct contact with the sample and does not require evaporation, although it 

may have its own drawbacks which must be accommodated [13]. [2] [8] 

There are many variations of AW sensors which involve different types of waves.  

The most common configurations used for sensor applications are the thickness-shear 

mode (TSM), surface acoustic wave (SAW), acoustic plate mode (APM), and flexural 

plate wave (FPW) device [2] [10].  Each configuration is different from the others in 

either the type of the wave or the method in which the wave is generated. 
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These different device configurations can be divided into configurations that use 

bulk waves and configurations that use surface waves.  A bulk wave will not be as 

sensitive to the changes in the film because the wave energy is distributed throughout the 

substrate.  TSM, FPW, APM, and SAW devices are all acoustic wave devices, but the 

SAW device is the most promising for this work.  This is because the SAW energy is 

largely confined at the surface of the crystal and the operating frequency is high.  This 

will be further explained in chapter 2. [2] 

The acoustic wave sensor platforms require a piezoelectric substrate in order to 

function.  Piezoelectric materials exhibit the piezoelectric effect, which is a transduction 

of electrical potential and mechanical stress.  A wave is excited when an electrical field 

inside the substrate is oscillated.  The wave is then measured at the output where the 

stress is converted back into an alternating voltage [2].  Commonly used piezoelectric 

materials are quartz (SiO2), lithium niobate (LiNbO3), and lithium tantalate (LiTaO3) [2] 

[10]. 

Surface waves used in a SAW device can have particle displacement in three 

directions – shear horizontal, shear vertical, and longitudinal.  Shear horizontal motion is 

perpendicular to the direction of propagation of the wave and in the plane of the surface.  

Shear vertical motion is perpendicular to the direction of propagation, but is normal to the 

surface on which the wave travels.  Longitudinal motion is in the direction of 

propagation, and is also known as compression.  Shear vertical motion is not effective for 

liquid phase sensors because the surface particles lose energy when they displace the 

liquid, so it is important to minimize the amount of shear vertical motion the wave has. 
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1.5 Overview of SH-SAW Sensors 

Shear horizontal surface acoustic wave (SH-SAW) sensors are a specific type of 

sensor platform which can be used in a chemical sensor.  SAW sensors, sometimes called 

Rayleigh wave sensors, operate largely with shear vertical displacement with a small 

longitudinal component, but SH-SAW sensors are made with a specific crystal structure 

that is rotated so that it does not support the shear vertical component of the surface 

wave.  The wave in this crystal will have both longitudinal and shear horizontal 

components, but the longitudinal motion will be negligible compared to the shear 

horizontal component.  An SH-SAW device will therefore be preferred over devices 

which use shear vertical surface waves for sensors which operate in liquid phase and use 

a chemically sensitive film. [2] [10] 

The wave’s velocity and amplitude are affected by the mechanical properties of 

the medium in which the wave travels.  If the mechanical properties change, the velocity 

(which is related to the frequency) and amplitude (which is related to the loss) of the 

wave will also be altered.  By measuring the change in center frequency and loss, 

information regarding changes in the medium probed by the wave can be gathered [10] 

[11].  In an SH-SAW sensor there is a chemically sensitive film on the surface of the 

device.  As this film interacts with the target analyte, its physical properties change and 

this change causes a shift in loss and the wave’s center frequency.  The amount of analyte 

present in the environment can be determined by using the calculated changes in physical 

properties. [2] 
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Most SH-SAW devices are comprised of a piezoelectric substrate with input and 

output interdigited transducers (IDTs) arranged in a delay line configuration.  The IDTs 

are electrode patterns on the surface of the piezoelectric substrate.  When a voltage is 

applied between the two sides of the IDTs, an electric field is coupled between the 

neighboring digits.  This field creates a mechanical strain in the piezoelectric substrate.  

Alternating the applied voltage excites a shear horizontal wave which propagates from 

the IDTs.  The shear horizontal wave penetrates deeper into the substrate than a shear 

vertical wave, but the chemically sensitive film acts as a guiding layer which traps the 

energy of the wave close to the surface.  A thin gold layer is also used to guide the wave 

to the device surface.  This is beneficial because more wave energy will be confined 

within the sensing layer [11] [14].  The frequency is defined by the velocity of the wave 

and spacing of the IDT fingers using equation (1). 

� = �� (1) 

In equation (1), f is the frequency of the wave, v is the velocity of the wave, and P 

is the periodicity of the electrode fingers of the IDTs.  The wave travels along the delay 

line and then is received by the opposite IDT, and is converted back to an alternating 

voltage.  At first approximation, any changes in frequency can be attributed to a change 

in wave velocity due to the sensing layer, and change in amplitude can also be attributed 

to changes in the elastic properties of the sensing layer. [10] [11] 
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1.6 Polymer Characteristics 

The sensing layer in the SH-SAW devices discussed in this thesis is made of a 

thin film of polymer material.  A polymer has a chain-like structure on an atomic scale 

where several repeating groups of material are attached to form one large molecule [11].  

The polymer material has several important characteristics which must be considered 

when using it as a sensing layer on an SH-SAW device. [10] [11]  A polymer which 

undergoes shear deformation can be characterized by its complex shear modulus, G [15] 

[12].  The shear modulus is affected by both the intramolecular and intermolecular forces 

holding the material together (such as covalent bonding or hydrogen bonding) and the 

molecular mass of the polymer. [11]  G is defined mathematically as the sum of the 

storage and loss moduli, G’ and G’’ respectively, in the material by equation (2).  

� = �� + ���� (2) 

A polymer is categorized as glassy, rubbery (viscoelastic), or liquid (amorphous, 

or viscous) depending on the relative values of G’ and G’’.  A polymer is glassy when 

G’≈109Pa and G”«G’ and rubbery if G’≤107Pa and G”<G’ [16].  A glassy polymer is 

hard and has a high storage and low loss.  As heat is applied to raise the temperature of 

the polymer above its glass transition temperature, Tg, it undergoes a change into a 

rubbery state.  A rubbery polymer has more loss and less storage than a glassy one.  As 

temperature exceeds the melting temperature, the polymer becomes liquid and G’ tends 

to 0, and G is entirely defined by G’’ [11] [12].  Fig. 1.1 shows G’ as it changes with 

temperature. 
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Figure 1.1 G’ as a function of temperature 

 

A sensing layer film made with polymer will ideally operate within that polymer’s 

glassy transition region because the film will be relaxed enough to allow the analyte to 

penetrate without damping the acoustic wave.  When the polymer is glassy, the molecular 

chains are closely locked together and there is no excess space for analyte.  As it enters 

the transition region, the chains separate and there is space for the absorption of analyte.  

If the polymer becomes rubbery, however, it will damp the surface wave too heavily 

because of the relatively large loss modulus.  Experimental testing and previous work 

have demonstrated that the glass transition temperature should be approximately -20°C so 

that the film is in or slightly above the transition region at room temperature. [11] 
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Another characteristic of a polymer – and any molecule – is its solubility.  In this 

application, it is desirable to have a sensing polymer which is miscible with benzene.  

The Hildebrand Solubility Parameter is a value defined by the cohesive energy density of 

a molecule [17].  The value of this parameter is influenced by many properties of the 

molecule such as polarity and molecular mass, and materials with similar values will be 

miscible.  This relationship will be discussed in Chapter 2.  For this sensing application, it 

is important that the sensing layer have a solubility parameter which is close to that of 

benzene.  If the solubility parameter of a polymer is close to that of benzene and the 

polymer is not glassy, the benzene molecules can be absorbed into the film. [17] 

1.7 Thesis Organization 

This thesis is presented in 5 chapters and includes an abstract.  Chapter 1 is an 

introduction to the problem and the current state of sensors.  The motivation is provided 

along with a qualitative description of the current methods of measuring benzene.  

Chapter 2 gives a review of how the SH-SAW device functions and how it interacts with 

the polymer coating.  This chapter also discusses the sorption process which the film 

undergoes when it is exposed to analyte.  The changes which result from this exposure 

are used to explain how the polymers of interest to this project were selected and to 

introduce which coatings were investigated.  Chapter 3 presents the experimental 

procedure.  It includes a description of the devices and materials used along with a 

description of how the devices were prepared and tested.  Chapter 4 presents the results 

of the research.  The results of the measurements are presented along with a discussion of 
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their significance.  The discussion evaluates the sensitivity and limit of detection of the 

polymer coatings of interest.  Chapter 5 summarizes the results of the work done for this 

thesis.  Some particular polymers are identified for their sensitivity and limit of detection, 

and potential future work is discussed. 
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2 THEORETICAL DISCUSSION 

2.1 Introduction 

This chapter discusses the physical processes which dictate the function of an SH-

SAW device coated with a chemical sensing layer and explains the selection of the 

polymers investigated in this work.  The surface acoustic wave sensing platform is 

theoretically described with an emphasis on the shear horizontal wave.  Important 

parameters of polymer coatings are defined here, and their relevance to the sensing 

application is discussed.  The process of analyte sorption by a chemically sensitive film is 

also explained and used to define criteria for the selection of the polymers. 

2.2 SH-SAW Sensing Mechanism and Parameters 

Guided shear horizontal surface acoustic wave sensors with a chemically sensitive 

layer are effective chemical sensors in the liquid phase [11] [15] [16].  A SAW with shear 

vertical particle displacement will lose energy by radiating compressional waves into the 

liquid environment, but SH-SAW devices do not have this disadvantage [2].  SH-SAW 

particle displacement is mostly in the plane of the device surface and not perpendicular to 

the surface.  This leaves viscous loss as the sole significant mechanism of attenuation of 

the acoustic wave by the liquid environment.  A shear horizontal wave penetrates deeper 
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into the substrate than a shear vertical wave [2], but the chemically sensitive polymer 

layer acts as a waveguide to trap the acoustic energy closer to the surface, making the 

guided wave more sensitive to surface perturbations [18].  The wave is also confined to 

the surface of the device by the metalized delay line.  The gold layer has a much slower 

wave velocity than the LiTaO3 substrate, and will therefore cause the acoustic wave to be 

confined to the surface of the substrate-polymer interface [19]. 

