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ABSTRACT 
METHODS FOR DETECTING HIGH-FREQUENCY OSCILLATIONS  

IN ONGOING BRAIN SIGNALS: APPLICATION TO THE  
DETERMINATION OF EPILEPTIC SEIZURE ONSET ZONES 

 

Chiran D. Doshi, B.S. 

Marquette University, 2011 

Epilepsy is a neurological disorder with varied expression. Patients with focal 
onset seizures that are resistant to medications can benefit from ablative surgery. 
However, localization of the seizure onset zone (SOZ) and characterization of 
propagation to secondary areas can be challenging. The present study is aimed at 
developing appropriate signal processing methodology to detect bursts of interictal high-
frequency oscillations (HFOs), as a possible signature of the SOZ, in patients with drug-
resistant partial epilepsy. Invasive interictal and ictal intracranial electroencephalography 
(iEEG) data and non-invasive electromagnetic source imaging with 
magnetoencephalography (MEG) data from three subjects were analyzed. We developed 
a novel algorithm that extracts HFO bursts from the envelope of iEEG and MEG traces in 
the [80-300] Hz range. Clusters of HFO events were subsequently analyzed to investigate 
their relative time delays and to infer possible propagation patterns during the interictal 
period and episodes of ictal onset (iEEG only). The location of iEEG electrodes were 
labeled with respect to the chronometry of the detected HFOs. The recording site bearing 
the smallest rank was labeled as the lead generator of HFO discharges. The aim of using 
MEG traces was essentially to determine probable SOZ locations. We proposed a new 
metric referred to as ‘spiking index’ that was computed at each cortical site in the vicinity 
of iEEG electrode locations (iEEG and MEG data were obtained for the same patients: 
iEEG was considered as the standard of reference for MEG results). The sensitivity and 
specificity of the HFO detector operating from ongoing brain traces were evaluated. Our 
results indicate that higher values of spiking index and higher rates of HFOs 
corresponded to brain regions that were identified independently as the SOZ by an expert 
clinician and as determined by the location and extent of the cortical resection that freed 
the patients from the seizures. Interictal and ictal iEEG HFO localization showed good 
concordance with the location of resected areas. 

 
The use of interictal data only, if used for surgical planning, would reduce the 

time required for making decisions regarding the resection of cortex and improve the 
chances of successful surgery. Obtaining iEEG data is invasive, with possible risks to the 
patients. Another fundamental disadvantage of iEEG is that the implanted electrode grids 
and strips needed to cover the supposed abnormal cortical areas for proper determination 
of the SOZ. Our results indicate that the spiking index and rate map obtained from MEG 
source maps may provide a non-invasive alternative for determination of the SOZ and 
may provide greater accuracy to the placement of the implantable electrodes, and 
eventually avoid an invasive exploratory procedure before surgery.
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1 INTRODUCTION AND LITERATURE REVIEW 
 
 

1.1 Brain Anatomy and Physiology 
 
 
 The brain along with the spinal cord constitutes the central nervous system 

(CNS). The brain is one of the most complex organs and in spite of decades of research, 

it continues to both amaze and confuse us. The brain is the center for sensory, motor, 

visual, auditory and olfactory systems, and it is also the center responsible for emotional 

behavior and cognition. The adult human brain weighs about 3 lbs (Parent et al., 1995). It 

is covered by membranes, cerebrospinal fluid (CSF) and bones. The complexity of the 

brain lies essentially in the convoluted cerebral cortex consisting of about 1011 neurons, 

with 1015 synaptic connections (Murre et al., 1995).  

 
The neurons form the building blocks of the nervous system. They specialize in 

receiving and transmitting information by means of chemical and electrical signals. They 

consist of a cell body (soma), dendrites and an axon (Figure 1.1). The dendrites are 

branched projections that arise from the soma. They consist of dendritic spines that 

receive inputs from the axon of other connected neurons. The axons are responsible for 

carrying action potentials that excite or inhibit connected neurons, muscles or glands. 

They generally branch and their distal terminations are known as the axon terminal. The 

junction between the axon and the dendrite is called a synapse, which is an essential 

component of neural communication. In a chemical synapse, the pre-synaptic neuron 

releases a neurotransmitter in the synaptic cleft that binds to the receptors of the 

postsynaptic cell. Depending on the type of neurotransmitter released and the receptor 

properties, the effect on the postsynaptic cell is either excitatory or inhibitory. 
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Figure 1 Structure of a neuron. The neuron consists of essentially three main 
components: the dendrites, soma and the axon. Adapted from 
http://psychology.wikia.com/wiki/Brain 

 
 The brain consists of different parts that are integrated to work as a unit: the brain 

stem, the cerebellum, the diencephalon and the cerebrum (Figure 1.2). The brainstem 

consists of the medulla oblongata, the pons varolli, and the midbrain. The medulla is 

responsible for autonomic functions like breathing and regulation of blood pressure. It 

also contains the cardiac, respiratory, vomiting and vasomotor centers. The pons connects 

the cerebellum to the rest of the brain and along with the medulla, regulates breathing 

(Saladin, 2007). The midbrain acts as a relay station for auditory and visual information. 

Portions of the midbrain are involved in the regulation of body movements. The 

cerebellum helps in coordinating movements, maintaining posture and equilibrium in the 

body. The diencephalon consists of the hypothalamus, the thalamus and the epithalamus. 

The hypothalamus helps regulating the body temperature and produces important 

hormones like oxytocin and growth-hormone releasing hormone. The thalamus is 

involved in important regulatory functions of the cortical dynamics. Further, it’s a central 

relay to sensory inputs (except for olfactory information). The cerebrum is the largest part  
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Figure 1.2 Internal structure of the brain. The colored regions of the brain are 
appropriately labeled. Adapted from http://pennstatehershey.adam.com 

 

 
 

Figure 1.3 Structure of the cerebral cortex. The cerebral cortex can be divided broadly 
into four regions; the frontal lobe, the parietal lobe, the temporal lobe and the occipital 
lobe. Adapted from www.morphonix.com 
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of the brain. It is divided into cerebral hemispheres as defined on both sides of the 

longitudinal fissure. The outer surface of the cerebrum is known as the cerebral cortex. It 

is 1 to 4.5 mm thick (von Economo, 1929) (Figure 1.3) and highly convoluted.  

Connectivity between cortical neurons contributes to the complexity and diversity in the 

functions of the nervous system. The cerebral cortex, based on topography, can be 

broadly divided into the frontal, parietal, temporal and occipital lobes. The frontal lobe is 

located at the anterior part of each cerebral hemisphere. It is anterior to the parietal lobe 

and superior to the temporal lobe. The frontal lobe contains the motor areas of the brain 

and is involved in reasoning, planning and is also a center for emotions (Stuss et al., 

1992). The left frontal lobe controls movements of the right side of the body and vice-

versa. The parietal lobe lies posterior to the frontal lobe and is separated from the frontal 

lobe by the central sulcus. The parietal lobe contains the sensory areas which receive 

impulses related to temperature, touch, pain and pressure (Blakemore and Frith, 2005). 

The parietal lobe is involved in interpreting the spatial orientation of the body. The right 

parietal lobe receives sensations from the left side of the body and vice versa. The 

temporal lobe is located beneath the Sylvian fissure on both hemispheres. The primary 

auditory centers reside bilaterally in the temporal lobe about the posterior aspect of the 

Sylvian fissure. The occipital lobe lies inferior to the parietal and the temporal lobe. The 

primary visual cortex resides in the occipital lobe. Another structure worth mentioning is 

the hippocampus, which belongs to a set of sub-cortical regions called the limbic system. 

The hippocampus is located on the mesial aspects of the temporal lobe. It plays a major 

role in memory encoding/retrieval and in spatial navigation.  
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1.2 Understanding Epilepsy 

 
Epilepsy is a neurological disorder characterized by recurrent unprovoked 

seizures. An epileptic seizure is an episode of disorganized electrical activity, typically 

related to excessive neuronal excitation in the cortex, with a broad range of symptoms, 

including loss of consciousness, involuntary movements, etc. A person who has 

experienced only one seizure cannot be qualified as being epileptic, since a healthy brain 

can be provoked into a seizure under various stresses. Epileptic seizures are unpredictable 

and may sometimes be resistant to antiepileptic medications, with consequent progressive 

neurological and cognitive dysfunction. Electrical changes in the brain related to seizures, 

often referred to as the ictal state, and typically last from seconds to minutes, but in some 

instances prolonged seizure activity or a succession of seizures result in a life-threatening 

condition called status epilpticus.  The period between seizures is referred to as the 

interictal state. There are various types of seizures, which determine the therapy that the 

patient receives. Seizures are typically characterized as either generalized or partial. 

Generalized seizures involve the entire brain, whereas partial seizures are restricted to 

certain areas, although they may secondarily generalize or spread to other distant brain 

regions (complex partial seizure) or remain very focal with no compromise of awareness 

(simple partial seizure). Table 1.1 and 1.2 illustrate the different types of generalized and 

partial seizures and their common symptoms. If the underlying cause of the seizures is 

known (tumor, trauma etc.), the epilepsy is termed as symptomatic. If the cause of 

seizures is unknown (CT or MRI are normal), the epilepsy is termed as idiopathic. 

Seizures of the temporal lobe usually induce drastic changes to cognitive processes of an 

individual. Epilepsy of the temporal lobe can cause changes in moods and behavior  
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Generalized 
seizures Symptoms 

Generalized tonic 
clonic or “grand mal”  

Loss of consciousness, stiffing of muscles followed by 
jerking movements, biting of tongue, confusion lasts for 
some amount of time after seizure 

Absence or “petit 
mal”  

Loss of consciousness, blank outs, no confusion after 
seizure  

Myoclonic Brief sporadic jerking of muscles 

Clonic Rhythmic jerking of muscles  

Tonic Stiffening of muscles, loss of balance 

Atonic Lapse of muscle tone resulting in loss of balance 

Table 1.1: Types of generalized seizures and their symptoms 

Partial seizures Symptoms 

Simple (person remains 
alert) 

a) Simple motor 
b) Simple sensory 
c) Simple 

psychological 

 
 

a) Jerking of muscles, rigidity 
b) Visual, hearing, touch or smell sensations are 

affected 
c) Déjà vu, unreasonable fear 

Complex (awareness is 
impaired) 

Loss of awareness but no convulsion followed by 
period of confusion 

Secondarily generalized  Produces convulsion 

Table 1.2: Types of partial seizures with their symptoms. 

(Blumer & Beson, 1975).  The temporal lobe is one of the brain regions that are 

commonly involved in partial epileptic networks. Abnormal oscillations recorded from 

the hippocampus are assumed to play an important role in some epileptic syndromes 

(Ibarz et al., 2010). The treatment of epilepsy involves the use of a palette of antiepileptic 

drugs (AEDs), as a first step. Medications generally work well in about 50% of the 

patients. These patients may remain seizure free if they strictly follow the medication 

regimen. In 20% of the cases, the frequency of seizures decreases greatly. About 30% of 
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the patients continue to experience seizures (intractable) in spite of AEDs (Cramer et al., 

1999, Kwan et al., 2000). Neurosurgery for the resection of the seizure onset zone (SOZ) 

may a viable option in some cases. 

 

1.3       Techniques for Monitoring the Epileptic Brain 
 
 
1.3.1 Electroencephalography (EEG) and Intracranial EEG (iEEG) 

 
 
Electroencephalography (EEG) consists in recording the electrical activity 

produced by the firing of an ensemble of neurons by means of electrodes attached to the 

scalp (Niedermeyer et. al., 2004). Richard Caton was the first to present his findings on 

sensory evoked responses in 1875. He observed continuous spontaneous electrical 

activity from exposed cerebral hemispheres of rabbits and monkeys (Swartz et. al., 1998). 