The profile of an SH-SAW device is shown in Fig. 2.1.  The polymer has 

thickness h and the substrate and liquid layers are considered to be semi-infinite.  The 

applications discussed in this thesis only include the detection of benzene and similar 

compounds dissolved in water, so the liquid layer is assumed to be a low viscosity 

Newtonian fluid.  The analyte which is dissolved in the liquid layer will absorb into the 

polymer layer and cause the film to swell.  SH-SAW devices have previously used a four-

layer geometry; the four-layer model uses a rigid waveguide layer between the 

chemically sensitive polymer and the piezoelectric substrate.  This system has less loss 

and is more stable than a 3-layer model, but it also has a smaller sensitivity [20]. 
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Figure 2.1 SH-SAW Device profile with three layer geometry 

 

SH-SAW devices function through the use of a piezoelectric substrate, or the 

piezoelectric effect [2].  The piezoelectric effect is a reversible process by which a 

material converts mechanical stress into electric potential.  Commonly used piezoelectric 

materials are quartz (SiO2), lithium tantalate (LiTaO3), and lithium niobate (LiNbO3).  

All of the devices in this work are made using a lithium tantalate substrate because it has 

larger piezoelectric and dielectric constants than quartz and a smaller temperature 

coefficient of delay than lithium niobate [21].  More of the energy of the electric fields 

will exist within the lithium tantalate substrate because of the difference in dielectric 

constant between the lithium tantalate substrate and polymer and liquid layers. [10] [11]   

The substrate used is 36° rotated Y-cut LiTaO3.  The anisotropic structure of the crystal 

allows the surface wave to propagate in the X direction with particle motion in the Y 

direction. 
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Interdigited transducers are used to create the electric field which can excite the 

SAW.  A voltage applied across the transducer will create an electric field which 

penetrates the substrate and causes the piezoelectric material to become stressed.  The 

voltage can be alternated to excite an acoustic wave on the substrate’s surface. [2] [16] 

2.2.1 SH-SAW sensing mechanism 

The 3-layer model for the SH-SAW sensor depicted in Fig. 2.1 shows that the 

sensing polymer layer has contact with both the substrate and the liquid environment.  

Because the sensing layer traps the wave energy at the surface of the substrate, the 

acoustic wave is influenced by the properties of both the polymer and substrate.  The 

liquid carries the analyte molecules which are absorbed into the bulk of the sensing layer 

through a diffusion process.  The properties of the sensing layer change with the addition 

of the analyte and this in turn alters the acoustic wave’s velocity and attenuation.  

Velocity can be related to center frequency and attenuation can be related to loss, which 

can both be directly measured to detect analyte sorption by the sensor. [16] [11] 

In general, an acoustic wave can have particle displacement in any direction.  The 

particle displacement for a shear horizontal surface acoustic wave, however, is only in the 

y direction.  The particle displacement for such a wave is a function only of x, z, and 

time, given by [2] 

����, �, �� = ����, ��������� (3) 

where ω is the angular frequency (2πf� and γ is the complex propagation 

coefficient comprised of attenuation and wave number (α and k) defined as [2] 
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& = ' + �( = ' + �)�. (4) 

Measured changes in wave propagation characteristics at a given frequency are 

therefore only a function of the change in the propagation coefficient, γ.  Written 

normalized to the starting frequency and velocity, this is 

Δ&(, = Δ'(, − � Δ��, . (5) 

A network analyzer can be used to measure the frequency spectrum of the SH-

SAW device.  The relationship 

� = ��	, (6) 

where	P	is the periodicity of the IDT, is used to find the operating frequency of 

the SH-SAW device.  If we assume that the phase velocity is equal to the group velocity 

and that	P	is constant for a given device, the normalized change in frequency is equal to 

the normalized change in wave velocity as 

Δ�� = Δ�� 	. (7) 

This relationship means that any change in velocity due to changes in the film will 

also result in a change in frequency. 

Changes in phase velocity and attenuation for an SH-SAW device are due to 

changes in mass (m), viscoelastic constant (c), dielectric constant (ε), conductivity (σ), 

temperature (T), and pressure (P).  For small perturbations, the total change in velocity 
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and attenuation can therefore be written as a sum of partial derivatives with respect to 

these parameters as [2] [11] 

0� = 1�1202 + 1�13 03 + 1�14 04 + 1�15 05 + 1�16 06 + 1�1� 0�	, (8) 

0' = 1'13 03 + 1'14 04 + 1'15 05 + 1'16 06 + 1'1� 0�	. (9) 

Note that in equation (9) the change in attenuation is not a function of mass 

accumulation. [10] [16] 

The experimental setup used in this thesis was selected such that the effects of 

dielectric constant, conductivity, temperature, and pressure are all reduced or removed 

[11].  A metalized delay line removes acoustoelectric interactions so that ∆ε and ∆σ are 

zero [11].  By controlling the ambient temperature to limit variations in temperature and 

using a dual delay line device, a differential measurement can be established to eliminate 

the effects of ∆t	and	∆P [11].  By removing these terms from equations (8) and (9), we 

can simplify them to 

0� = 1�13 03 + 1�1202	, (10

) 

0' = 1�13 03	. 
(11

) 

This means that the change in attenuation is due only to change in the viscoelastic 

properties of the sensing film.  The change in wave velocity depends on changes in both 

viscoelastic constant and mass loading.  As the film is deformed by the wave, energy is 
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stored and dissipated causing the attenuation and velocity of the wave to change.  Mass 

loading is the result of mass entering the sensing film and changing the density and 

thickness.  The SAW velocity changes proportionally to the mass density of the film [2].  

The mass loading does not change the attenuation, as seen in equations (9) and (11). [10] 

Changes in the viscoelastic properties of the polymer film (written previously as 

∆c) are the result of the material’s modulus changing.  A modulus in this context is the 

amount of stress caused by one unit of strain (expressed in dyn/cm2).  The particle motion 

of an SH-SAW is primarily in the shear direction, and the shear modulus, G, is what 

defines how a material behaves under shear deformation.  G is a complex term written as 

[10] [12] 

� = �’ + ��”, (12

) 

where G’ is the storage modulus and G” is the loss modulus.  The storage 

modulus relates to energy stored and released as the film displacement changes with the 

oscillation of the acoustic wave.  The loss modulus relates to energy that is lost, usually 

to heat, by the deformation of the material. 

Assuming that the shear modulus is the only component of the viscoelastic 

changes, it is possible to substitute G’ and G” into equations (10) and (11) so that they 

can be rewritten as functions of the parameters that are changing – the mass loading and 

moduli – as [11] [16] 

∆� = ��∆2, ∆�’, ∆�”�, (13
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) 

∆' = ��0�’, 0�”�. (14

) 

The network analyzer used in this experimental work measures insertion loss 

instead of attenuation.  Insertion loss is the amount of energy lost when a wave is sent 

across the entire device, as opposed to the attenuation which is loss per unit length.  The 

insertion loss is directly proportional to the attenuation by [11] 

0'( = 0=54.6A, 
(15

) 

where L is the insertion loss and N is the length of the transmission line in units of 

wavelengths.  Because all of the testing done uses the same size device and wavelength 

(and the change in insertion loss can be directly related to a change in attenuation as 

shown in (15)), the measured insertion loss can be used interchangeably with the 

calculated attenuation. 

2.2.2 Polymer Viscoelasticity Effect 

The polymer-substrate interface is assumed to show no slip, but the particle 

displacement may vary across the thickness of the polymer.  The polymer near the 

substrate will move synchronously with the substrate, but there may be a phase lag in the 

part of polymer that is farther away from the substrate.  This phase lag increases if the 

polymer is more rubbery (or viscous).  If the polymer/liquid interface moves in phase, or 

less than π/2 out of phase, with the substrate then the film is acoustically thin.  As the 
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film thickness increases, the phase lag increases.  A film with a phase lag equal to or 

greater than π/2 is acoustically thick [22].  The film will resonate constructively with a 

phase lag of exactly π/2, and it will experience destructive interference if the phase lags 

by more than π/2.  The exact thickness range where the film behaves as acoustically thin 

is dependent on the shear modulus of the film and the temperature [22]. [16] [23] 

Typical SH-SAW sensor responses will be dominated by the changes in mass 

loading and viscoelastic properties [2].  As the sensing film absorbs analyte, however, its 

thickness and viscoelastic properties change [24].  This will alter the amount of phase lag 

at the liquid-polymer interface and will therefore alter the fractional change in velocity, 

which results in a frequency shift, and loss.  It has been shown that some films may 

exhibit such a pronounced resonance effect that the observed frequency shift due to the 

absorption of analyte will be a positive change [23].  This is demonstrated in chapter 4 

where PBA and BPA PDMS are observed to give a positive frequency shift. 
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Figure 2.2 The fractional change in velocity and change in loss as a function of film thickness for 
several different values of G’, with G”=0.1GPa [16] 
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Figs. 2.2 (a) and (b) show how the fractional change in velocity and change in 

loss is affected by film thickness for several different values of storage modulus, G’.  

These figures demonstrate how a sensor’s frequency may experience a positive frequency 

shift under certain conditions.  The film’s thickness and shear modulus both change 

during analyte sorption, and the loss and velocity will both change.  For a G’ of 0.10 

GPa, the fractional change in velocity has a positive slope as film thickness increases 

from 0.8 µm to 1.0 µm.  G’ is decreased as the polymer absorbs analyte, which also 

increases the fractional change in velocity.  Both of these effects combined may cause a 

positive frequency shift instead of the negative frequency shift expected for pure mass 

loading in acoustically thin films. 

2.3 Relevant Polymer Properties 

2.3.1 Polymer Viscoelastic States 

As discussed earlier, the shear-horizontal particle displacement of the sensing 

layer of an SH-SAW sensor is influenced by the sensing polymer’s shear modulus, G.  

Shear modulus varies with temperature and material.  There are three states in which a 

polymer may exist – glassy, rubbery, and viscous.  A glassy polymer has a storage 

modulus (G’) which is much larger than its loss modulus (G”) which means that the 

material is rigid and an acoustic wave travelling through it will not lose as much energy 

as in a rubbery polymer.  A rubbery polymer has a G’ which is smaller than that of a 

glassy polymer, meaning that the same amount of stress will produce a larger strain in a 

rubbery polymer than it would in a glassy one.  The trend of G’ vs. temperature was 
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shown in Fig. 1.1.  A viscous polymer is generally not a useful sensing material because 

it does not support the propagation of acoustic shear waves and will therefore strongly 

attenuate the wave. [23] 

The G’ and G” of a polymer change slightly with small variations in temperature 

when in the glassy or rubbery state, and the change is even larger in the transition region.  

In the bounds of this transition region is a specific temperature known as the glass 

transition temperature, Tg.  One way to determine the value of the glass transition 

temperature is by using its relationship with a polymer’s thermal coefficient of 

expansion.  The specific volume of a polymer varies linearly with respect to temperature 

at a rate known as the thermal coefficient of expansion.  This coefficient changes with a 

discontinuity at the glass transition temperature.  An experiment can be conducted using 

the measured volume of a polymer to determine the value of that polymer’s Tg.  For the 

polymers used in this thesis, Tg has been determined by either the manufacturer or 

previous research at Marquette University’s Microsensor Laboratory. [12] 

The state of a polymer affects its use as a sensing layer of an SH-SAW sensor in 

three ways: the temperature stability of the sensor varies with the polymer state, the 

insertion loss depends on the value of G”, and the absorption of the analyte into the 

polymer film is affected by G’.  As mentioned in section 2.2, the measured change in 

attenuation and velocity are influenced by the change in G’ and G”.  If the polymer is 

used at a temperature in the transition region between glassy and rubbery states, G’ and 

G” vary rapidly with temperature.  It is therefore important that the temperature be held 

constant, even with a dual delay line setup.  The polymer state at room temperature 

influences the amount of insertion loss which is caused by the sensing film.  A rubbery 
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polymer will have a relatively large G” value and will dissipate energy through friction as 

heat.  A device with high insertion loss will have a smaller measured signal and this leads 

to a smaller signal to noise ratio.  A glassy polymer will have a large G’ and be rigid.  

During the sorption process, the target analyte is absorbed into the polymer film.  A 

polymer with a large G’ will require more energy to move (because a large G’ indicates 

more stress required per unit of strain) to make room on a molecular level for the analyte.  

A polymer’s ability to absorb analyte is therefore dependent on the value of G’ and a 

rubbery polymer will absorb more analyte than a glassy one.  Because the state of a 

polymer affects its use as a sensing layer in so many ways, it is important to consider the 

polymer’s Tg when selecting a film for a sensing application.  Section 2.5 looks at these 

considerations in more detail. [12] 

2.3.2 Hildebrand Solubility Parameter 

A solubility parameter can be used to make predictions about the solubility of one 

substance in another.  Two different materials with similar values will often be miscible 

or soluble.  The Hildebrand solubility parameter is one such parameter defined by the 

square root of the cohesive energy density [17].  The cohesive energy density is defined 

as the amount of energy needed to separate the molecules of one mole of a substance by 

an infinite distance.  The cohesive energy density can be written as the amount of energy 

needed to boil the liquid to a gas (heat of vaporization, or ∆Hv-RT) divided by its 

molecular volume (Vm).  Equation (16) defines the Hildebrand solubility parameter, (δ). 

[17] 
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1 = B0CD − E6FG  
(16

) 

The solubility is affected by the inter- and intra-molecular forces present in the 

material, including dipole-dipole interaction and hydrogen bonding.  Different molecules 

with similar polarity will usually have similar solubility parameters. 

The solubility parameter is important when discussing sensing polymers for 

SAW-based sensors because the sensing layer must absorb the target analyte.  When 

dealing with the specific application of benzene sensing in an aqueous environment, the 

sensing layer should be miscible with benzene and should not dissolve in water.  Part of 

the intent of this thesis is determining the significance of the solubility parameter when 

selecting a polymer for benzene sensing. 

2.4 Sorption Process 

During analyte detection, the analyte is absorbed into the sensing polymer.  The 

sensing polymer has a finite volume, with a finite amount of free space which the 

absorbed analyte can occupy.  The concentration of analyte in the polymer at equilibrium 

(Cp) is the mass of sorbed analyte at equilibrium (ma) divided by the volume of the 

polymer film (Vs).  The amount of absorption of the analyte into the film can be 

expressed by a partition coefficient (Kp), the ratio of the concentration of analyte in the 

environment (Ca) and concentration of analyte in the polymer at equilibrium, and it can 

be written as: [11] [24] 
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HI = JIJK =
2K FLM
JK 		. (17

) 

Different combinations of sensing polymer and analyte will have different 

partition coefficients, and it is therefore beneficial to select a polymer which shows a 

large partition coefficient for benzene.  A sensing polymer layer with a large Kp will 

experience greater sorption than a different sensing layer with the same volume and a 

smaller Kp [7].  For weakly interacting polymer/analyte combinations (physisorption), the 

kinetics of the sorption process is dominated by the diffusion of the analyte into the 

sensing polymer [25].  The rate of absorption decreases as the concentration of analyte in 

the polymer approaches saturation, until equilibrium is reached.  This means that the 

concentration of the analyte in the sensing film will show exponential behavior as it 

approaches equilibrium.  Note that previous work in this field utilizes the partition 

coefficient to determine the concentration of one or more analytes with a gas sensor [13] 

[26].  The partition coefficient is presented here as an explanation for the exponential 

response observed by the sensor, and not as a method for determining concentration. [10] 

[23] 

As discussed in section 2.2, the experimental procedure used in this work will 

measure the insertion loss and resonant frequency of the SH-SAW device.  The insertion 

loss and frequency of the device will also follow an exponential curve in response to a 

step change in ambient concentration because these values, for small concentrations, both 

relate linearly to the concentration of analyte in the film.  The trend of the device 

response contains information about both time constant and magnitude, and these two 
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parameters can be used to identify analyte species as well as concentration.  The work 

presented in this thesis focuses primarily on the concentration of benzene present, so the 

species identification is not evaluated.  Therefore, the magnitude of the response at 

saturation is evaluated in greater detail than the response time. 

2.5 Selection of Polymers 

2.5.1 Glass transition temperature 

The relative values of G’ and G” determine both a polymer’s ability to absorb 

analyte and the amount of energy dissipated by an acoustic wave.  The polymer state (i.e. 

glassy, rubbery) is therefore important when selecting a polymer for the sensing layer of 

an SH-SAW device because it indicates the relative values of G’ and G”.  A rubbery 

sensing polymer will have a smaller G’ than a glassy polymer, causing it to deform more 

easily and accept analyte molecules into its free volume.  A rubbery sensing polymer will 

have a larger G” than a glassy one, so it will dissipate more acoustic energy and thus 

increase the insertion loss of the sensor.  An ideal sensing layer will be rubbery enough to 

absorb the analyte, yet glassy enough to support the acoustic wave with minimum 

acoustic attenuation.  A polymer in the transition state may have these properties, and 

some rubbery polymers may have a small enough loss to be usable as well.  

The state of a single polymer will change with temperature, so a single 

temperature (or a small range) must be chosen.  The selected polymers should be 

compared based on their state in the temperature range of 0° to 25° C because the 

practical use intended for these films is benzene detection in ground water supplies [27].  
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The transition temperature, Tg, is approximately the middle of the transition region, so the 

polymer will always be in the transition or rubbery region if Tg is below 0° C.  Reference 

[28] also explains that the operating frequency of a SAW sensor will affect the observed 

Tg.  A lower Tg means that the polymer is more rubbery at the tested temperature.  Table 

2.1 shows the Tg values of some polymers which are known to be effective sensing layers 

for the detection of benzene, and includes the polymers tested in this work. 

 

Table 2.1 Polymer Solubility and Transition Temperature Values [29] [11] 

Polymer 

Hildebrand Solubility 

Parameter, δ [MPa
1/2

] 

Glass Transition Temperature, 

Tg [°C] 

Poly (epichlorohydrin) (PECH) 21.6 -22 

Poly (isobutylene) (PIB) 18 -64 

Poly (ethyl acrylate) (PEA) 18.6 -23 

Polystyrene 18.5 100 

Poly (methyl acrylate) (PMA) 19.1 9 

Poly (butyl acrylate) (PBA) 19.8 -49 

Poly (ethylene co-vinyl acetate) 

(PEVA, Elvax 40W) 18.6 -28.8 

Bisphenol-A poly (dimethylsiloxane) 

(BPA PDMS) 

 

-54 

Bisphenol-A poly (hexamethyltrisiloxane) 

(BPA HMTS) 

 

4.95 

 

A polymer like poly (isobutylene) (PIB) is rubbery at room temperature because 

the polymer is far from the glassy state.  Poly (ethyl acetate) (PEA) shows lower acoustic 

attenuation than PIB at room temperature because at this temperature, PEA is just slightly 

above its glass transition temperature.  These polymers are known to be effective for 

sensing benzene in water [30].  The Tg values for these two polymers is used to establish 

a range for acceptable Tg values – only polymers which are more glassy than PIB but not 
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substantially more glassy than PEA at room temperature will be considered for this 

thesis.  The optimal film thickness will depend on the shear modulus (which, as discussed 

previously, is a function of Tg and temperature) of the polymer [16] [31].  A rubbery 

polymer (one with a low Tg) will become acoustically thick at a smaller thickness than a 

glassy polymer [22]. 

2.5.2 Solubility parameter 

The effect of the solubility parameter is investigated by this work.  In order for the 

sensing layer to function, it must absorb the target analyte.  Sensing polymers which are 

miscible with benzene will be able to absorb more of the benzene in their free volume, so 

polymers with a solubility parameter close to that of benzene were chosen for this work.  