Hans Berger recorded the first human EEG in 1924 and coined the term 

‘Elektenkephalogram’ (Haas, 2003). EEG commonly refers to scalp EEG. Scalp EEG 

provides a poor spatial resolution of the cerebral location generating the scalp signals 

because of the smearing of neural electrical potentials introduced by the meninges, CSF 

and skull bone. Stereotactic EEG (SEEG) and intracranial EEG (iEEG) provide solutions 

to some of the limitations of scalp EEG. SEEG records neural electrical potentials from 

depth electrodes (reaching potentially deeper and sub-cortical brain regions) consisting of 

1-D linear electrode arrays shaped in the form of a needle (Kahane et al., 2006). IEEG or 

electrocorticography (ECoG) consist of 2-D grids or 1-D strips placed directly on the 

cortical surface or the dura. In the context of epilepsy, iEEG and SEEG are essentially a 

two-step procedure. The first step involves a procedure to identify the epileptogenic 
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area(s) by means of placements of subdural electrodes (Luders et al., 1992, Behrens et al., 

1994, De Salles et al., 1994, Adelson et al., 2005); if successful, the second procedure 

involves resection of the epileptogenic area (Quesney et al., 1995, Wennberg et al., 

1998). Both recording techniques provide better spatial and temporal resolution and are 

considered as more indicative of the location of pathological cortical generators than 

scalp EEG. Indeed, the distortions of the EEG scalp potentials produced by the interface 

skull-scalp surface are avoided (Pfurtscheller and Cooper, 1975). Further, iEEG and 

SEEG are not contaminated by the artifacts caused by muscle activity, eye movements 

and eye blinks (Pfurtscheller & Cooper, 1975, Lachaux et al., 2003). The main 

disadvantage of SEEG and iEEG is invasiveness, which introduces risk of infection, 

bleeds, strokes, or other complications (<1%) from the surgical procedure, and significant 

cost (Zaccariotti et al., 1999). Another fundamental disadvantage is that most of the 

cortex, besides area(s) under the implanted electrodes, remains unexplored. If the seizure 

onset zone is not covered, iEEG and SEEG techniques might lead to erroneous 

conclusions. For this reason, these techniques have limitations in investigating the 

connectivity of cortical networks involved in seizure initiation. 

 

1.3.2 Magnetoencephalography (MEG)  

 
Biomagnetism refers to the magnetic fields produced by living tissues. The first 

recording of biomagnetic fields was performed on a heart in 1963 (magnetocardiography 

(MCG)) (Baule and McFee, 1963). The field gained rapid strides as a result of the 

development of superconducting quantum interference devices (SQUIDs) at the 

Massachusetts Institute of Technology by James Zimmerman in 1969. Biomagnetism of 
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the brain is termed as ‘Magnetoencephalography’ (MEG) and the first recording was 

performed in 1971 by David Cohen. Research efforts in the field of biomagnetism have 

been mostly focused on brain mapping and brain dynamics. 

 All electric currents produce an electromagnetic field. Communication between 

neurons is dependent on spiky action potentials and relatively slower excitatory/ 

inhibitory post-synaptic potentials (E/I PSP). The magnetic field is detected several 

centimeters away from the source and if produced by a single neuron is difficult to detect 

due to its extremely weak magnitudes. MEG detection requires that an assembly of 

neurons fire in synchrony to produce a magnetic field that is strong enough to become 

detectable by sensors located outside the head. The electromagnetic fields detected by 

MEG are generated mainly by PSPs. The typical duration of action potentials is 

extremely short and would require a high-degree of synchronization, which would be 

difficult to achieve amongst a large enough population of neurons. MEG is able to 

capture the relatively slower dynamics of PSPs along with the faster activity (~400 Hz) 

that rides on these slow waves (<100 Hz) (Murakami & Okada, 2006, Cimatti et al., 

2007). The magnitude of MEG magnetic fields is in the order of a few tens of femto 

Teslas.  

The SQUID sensors operate at a superconducting temperature. They are cooled 

using liquid helium to 4.2 K. There are two types of sensors in MEG: magnetometers and 

gradiometers. A magnetometer consists of a single pickup coil; a gradiometer consists of 

the pairing of a pickup coil with a compensation coil. The pickup coil detects the strength 

of the magnetic field that intersects the coil’s plane. The compensation coil reduces the 

noise caused by the interference of sources of nuisance that are assumed to be located  
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Figure 1.4 Ictal onset. Ictal data captured during pre surgical monitoring. This type of 
data is generally favored by the clinicians to make decisions for the possible resection of 
target cortical regions. 

 

farther away. Since the magnetic fields from distant sources produce equivalent current 

inductions in the pickup and compensation coil, their spatial gradient amounts to null. 

MEG’s time resolution is in the millisecond range, which is a primary advantage over 

functional MRI (fMRI). Its spatial resolution is about 5 to 10 millimeters under favorable 

circumstances, which is a major advantage over scalp EEG (Dale and Halgren, 2001).  

 Since the MEG measures the magnetic field with extremely low amplitude, SNR 

is one of the key issues. Hence all the MEG recordings are performed in a magnetically 

shielded room to eliminate the effects of magnetic noise. Dedicated measurements like 

the electromyography (EMG) and electrocardiography (ECG) are performed to help in 

removal of muscle artifacts and heartbeats.   
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1.4 High Frequency Oscillations (HFOs) as an Indicator of Seizure Onset Zone 
(SOZ)  

 
 

The SOZ is defined as the area of the cortex where the onset of a partial seizure is 

generated. The main focus of clinicians has traditionally been on localizing the generators 

of interictal and ictal events, such as the spike-and-slow-wave complex, for determining 

the cortical region potentially targeted for resection. A spike is a transient 

electrophysiological phenomenon that is clearly distinguishable from background 

activity, with typical durations of 20 to 70 milliseconds. A spike-and-slow-wave complex 

consists of spike followed by a slow wave. Current data acquisition systems are capable 

of recording data at high sampling rates (>1000 Hz) at a large number of recording sites 

(>100). Therefore, analysis of ongoing epileptic data has recently been made possible at 

unprecedented high-frequency domains of the power spectrum. Recent studies of 

interictal high-frequency oscillations have revealed what might be new markers of 

epilepsy, with greater sensitivity than spike-wave events (Zijlmans M et al., 2009, Brázdil 

et al., 2010). Indeed, it has been proposed that the brain regions sustaining recurrent 

HFOs may correspond to the SOZ. As a matter of fact, the rate of ictal spikes was found 

to remain the same after medications while the rate of interictal oscillations was found to 

decrease post medication consumption (Gotman & Coffler, 1989). AED decreases the 

likelihood of a seizure and if the rate of interictal spikes were unaffected by AED, then 

spikes might not be reliable markers of the epilepsy in a given patient. The frequency 

spectrum covered by HFOs has been proposed to be subdivided into so called ripples (80-

200 Hz) and fast ripples (FR) (200-500 Hz), thereby defining potential new biomarkers of 

the SOZ. However, HFOs have been reported in healthy as well as epileptic subjects, thus 
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making it difficult to distinguish between normal and pathologic HFOs (pHFOs) so far. It 

is assumed by several research groups that ripples reflect physiological HFOs, and that 

FR reflect pHFOs, although the distinction cannot be based on differences in their 

respective frequency range alone. The location of their generators also plays a major role. 

Indeed, ripples observed in the dentate gyrus of the hippocampus are considered as 

pathologic, because such high-frequency oscillatory bursts are generally not observed if 

the region is healthy. Oscillatory bursts in the range of 200-600 Hz can be observed in the 

normal neocortex. Ripples have been recorded in healthy controls (Bragin et al., 1999a, 

2002b; Staba et al., 2002a, 2004) and are believed to play an important role in 

synchronizing neuronal activity and might be an essential mechanism to episodic 

memory (Buzsaki, 2006). Normal high-frequency oscillations are believed to reflect the 

summation of inhibitory postsynaptic potentials (IPSP), produced by discharges of 

principal cells (Buzsaki et al., 1992; Ylinen et al., 1995). The degree of synchronization 

is highly precise to the scale of milliseconds but never reaches a point where an 

individual neuron becomes unidentifiable from surrounding cells, due to high 

synchronicity (Engel et al., 2009). The so-called identity of a neuron is analogous to the 

temporal resolution of data observation, which reflects the ability to accurately predict 

the amplitude of a signal at a particular instant, though here it reflects in correctly 

identifying a bursting neuron. During a seizure, the ability to identify a particular neuron 

is lost since their highly precise synchronization is no longer present, and it gives rise to 

population spikes. 

The first incidence of pHFOs in the range of 250-600 Hz was reported in patients 

with medial temporal lobe epilepsy (Bragin et al., 1999a). FRs were observed during 
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interictal periods, as well as during ictal onsets in rodents, thus strengthening the 

hypothesis of the role of FRs  in epileptogenesis (Bragin et al., 1999b, Staba et al., 2002a, 

Jacobs et al., 2008).  

To summarize, HFOs have a frequency in the range of 80 to 500 Hz, a duration in 

the range of 4 to 6 cycles, and magnitudes of about 3 to 5 standard deviation (STD) from  

baseline fluctuations at the same location and within the same frequency range (Gardner 

et al., 2007, Jacobs et al., 2009).  

In case of partial epilepsy, the ictal onset is often localized to a single cortical 

region but the neuronal excitation during the ictal activity may propagate to other regions.  

pHFOs, if localized and interpreted accurately, might prove as a substantial step forward 

in the surgical treatment of partial epilepsy, by defining more specific targets for surgery. 

1.5 Objectives 
 
 
 

 

 

 

Figure 1.5 Objectives of the project.  

 

We set certain benchmarks that we thought were essential for the completion of 

the project (Figure 1.5). The first step was to develop a technique that would detect HFOs 

automatically, since manually marking HFOs is subject to error. In order to test the 

method, we worked on simulated data before moving on to the physiological data. The 

next step was to infer possible propagation patterns between different regions exhibiting 

Develop a method 
to detect these 

HFOs 

Infer possible 
propagation 

patterns 
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seizure onset zone 

Develop effective 
3-D visualization 

tools 
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strong and sustained HFOs. We then examined different metrics to determine the seizure 

onset zone (SOZ), and developed a set of effective visualization tools to illustrate the 

results.  
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2. METHODS 

2.1  Automatic Detection of HFOs Using Wavelet Analysis and the Magnitude of 
Band-Limited Signals 

 
 

There can be multiple ways to solve a problem; the important point is not only to 

solve the problem but also to solve it effectively. We tested two transforms: the wavelet 

transform and the Hilbert transform to detect HFOs from simulated data. Typically, a 

signal transformation is applied to the raw data to obtain some information that was not 

readily interpretable from the raw traces. The performance of the transforms in terms of 

sensitivity vs. specificity in detecting the HFOs and the computational expenses involved 

were first determined from synthesized data.   The following sections illustrate the 

methods employed to generate simulated data and automatically determine the HFOs 

from the simulated and real time series using the techniques we have evaluated.  

 

2.1.1 Generation of Simulated Data 
 
 

A series of simulated data (simulated baseline + simulated HFO) was generated to 

evaluate the signal processing techniques we have developed. HFOs were generated at 

known latencies that were randomly determined and superimposed to simulated 

background  signals, with controlled signal-to- noise ratio (3 to 5 standard deviations 

from the baseline). We were able to generate a large volume of simulated data, under 

controlled experimental conditions, which is generally not the case with real, 

physiological signals, especially under clinical conditions. The algorithm for generating 

the simulated data was implemented in Matlab (MathWorks Inc., Natick, MA). The  
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Figure 2.1 Simulated data without and with HFOs. (A) The baseline obtained by 
averaging over a number of magnetometers (N=50). (B) Simulated data with HFOs added 
to the baseline signal shown in (A). 
 
simulated data generated using physiological data consisted of background activity with 

transient oscillatory bursts. A recording of MEG data (102 (number of magnetometers) x 

2000 (samples = 2 seconds) was used to generate multiple baseline conditions, onto 

which artificial HFO bursts could be added. In order to generate a baseline, 50 rows of 

the MEG data, i.e. signals from a random selection of 50 magnetometers ([50x2000] 

matrix) were averaged across MEG sensors (resulted in a [1x2000] vector). 300 baseline 

signals were generated following this procedure. The simulated HFOs were modeled as 

sine waves that satisfied the properties of physiological HFOs in terms of frequency 

range (80-300 Hz), duration (4 to 6 cycles) and magnitude (4-6 standard deviations from 

the background signal). The simulated HFOs were added to the baseline traces at 

latencies between 350 ms and 1650 ms to avoid contamination from the wavelet edge 

effects or band-pass filtering (Figure 2.1). 

 

 



 

 

17

2.1.2 HFO Detection using Wavelet Analysis 
 
 

The early part of the project consisted of detecting HFOs using wavelet analysis.  

Wavelet analysis is very useful for non-stationary signals and in situations where it is 

important to identify features of interest in the signal that are resolved in time and 

frequency. We first evaluated the bump time-frequency toolbox (ButIF) 

(http://www.bsp.brain.riken.jp/~fvialatte/bumptoolbox/toolbox_home) that models HFOs 

as bump features in the time-frequency maps (Vialatte et al., 2007 & Vialatte et al., 

2009). This toolbox was available from its authors' website (Riken Institute, Japan). 