Table 2.1 also shows the Hildebrand solubility parameters of the selected polymers as 

well as some other polymers which are known to absorb benzene.  Benzene itself has a 

value of 18.5 MPa1/2 [29].  Some polymers which are known to be effective at benzene 

detection have a solubility value which is not equal to that of benzene.  This shows that 

the value does not need to be met exactly, but it is expected to have strong influence on 

the performance of the sensing layer. 

The acceptable range of values for the solubility parameter is difficult to quantify 

because there are other properties which must be considered.  Some materials have the 

same solubility parameter as benzene but would never function as a sensing layer for an 

SH-SAW device because they are too rubbery or glassy at the operating temperature.  

Polystyrene, for example, has the same solubility parameter as benzene, but it has a Tg 

value of 100°C and will not absorb enough analyte to be an effective sensing layer.  The 
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selected polymers were first chosen from those whose transition temperature is in the 

acceptable range, and then a subset of three polymers which all have solubility 

parameters within a small range of benzene were selected for investigation. 

2.6 Analysis of Polymers of Interest 

2.6.1 Selected polymers 

Previous studies have shown that PIB, PECH, and PEA are all effective sensing 

layers for the detection of benzene in liquid form.  PMA, PBA, and PEVA were all 

selected because they have similar or better qualities to these known materials.  Table 2.1 

shows the values of Tg and solubility parameter for each of these polymers.  PMA, PBA, 

and PEA are all polymers made from similar monomers, with each monomer having 

either a methyl, butyl, or ethyl group but sharing similar functional (acrylate) groups.  

Because PEA can make an effective sensing layer for an SH-SAW sensor, PBA and 

PMA may give greater results because they also have transition temperatures slightly 

below the operating temperature and a δ value close to benzene.  PEVA was selected 

because it has a solubility parameter of 18.6 MPa1/2, which is almost equal to that of 

benzene, and a glass transition temperature which is in the range of the known sensing 

polymers. 

2.6.2 BPA co-polymers 

Two additional polymers were also selected for this work. The BPA co-polymers 

bisphenol-A poly (dimethylsiloxane) (BPA PDMS) and bisphenol-A 
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poly (hexamethyltrisiloxane) (BPA HMTS) have been used in other work at Marquette 

University and it has been shown that these materials make for effective sensing layers 

for SH-SAW sensors for the detection of organophosphates [32] [11] [23].  Because it is 

known that these sensing layers can support acoustic waves with acceptable loss and are 

able to absorb analyte molecules, they are of interest to this work with benzene detection.  

These co-polymers have a porous inorganic backbone (the PDMS or HMTS) with 

functional organic sites (the BPA).  Grate et al. uses BSP3, a polymer similar to BPA 

HMTS, for gas-phase detection of toluene as well as other gases [33].  For toluene, he 

observed high sensitivity as well as a fast response.  Toluene, which is one of the BTEX 

analytes, contains a benzene ring and has a solubility parameter similar to that of 

benzene.  It is therefore reasonable to expect BSP3, and therefore BPA PDMS and BPA 

HMTS, to also absorb benzene.  Because this study has shown that polymers similar to 

BPA PDMS and BPA HMTS can absorb toluene, it is expected that BPA PDMS and 

BPA HMTS can be used to make effective sensing layers for the detection of benzene.  

PDMS and HMTS by themselves are too rubbery at room temperature and will not 

support the acoustic wave.  It is necessary to combine these polymers with BPA through 

the hydrosylilation process to make the sensing layer glassier and reduce the insertion 

loss of the sensor [11]. [32] 
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3 EXPERIMENTAL PROCEDURE 

3.1 Introduction 

This chapter contains a description of the materials, equipment, and procedures 

used when gathering the data for this project.  Information about the selected polymers 

was gathered through a specific procedure which measures the relative changes in mass 

uptake and viscoelastic properties due to exposure to select analytes.  The polymer film is 

first prepared by dissolving the polymer in a solvent for a known concentration.  This 

solution is used to spin coat a thin film on an SH-SAW device.  The device is exposed to 

both deionized water and solutions of benzene and other aromatic analytes while being 

measured periodically by a network analyzer. 

3.2 Equipment Used 

The spin coater used is a Specialty Coating System Model P6024.  The spin 

coater functions by applying a vacuum to the back side of a device to hold it in place, and 

then spinning it rapidly following a preset routine.  The routine can be configured to 

select spin speed, ramp time, spin time, and ramp down time.  This device is used to 

create a reproducible film thickness.  The thickness of a film deposited through spin 

coating will vary based on the parameters of the solution (viscosity, molecular mass, 
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solvent evaporation rate) and the spin process (spin time, spin speed) [34] [11].  Having a 

spin coater with configurable routines allows convenient and accurate control over the 

final film thickness. 

The profilometer used is a KLA-Tencor Alpha-Step IQ.  A profilometer uses a 

microscopic tip to measure the height of a surface step.  The profilometer moves the 

sample and probes the surface to record the profile of a sample [35].  This method of 

direct measurement is potentially destructive to the film because the probe may scratch 

the surface of the sample.  Because of this restriction, the samples must be prepared on a 

glass slide and not an SH-SAW device.  Additional consideration must be taken for 

particularly soft films which may be damaged by the profilometer probe tip.  This will be 

explained in section 3.4.6. 

An ellipsometer can measure the thickness of a film without making physical 

contact with the surface.  This removes the risk of damaging the film with a probe.  The 

ellipsometer used is a Gaertner Scientific Corporation L2WLSE544.  An ellipsometer 

functions by shining a laser of particular wavelength at the surface of the sample at an 

oblique angle.  The laser is transmitted through the film and substrate and is reflected into 

a receiver.  The interface between the thin film and substrate, and the boundary between 

the film and air, will both reflect part of the incident laser beam.  For thin films, the two 

reflected beams will overlap and the ellipsometer records the effective polarity of the 

reflected laser beam [36].  The receiver records information about the transmitted light 

and uses software to analyze the sample.  This ellipsometer uses two wavelengths of light 

to get enough independent variables to determine both the refractive index and thickness 

of the thin polymer film [36]. 
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A vector network analyzer is used to measure the signal that is transmitted 

through an SH-SAW device at multiple frequencies.  The network analyzers used in this 

investigation are Agilent 8753 ES and E5061B.  This instrument is used to measure both 

the real-time response of the device in the presence of analyte as well as characterizing 

the device in a steady state.  For experiments that occur over time, the network analyzer 

is connected to a switch control unit that changes between the two delay lines on the SH-

SAW device.  Software on an attached computer is used to read the output from the 

network analyzer and periodically change the delay line being read by the switch control 

unit.  This provides a differential measurement between the lines when the separate sets 

of data are compared. 

The pumps used to deliver the analyte solutions are manufactured by ISMATEC 

and Eppendorf.  The aromatic analytes are volatile and may evaporate from the solution.  

These solutions are stored in closed containers and a pump is used to pull the liquid 

through a fitted brass flow cell which contains the sensor device.  The flow cell holds a 

single device and connects the device to the network analyzer with coaxial cables that are 

shielded to prevent signal loss or distortion.  The flow cell holds approximately 0.134 mL 

[11] of liquid at a time when fully assembled as shown in Fig. 3.1. 
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Figure 3.1 An assembled flow cell, designed by the Marquette Microsensor Research Laboratory 

 

The SH-SAW devices used in this experiment were designed at the Marquette 

Microsensor Laboratory.  The device is a lithium tantalate substrate with gold metalized 

regions patterned to make the IDT fingers and delay line.  The devices used in these 

experiments have a pass band between 102.7 MHz and 103.9 MHz and the center 



37 

 

frequency which is tracked in the measurement procedure varies based on many 

parameters including ambient temperature and film thickness. 

 

 

Figure 3.2 A coated SH-SAW device, designed and coated by the Marquette Microsensor Research 
Laboratory 

 

Fig. 3.2 shows a coated device.  The film is placed so that it covers the IDTs and 

metalized delay line without insulating the contact pads.  The bottom edge on the width 

of the device is beveled and the corners are rounded to reduce reflections.  The top edge 
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on the width of the device is scratched only on the segment which is in line with the 

nearest IDT pairs. 

 

 

Figure 3.3 Diagram of the experimental setup used to measure sensor response to an analyte 

 

The entire setup of equipment used to measure the frequency response of a device 

is shown in the diagram of fig. 3.3.  The network analyzer is connected to the switch 

control unit which can select between its two connections to the flow cell.  A computer 
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program operates both the network analyzer and switch control unit.  The switch control 

unit is controlled by the computer to periodically change between the two delay lines of 

the device, and the program records the information from the network analyzer output 

and saves it to a file after each cycle.  The flow cell is connected to a jar and a pump 

which pulls liquid from the jar through the flow cell.  The waste liquid is stored in a 

temporary container until disposal.  An operator must stop the pump to exchange samples 

when needed. 

3.3 Materials Used 

The sensing layers are made from polymer solutions which are spin coated on the 

device.  These solutions are made by dissolving the polymer in toluene.  The solid 

polymer material used to make these solutions was either purchased from a commercial 

supplier or produced at Marquette University from components which are commercially 

available.  Poly (methyl acrylate) and poly (butyl acrylate) are purchased from Sigma 

Aldrich and dissolved in toluene.  Poly (ethylene co-vinyl acetate), also known as Elvax-

40W, was purchased from Sigma Aldrich as a solution in toluene.  Bisphenol-A poly 

(dimethylsiloxane) and bisphenol-A poly (hexamethyltrisiloxane) are copolymers that 

were synthesized at Marquette University from components purchased from Sigma 

Aldrich.  BPA HMTS was produced previously and stored in a solid state until it is 

dissolved in toluene.  BPA PDMS has a short shelf life and is made immediately prior to 

its use. 



40 

 

The analytes tested in this thesis are benzene, ethyl benzene, toluene, and xylenes.  

These are collectively referred to as the BTEX analytes.  All of these chemicals are 

purchased from Sigma Aldrich. The analytes are diluted in water to make solutions of 

specific concentration.  The water is deionized and filtered with a Milli-Q system.  This 

water is then heated to a boil to remove any dissolved gasses. 

3.4 Procedures 

3.4.1 Introduction 

The procedures which are used in this work are largely based on previous work 

done in the Microsensor Laboratory.  These have been developed by combining known 

procedures to prepare and test the polymers of interest. 

3.4.2 Polymer Solution Preparation  

In order to apply a polymer film using a spin coating process, the polymer must 

be dissolved in a solvent.  The film thickness as a result of spin coating depends on spin 

time and speed as well as the viscosity of the polymer and how rapidly the solvent 

evaporates.  Two solutions of the same polymer and solvent will have different 

viscosities if the ratio of solvent to polymer is different and the same viscosity if both 

solutions are the same [11] [37].  It is important to accurately control the concentration of 

the polymer solution to have reproducible results from the spin coating process. 

Concentrations are represented using percent weight.  The percent weight (or 

weight by weight) of a solution is calculated in equation (18).  Some solutions are also 
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prepared using a weight by volume percent weight, and because the density of water is 

1.0 g/mL the values of percent weight per weight and per volume are the same if the 

solvent is water.  

NOPP	Q�	RQST2�U6Q�OS	2OPP	Q�	PQS��VQW × 100 = ��U3�W�	[�V\ℎ� (18

) 

Solutions are made by placing a measured mass of polymer into a container and 

adding solvent until the total mass is such that the desired percent weight is obtained.  

The solution is then stirred to completely dissolve the polymer.  Because the solvents 

evaporate in air, the container must be sealed completely.  As the solvent evaporates, the 

percent weight increases slowly.  Polymer solutions are kept tightly sealed and are not 

stored for more than three months in order to prevent inaccuracy due to this evaporation 

[11]. 

3.4.3 BPA PDMS Synthesis 

The copolymer bisphenol-A poly (dimethylsiloxane) (BPA PDMS) used in these 

experiments was synthesized at the Marquette University chemistry laboratory for this 

project.  The final BPA PDMS polymer is formed from a reaction of the component parts 

bisphenol-A and poly (dimethylsiloxane).  The polymers are dissolved in toluene, and a 

platinum catalyst is added.  The solution is then stirred with a magnetic stir bar in a hot 

oil bath.  Fourier transform infrared spectroscopy (FTIR) is used to verify the completion 

of the reaction.  The PDMS polymer has a siloxane group which has a wave number of 

2120 cm-1.  This siloxane group is changed through a reaction between the (Si-H) bond 

and the (-C=C-) bond in the presence of the platinum catalyst.  The 2120 cm-1 peak is 



42 

 

removed from the FTIR spectrum as the reaction completes.  Once the reaction is 

complete, activated charcoal is added to the solution.  The charcoal absorbs the excess 

platinum catalyst, and is then filtered out.  The final solution has a concentration which 

depends on the ratio of the mass of the reactants and the total solution mass – including 

the mass of the toluene used as a solvent. [23] [11] 

3.4.4 Device Cleaning and Preparation 

Before coating a device, it must be prepared through several steps.  A new device 

must first be reshaped with rougher edges to improve its performance.  In order to 

promote film adhesion and to improve consistency between films, the device must be 

thoroughly cleaned. 

The substrates of the devices used in this experiment are cut from a larger wafer 

on which the devices are laid out in a grid pattern.  The flat edges of a new device will 

cause the surface and bulk waves to reflect directly back at the transducer, which will 

cause noise in the measured signal.  Sanding the edges of the device to a beveled shape 

by rounding the rear edge will cause the wave to scatter in more directions and this will 

disperse the energy to reduce the magnitude of the reflected noise. 

Cleaning the device must be done through the use of chemicals and solvents 

because physical contact may damage the metal pattern and ruin the IDT fingers.  The 

device is submerged in a solvent in a sealed jar and the jar is placed in an ultrasonic bath 

for 3 minutes.  The device is then removed from that solvent and rinsed with deionized 

water or blown dry with nitrogen gas before being placed in another solvent.  The 

solvents used are, in order: trichloroethylene, chloroform, acetone, and 2-propanol.  
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These solvents are chosen because they will dissolve the polymers of interest, and then 

the acetone and 2-propanol will remove any partially dissolved residue from the stronger 

solvents.  The final blow-drying step leaves the surface of the device ‘wet’ to the solvents 

used in the polymer solution.  This helps the polymer film adhere to the surface of the 

device and reduces delamination of the film. [23] 

3.4.5 Film Deposition 

The polymer films are deposited using a spin coater.  The SH-SAW device is 

covered with low-residue tape that exposes only the portion of the surface to be coated 

and placed on a vacuum chuck inside the spin coater.  Polymer solution is deposited on 

the surface of the device and the spin coater is activated immediately.  Variations in time 

spent idle can cause significant changes to the viscosity of the solution because the 

solvents used are volatile.  The film thickness is a function of the polymer solution 

(viscosity, drying rate, etc.) and the spin conditions (speed, ramp time, duration) [16] 

[34].  After the spin coater has completed the programmed routine, the tape can be 

removed but the film will still contain some solvent. 

In order to remove the solvent, the film must be subjected to a drying process.  To 

ensure that all of the solvent is removed, the film should be heated to a temperature above 

the boiling point of the solvent.  The properties of a polymer film are affected by the 

arrangement of the polymer chains, and the addition of energy from heating the film may 

cause significant changes in the conformation of the polymer chains.  In general, 

polymers with a high Tg can be safely heated without altering their properties, but some 

polymers cannot be subjected to heat.  The alternative is to place the device in a 
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contained desiccator for a period greater than 12 hours to ensure that the solvent is 

completely evaporated. 

3.4.6 Thickness Measurement 

The film thickness, as discussed previously, influences the function of a chemical 

sensor.  Thicker films will absorb more of the acoustic energy and can cause higher 

insertion loss and greater sensitivity than a thinner film of the same material.  Two 

methods of measuring film thickness are used in this research. 

A profilometer is used to measure the thickness of a film that is deposited on a 

glass slide.  The surface of the slide is prepared the same as that of an SH-SAW device, 

and then the film is applied using the same spin coating technique.  Glass slides are used 

instead of the actual device because the metallization on the surface of the device would 

interfere with the reading from the profilometer.  It is also possible for the probe in the 

profilometer to damage the device, or the profilometer stylus, if it scratches the metalized 

region.  This measurement identifies the thickness of the film which results from spin 

coating a given solution with specific spin time and speed.  That same spin-coating 

procedure can then be applied to a device to produce a film with similar thickness. 

In some cases, the polymer being measured is too soft and the profilometer will 

scratch or penetrate the film.  This will result in an inaccurate measurement of step height 

and may damage the probe.  A thin metal layer can be deposited by evaporation to allow 

the profilometer to function properly.  The metal will be of equal thickness in all regions 

of the coated slide, because the evaporation process coats the target sample evenly, and 

the step in height where the film was originally deposited will remain the same.  The 



45 

 

Marquette University lab uses zinc to make the metal layer because a thin zinc layer is 

hard enough to allow accurate measurements without being so hard as to risk damaging 

the probe tip. [23] 

The process for using the profilometer is as follows: 

1. Clean a glass slide as described in section 3.4.4. 

2. Place tape such that only a strip of glass between 1mm and 5mm thick is exposed 

across the width of the slide. 

3. Coat the desired film thickness using spin coating techniques. 

4. Remove the tape, and complete any necessary spin coating steps. 

5. If the film is too soft to be used with the profilometer, follow these sub steps: 

a. Using heat-resistant tape, secure the coated slide to a metal plate. 

b. Place a small piece of zinc in a joule-heating basket. 

c. Secure the wire basket and metal plate inside a vacuum chamber and 

pump the pressure down to approximately 10-6atm. 

d. Apply voltage to the wire basket such that a current of 50A is maintained 

to heat (and evaporate) the zinc for 5 minutes. 

e. Carefully repressurize the chamber and allow the devices to cool before 

continuing. 

6. Place the device in the profilometer and position the probe above the device, so 

that it will touch outside of the film. 

7. Run the profilometer program so that the probe travels completely across the film 

and measures the change in height from both edges. 
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8. Use smoothing and averaging functions within the profilometer program to 

determine the actual film thickness in the center of the strip. 

Measurements using an ellipsometer do not require physical contact and thus can 

be used on a film which is applied to a metalized device.  The refractive index of the 

lithium tantalate is measured using the same system that will measure the film [36].  The 

software used to operate the ellipsometer can determine film thickness and refractive 

index simultaneously, but must have an initial value.  In order to calibrate the 

approximate initial value for refractive index and film thickness for a given polymer 

solution spun at a particular speed, the film must be deposited on a glass slide and 

measured with both the profilometer and ellipsometer.  This is needed because the 

ellipsometer, as discussed previously, can produce inconsistent results due to the nature 

of the method used.  Once approximate values are input, the device is aligned within the 

ellipsometer and measured to get a measurement of the actual film thickness [36]. 

The process for using the ellipsometer is as follows: 

1. Prepare a device for testing by cleaning and spin coating it as described 

previously. 

2. Complete all film preparation (i.e. baking) so that the film is ready to be tested. 

3. Place the device within the path of the lasers of the ellipsometer such that the 

entire laser beam shines on either the metalized region of the device or none of it 

does. 

4. Load the appropriate settings for measuring the reflected light from either the 

substrate or the gold metallization, depending on where the device is placed. 
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5. Align the ellipsometer by using the software and fine tuning knobs on the device. 

6. Using the provided software, determine the approximate refractive index of the 

polymer and use that to find the thickness. 

7. Repeat steps 3-5 for at least 3 points on the film, and calculate the mean 

thickness. 

a. Note that the two wavelengths may give slightly different values for a 

single measurement.  These values should be averaged to find the true 

thickness. 

3.4.7 Analyte Preparation 

The analytes tested must be prepared as a solution of analyte in water with a 

specific concentration.  Concentrations used in this experiment are on the order of 1 ppm, 

and these solutions are prepared with the use of equation (19).  

RR2 = �L^_`�a ∗ cL^_`�a�L^_`�a ∗ cL^_`�a + �L^_Dad� ∗ cL^_Dad� ∗ 10e 
(1

9) 

This can be further simplified for practical lab use.  Because the solvent is water, 

its density is assumed to be 1.0 g/mL.  The volume of solvent is significantly larger than 

the volume of solute, and the denominator is dominated by the solvent terms.  Equation 

(20) is then used as a simplified form of (19). 