ButIF was implemented in Matlab and Borland C++ builder (2006) 

(http://www.bsp.brain.riken.jp/~fvialatte/bumptoolbox/toolbox_home) but the whole 

program can be run from Matlab: The C++ program is executed from the script written in 

Matlab and the output from the executable file was imported into the Matlab workspace.  

Briefly, the method consists of four steps. The first step was to compute the 

wavelet transform. The second step was to normalize the wavelet transformed map by 

means of a z-score. The third step consisted of dividing the z-scored map into a set of 

time frequency windows. The fourth step is a parameterization of these windows by 

means of half ellipsoid functions to model the HFOs. Once these HFOs were detected, we 

computed the sensitivity and the specificity. These measures were used to plot the 

receiver operating characteristic (ROC) curve. These steps are explained in greater details 

in the following paragraphs. 

Complex Morlet wavelets (Figure 2.2) and Mexican hat wavelets are commonly 

used as mother wavelets for time-frequency signal decomposition. Complex Morlet 

wavelets have been widely employed for the time frequency analysis of physiological  
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Figure 2.2 Complex Morlet wavelet. The real part of the complex Morlet wavelet 

data (Vialatte et al., 2008, Düzel et al., 2003, Li et al., 2007). The complex Morlet 

wavelet is defined as: 

휑	(푡) =
1
휋 ∗ 퐹

	푒 	푒 , (1) 

φ: Complex Morlet wavelet; 

Fb: Bandwidth parameter (0.5874 Hz); 

Fc: Center Frequency (2.0558 Hz); 
 
t: Time 
 
 

The wavelet function needs to satisfy an admissibility criterion, so that its inverse 

exists. For the function φ (t) in Eq (1) to satisfy the admissibility criterion, 2πFct should 

be greater than 5. The wavelet family with 2πFct=7 has been shown to be suitable for the 

investigation of physiological signals (Tallon-Baudry et al., 1996). The complex Morlet 

wavelet is scaled for computing the wavelet transformation of an original signal X, of 

length T.  
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퐶 (푡, 푠) = 푋(휏) ∗ 휓	
휏 − 푡
푠 푑휏, (2)

	
 

s: Scaling factor(inversely proportional to central frequency). 

Cx: Matrix of wavelet coefficients with dimension: [number of frequency steps x number 
of time steps]. 
 
Ψ: Mother wavelet function 

 

The time frequency map obtained by wavelet transformation was z-scored, with 

the reference signal being the signal itself (self-referencing). The z-score metric applied 

at each frequency bin made the events of interest stand out from ongoing fluctuations and 

standardized the amplitude of the time-frequency signal power. The mean (휇f) and the 

standard deviation (σf) were calculated for every bin interval (f=80, 85… 300 Hz) and the 

z-score was calculated based on the equation, 

푍 = 	
퐶 (푓)−	휇

휎 , (3) 

The z-scored map was divided into a set of windows in the time-frequency domain. The 

width of the windows was fixed to six cycles dependent on the frequency and the height 

was calculated as the ratio between the width of the window and the time-frequency 

resolution. The time-frequency resolution was determined by the product of the 

frequency binning rate (Δf = 5Hz) and the time sampling rate (Δt = 0.001 s). Thus, the 

value of time-frequency resolution was 0.005. The half ellipsoid function was the 

parametric function used to model for possible bump features in signal power within the 

windows defined in the normalized time frequency map. The half ellipsoid function is 

defined by the equation, 
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Figure 2.3 Half ellipsoid function. The half ellipsoid functions were defined in the 
windows that had height h, width w and amplitude A, with positions t and f in the time-
frequency domain. Adapted from (Vialatte et al., 2009). 
 

)4(,)(),(1),,,,,,( 2

2

2

2

w
tx

h
fyxytfwhA 

  

x and y: Time and frequency position of the window on the normalized map; 

t and f: Time and frequency position of the bump feature detected; 

h and w: Height and weight of the bump; 

A: Amplitude of the bump feature. 

Figure 2.3 illustrates the shape of the half ellipsoid function and its parameters. 

Data points lying within the signal power bump were approximated with a non-zero 

value. All the other points outside the bump and within the time-frequency window of 

interest were approximated with a null value.  

 The first two steps, as defined above, were implemented in Matlab (MathWorks 

Inc. Natick, MA) while the remaining steps were implemented in C++, for optimized 
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computational performance. The parameters for bump modeling consist of a threshold 

value, the window dimension and a pruning criterion; they are defined as follows: 

The threshold is a numerical z-score value that helps remove events related to 

normal background activity. All values below the user set threshold value are not 

considered further in the analysis. The threshold value was varied from 0 to 15 in steps of 

approximately 0.3. In order to model the bumps accurately at different frequencies, the 

dimension of the time-frequency window of interest needs to be adaptive. In order to 

capture events at higher frequencies the window should be short and vice-versa. The 

windows have a large time width that decreases with increase in frequency to account for 

the intrinsic time resolution of the wavelet decomposition. Symmetrically, and for the 

same reason, window height was designed to increase with frequency. The time width of 

the window was fixed to six cycles (the assumed typical duration of HFOs) to avoid the 

detection of sporadic and spurious high-frequency bursts. Indeed, if the time width of a 

window was set too long, multiple and successive oscillatory events would be modeled as 

a single event. Similarly, too short a time window would artificially split a single event 

into multiple events.  A pruning parameter was used to set the maximum number of 

bumps to be modeled. The parameter was set to 100, a relatively high value (a two 

second data segment was assumed to accommodate a maximum of 100 events having 

duration of six cycles and frequency of 300 Hz). The detected bumps were sorted in 

descending order of power. If the maximum number of detectable bumps was set to a 

very small value, events of interest would go undetected; a very high number of 

detectable bumps would lead to detection of bumps with less power in case the user set 

threshold was small in magnitude, as shown in the Results section.  



 

 

22

2.1.3 HFO Detection Using the Hilbert Transform 
 
 

The primary reason for switching to another technique in the course of this project 

was to design an alternative signal processing technique that would be more 

computationally efficient than the comprehensive wavelet decomposition used with 

ButIf. Further, the ButIF implementation consisted of recurrent transfers of data between 

Matlab and an executable C++, which increased the time of computation. The reason for 

selecting Hilbert transform approach (extraction of instantaneous magnitude of the band-

limited signal) was its ability to preserve the original temporal resolution of the data and 

to restrict the analysis within the HFO frequency band of interest. The simulated data 

with HFOs was generated in the same way as those used for testing the performance of 

the wavelet decomposition approach. The data time series were first band-pass filtered 

into five sub-bands (80-124, 125-169, 170-214, 215-259 and 260-300 Hz) before the 

Hilbert transform was applied. The FIR filter was applied in the frequency domain with 

an order of (number of samples-1). 

 The Hilbert transform is a widely used approach to compute the analytic version 

of signal time series. An analytic signal is a complex signal obtained by taking a signal 

and adding in quadrature its Hilbert transform. If we have a real signal xr and we compute 

the Hilbert transform, xi, of the signal, the analytic signal x is a complex function 

represented by x=xr + i*xi, where xi is the 900 phase-shifted version of xr. The Hilbert 

transform xi of xr is defined for all t by, 

푥(푖) =
1
휋 	푃푉	

푥(휏)
푡 − 휏 	푑휏, (5) 

when the integral exists, where PV is the Cauchy principal value. 
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The Hilbert transform does not exist, due to a pole, at t = τ. The Cauchy principal 

value in front of the integral means that integral on either side of τ (which may exist) is 

computed and thus, it expands the class of functions for which the Eq (5) exists.  The 

magnitude of the complex analytic signal provides the envelope of xr (Dujundgi, 1958). 

This envelope is temporally smooth if the signal is band-limited in a narrow range and it 

is expected to be spiky if the signal is filtered within a wider range of frequencies (Figure 

2.4). The z-score of the signal envelope was computed and a threshold was applied to 

detect events of interest, i.e. occurrences of transient high-magnitude variations in the 

signal envelope, in the HFO frequency range. Only events of duration between 4 and 6 

cycles were retained. 

 

2.1.4 Performance Evaluation 
 
 

In order to determine the respective performances of the suggested signal 

transformations, we considered two factors: sensitivity and specificity. Sensitivity 

measures the proportion of true positives in the detection of events of interest; specificity 

measures the proportion of true negatives. In the context of HFO detection, sensitivity 

measured the proportion of actual HFOs correctly detected and specificity measured the 

proportion of correctly detecting the absence of HFOs.  

푆푒푛푠푖푡푖푣푖푡푦 = 	
	 	

									(0 ≤ Sensitivity ≤ 1) 

 

푆푝푒푐푖푓푖푐푖푡푦 = 	
	 	

									(0 ≤ Specificity ≤ 1) 
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Figure 2.4 Effect of narrow band-pass filtering. A) Original simulated signal. B) Raw 
signal band-pass filtered (blue) in the range of 80-300 Hz. C) Original signal, band pass 
filtered in the range of 80-125 Hz. The envelope (red) obtained using the Hilbert 
transform was smoother in the case of a narrow band-passed signal in panel C as 
compared to the wider band-passed signal shown in panel B. 
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 The sensitivity and specificity performance metrics are usually inversely related: 

lower detection thresholds increase sensitivity and decrease specificity, and vice-versa. 

The receiver operating characteristic (ROC) curve illustrates this trade-off and helps 

determine a possible optimum value for the detection threshold. It is a classical approach 

in the design of techniques for signal detection from noise. A ROC curve is a plot of 

sensitivity on the y-axis, and (1-specificity) on the x-axis. As the area under the curve 

approaches 1, the better is the performance of the detection technique. The sensitivity and 

specificity were determined for different thresholds and the ROC curve was plotted.  

 Since the data was simulated, exact time information of the occurrences of the 

HFOs were known prior to the transformation. The threshold was varied from 0 to 15 in 

steps of 0.3, to obtain a smoothly varying ROC curve. In order to determine the 

sensitivity and the specificity for a particular threshold, we determined the true positives, 

false positives, true negatives and false negatives. These values were determined by 

dividing each of the two-second simulated signal segments into sliding windows of 

length 50 milliseconds with no overlap. Each window was checked for the presence or 

absence of HFOs. If there was an actual and detected HFO, the true positive score was 

incremented. If there was an actual HFO and it was not detected by the algorithm, the 

false negative score was incremented. If there was no actual HFO but the algorithm gave 

a false detection, the false positive score was incremented. If the window had no actual 

HFO and the algorithm also did not pick up any event, the true negative score was 

incremented. Determining true positive, false positive and false negative was 

straightforward since the event times when the HFOs were present or absent were known. 

True negative determination was not straight forward and its value depended on the 
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window size. The choice of the size of time window was arbitrary but it was selected so 

that the window was neither too small nor too large. The window size was chosen with 

respect to the expected duration of HFO events. A HFO with a frequency of 80 Hz and 

duration of four cycles would last for 50 ms and thus we selected this value as a 

conservative estimate for the screening time window. Determination of the sensitivity and 

the specificity at a particular threshold was performed and this procedure was repeated  

for every tested threshold. The resulting ROC curve was plotted, which not only provided 

a visual impression of the performance of the detector, but also helped in determining the 

optimum threshold for the best tradeoff in sensitivity and specificity. The optimal 

threshold was defined as the point of intersection between a line joining the points (1, 0) 

& (0, 1) and intersecting the ROC curve.  

 

2.2 Subjects 
 
 
We retrospectively analyzed data from three patients with medically refractory partial 

epilepsy who underwent 2-stage epilepsy surgery at the Froedtert and Medical College of 

Wisconsin’s Adult Comprehensive Epilepsy Program. The patients were selected based 

on the presence of robust, well-defined epileptic HFOs in their intracranial EEG 

recordings prior to undergoing resective surgery. All patients had undergone prior MEG 

recordings as part of their final pre-surgical evaluation. Relevant clinical variables for 

these patients are shown in Table 2.1. Patients 1 and 2 were seizure free at 12 months 

post surgery. Patient 3 experienced a single cluster of auras and complex partial seizures 

over a 5-day period, 4 months after surgery in the context of antiepileptic medication 

reduction, but did not experience further events at 6 months post-operative follow-up. 
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2.3 Development of Matlab Scripts Compatible with Brainstorm 
 
 
Brainstorm (http://neuroimage.usc.edu/Brainstorm) was one of the neuroimaging 

software that was extensively used in the course of the present project for the analysis of 

the MEG data and visualization of both the MEG and of the ECOG data. A serial 

processing pipeline was developed in Matlab using scripts that integrated Brainstorm and 

our Matlab specific developments. Once a minimum number of inputs were provided, 

data processing was carried out automatically unless an input from the user was 

paramount, e.g. when indicating the anatomical fiducials for the registration of MEG and 

MRI geometry. The processing pipeline consisted of a set of serial steps; the following 

subsections illustrate the purpose of each step. 