RR2 = �L^_`�a ∗ cL^_`�a�L^_Dad� ∗ 10e 
(20

) 
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The solutions are prepared in 250mL jars with sealing lids, which are filled to 260 

mL to minimize headspace.  According to their respective material safety data sheets, 

benzene, toluene, ethylbenzene, and the xylenes all have approximately the same density 

– 0.88 g/mL.  Using equation (5), each 1 ppm of analyte solution in 260 mL of water 

requires approximately 0.30 µL of analyte.  Table 1 shows some examples of this 

calculation using equation (19) and an approximated 0.88 g/mL density of BTEX 

analytes [38]. 

 

Table 3.1 Sample volumes used to prepare analyte solution 

Volume of DI 

Water (mL) 

Volume of 

Solute(µL) 

Mass of Solute 

(mg) 

Concentration 

(ppm) 

260 3.0 2.64 10.15 

260 1.2 1.056 4.062 

260 2.4 2.112 8.123 

260 6.0 5.28 20.31 

 

It is important that the solutions be prepared immediately before use because the 

aromatic analytes will evaporate in air, reducing the actual concentration of the solution.  

The jars which store the solutions must be tightly sealed with the appropriate lids, and it 

is important that the volume of air in the sealed jar is minimal.  After placing the 

appropriate volumes of solute and solvent into the jar, it is sealed and mixed.  The mixing 

is done with a magnetic stir bar and stir plate for one hour in the same location that the 

device will be tested in so that the temperature may reach equilibrium. 
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3.4.8 Response Measurement 

The sensing layer is tested by using the previously described SH-SAW device 

with a polymer film, analyte solutions, flow cell, pump, and network analyzer.  The 

device is placed in the flow cell and degassed Milli-Q water is pumped through the cell at 

approximately 200µL/min.  This will bring the cell and device to the same temperature as 

the water and analyte solutions.  The network analyzer is attached to the flow cell and the 

software which records the data from the network analyzer is initiated.  Once the device 

has reached temperature equilibrium in the water, the center frequency is determined.  

The center frequency is set by the operator and is tracked by the software as the device 

parameters change throughout the experiment.  It is selected such that the phase is near 0° 

for both delay lines and the insertion loss is minimized.  Then, the liquid source is 

switched to the first sample.  The pump is stopped whenever a sample is changed and the 

sample is changed as rapidly as possible to limit the amount of exposure the samples 

have to air.  If a sample is left open or not properly sealed, it can evaporate and is no 

longer the same concentration as what was prepared.  The current frequency shift can be 

seen by watching the display of the data recording software.  The response time for each 

analyte and film will be different so the operator must determine when the device, and 

therefore the sensing layer, has reached equilibrium.  This process is repeated by 

alternating an analyte solution and water, to expose the sensing layer to an analyte and 

then remove the analyte by flushing the device with clean water, until the response to 

each analyte of interest has been recorded.  If a film is reused for additional 

measurements, it is not removed from the flow cell.  The difference in pressure causes a 

suction to hold the device to the gasket of the flow cell, and the screws used to tightly 
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hold the parts of the flow cell together will also press the gasket into the film.  Removing 

the gasket may damage the surface of the film because the gasket may peel the film off 

from the device. [23] 

3.4.9 Data Preparation 

Once the data is collected from the network analyzer, it is stored in a comma-

separated value (.csv) file.  This format can be imported into Microsoft Excel and 

manipulated as a spreadsheet there.  Because the baseline will drift due to temperature 

changes over the length of a single experiment, the graphs use corrected fits which 

remove the effect of the baseline drift.  This fit is done using a piecewise linear function 

which sets an initial baseline value and determines the slope of the drift between the two 

times at which two consecutive analyte solutions are switched into the flow system.  The 

data is then shown as a plot of frequency shift over time where the frequency returns to 

baseline between samples. 
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4 RESULTS AND DISCUSSION 

4.1 Introduction 

This work investigates a selection of polymers (PBA, PMA, PEVA, BPA PDMS, 

and BPA HMTS) as sensing layers for a shear horizontal surface acoustic wave sensor for 

their potential in the detection of benzene in liquid environment.  The polymer-coated 

sensor is exposed to aqueous solutions of BTEX analytes at concentrations ranging from 

1ppm to 20 ppm.  As the coated device is exposed to the analyte samples, the resulting 

perturbation in the SH-SAW is measured using a network analyzer. Specifically, the 

network analyzer records changes in attenuation, frequency and phase of the acoustic 

wave.  The change in frequency at constant phase is measured to determine the device’s 

sensitivity, and the change in attenuation is recorded to observe the viscoelastic behavior 

of the coating.  This chapter presents the results of the experimental work and discusses 

their significance. 

From equations (13) and (14) in chapter 2, both the frequency and loss change as 

a function of the viscoelastic properties of the sensing layer.  The frequency change is 

also a function of mass accumulation.  The change in frequency as a function of time is 

plotted to show both the response time and response magnitude in Figs. 4.1 to 4.5.  

Response time can be used to distinguish between benzene and the other BTEX 

compounds tested [16].  Because this work focuses on the comparison of different 
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polymer films in the detection of benzene rather than the comparison of responses to 

different analytes, the magnitude of the frequency shift is the more important parameter 

in the characterization of a given film.  Changes in loss are also monitored to track film 

aging and to ensure reproducible polymer synthesis and film deposition.  The sensitivity 

of a film is calculated from the slope of the calibration curve.  The calibration curve for a 

particular analyte/coating combination can be found by measuring the steady-state 

frequency shift of the sensor as a function of benzene concentration and modeling the 

results using a linear fit.  It is reasonable to expect the selected polymer films to have a 

linear sensitivity to BTEX analytes in the investigated concentration range based on the 

observations of references [16] [39]. 

The frequency response data is corrected for linear baseline drift to compensate 

for changes in the film and environmental conditions (including local temperature) over 

the course of the experiment.  When the film is initially exposed to water, it absorbs a 

small amount of water and swells.  The swelling will change both the viscoelastic 

properties and thickness of the film, causing a change in the resonant frequency [2].  The 

device must be given sufficient time for the water to fully absorb into the film and reach 

equilibrium before applying the analyte sample.  Variations in temperature will also 

cause a change in the frequency [2].  The ambient environment temperature and sample 

temperatures are controlled as described in chapter 3, but there will be small unavoidable 

changes in temperature due to the movement of personnel in the laboratory or differences 

in the temperatures of the samples.  A change in the device temperature due to a change 

in the ambient temperature, like the one caused by a person entering or leaving the room, 

will happen on a longer time scale than the response to any of the analytes.  It is therefore 
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possible to correct the baseline drift by subtracting a linear function from the response 

curve to compensate for the frequency shift caused by the temperature change.  

Variations in sample temperature may cause abrupt changes in film temperature when 

samples are exchanged.  The dual delay line configuration is used to account for these 

changes.  The temperature coefficient of delay for the reference line – coated with poly 

(methyl methacrylate) (PMMA) – can be made approximately equal to that of the sensing 

film by selecting a proper PMMA film thickness [21].  This change in temperature can be 

accounted for by subtracting the frequency shift on the reference line from the shift on 

the sensing line.  The results shown in this chapter are already modified to include all of 

these baseline and temperature corrections. 

4.2 Results 

4.2.1 Introduction 

The film materials and thicknesses tested are listed in table 4.1.  The polymers 

were tested at multiple thicknesses because the optimal thickness of the polymer will 

depend on its loss modulus, and each of the selected polymers has different physical 

properties (including the loss modulus) [10] [15] [40] [41].  The loss shear modulus of a 

polymer affects the propagation of the shear horizontal surface acoustic wave.  At a 

constant thickness, a rubbery polymer will absorb more of the energy of the wave than a 

glassy polymer.  Therefore, the polymers of interest will all have different optimal film 

thicknesses for a given application.  The thicknesses used in this work were selected by 

comparing the loss of the polymer-coated sensor in the liquid environment to similar 
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known sensing layers which had performed well.  Multiple thicknesses were then tested 

for each polymer to identify a range of suitable values.  Some of the cells in table 4.1 are 

labeled “n/a” to identify cases where the film thickness was inconsistent or the response 

could not be successfully measured with the setup as described in chapter 3.  The results, 

with a discussion of any specific difficulties encountered, of each polymer will be 

presented below.  Table 4.1 also presents the measured sensitivity of the selected 

polymers to the BTEX analytes.  This value is represented here as the frequency shift (in 

Hz) per analyte concentration (in ppm).  As discussed in chapter 2, the frequency shift 

may be either positive or negative depending on the resonance conditions of the film 

[16]. 

 

Table 4.1 Polymer thicknesses which were tested, and the measured sensitivity to BTEX 

Polymer 

Thickness 

[µm] 

Sensitivity [Hz/ppm] 

Benzene Ethyl Benzene Toluene Xylenes 

PMA 
0.3 n/a n/a n/a n/a 

0.75 -8 -110 -94 -114 

PBA 
0.3 22 430 167 490 

0.6 n/a n/a n/a n/a 

PEVA 
0.3 n/a n/a n/a n/a 

0.85 -20 -35 -10 -20 

BPA PDMS 
0.29 68 664 299 908 

0.5 330 4000 750 3750 

BPA HMTS 
0.4 -46 -460 -190 -558 

0.4, Baked -187 -2320 -630 -1735 
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4.2.2 PMA, PBA, and PEVA 

Poly (methyl acrylate) (PMA) and poly (butyl acrylate) (PBA) are similar in 

structure because of the acrylate functional group.  Poly (ethyl acrylate) (PEA), which 

also has a similar structure, has been shown to be effective at sensing benzene at a 

thickness of 1.0 µm when used as the sensing layer on an SH-SAW platform with a 

sensitivity of 240 Hz/ppm [30].  Fig. 4.1 shows the frequency response of a 0.75 µm 

PMA film when exposed sequentially to 10 ppm each of benzene, ethylbenzene, toluene, 

and xylenes (BTEX).  Thin films, such as 0.30 µm, of PMA do not exhibit measurable 

responses to 10 ppm of any BTEX analyte.  The sensitivity of the thicker film is greater 

as expected, because a thicker film will absorb more analyte, and it might also act as a 

more efficient waveguide (confining the SH-SAW closer to the surface) and/or show 

more pronounced viscoelastic effects. The signal-to-noise ratio of the response in Fig. 4.1 

is small because the sensitivity of the film is relatively low compared to that of other 

films such as PEA.  PMA films such as the one shown here are not effective sensing 

layers for the detection of benzene because the response magnitude is very small.  The 

sensitivity is not sufficient to effectively measure sub-ppm concentrations. The small 

frequency response indicates that PMA might not be rubbery enough, as opposed to PBA 

or PEA, because PMA will absorb less of the analyte, and because its glass transition 

temperature is just slightly below room temperature as stated above. This is also 

consistent with the low attenuation found for PMA films. 
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Figure 4.1 Frequency response of an SH-SAW device with a 0.75 µm thick PMA sensing film to 
BTEX analytes 

 

PBA has a much lower glass transition temperature than either PMA or PEA.  A 

PBA film will be more rubbery than films of the other acrylate sensing polymers at room 

temperature, and the PBA film will have a larger loss modulus.  PBA films within the 

tested thickness range have a large insertion loss because of the relatively large loss 

modulus.  The observed insertion loss of a PBA film with a thickness of 0.6 µm is greater 

than 40dB in air.  A sensor with such a PBA film would not perform well because the 

surface wave is heavily attenuated by the film, leading to poor signal-to-noise ratios.  

Thinner films lead to smaller attenuation, as was observed with a 0.3 µm thick PBA film.  

This film thickness had an insertion loss of 29 dB in air, which is large but still 

acceptable.  The measured change in frequency of a sensor with a 0.30 µm PBA sensing 
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layer is shown in Fig. 4.2.  The response to ethylbenzene was interrupted in the 

measurement, but the remainder of the response was estimated using a fitting process 

incorporating an extended Kalman filter technique [42] to determine the steady-state 

frequency shift magnitude of 4.3 kHz [43].  The results shown in Fig. 4.2 also 

demonstrate a positive frequency shift.  The positive frequency shift is a result of the 

resonance condition discussed in section 2.2.2 and provides further evidence for the 

rubbery nature of this polymer.  The phase lag between the polymer-substrate and 

polymer-liquid interface changes as the PBA film absorbs analyte and swells.  In this 

case, the resulting change in frequency is positive instead of the negative frequency shift 

expected for pure mass loading.  As previously discussed, this PBA film is able to absorb 

more analyte than the 0.75 µm PMA film.  This increased absorption causes the observed 

sensitivity of the PBA film to be greater than that of the PMA film.  PBA is a promising 

candidate for sensing aromatic analytes of approximately 1 ppm, but it has already been 

shown that PEA is more sensitive to benzene than PBA.  This is due to the lower acoustic 

attenuation of PEA and the correspondingly larger thickness that can be used (up to 1.0 

µm), leading to larger analyte absorption. This may potentially be caused in part by the 

difference in solubility parameter as well.  The solubility parameter of PEA (18.6 MPa1/2) 

is much closer to that of benzene (18.5 MPa1/2) than PBA (19.8 MPa1/2) [29].  To further 

investigate the importance of solubility parameter, poly (ethylene co-vinyl acetate) 

(PEVA) was selected because it has the same solubility parameter as PEA. [17] 
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 Figure 4.2 Frequency response of an SH-SAW device with a 0.30 µm thick PBA sensing film to 
BTEX analytes 

 

PEVA is a co-polymer which has a solubility parameter of 18.6 MPa1/2 and a 

glass transition temperature of -28.8 °C.  PEVA is expected to be very miscible with 

benzene and also to be rubbery enough to readily absorb analyte at room temperature.  

However, this film presented challenges in the coating procedure.  Unlike other sensing 

polymers discussed here, PEVA does not adhere properly to the LiTaO3 substrate.  The 

lack of adhesion causes large variations in the film across the delay line.  This also 

prevents the film from performing in a reproducible manner, because films which adhere 

to the substrate differently will have substantially different interactions with the acoustic 

wave.  Thicker films of PEVA were more consistent when coated on the SH-SAW 

device, but were still not effective sensing layers for this application.  The signal did not 
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return to baseline after switching back from the analyte sample to the reference (water), 

and thus might not be reusable for more than one measurement.  Approximate values for 

the sensitivity were measured for a 0.85 µm thick PEVA film, but the lack of reusability 

and the low sensitivity render it obsolete for on-line sensing applications.  It is possible 

that PEVA could still be used for BTEX sensing if a suitable adhesion layer could be 

found, but that is beyond the scope of this investigation. 

4.2.3 BPA PDMS, BPA HMTS 

The BPA co-polymers, bisphenol-A poly (dimethylsiloxane) (BPA PDMS) and 

bisphenol-A poly (hexamethyltrisiloxane) (BPA HMTS), have been previously shown to 

be good sorbents for organophosphates.  These films have been used previously at 

thicknesses of both 0.25 µm and 0.5 µm for the detection of organophosphates [10] [11] 

[23].  BPA, the chemically sensitive component of these co-polymers, has shown promise 

in the absorption of toluene as well [33].  All of these previous experiments and results 

have been applied here by testing films of BPA HMTS and BPA PDMS which are 

approximately 0.25 µm and 0.50 µm thick.  These films have demonstrated the greatest 

potential and have been covered in greater detail than the other selected polymers. 

BPA PDMS films were deposited at both 0.29 µm and 0.50 µm thickness.  Both 

of these films experience the resonance condition (see section 2.2.2) which causes a 

positive frequency shift, as was also seen in the response of PBA.  The BPA PDMS layer 

with a thickness of 0.50 µm was much more sensitive to benzene than any of the other 

selected polymers in this discussion.  Fig. 4.3 shows the frequency response of the 

0.50 µm thick BPA PDMS film to the BTEX analytes.  The response to each of the 
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analytes is much greater than the noise, which suggests that this sensor has a very low 

limit of detection.  The detection limit is defined as the analyte concentration which 

produces a frequency shift three times the RMS noise, and an approximation for RMS 

noise is the standard deviation of the signal when no systematic change is present [31].  

The observed RMS noise of this polymer is approximately 95 Hz, which means the limit 

of detection for benzene is 863 ppb (producing a frequency shift of 385 Hz). 

 

 

Figure 4.3 Frequency response of an SH-SAW device with a 0.50 µm thick BPA PDMS sensing film 
to BTEX analytes 

 

BPA PDMS does not give very consistent results.  The sensitivity can vary 

between films and a given film does not have a constant sensitivity over time, indicating 

film aging.  Fig. 4.4 shows the sensitivity of a different BPA PDMS film, of thickness 

0.30 µm, as it changes over several weeks.  The initial sensitivity is different from that 
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presented in Fig. 4.3 because of the difference in thickness.  After three weeks, the 

sensitivity has decreased by more than 40%.  Other polymers can be cured to remove or 

stabilize some aging effects, but baking BPA PDMS did not alter the rate at which its 

sensitivity changed.  Because of both its inconsistency and aging, BPA PDMS is not as 

useful as other established sensing polymers despite its potentially large sensitivity. It is 

pointed out that several experiments were conducted with BPA PDMS and the same 

observations were noted. 

 

 

Figure 4.4 Sensitivity of an SH-SAW device with a 0.30 µm thick BPA PDMS sensing film to benzene 
as it changes over time 
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minutes immediately after spin coating.  The baking process removed any excess solvent 

and cured the film, leading to a more stable conformation of the polymer chains.  The 

film thickness was 0.40 µm before baking, but the final film thickness for the baked film 

was measured at 0.29 µm.  Responses for both the baked and unbaked films are shown in 

Figs. 4.5 and 4.6 for comparison; note that the scale is not the same for each film.  The 

baked film has a longer time constant for the response of all of the BTEX analytes, but 

also has a larger sensitivity.  The increase in sensitivity and response time occur because 

the polymer is absorbing a greater mass of analyte, causing a larger amount of mass 

loading and requiring additional time to reach equilibrium.  The baked film has an 

observable RMS noise of 42 Hz, which results in a benzene detection limit of 

approximately 680 ppb (with a frequency shift of 125 Hz).  This is less than the detection 

limit of BPA PDMS because of the lower noise level of the BPA HMTS film. 
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Figure 4.5 Frequency response of an SH-SAW device with a 0.40 µm thick BPA HMTS sensing film 
to BTEX analytes 
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Figure 4.6 Frequency response of an SH-SAW device with a 0.40 µm thick BPA HMTS sensing film, 
which was baked and had a new thickness of 0.29 µm, to BTEX analytes 
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had been deposited.  This time allowed the film to undergo further aging compared to the 

one used in the results shown in Fig. 4.3 and caused a decrease in sensitivity as described 

above (see Fig. 4.4). 

 

 

Figure 4.7 Frequency response of an SH-SAW device with a 0.50 µm thick BPA PDMS sensing film 
to different concentrations of benzene  
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slightly greater than 4 ppm.  In addition, the pump must be stopped and restarted when 

changing samples, and this causes the pressure inside the flow cell to spike when the 

pump is restarted.  Equation (8) in chapter 2 shows that a change in pressure does 

influence the change in frequency of a surface acoustic wave sensor.  However, this 

pressure change is brief and does not result in a permanent effect.  Several visible spikes 

in frequency change which were caused by this change in pressure were removed from 

Fig. 4.8 because they obscured the response to the analyte.  The increased response time 

of the baked film is of no concern because the baked film still reaches equilibrium within 

only two minutes of exposure for concentrations of benzene below 10 ppm. 

 

 

Figure 4.8 Frequency response of an SH-SAW device with a 0.40 µm thick BPA HMTS sensing film, 
which was baked, to different concentrations of benzene 
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4.3 Conclusion 

The polymers selected for this investigation (PBA, PMA, PEVA, BPA PDMS, 

and BPA HMTS) were prepared at multiple thicknesses and exposed to BTEX analytes.  