 

ID MRI 
lesion 

iEEG 
electrodes 

iEEG 
HFOs 

MEG 
spikes 

Ictal 
iEEG 

Resection 
zone 

1 

Left 
MTS, 

bilateral 
PVH 

L subdural 
grid + strips Left TP Left 

TP 

Independe
nt onsets 
left AT & 

TP 

Left ATL + 
hippocampus 

+ TP 
neocortex 

2 None L subdural 
grid + strips 

Left AT 
neocortex None Left AT 

neocortex 
Left AT 

neocortex 

3 

Old R 
mid 

temporal 
tumor 

resection 
age 2 yrs 

R subdural 
grid + strips 

Right 
TPO 

Right 
TPO 

No ictal 
iEEG data 
captured 

Right TPO 
neocortex & 

mesial 
temporal 
structures 

 
Table 2.1 Clinical variables. Abbreviations used above are as follows: MTS—mesial 
temporal sclerosis, PVH—periventricular heterotopias, TP—temporo-parietal, AT—
anterior temporal, TPO—temporo-parieto-occipital.  
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2.3.1 Obtaining Cortical Surfaces and the Electrode Positions 
 
 
 Platinum-iridium alloy electrode discs (4mm diameter) were arranged in a grid 

(8x8/6x6), partial grids (5x2) and strips (4x1) (Ad-Tech Medical, Racine, WI). Electrodes 

were placed in the subdural space through craniotomy and burr hole craniotomy. IEEG 

recording was performed at a sampling rate of 1000 Hz. Patient specific 3D cortical 

surfaces were obtained (Dale, et al. 1999, Fischl, et al. 1999, Fischl, et al. 2002) by 

processing the MRI data (LaViolette, et al. 2010) using FreeSurfer 

(http://surfer.nmr.mgh.harvard.edu/). CT data was co-registered using a linear affine 

transformation to post-implant MRI data using FLIRT (FMRIB software library 

http://www.fmrib.ox.ac.uk/fsl) and resampled to the original MRI resolution. CT data 

was thresholded to isolate iEEG electrode locations. The centroid location of the voxel 

cluster corresponding to each electrode was found and defined in the same geometrical 

referential as the MRI data. Thus, we obtained the electrode coordinates that were used 

extensively as described in later subsections. 

 

2.3.2 Generating the Surface Envelopes for Cortex, Inner Skull, Outer Skull and 
Scalp 

 
 

The second step was to generate the cortex envelope, inner skull, outer skull and 

the scalp using the ‘mne_watershed_bem’ function of the MNE neuroimaging software 

(http://www.nmr.mgh.harvard.edu). These surfaces helped in the visualization of the head 

with respect to the sensors and cortex, and in the correct alignment of the cortex with 

respect to the head.  
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2.3.3 Creating Protocol, Condition and Subject Entries in Brainstorm Database 
 
 

Brainstorm’s database is structured in a very orderly manner. At the top of the 

tree is the Protocol (name of the study). The protocol name of this study was 

’freesurfer_subjects’. Once the protocol was created, we needed to name the condition 

under which the recording was performed. Since the data we were analyzing was 

spontaneous data, the condition was named as ‘Spontaneous’.  After creating a condition, 

we needed to create a new subject database entry. Subjects and conditions both came 

under the protocol, i.e. once a protocol was selected; we were able to list subjects based 

on a condition or alternatively, list conditions based on the subject.  

 

2.3.4 Importing MRI and Marking the Fiducials 
 
 

The next step was to import the subject’s MRI from the FreeSurfer subject 

directory into Brainstorm. The FreeSurfer subject directory contained information about 

the structural data of the subject. Once the subject’s MRI was imported, fiducials namely 

the nasion, left and right pre-auricular points were marked (Figure 2.6 and 2.7). We 

obtained the coordinates of these fiducials in the coordinate system used in MEG. Hence 

we were able to obtain the transformation matrix from the coordinate system used in the 

MRI (FreeSurfer coordinate system) to the MEG coordinate system (coordinate system 

defined from the subject’s head surface).  
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2.3.5 Generating Grid and Strip Surface Objects 
 

In case of iEEG, we had each grid and strips placed on the subject’s cortex. We 

derived a method to visualize the data obtained from the grid and strip electrodes using 

grid and strip surface objects in Brainstorm’s 3D visualization tools. A series of 

transformations were applied to the electrode coordinates to move them into the 

FreeSurfer coordinate system. The coordinates of the electrodes were originally in voxel 

values and were expressed in millimeters. They were first converted into meters and then 

the voxel coordinates were transformed into FreeSurfer coordinates using the following 

transformations:   

(푥, 푦, 푧) = 0.128− (푥,푦, 푧) 

(푥, 푦, 푧) = (푥,−푧,푦) 

 
The MRI freesurfer values has the center in approximately [128,128,128] voxel. Using 

the FreeSurfer coordinates and the script ‘mne_write_surf’, we generated the grid and 

strip surfaces for each patient in the FreeSurfer space. This ensured that the grids and 

cortical surface were in the same referential (FreeSurfer) as the other surfaces. The grid 

and strip surfaces were generated using different methods in the course of this project. 

The number of points representing electrodes on the grid and strips was too small  (N=64 

to 106) to produce a smooth distribution of data for visualization purposes. Hence, we 

used an interpolation method to increase the number of points for each electrode object 

detected on the grid and strips. The method for interpolating the grid was straightforward: 

the electrode coordinates were passed to the function ‘nsi_sensorpos2triC’ (developed at 

the lab, by Dr. Rey Ramirez) and the extra points on the grid were computed. 
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Figure 2.6 .Marking of nasion using the MRI. The figure shows the nasion in the axial, 
coronal and sagittal views of the subject’s MRI.  The nasion is the point of intersection of 
the lines in all the views 
 

 

Figure 2.7. Marking of right pre-auricular point using the MRI. The figure shows the 
right pre-auricular point in the axial, coronal and sagittal view of subject’s MRI. 
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The function computes a face matrix from a set of points in space (electrodes or vertices) 

by using multidimensional scaling and delaunay triangulation. The face matrix and the 

vertex matrix are the two matrices needed by Matlab to plot a surface.  

The interpolation of electrodes on the strips was more complicated because the 

electrodes were positioned on almost a straight line and thus the script was unable to 

perform interpolation. We, basically, needed to artificially increase the width of the 

electrode strip so that reliable interpolation could be performed. Thus, we had to 

extrapolate first in order to later perform an interpolation. In order to extrapolate, we 

needed to find points that were located 2 mm (arbitrary) on either side of the strip 

electrode. They were determined by applying a method based on singular value 

decomposition (SVD), as explained below.  

In 3-D, perpendicular unit vectors define a perpframe (orthonormal vectors). Any 

matrix can be decomposed as a product of three matrices: the hanger, the stretcher and 

the aligner, i.e. a matrix A can be written as a product of (Hanger)*(Stretcher)*(Aligner). 

(http://www.uwlax.edu/faculty/will/svd/index.html). This decomposition is determined 

bySVD. In 3-D, the hanger matrix rotates the x-y-z axis to align with the perpframe. The 

stretcher matrix stretches (or quashes, or flips) a point or a surface in the x, y or z 

direction. The aligner matrix rotates the perpframe to align along the x-y-z axis. In order 

to compute coordinates 2mm on either side of the strip electrodes, we multiplied the 

coordinates with 2mm*[the hanger matrix], to obtain the coordinates of points 2mm on 

either side.  The ‘nsi_sensorpos2triC’ could then be applied, which yielded a set of 

interpolated vertices for the strips. Once we obtained the interpolated points, we used 

‘mne_write_surf’ to generate the strip surfaces in the FreeSurfer space.  



 

 

33

2.3.6 Importing the MEG Data 
 
 
 The MEG data was imported into Brainstorm database using its function 

‘import_data’. The data was divided into segments of 2 seconds, which made it easier for 

the software to load, visualize the sensor data and compute the source model.  

 

2.3.7 Computing the Head Model 
 
 

Head model computation was required to explain how the neural currents in the 

cortex could generate the MEG sensor data. Head modeling is also known as forward 

modeling. Forward modeling consists of computing the magnetic field recorded at the 

sensors from a given distribution of source density; inverse modeling is computing the 

source time series that produced the magnetic fields previously recorded.  

The head model generates a lead-field matrix, which models the linear 

correspondence between the source amplitudes and the MEG data. In Brainstorm, it was  

 

Figure 2.8. Forward and inverse modeling. In order to transition from the sensor space 
(left) to the source space (right) we need to solve the inverse problem. Adapted from 
www.neuroimage.usc.edu 
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considered that the magnetic field recorded by the sensors was produced by set of 

elementary current dipoles distributed on the cortical surface. The dipoles were located at 

each of the vertices of the cortical surface tessellated by FreeSurfer. We limited the 

number of elementary dipoles or sources to 10,000 per cerebral hemisphere; hence a total  

of 20,000.  The lead-field head model was a matrix of size; Number of sensors*Number 

of sources i.e. [306 x 20000] matrix. Different methods are available in Brainstorm to 

compute the head model: the single sphere and overlapping spheres. In the single sphere 

method, a single sphere is fitted to approximate the shape of the head. Overlapping 

spheres modeling consists in estimating different spheres of the head for every sensor 

(Baillet et al., 2001). In other words, it estimated a sphere that best fits the shape of the 

head. It has been acknowledged that spherical models perform quite well in the MEG, 

because head in the vicinity of each sensor. The spherical head models are an 

approximation to the realistic head models, since a normal head is not spherical. MEG is 

less sensitive to head geometry than EEG (Leahy et al., 1998). To keep the model simple, 

we used the single sphere model to complete the head model in all 3 patients. The 

computation of the head model was performed by the function ‘Hil_head_model’, which 

called basic functions from the Brainstorm library. 

 

2.3.8 Computing the Noise Covariance Matrix 

In order to compute the inverse operator (imaging kernel) for the source 

reconstruction process, we needed to estimate the noise covariance matrix from the MEG 

data. The signal to noise ratio (SNR) remains as one of the key issues in MEG due to 

extremely low amplitude signal of interest when compared to strength of other 
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electromagnetic sources (heart beats, eye blinks etc). In the context of studying task-

related evoked responses, the background brain activity might be considered as a source 

of nuisance (although this is certainly an oversimplifying assumption). In the case of 

source modeling of spontaneous recordings, the environmental and instrumental noise 

within the magnetically shielded room is a source of nuisance. The empirical estimation 

of the noise covariance statistics is a necessary step to improve the accuracy of source 

modeling (Sekihara et al., 1994, Sekihara et al., 1996). The function ‘bst_noisecov’ was 

used to compute the noise covariance matrix. A default empty room recording of 2 

minutes was used to compute the noise covariance matrix (NC), 

푁퐶 =
퐿퐿

푁푢푚푏푒푟	표푓	푡푖푚푒	푝표푖푛푡푠 ; 

where, 

L contains the measurements from the empty room [306*Number of time points]. 

Whitening and regularization procedures are employed to refine the noise variance 

matrix. Whitening helps to remove any correlation between the sensors. 

 

2.3.9 Computing the Source Signals 
 
 

Computing the source signals consists of solving an inverse problem. It involves 

computing an inverse operator or in other words, an imaging kernel. The imaging kernel 

is a matrix of size [Number of sources x Number of sensors] i.e. [20,000 x 306]. 

Parametric source localization and source imaging are two types of techniques for 

computing the source signals in MEG. Parametric techniques represent the sources as a 

set of few equivalent current dipoles of unknown locations and moments, which can be 
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estimated from the data using non-linear optimization techniques. Source imaging 

approaches assume that the cortical pyramidal neurons are the main source of MEG 

signals and are oriented perpendicular to the cortical surface. Every vertex of the cortical 

tessellation was assumed to be a dipole source with its orientation constrained to the local 

normal of the surface. Thus, only the amplitude needs to be estimated from the MEG 

data, using a linear estimator for instance. Since we needed to estimate source signals 

from 20,000 vertices and data was obtained from 306 sensors only, the inverse problem 

was severely underdetermined. In that respect, under-determinacy yields an ill-posed 

problem, wherein multiple source distributions would produce the same output as 

observed on the sensors. In order to better constrain the estimation problem, we applied 

regularization methods to apply additional constraints and estimate the locations of 

sources on the cortical surface.  

Brainstorm employs an imaging technique for solving the MEG inverse problem. 

Since the dipoles were restricted to the cortex, the FreeSurfer cortical surface needed to 

be of very high resolution and should capture the sulci and gyri accurately because if 

those were missed, essentially the dipole sources would be missed and hence source 

signals at those areas would be undetected. The dipoles were constrained to fixed 

positions and the inverse operator consisted of a minimum-norm estimator of the source 

distribution (Baillet et al., 2001; Tikhonov and Arsenin, 1977; Demoment, 1989).  

 

2.4 Localization of the SOZ from Interictal and Ictal iEEG Data 
 
 

The main aim of localizing the HFOs was to detect the areas that were involved in 

the seizure onset, i.e. the cortical regions that were active at the beginning of seizure 



 

 

37

events. Therefore, we needed to rank the channels/sources based on their temporal 

occurrence (rank with a small value correspond to earlier involvement in HFO bursts). 

These bursts visually showed propagation from one cortical region to others in the case of 

partial epilepsy. The method based on the Hilbert transform (see above) was used to 

analyze both the interictal and ictal data. Hence, after the HFOs from each channel were 

detected, they were ranked based on their temporal occurrence. The channels with the 

smaller ranks determined the channels/sources of interest. In the case of iEEG, the 

cortical regions under the lower ranked electrode sites were the areas of interest, whereas 

in MEG, the sources with lower ranks determined the cortical regions of interest. The 

detailed method to determine the SOZ is illustrated in the following paragraphs. 

 

2.4.1 Interictal and Ictal Data 
 
 
 The patients were kept under observation and their medication was reduced so 

that the patient was prone to seizure. The spontaneous recording was carried out over 

several days until a sufficient number of seizures were captured, so that a strong evidence 

for resecting a particular region could be collected. The period between seizures, i.e. 

interictal period, when there were HFO bursts on a consistent basis were selected for 

analysis. Table 2.2 illustrates the period of bursts selected for analyzing interictal and 

ictal data. The data was acquired at a sampling frequency of 1000 Hz and the sources 

analyzed were restricted to cortical regions under the electrodes. 
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Subject 1 2 3 

Interictal iEEG 3.1 mins 7.2 mins 4.8 mins 

Interictal MEG 5.01 mins 5.08 mins 2.15 mins 

Ictal iEEG 1 sec 1 sec - 

Number of seizures analyzed 3 3 - 

Number of electrodes 106 76 73 

Number of sources 3367 2019 2944 

 
Table 2.2 Volume of interictal and ictal data analyzed. Amount of time analyzed for 
the interictal and ictal data of all subjects and number of electrodes/sources used for 
recording/analyzing the data. 
 
 

2.4.2 Analysis of Interictal iEEG Data 
 
 

The aim of our analysis was to localize the seizure onset zone or in simple terms, 

identify the leading region generating the HFO bursts and to determine the propagation 

pattern of HFOs, for more specific resection during epileptic surgery. The steps required 

in order to analyze the iEEG data is illustrated in figure 2.9. The Hilbert transform was 

applied to the interictal data, which had been band-pass filtered in different frequency 

bands, in order to compute the envelope of the signal. The z-score of the signal envelope 

for each electrode site was computed and the mean and standard deviations for all the 

channels were saved onto the hard disk for future computational purposes. A higher 

threshold (Th=5) than the optimum threshold (Opt_th=4.19), obtained from simulations  
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Figure. 2.9 Steps for analyzing interictal iEEG and MEG data. The flow chart 
illustrates the steps used to compute the rank and rate metrics for both interictal iEEG and 
MEG data. Detailed explanation of the flowcharts is provided in the sections below. 
 

(see above) was applied to z-scored signals since a higher threshold increased specificity, 

which was necessary for our task. The number of events detected for all the channels 

were determined, which would indicate the cortical regions that produced a larger 

number of HFO bursts. We generated a map indicating the rate of HFO firing at each site. 

Once all the HFO events were detected for every channel, they were grouped based on 

their temporal occurrence and were named as group events (Figure 2.10). In order to be 

grouped together, two events detected on two different channels needed to occur within a 

30 millisecond range or else they were not grouped. This value was set arbitrarily based 

on visual observations of our data by an expert epileptologist. For a group event to be 

considered for temporal analysis, there should be a minimum of five channels involved in 

a group event. A parameter called ‘Min_grp’ was set to 5 in our scripts. If fewer channels  

Detection of HFOs 
across multiple 

channels

Rate of the HFOs 
for each 

channel/source were 
determined

Grouping all the 
events  that occur 

within a range of 30 
ms (Group event)
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Ranking all the 
channels within a 

group event

Computing a 
median of ranks 
across all group 

events 

Display the 
results on the 

cortex  for 
visualization



 

 

40

 
Figure 2.10 Group and isolated events. The figure illustrates the concept of a group 
event. A group event consists of the detection of HFO bursts across multiple channels, 
and that are temporally close to one another. There were three group events detected by 
our algorithm in this example. The agreement with visual observation was considered as 
good. Isolated events were not considered in the analysis. The vertical lines between the 
two arrows of a particular group are the event markers illustrating the times these HFOs 
were detected at different electrode sites. 
 

were involved, we assumed it did not reflect propagation on a larger scale. This setting 

was also suggested by the expert neurologist. The channels needed to be involved in a 

certain percentage of group events (20%), a parameter termed ‘Per_rem’. For instance, if 

there were 20 group events detected across the entire recording, for a channel to be 

considered it needed to be present in at least 4 of those 20 group events. The reason to 

introduce this parameter was that, if an electrode was involved in just one event and by 

chance was ranked to be one, its overall rank would remain one and would reflect an 

inaccurate result.  To summarize, a particular group event should have a minimum of five 

events from different electrodes that occurred within 30 ms of one another (i.e. maximum 

duration between first and fifth event from different channels would be 150 ms) and an 

electrode site should participate in at least 20% of the group events to be retained for 
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further analysis. The electrode sites were then ranked for every group event based on 

their temporal occurrence. The electrodes that were not active during the oscillatory 

bursts were assigned a rank greater than the maximum rank assigned to an electrode that 

participated in a burst. The median statistics of the ranks for every electrode site was 

computed.  

To further clarify the approach, let us consider an imaginary example where there 

were 50 electrodes, and about 20 group events were detected across a five minute 

recording. For the first group event, let us assume that about 10 electrodes sites carried 

sustained HFOs and that the others remained silent. We ranked the 10 electrodes based 

on the temporal occurrence of their respective HFO events and all the silent electrodes 

were assigned an arbitrary late rank with a value of 11 (10+1) for subsequent 

visualization purposes. This process was repeated for all group events (N=20). Hence, 

every electrode was assigned 20 rank values, one for every group event, and the median 

of these 20 values for every electrode was computed.  

For Subject 2, during the placement of the cortical electrode grid, the wire to one 

of the 2-D strips was disconnected and the data could be only recorded from 64 

electrodes out of total 76 electrodes. Hence, we performed a supplementary interpolation 

step to account for the missing electrodes: For each missing electrode, the three nearest 

electrodes out of the 64 electrodes were determined by their Euclidean distance, and the 

average of the time series of those three electrodes was computed to determine the time 

series of the missing electrode.  

We needed to visually represent the results to better identify the cortical regions 

involved (i.e. the areas beneath the electrodes) and the propagation patterns of the HFOs. 
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In the previous subsection, we described how we generated the FreeSurfer grid and strip 

surfaces and imported them into the Brainstorm database. The grid and strip surfaces 

were interpolated to determined additional vertices for better visualization. The number 

of vertices on the interpolated grid and strips were about four times as many as the 

number of electrodes used to record the iEEG data. The interpolated vertices were 

assigned the ranks of the nearest electrode sites; hence a very simple form of nearest 

neighbor interpolation of the ranks. Although this introduced regions whose activity 

could not be verified due to absence of electrodes at those regions, this simple form of 

data interpolation was intended to facilitate visualization of the data. The resulting 

visualization of the data is featured (Figure 2.11). One rank or HFO rate value was 

assigned to each vertex on the grid and strip surfaces: the results were saved as a .mat file 

that could be imported into the Brainstorm database and visualized using Brainstorm 

visualization tools. 

 
 
Figure 2.11 Data interpolation. Data interpolation was performed to enhance 
visualization. A) Data without interpolation. B) Data with interpolation. The figure with 
interpolation was not only visually more appealing but also helped better understand the 
distribution and propagation patterns of HFOs. 
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2.4.3 Analysis of Ictal Data 
 
 

 Although the overall methodology remained the same, the ictal data was 

analyzed in a slightly different way than interictal data. Ictal episodes involved more 

regions in one group event at the ictal onset and lasted for a short period of time. We 

were interested in identifying the cortical regions (SOZ) that pulled other regions to a 

seizure and this information is present at the beginning of a seizure. Five seconds around 

the ictal onset was selected and two seconds in the beginning and the end of the signal 

were removed to avoid edge effects introduced by band-pass filtering. Thus, only one 

second at the ictal onset was considered. Once the seizure gained full strength, the data 

became too complex to identify a clear propagation pattern and hence the entire seizure 

was not used in the analysis. Interictal data or spontaneous recording was considered as a 

baseline to the ictal onset. The means and the STDs of different frequency bands for all 

the channels computed from the interictal data in the previous section were used to 

compute the z-score for the ictal data. Since the ictal data to be analyzed was very short 

in duration (1 s), computing the z-score by self -referencing (i.e. using ictal data to 

compute means and STD) would have affected the z-score in a negative manner. For 

instance, the channels that were oscillating would have a higher STD and thus a lower z-

score, which would be inaccurate. To summarize, five seconds around the seizure were 

considered, out of which 2 seconds at the beginning and end were eliminated to avoid 

edge effects; so the signal analyzed was just one second about the electrographic onset of 

the ictal event. The rest of the process followed in the same way as interictal data. Three 

seizures each, from the first two subjects, were analyzed and their spatial and temporal 

characterization using the techniques described above were compared with the 
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localization of interictal events. The data from the third subject was analyzed based on 

interictal data only. No seizure had been captured during the pre-surgical monitoring of 

this patient, and the surgery plan was based on propagation patterns observed during 

interictal recordings (and the semiology of seizures).  

 

2.5 Localization of the SOZ from Interictal MEG Data 
 
 

The number of vertices extracted from the FreeSurfer surface was down-sampled 

from original 2,00,000 to 20,000 due to the tradeoff between spatial accuracy and 

computational load of MEG source imaging. A greater number of vertices would 

necessitate more computer memory, whereas fewer vertices would generate source 

images of poor spatial resolution. The clinical evaluation of the SOZ location was 

obtained from the expert reading of iEEG recordings of each patient. IEEG, as opposed to 

MEG, is not an exploratory procedure per se, primarily due to its invasiveness. The 

amount of skull bone surgically removed by craniotomy is restricted to a minimum and  

 

Figure 2.12 Area of the cortex selected for evaluation. Panel A, B and C represent the 
cortical surfaces for subjects 1, 2 and 3 respectively. For comparison of iEEG and MEG 
the analysis of MEG sources was restricted to the area of the cortex covered by iEEG 
electrode sites. The darker grey areas represent the grid and the strips. The areas colored 
as green were the areas of the cortex where the MEG sources were compared to iEEG 
traces, in terms of HFO metrics. 
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the cortical regions explored with iEEG are confined to the areas covered by the strips 

and the grids. MEG imaging techniques were used to produce estimates of cortical 

currents covering the entire surface of the cortex. In order to compare the results obtained 

by MEG and iEEG, we restricted the analysis of the MEG data to the areas of the cortex 

located under iEEG electrode sites. This was accomplished by means of an algorithm we 

have developed. The closest cortical vertices (Euclidean distance) to each of the vertex 

corresponding to the electrode sites were determined. For instance, from 421 vertices 

corresponding to the original electrode sites, we found 421 seed vertices on the cortex 

based on minimum Euclidean distance. All the cortical vertices that were less than 4 mm 

away from each of the seed vertices were determined. Some of the sources that were 

missed by our method, due to its location in the fissures, were marked using scout 

functions in Brainstorm. The scout in Brainstorm's terminology defines an area of interest 

over the cortical surface defined by interactive 3D visualization. Figure 2.12 illustrates 

the areas of cortex to be analyzed that were determined using this method. 