Polymer films which were effective for sensing benzene were exposed to additional 

concentrations of benzene to show both the linearity with concentration and the 

repeatability in the responses for that polymer.  The polymer’s aging was investigated in 

some cases.  PMA and PEVA both had small frequency shifts to BTEX analytes, and 

have a small signal-to-noise ratio as a result.  The performance of PEVA as a sensing 

layer was inadequate because the sensor did not return to baseline when the analyte was 

removed and its response was not repeatable due to poor adhesion of the film to the 

substrate.  PBA strongly attenuates the wave even at low thicknesses, causing a large 

insertion loss.  BPA PDMS and BPA HMTS were both shown to be effective sensing 

layers for the detection of benzene, with detection limits below 1 ppm, but they both 

undergo an aging process which requires additional processing steps.  BPA HMTS can be 

baked to reduce the effect of aging, and this also increases the film’s sensitivity and 

response time for BTEX analytes.  This makes BPA HMTS the most promising of the 

polymers investigated for benzene detection.  Baking BPA PDMS did not affect its 

response to the BTEX analytes and also did not prevent it from losing sensitivity over 

time.  BPA PDMS and BPA HMTS show the highest sensitivities of the polymers tested, 

and they can be used in a sensor array.  However, more research into film pretreatment 

might be advisable, particularly for BPA PDMS. Moreover, additional steps need to be 
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taken in coating synthesis, coating preparation and storage to ensure coating stability and 

reproducibility. 
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5 SUMMARY, CONCLUSION, AND FUTURE WORK 

5.1 Summary 

This work presents an investigation into several selected polymers for their 

potential use as sensing layers in a shear horizontal surface acoustic wave sensor array for 

the detection of benzene in water.  The SH-SAW device can operate in liquid 

environments and uses a sensing polymer which absorbs the analyte [2] [3].  The 

polymers of interest for this work were selected based on their glass transition 

temperature, solubility parameter, and previous studies which use these polymers under 

similar conditions.  The polymers were tested to measure sensitivity to benzene, and 

some of the polymers were monitored over time to show how aging affects repeatability.  

The objective of this work is to improve sensors which measure benzene in water by 

finding a sensing polymer which is able to detect smaller concentrations of benzene than 

what can currently be measured with one or several sensor elements in a sensor array. 

A description of benzene and its uses was presented and it was shown that there is 

a need for accurate sensing equipment to monitor groundwater for contamination [44].  

Several acoustic wave sensor designs were discussed and the SH-SAW sensor was 

chosen as the sensing platform for these tests because of its ability to function in a liquid 

environment.  The relevant physical and chemical properties of sensing polymers were 

introduced. 



70 

 

The SH-SAW sensor parameters were introduced and examined.  The theory 

behind SH-SAW liquid phase sensors was reviewed to show the role played by the 

sensing polymer in the function of the entire sensor.  It was shown that, by controlling the 

environment of the tests as well as using particular testing equipment, the sensor response 

can be modeled as a change in viscoelastic properties and mass loading.  The polymer 

glass transition temperature and solubility parameter were described in details.  This 

provided the rationale for the selection of the polymers of interest.  The selected 

polymers (PMA, PBA, PEVA, BPA PDMS, and BPA HMTS) were identified as 

potential sensing polymers for the detection of benzene. 

The polymers of interest were tested by applying them at multiple thicknesses on 

SH-SAW devices, and then measuring the frequency response of the sensor when the 

device is exposed to several concentrations of BTEX analytes in water.  The film 

thickness was varied for each polymer to find a suitable thickness.  The sensitivity to 

benzene for each polymer was found using various concentrations of benzene between 1 

ppm and 20 ppm.  The limit of detection was calculated using the RMS noise and 

sensitivity.  BPA PDMS was investigated over several weeks to determine the effects of 

aging.  The polymer was repeatedly tested to determine the sensitivity to benzene at 

weekly intervals. 

5.2 Conclusion 

This work measured the sensitivity of several polymers (PMA, PBA, PEVA, BPA 

PDMS, and BPA HMTS) to benzene in water when used as the sensing layer of an SH-
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SAW sensor.  The films were prepared by spin coating to produce a reproducible 

thickness.  The thicknesses used were chosen to be effective for sensing BTEX analytes.  

The sensor response was measured by recording the shift in frequency, and the change in 

insertion loss was also monitored to observe the viscoelastic behavior of the polymer 

during analyte sorption.  Some of the polymers showed either less sensitivity than that for 

known polymers, or were not stable and could not produce repeatable results.  BPA 

HMTS had a large sensitivity and can be baked to reduce the effects of aging. 

Several of these polymers of interest did not have suitable properties for sensing 

benzene.  PMA had a frequency response which was one order of magnitude less than 

that of the previously documented polymer PEA.  One potential reason for this is because 

the film may be too glassy at room temperature, and therefore will not absorb enough 

benzene.  PBA had a large insertion loss when prepared at a film thickness of 0.30 µm.  

PBA also experienced a positive frequency shift when exposed to BTEX analytes, 

suggesting that the film is acoustically thick.  This indicates that the film was too rubbery 

(G” >> G’) to be used at that thickness.  Reducing the thickness further will result in a 

smaller frequency shift, which would reduce the film’s sensitivity to benzene to a value 

lower than that of PEA.  A PEVA film was observed to have a large amount of system 

noise, and the film was observed to delaminate easily during preparation.  The noise is 

likely caused by a loss of adhesion between the film and substrate during measurement.  

PEVA also did not return to baseline conditions after removing the analyte from the 

environment, which prevents PEVA from making repeatable measurements. 

The BPA co-polymers both had large sensitivity to benzene.  A 0.50µm thick 

BPA PDMS film was shown to have a positive frequency shift due to the resonance 
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condition caused by being acoustically thick.  This BPA PDMS film had a sensitivity of 

330 Hz/ppm of benzene and a limit of detection of approximately 860 ppb.  BPA PDMS 

was further investigated to determine how much it is affected by aging.  A film of 

thickness 0.30 µm exhibited a sensitivity consistently decaying over several weeks.  The 

sensitivity of the film was reduced by more than 50% in 6 weeks, and baking the film 

during its preparation did not reduce this aging effect.  Unbaked BPA HMTS also 

experienced a rapid aging process.  The insertion loss of a BPA HMTS film was observed 

to increase rapidly, but baking the film immediately after spin coating reduced this effect 

and also increased the film’s sensitivity.  The baked BPA HMTS film with a thickness of 

0.40 µm (before baking) had a sensitivity of -187 Hz/ppm of benzene and a limit of 

detection of approximately 680 ppb.  The sensitivity of this 0.40 µm thick baked BPA 

HMTS film was less than that of the 0.50 µm thick BPA PDMS film, but the smaller 

RMS noise allows for a lower limit of detection. 

5.3 Future Work 

Identifying potential sensing layers is only a part of the goal of this project.  The 

coated sensor device will eventually be incorporated into a sensor array which uses 

multiple devices with different sensing films that all have unique responses to the 

different analytes being measured.  The use of an array with multiple independent 

variables allows the identification and measurement of multiple species of analyte in an 

unknown sample [23] [30] [45].  Based on the conclusions of this thesis, several 

additional steps should be taken to prepare an optimized array for sensing benzene in 
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water.  The polymers in this work each have different partial selectivity and sensitivity to 

each of the BTEX analytes.  This can be used to build a sensor array which uses different 

films to identify an unknown analyte and determine its concentration.  An array should be 

assembled using BPA PDMS and/or BPA HMTS because of their high sensitivity and 

low limit of detection.  PMA and PEVA need additional consideration before being used 

in such an array, but PBA should not be considered. 

Each of the polymers should be prepared at additional thicknesses to determine 

one optimal thickness for each polymer [41].  The thickest PMA film tested did not have 

a large sensitivity but it also did not heavily damp the wave.  Relatively glassy polymer 

films, such as PMA, may function on an SH-SAW device at much greater thicknesses; 

thus PMA should also be investigated to find an optimal thickness.  The other polymers 

may require some small changes to determine an optimal thickness, but the thicknesses 

tested in this work are already within an adequate range for sensing benzene and can be 

used for future measurements.  PBA had a large insertion loss when prepared at a 

relatively low thickness of 0.30 µm.  As discussed previously, a PBA film which had a 

thickness smaller than 0.30 µm would have a small sensitivity and likely not be 

applicable to the measurement of benzene at concentrations below 1 ppm.  PEVA was 

expected to have a larger response to benzene than the actual observed data, due to its 

excellent glass transition temperature and solubility parameter.  Additional tests should 

be performed to determine an effective process for preparing the PEVA film to prevent it 

from delaminating from the surface of the device.  This can be done by preparing the 

surface of the device by first coating it with a different polymer such as PMMA. 



74 

 

Like BPA PDMS, BPA HMTS should also be investigated to determine the 

effects of aging.  Baking was shown to reduce the rapid initial change in sensitivity, but 

the sensor response was not repeatable when tested over a longer period of time.  This 

aging test should be redone to determine how the baked and unbaked BPA HMTS films 

change over a longer time than what was previously observed.  Additional work should 

also be done to determine an optimal method for storing the film both before and after it 

is coated on the device.  Determining an optimal procedure for preparing and storing 

BPA HMTS can increase its stability and reproducibility when used as a sensing layer on 

an SH-SAW device. 

Once the polymer film thickness is optimized to achieve the best sensitivity and 

limit of detection, the response time of the response to BTEX analytes should be found 

for each film in addition to the sensitivity.  Adding another linearly independent 

parameter to the sensor array data (multi-variable sensors) will allow for a better level of 

confidence and will improve species identification [23].  The response time is a function 

of the sensing film thickness, but should not be considered when optimizing the film.  

The response time for the BTEX analytes is not prohibitively long, even if the film is 

extremely thick, and it is more beneficial to improve the sensitivity and limit of detection 

to identify smaller concentrations of analyte. 
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