 

2.5.1 MEG Data 
 
 

The spontaneous data was acquired for each of the three subjects with a sampling 

frequency of 2,000 Hz (Table 2.2). This permitted analysis at higher frequencies (<600 

Hz). The data was acquired by means of 102 magnetometers and 204 gradiometers. An 

empty room recording of two minutes was used to compute the noise covariance matrix.  
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2.5.2 Analysis of MEG data 
 
 
 As mentioned above, the analysis of MEG source time series was restricted to 

areas under iEEG electrode sites.. We obtained a matrix by selecting the rows of the 

imaging kernel corresponding to the  sources and multiplied the matrix by the sensor data 

to obtain the source data at the sites of interest. It was the source data to be analyzed 

since it reflected the physiological signal captured by the sensors. The HFOs were 

detected using the technique described above. The number of HFO events per source 

location was determined, as per the methods described previously. The detected HFOs 

were grouped based on their temporal occurrence by the algorithm as discussed in the 

previous sections, and the average ranking of events occurring at each source location 

was determined. The minimum number of sources to be classified as a group event were 

raised to 100 since there were more than 2000 sources to be analyzed for every subject 

(Table 2.2).  

A ‘spiking index’ metric was computed for all sources under consideration. The 

spiking index is defined as the maximum value of source amplitude over the mean value 

of the entire source time series (5.01 mins for subject # 1).  

 

푆퐼 =
푋 _

푋 _
 

where, 

SI: represents the spiking index of a source; 

Xwindow_max: represents the maximum value in a particular frequency band within a 

pre-selected window determined by the algorithm over the time series X of the source; 



 

 

47

Xentire_mean: represents the mean over the entire recording in the same frequency band.  
 

As a brief example, let us assume that 1000 MEG sources were covered by iEEG 

electrode sites and 20 group events were detected over the course of five minutes of 

spontaneous recording. Let us now consider the first group event. Let us define that the 

first event detected in this group was at time x and that the last event in this group was 

detected at time y. The time interval from two seconds before time x and two seconds 

after time y was included in the analysis, i.e. the time range of the data that was used to 

compute the spiking index was  from (x-2) seconds to (y+2) seconds. About one second 

from the beginning and the end was removed to avoid the edge effects. The source data 

was band-pass filtered in the five sub-bands of interest and their envelope using the 

Hilbert transform was computed for all the pre-selected sources. The mean amplitude  

 

Figure 2.13 Steps to compute the spiking index. The flow chart illustrates the steps 
used to compute the spiking indices. 
 
 

Compute the Hilbert 
transform of the MEG 
source time series and  

its envelope
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every source. Thus, a 
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value for each source over the entire recording for the five sub-bands was calculated. The 

maxima in the time window (x-1) seconds and (y+1) seconds were computed for all the 

signal envelopes in the five sub-bands. The spiking index could now be calculated since 

we had the maxima and the mean value over the entire source time series at different 

frequency bands. This process was repeated for all group events. Thus, we obtained a 

matrix of size [1000*5*20] (number of sources*number of sub-bands*number of group 

events). The median value for every source across the 20 group events for every sub-band 

was calculated and the median measure matrix was reduced to [1000*5]. The maximum 

value for all the sources in every sub-band was calculated to eliminate the frequency 

dimension and the measure matrix was reduced to a vector of length 1000. These values 

were then saved as a .mat file to utilize Brainstorm visualization tools. 
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3. Results 
 
 

3.1 Accuracy of HFO Detection 
 
 

Our first aim was to detect the HFOs using an algorithm that would eventually 

help us in the determination of the seizure onset zone. HFOs detected by the algorithm 

had to be tested against actual HFOs in order to calculate its sensitivity and specificity 

and therefore we generated sine waves that satisfied the properties of HFOs. The 

artificially generated HFOs were then added to the simulated baselines that were 

generated using the physiological data. We tested two methods for detection, the ButIf 

toolbox that implemented wavelet transforms and a method based on the Hilbert 

transform of data signals for detecting the HFOs.  

The general flow employed for detecting HFOs using the ButIf toolbox and the 

Hilbert transform is explained in the previous Methods section. Figures 3.1 and 3.2 

illustrate the HFO detection for one such simulated signal. The same set of simulated data 

was used for both methods to enable a fair comparison. Also, for a particular method, the 

same set of simulated data was used to calculate the sensitivity and specificity for all 

thresholds varying from 0 to 15. Table 3.1 provides a comprehensive illustration of the 

sensitivity and specificity values at different thresholds for both the methods and these 

values were used to plot the ROC curves. From Table 3.1, the values of specificity at a 

particular threshold for Hilbert transform approach was higher   than the wavelet 

technique. The ROC curves for both methods are shown in Figure 3.3 and provide a clear 

picture of the performances of the two techniques. A trapezoidal numerical integration 

method was used to determine the area under the ROC curves. The area under the curve 
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obtained using the ButIf was 0.8 while the area under the curve using Hilbert was 0.93, 

indicating a better performance in terms of sensitivity/specificity tradeoff for the latter. 

The optimal threshold for the ROC curve obtained using the Hilbert transform was 4.2. 

  ButIf toolbox       Hilbert transform 
Threshold Sensitivity Specificity Sensitivity Specificity 

0 0.98 0.09 0.99 0.01 
0.31 0.98 0.09 0.99 0.02 
0.61 0.98 0.09 0.98 0.07 
0.92 0.98 0.09 0.97 0.14 
1.22 0.98 0.09 0.96 0.25 
1.54 0.98 0.09 0.95 0.38 
1.84 0.98 0.09 0.94 0.53 
2.14 0.98 0.09 0.94 0.68 
2.45 0.96 0.14 0.93 0.79 
2.76 0.95 0.23 0.93 0.86 
3.06 0.94 0.34 0.93 0.91 
3.37 0.94 0.45 0.92 0.94 
3.67 0.93 0.55 0.91 0.95 
3.98 0.93 0.64 0.90 0.96 
4.29 0.92 0.71 0.88 0.96 
4.59 0.91 0.77 0.86 0.97 
4.90 0.90 0.81 0.84 0.98 
5.20 0.89 0.84 0.81 0.98 
5.51 0.88 0.86 0.77 0.98 
5.82 0.85 0.88 0.74 0.98 
6.12 0.83 0.90 0.70 0.99 
6.43 0.78 0.91 0.66 0.99 
6.73 0.73 0.93 0.63 0.99 
7.04 0.68 0.94 0.58 0.99 
7.35 0.66 0.95 0.53 0.99 
7.65 0.56 0.96 0.49 0.995 
7.96 0.49 0.97 0.44 0.997 
8.27 0.42 0.97 0.39 0.998 
8.57 0.36 0.98 0.34 0.999 
8.88 0.30 0.98 0.30 0.999 
9.18 0.25 0.99 0.27 0.999 
9.49 0.19 0.99 0.24 1 
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  ButIf toolbox       Hilbert transform 

Threshold Sensitivity Specificity Sensitivity Specificity 
9.80 0.15 0.99 0.22 1 

10.10 0.12 0.99 0.20 1 
10.41 0.09 0.995 0.17 1 
10.71 0.07 0.996 0.15 1 
11.02 0.05 0.997 0.13 1 
11.33 0.03 0.999 0.12 1 
11.63 0.02 0.999 0.09 1 
11.94 0.01 0.999 0.06 1 
12.25 0.004 1 0.03 1 
12.55 0.004 1 0.01 1 
12.86 0.003 1 0 1 
13.16 0.003 1 0 1 
13.47 0.001 1 0 1 
13.78 0.001 1 0 1 
14.08 0 1 0 1 
14.39 0 1 0 1 
14.69 0 1 0 1 

15 0 1 0 1 
 
Table 3.1 Sensitivity and specificity values for both HFO detection methods computed at 
different thresholds. The Hilbert approach had much greater specificity values and 
comparable sensitivity values to the ButIf toolbox. 
 
 
3.2 Localization of SOZ Using iEEG and MEG 
 
 

We analyzed the spontaneous interictal iEEG and MEG recording for three 

subjects and ictal iEEG recording from two of these subjects. IEEG data was acquired at 

a sampling rate of 1000 Hz and thus we restricted our analysis up to 300 Hz to comply 

with the Nyquist criterion. The MEG data was acquired at a sampling rate of 2000 Hz but 

for comparison purposes with iEEG the analysis was restricted up to 300 Hz. IEEG 

recording was performed until a few seizures were captured. The ictal data obtained was  
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Figure 3.1 HFO detection using the ButIf toolbox. (A) Simulated signal that was band-
pass filtered in the 80-300 Hz range. (B) Wavelet transformation of the simulated signal. 
(C)  Normalized time-frequency map computed by means of z-score. The edges of the 
map were discarded to avoid false detections due to the wavelet border effects. (D) The 



 

 

53

bumps were detected with low threshold (Th=0.3) applied using the half-ellipsoid model 
in ButIf (see Methods section). (E) Bumps with lower energies were discarded by 
applying a threshold of 4. The two vertical red lines indicate the actual HFOs. 
 
 

 
 
Figure 3.2 HFO detection using Hilbert transform. The signal (in blue) was the same 
simulated signal as used in figure 3.1. The signal was band-pass filtered within the 169-
213 Hz frequency range (one of the HFO sub-bands of interest). The other event with a 
frequency in the range of 80-125 Hz was eliminated by filtering (red asterisk). The red 
curve represents the envelope of the band-passed signal. The green asterisk indicates the 
HFO event detected by the method with a threshold of value 4. 
 
 
used to make clinical decisions regarding resections prior to surgery. The portion of 

interictal recording, showing HFO bursts across channels on a consistent basis, was 

selected for analysis. The MEG recording analyzed was spontaneous data. The HFO rate 

map provided the rate of bursts at each electrode/sources site during the recording. The 

HFOs events were then grouped and ranked based on their temporal occurrence. Ranking 

the channels/sources provided valuable information regarding the channel/source leading 

the propagation of these oscillatory bursts, which eventually, provided the information 

regarding a possible location for the SOZ. The clinical decisions are made based  
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Figure 3.3 ROC curves. The ROC curve (red curve) obtained from the Hilbert transform 
had an area under the curve closer to one than the ButIf toolbox (blue curve). 
 
 
essentially on ictal data and hence comparing the results of the ictal data and interictal 

data was expected to indicate the differences and similarities.  

The brain regions with HFOs were marked by the neurologist and were compared 

with the outcome of the algorithm (Figure 3.4). The regions are marked on the grids and 

stips itself. Figure 3.5 indicates the SOZ localization for subject 1. The HFO rate map 

obtained from iEEG data localized the regions around the post central gyrus and the 

superior temporal gyrus that produced the maximum number of HFOs. The MEG map 

strongly localized the maximum HFO rates to the post central gyrus, posterior temporal 

region and the lateral parietal occipital region. The HFO ranking method using iEEG 

localized the SOZ to the post central gyrus and superior temporal gyrus. The HFO 

ranking using the MEG data was difficult to interpret due to the large number of 

contributing source sites that were analyzed within a very small region of coverage. 
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Figure 3.4 HFO map of subjects as marked by a neurologist. Columns show the 
lateral and the ventral view respectively, of the cortex for the subjects. The dark red 
colored areas indicate the cortical regions where the HFOs bursts were observed by 
inspection of the data by an epileptologist. 
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The regions with lower ranks were located about the pre and post central gyrus. Ictal 

event # 1 localized to the post central gyrus and the posterior temporal gyrus. Ictal event 

# 2 localized to the post central gyrus and the posterior temporal gyrus. The ictal events 

and interictal recording showed good concordance with respect to localization of the 

SOZ. The spiking index map of the sources for subject 1 localized to the post central 

gyrus, posterior temporal region and the lateral parietal occipital region (Figure 3.6). The 

cortical regions localized to very similar regions as localized using the rate map or the 

rank map. 

Figure 3.7 shows the localization of the SOZ of subject 2. The HFO rate map 

obtained using iEEG interictal data localized the maximum HFO rates to the anterior 

temporal gyrus and posterior middle temporal gyrus. The MEG data localized the 

maximum HFO rates to the anterior region of inferior temporal gyrus and the left 

temporal tip. The ranking of the HFOs using iEEG data localized the SOZ to the anterior 

temporal gyrus. The ranking of the HFOs using the MEG data also localized to anterior 

temporal gyrus and middle temporal gyrus. Ictal events # 1 and # 2 both localized the 

SOZ to the anterior region of the inferior temporal gyrus.  

Figure 3.8 represents the spiking indices of subject 2 for all the sources in non-

normalized and normalized form. The values of spiking indices without normalization 

were very similar for all the sources and therefore we normalized it to reveal the regions 

with a higher spiking index. We normalized the spiking indices based on the maximum 

and minimum value to adjust the colorbar range from 0-1. The enhanced regions 

localized to the anterior temporal gyrus and the middle temporal gyrus as localized by the 

rate map and regions with low ranks. 
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Figure 3.5 Localization of SOZ for subject 1. Rate: Values on the colorbar indicates the 
rate of HFO bursts of the sources/electrodes. Rank: Temporal precedence over other 
channels. Channels with low ranks burst before the channels with higher ranks on 
average. (A) Rate of the HFO bursts captured by the electrodes during interictal iEEG 
recording. (B) Rate of HFO bursts detected from each of sources analyzed using the 
MEG interictal data. (C) Rank of the channels obtained using the same interictal iEEG 
recording as used to A. Channels with low ranks are classified as SOZ. (D) Rank of the 
sources obtained using the interictal MEG data. (E) Rank of the channels using the first 
ictal iEEG recording. (F) Rank of the channels using the second ictal iEEG recording.  
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Figure 3.6 Map of MEG spiking indices for subject 1. The spiking index value for all 
the sources. The regions with maximum values localized to the same regions as the rate 
or the rank map in Figure 3.5. 
 

Figure 3.9 and 3.10 illustrates the spiking indices and localization of SOZ for 

subject 3. The HFO rate map obtained using iEEG interictal recording localized the 

highest HFO rates to the sub-temporal occipital region and the mid parietal occipital 

region. HFO rate map obtained using the MEG recording localized to the sub-temporal 

occipital (STO) and sub-temporal region anterior (STA) to the STO. The ranking of the 

HFO bursts using iEEG localized the SOZ to the STO. The ranking of the HFO bursts 

obtained by the MEG recording localized the SOZ to the STO, STA and posterior inferior 

occipital regions.  The sources with higher spiking indices also localized to the STO 

region (Figure 3.9). 
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Figure 3.7 Localization of SOZ for subject 2. (A) Rate of the HFO bursts captured by 
the electrodes during interictal iEEG recording. (B) Rate of HFO bursts detected from 
each of sources analyzed using the MEG interictal data. (C) Rank of the channels 
obtained using the same interictal iEEG recording as used to A. Channels with low ranks 
are classified as SOZ. (D) Rank of the sources obtained using the interictal MEG data. 
(E) Rank of the channels using the first ictal iEEG recording. (F) Rank of the channels 
using the second ictal iEEG recording.  
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Figure 3.8 Map of MEG spiking indices for subject 2.  (A) The spiking indices for all 
the sources in the non-normalized form. (B) The spiking indices for all the sources in 
normalized form. The colorbar is normalized to the scale 0-1. The normalized map then 
localized to similar regions as the rate map or leaders in the rank map. 
 

 

 
 
Figure 3.9 Map of MEG spiking indices for subject 3. The spiking index value for all 
the sources. The regions with maximum values localized to the same regions as the rate 
or the rank map in Figure 3.10. 
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Figure 3.10 Localization of SOZ for subject 3. (A) Rate of HFO bursts that were 
captured during interictal iEEG recording. (B) Rate of HFO bursts that were captured by 
the interictal MEG recording. (C) Ventral view of panel A. (D) Ventral view of panel B. 
(E) Rank of the channels using iEEG interictal recording. (F) Rank of the sources 
obtained using the interictal MEG data. 
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4. Discussion 
 

4.1 Comparison Between Wavelet Analysis and Hilbert Transform 
 
 

The standard procedure for identifying the SOZ is based on visual observation of 

the recorded data from an expert neurologist. However, identifying the HFOs across large 

number of channels and across huge volume of data is very tedious and time consuming, 

even for experienced neurologists. The channels with low-amplitude HFOs can be 

overlooked when other channels show high-amplitude HFOs. It was essential that we 

developed an algorithm capable of detecting these HFOs, to ensure better reliability and 

faster throughput of clinical data analysis. Marking manually these HFOs is also 

subjected to biasing based on the opinion of the reviewer. An algorithm, in agreement 

with expert reviewers, would help develop certain benchmarks that would facilitate 

smooth flow of information during clinical review and across clinicians. The algorithm 

designed should ideally be much faster than manual observation and produce results that 

are more reliable. 

We tested two methods, the ButIf toolbox that implemented wavelet transforms 

and the Hilbert transform for detecting HFOs. We simulated HFOs so that we could test 

the detections generated by the algorithms against ground truth. A large number of signal 

segments (N=300) with HFOs were simulated and a smooth ROC curve was obtained. 

True positives, false positives, true negatives and false negatives were determined to 

compute the sensitivity and specificity of the tested algorithms. We plotted the ROC 

curve from the sensitivity and the specificity values, which gave a fair idea of how well 

the algorithms performed.  
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The ButIf toolbox performed well in terms of sensitivity but performed poorly in 

terms of specificity. The specificity could be increased with the reduction of maximum 

number of bump features to be modeled or the pruning value, and by increasing the 

detection threshold, but there would be reduction of sensitivity. The wavelet analysis 

transformed a 1-D time domain signal into a 2-D time-frequency map consisting of 

wavelet coefficients. Increase in dimensionality led to a considerable rise in 

computational demand. The number of dimensions should ideally be kept to a minimum 

in order to reduce complexity. The algorithm also involved transfer of data from Matlab 

to C++ and back, which further increased the computational expenses. The primary 

reason we opted for another method was mainly due to the computational expenses 

involved and the run time of the algorithm since it took about 6.5 hrs to complete the 

ROC analysis. The C++ code was converted into an executable file which acted as a 

black box. It worked only under the Windows environment. This severely hampered the 

portability of the algorithm onto multiple operating systems. Multiple simultaneous calls 

to executable files in Windows were restricted and the workaround involved creating 

multiple copies of the executable.  

Hilbert transform computed the analytic signal and retained the time information. 

The dimensionality rise involved with the Hilbert transform was minimum (=5), . The 

magnitude of the Hilbert transformed signal estimated the envelope of the signal. The 

envelope was accurate if the signal was band-limited to a narrow range and thus the 

frequency range of interest between 80-300 Hz was divided into five sub-bands. The 

Hilbert transform was quicker and took about 5 minutes to complete the entire ROC 

analysis which was a huge gain in time and reduction in complexity. The algorithm 
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worked in different computer environments, without requiring any change in the code. 

The matrix of a raw baseline signal was [1 x 2000] and the wavelets transformed this 

matrix to [76 x 2000] where the number of rows depended on the frequency binning. This 

was a huge increase in dimensions as compared to the Hilbert transform where the 

transformed matrix was a [5 x 2000] matrix. The Hilbert transform detected the events 

with comparable sensitivity as ButIf toolbox but with improved specificity.  The area 

under the curve further justified our decision of opting for the approach based on the 

Hilbert transform (0.93 as opposed to 0.81 for ButIf). 

Our approach could be further refined by determining the amplitude of HFOs 

using other metrics. Currently, the amplitude of HFOs was determined using the means 

of the time series obtained from 50 magnetometers. The mean can sometimes be an 

inaccurate metric especially when the mean of the sensors is zero, which indirectly causes 

the amplitude of HFO to be zero. Although this might rarely happen, it is still a 

possibility. An alternative metric could be the root mean square (RMS) value, which is 

more robust than the mean value. The RMS value incorporates information of the 

variance and thus increases the robustness in the determination of the amplitude of HFOs. 

In the current study we band-pass filtered the data into five frequency intervals 

(80-124Hz, 125-169 Hz and so on). For the HFOs that had frequency exactly at 124 or 

125 Hz, we would expect a reduction in their power due to the frequency binning. 

Overlapping frequency bins could be employed to facilitate detection of HFOs that lie at 

the edges of each frequency range. If the overlap is large we might detect repetitive 

events but since we were considering just one event from a channel at one instant of time, 

detecting more events would not affect the analysis.  
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4.2 Parameters for Detecting the SOZ from Physiological Data Using Hilbert 
Transform 

 
 
 In order to detect the seizure onset zone accurately from physiological data, some 

parameters needed to be specified by the user that were crucial for the detection of HFOs, 

and hence the SOZ. One of the parameters was the ‘threshold’. The threshold was used 

for selecting the events whose amplitude was above the user set threshold. If the value 

was set very high, events of potential interest would be missed. If it was set to a very low 

value, there would be too many false positives. For iEEG, we set the threshold value to 5 

which was greater than the optimal threshold to enable greater specificity. Further, the 

SNR for iEEG was high and hence we could afford to raise the threshold without losing 

important information. For MEG, SNR remained a key issue and with a threshold of 5 

events of potential interest were missed and hence the threshold value was set to 4. We 

computed the length of the detected events and if its length was less than 4 cycles, the 

event was not considered into the analysis. Parameter ‘Min_grp’ determined the 

minimum number of channels that needed to be present in one group event for it to be 

considered in the analysis. For iEEG this value was set to five, since there were 

electrodes in the range of 50 to 100. For MEG, this value was set to 100 since there were 

greater than 2000 sources for each subject. Parameter ‘Per_rem’ determined the 

minimum number of group events a particular channel/source must be present for it to be 

considered for analysis. If a channel was present in just one group event and happened to 

be the leader purely by chance, its rank would be one which would interfere with the 

ranks of other potential leading channels. The parameter prevented false detections from 
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gaining significance. For iEEG, the value of Per_rem was set to 20% of total group 

events, and for MEG the value was set to 10%.  

 

4.3 HFOs as a Potential Biomarker of Seizure Onset Zone 
 
 
 One of the aims of the study was to understand the clinical significance of HFOs 

in an epileptic network. According to our hypothesis, HFOs could act as a reliable 

biomarker for determining the SOZ in patients with intractable partial epilepsy. Patients 

with generalized epilepsy generally have a good control over seizures by means of 

medication. Surgery is considered as an option for some patients with intractable partial 

epilepsy. The epileptic spikes during the interictal and ictal states are traditionally used as 

a standard measure for taking a clinical decision regarding resection of cortex. These 

epileptic spikes were found to increase after seizure, which suggested that the spikes 

might be an effect of seizure rather than the cause of seizure genesis (Gotman J, 1989). It 

was determined by Zijlmans et al., that the rate of HFOs decreased post seizure while the 

epileptic spikes increased post-seizure. Antiepileptic medications were found to reduce 

the rate of HFOs while the rate of spikes was overall unaffected.  

In our study, the MEG and iEEG data were not acquired simultaneously and 

hence we could not verify of the simultaneous presence of HFOs in both MEG and iEEG. 

The data was also collected under different circumstances: iEEG data was collected with 

the subjects under no influence of medications, and the MEG data was collected with 

subjects under the influence of medications. 

The spikes typical frequency range is 3-4 Hz (Gibbs et al., 1935) and the SOZ 

was localized using the information available from high frequency oscillations in the 80-
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300 Hz range. No information from the spike frequency range was included in the 

analysis. The detected HFOs present in iEEG and MEG data were able to localize the 

SOZ from the interictal data for the three subjects that were analyzed, thus strengthening 

the participation of HFOs in epileptic activity. The regions of the cortex localized by the 

algorithm as SOZ were verified by an expert neurologist. The study definitely needs to be 

expanded to include more subjects as a long term goal since the results were very 

encouraging.  

 

4.4 HFO rate map v/s HFO Rank Map and Relevance of Using MEG Data for 
SOZ Localization 

 
 
 The HFO rate map is a visual representation of the number of HFOs bursts for 

channels/sources during the recording. The map representing HFO ranks is a visual 

representation of the rank of the channels/sources during the group events. HFO rate and 

rank map are two different metrics and might  provide coinciding information. A 

channel/source might produce a maximum number of bursts but that does not guarantee 

its temporal precedence over other channels/sources. A SOZ might have fewer bursts, but 

it might be the leader of the group oscillations on average. For subject 1, the region that 

produced maximum bursts was not the same as the SOZ. The HFO rate map provides 

useful information regarding the areas that are bursting frequently, as possible contenders 

for the SOZ location. The HFO rate map might not be the best way to analyze iEEG data 

since we have very clean data and HFO ranking can accurately localize the SOZ. But for 

techniques like MEG, which explores the whole head non-invasively, this metric can be 

quite useful.  
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The MEG data does not have as high SNR as iEEG and it is one of the major 

drawbacks when compared with iEEG. The MEG data was also hampered by the fact that 

the subjects were under medications and its effect could be seen when we set the 

threshold to 5. There was hardly any activity in case of MEG above the threshold of 5 as 

opposed to iEEG where the complete analysis was performed at the threshold of 5. This 

is in agreement with Zijlmans et al, whose findings showed that the HFO rate and 

amplitude decreases by medications (Zijlmans et al., 2009). Therefore, we reduced the 

threshold to 4 for the MEG analysis since sensitivity was a concern. Also, we restricted 

our analysis to the areas of the cortex under the grid. If we had analyzed the entire cortex, 

we might have additional regions of interest, but the results could not be compared with 

iEEG. As we develop sufficient confidence in the MEG results by analyzing results from 

a larger pool of subjects, we plan to expand the analysis to cover the entire cortex. 

iEEG is an invasive procedure and cannot be used as an exploratory procedure, 

which is where MEG can prove to be very useful. One can use MEG non-invasively and 

determine the possible SOZ regions. This information could be used to improve the 

targeting and the placement of subdural electrodes for pre-surgical evaluation. The 

ranking method using the MEG data also provided good localization of SOZ but the area 

covered by a single source was very small, as compared to the area covered by the 

electrode and also there were huge numbers of sources analyzed, which made the ranking 

method difficult to visualize as there were plenty of sources with the same rank.  
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4.5 Advantage of Using Interictal over Ictal iEEG Data 
 
 
 We analyzed interictal data from three subjects and ictal data from two subjects. 

We focused on the propagation pattern of the HFOs that were detected by the algorithm. 

The channels that led the propagation patterns on average were classified as SOZ. If one 

visually inspected the data, it clearly seemed that oscillations from one particular region 

drove other regions towards a bursting oscillatory behavior. During interictal state 

though, this activity did not lead to a seizure. We may hypothesize that during the 

interictal state the SOZ experiences bursts of excitation that can potentially entrain the 

brain to seize, but a certain kind of ‘threshold’ is not exceeded and restricts further 

spread.  Once this ‘threshold’ is exceeded, a seizure ensues and the epileptic activity 

propagates to other cortical regions. The SOZ localization using interictal and ictal data 

showed good concordance for the two subjects. In other words, the SOZ, as identified 

from HFOs remained the same for interictal or ictal state of the brain.  

During the interictal state, only some of the regions were oscillating whereas the 

rest of the cortex was relatively silent. During the ictal state, there were plenty of regions 

involved which made the data difficult to analyze. Therefore we restricted our analysis to 

the first second of the seizure, defined as the ictal onset.  Interictal data was therefore 

easier to analyze since we could extract plenty of information from the multiple group of 

oscillations that occurred regularly in a particular epileptic patient. The ranks of the 

channels from interictal data would be much more stable and reliable since there were 

plenty of group oscillations available from which we could average the ranks. In case of 

ictal data, there was just one group oscillation that was captured at the ictal onset. The 

ranks of the channels were thus more likely to show variability since we had no means of 
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averaging the ranks across many seizures. In a conventional setting, the epileptic patient 

is monitored for several days under reduced medication. This causes the patient to seize 

and the ictal data is used for obtaining clinical decision. Typically only a few seizures are 

captured for this purpose. If we could localize the SOZ accurately by using the interictal 

data, we would not require such a long invasive procedure which is both risky and 

uncomfortable to patients. It would also save valuable time of the clinical staff and 

accuracy regarding the resection would not be compromised either. The fact that the third 

subject was operated purely on the basis of interictal data also supports our claim that 

interictal data can, in some cases, be a useful source of information regarding the 

localization of SOZ. Although the subject had brief auras in the weeks immediately after 

surgery, the subject has been seizure free since. These results are preliminary and would 

need further validation across much larger patient groups in order to establish our claim 

with greater confidence. 

 
4.6 Spiking Index  
 
 
 Spiking index was another metric we proposed to localize regions that burst with 

high signal amplitudes. It was defined as the ratio of maximum value of the envelope of a 

particular source during a HFO group event, to the mean of the envelope over the entire 

recording. It would give us an idea regarding how drastically a source undergoes a 

change in amplitude during a group event. For subjects 1 and 3, it gave fairly good and 

straight-forward results that aligned with the results obtained from the rate map. For 

subject 2, it was not as easy to interpret. The spiking index of subject 2 was trickier since 

the spike index of all the sources was close in value to one another. This result broadened 
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our understanding about the implications regarding the spiking index. The fact that the 

data for subject 2 was silent during the MEG recording could be verified from its HFO 

rate map, which showed the maximum rate of HFOs as 10 during a 5 minute recording in 

spite of a threshold of value 4. Hence, every source had spike index values close to one 

another. For the spiking index method to produce good results reliably, one would need 

high amplitude HFOs present in the data on a consistent basis. We scaled the spiking 

indices based on the minimum and maximum values to accommodate the range of 0-1. 

This enhanced the differences between the sources and made it possible to spread the 

range of data between different sources. We were still able to localize regions that 

coincided with the HFO rate and rank map but it was less convincing than for subjects 1 

and 3.  

 

4.7 Conclusion 
 

 
 Our study focused on the development of methods that could assist the 

neurologist in making a clinical decision regarding the localization of the SOZ in cases of 

partial epilepsy. The data analyzed visually by a neurologist is complex and multi-

dimensional. We developed an algorithm with the implementation of Hilbert transform 

for the detection of the HFOs, and associated metrics, to characterize possible regions 

involved in the epileptic SOZ. The algorithm reduced the number dimensions to 3 (2-

spatial coordinates and 1-amplitude). The accuracy of the detection was consistent across 

subjects and modalities, although the parameters needed to be adjusted based on the type 

of data under consideration (iEEG or MEG).  
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The interictal data provided robust information that was comparable to the ictal 

data for the localization of SOZ.  The HFO rate map identified possible regions that could 

be the SOZ and the ranking method provided the SOZ that were verified by a neurologist. 

The spiking index used to analyze the MEG data also localized to similar regions as 

localized by the rate map.  

The HFO rate map and spiking index could prove to be useful for noninvasive 

MEG analysis since these methods localized regions in and around the SOZ for the three 

subjects we analyzed. IEEG is not a comprehensive exploratory procedure: the 

information from HFO rate analysis and spiking index using the MEG data could be used 

alternatively to better target the placement of implantable electrodes prior to surgery. The 

number of subjects analyzed was one of the limiting factors of our results, but we feel 

these results are very encouraging. 

 

4.8 Conversion from MEG Source Data to iEEG Data  
 
 

The implantable electrodes were used for the collection of iEEG data. The 

electrodes measured the electrical activity of the brain in terms of voltages. MEG data 

measured the magnetic field of the brain in terms of Teslas by means of sensors. We, 

then, solved the inverse problem to obtain the source signals that are currents and 

expressed in units Amperes.meter (A.m). Although the measured electrical potentials and 

magnetic fields share the same generators, they express different properties in terms of 

sensitivity to sources and surrounding tissues. In order to compare the localization results 

of these two techniques, we explored the possibility to combine their information. 

Therefore, we attempted to convert the source currents into voltages as seen from a 
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virtual implantable electrode. In a nutshell, we tried to move the MEG source space to 

iEEG electrode sensor space, so that the localization results between iEEG and MEG 

could be compared. There are two types of currents that are responsible for producing the 

voltages in case of iEEG or the magnetic field as measured by the MEG; the primary 

current sources and the secondary current sources. A primary current source is the 

intracellular current that flows from the apical dendrites to the cell soma and basal 

dendrites. In order for the primary current to flow, the current loop needs to be completed 

and secondary currents flow extracellularly in the surrounding tissues. Figure 2.12 shows 

the primary current source, secondary current sources and the magnetic field produced 

around the primary current source as defined by the right hand thumb rule. Primary 

current sources are the main sources of interest in terms of detection and localization. For 

simplicity, we considered only the primary current source in our analysis of iEEG voltage 

generation. The source currents were converted into voltages based on the following 

formula: 

푉 (푟) = ∫ 퐽 (푟 ).
|| ||

푑푟′………….. (6) 

V0(r): Potential produced at location r due to primary current sources; 

σ0: Unit conductivity (1/Ωm) (makes the units consistent); 

r: Voltage at point r; 

r’: Current flow at location r’; 

Jp(r’): Primary current distribution at location r’; 

Figure 2.13 demonstrates the location of electrodes and sources along with the orientation 

and magnitude of the current source. 
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To illustrate the way the voltages were computed, let us assume there are about 

3000 sources that lie under the 100 electrodes that comprised the grids and the strips. We 

obtained the coordinates of the electrodes and the sources, as shown previously, and  

 

Figure 3.11 Primary current source, secondary current sources and the magnetic 
field. The darker line with an arrow is the primary current source, the dotted line is the 
magnetic field produced by the primary current source and the thinner lines looping 
around the primary current source represents the secondary currents needed to complete 
the loop that enables the flow of the primary current. Adapted from www.mcw.edu 
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Figure 3.12 Location and orientation of the electrode and source. MEG primary 
source currents were converted to voltages as measured by an electrode. r and r’ were 
vectors that gave us the position of the electrode and source respectively. Jp (r’) was a 
vector with a magnitude equal to the source current and direction normal to the cortex.  
 

therefore, r and r` were known. Thus the term (r-r`)/||r-r`||3 could be calculated. We also 

knew the orientation of the sources since the dipoles were constrained normally to the 

cortex and we also knew the source currents by solving the MEG inverse problem. If the 

orientation of a particular source or a dipole was (x,y,z) and the amplitude of the current 

source at time t was J, then Jp (r`) was (J*x, J*y, J*z). For a particular source, we may 

calculate the dot product of Jp(r`) and (r-r`)/||r-r`||3. We then computed  

∑ 퐽 (푟 ).
|| ||

  at time t, which yields the primary voltage measured at the 

electrode position at time t. Similarly, we calculated the primary voltage at the particular 

electrode at all times and across all electrodes. Thus, a source current matrix of [3000 

sources x 5 mins] would yield a [100 electrodes x 5 mins] virtual iEEG voltage array. 
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5. FUTURE DIRECTIONS 
 
 

 The aim of the study was to localize the SOZ using information from the 

oscillatory activity at higher frequencies. We were able to localize the SOZ accurately 

using ictal or interictal iEEG data and interictal MEG data for the three subjects. The 

algorithm was designed to replicate what a neurologist would conclude from his/her 

visual observation. The algorithm successfully managed to achieve that. The study 

focused on the development of methods and the next step would be to focus on its clinical 

validation at a larger scale. Below are some steps required to improve the methods and to 

help establish the study clinically. 

 

 5.1 Increase the Number of Subjects 
 
 

The study was performed by analyzing the previously recorded iEEG and MEG 

data from three subjects. The results regarding the localization of SOZ were encouraging 

but would the results still hold when the study includes more subjects? The aim would be 

to expand the study to include more subjects to establish a relatively strong level of 

confidence. The results based on analysis of large number of subjects would be more 

reliable and also expand our understanding regarding the significance of HFOs in the 

epileptic network. With a greater number of subjects analyzed, the user defined 
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parameters on which the algorithm relies currently could be stabilized to the values that 

produce the best results on a group average. 

 Interictal data was able to localize the SOZ accurately for the three subjects. If 

the results hold for a larger number of subjects, it could have a significant impact in the 

clinical environment where ictal data is considered as the gold standard. 

 

5.2 Set a Research Protocol  
 
 

The fact that this study was a post-hoc study gave rise to a number of 

inconsistencies with respect to the data analyzed. The volume of data analyzed varied 

with subjects. A specific research protocol could be designed to collect the data as 

required and to test the algorithm. This would iron out the unnecessary variables 

involved. The non-normalized spiking index for subject # 2 was not very informative and 

we concluded it was due to very silent data. The subject during the acquisition of MEG 

data is under the influence of anti-epileptic medications and this seems to severely affect 

the rate and amplitude of HFOs. Thus, we had to reduce the threshold for detecting the 

oscillatory activity. Once a research protocol is established, the MEG data could be 

collected without the influence of medications on the subjects (inpatient procedure). This 

would enhance the quality of recorded MEG data and the results could be more 

conclusive.  

 

5.3 Implement Algorithm to Convert MEG Source Data to iEEG Data 
 
 The research is always an ongoing process and there is lot of scope for 

improvement. One of the future goals is to implement the algorithm that enables to move 
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from the MEG source space to the iEEG electrode space, which would enable us to 

merge information from the MEG and iEEG. The algorithm has been developed but the 

current efforts to yield useful results have been unsuccessful so far.  
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