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ABSTRACT 
IMPROVING CARDIOVASCULAR STENT DESIGN USING PATIENT-

SPECIFIC MODELS AND SHAPE OPTIMIZATION 

Timothy J. Gundert 

Marquette University, 2011 

Stent geometry influences local hemodynamic alterations (i.e. the forces moving 
blood through the cardiovascular system) associated with adverse clinical outcomes. 
Computational fluid dynamics (CFD) is frequently used to quantify stent-induced 
hemodynamic disturbances, but previous CFD studies have relied on simplified device or 
vascular representations. Additionally, efforts to minimize stent-induced hemodynamic 
disturbances using CFD models often only compare a small number of possible stent 
geometries. This thesis describes methods for modeling commercial stents in patient-
specific vessels along with computational techniques for determining optimal stent 
geometries that address the limitations of previous studies. 

An efficient and robust method was developed for virtually implanting stent 
models into patient-specific vascular geometries derived from medical imaging data. 
Models of commercial stent designs were parameterized to allow easy control over 
design features. Stent models were then virtually implanted into vessel geometries using 
a series of Boolean operations. This approach allowed stented vessel models to be 
automatically regenerated for rapid analysis of the contribution of design features to 
resulting hemodynamic alterations. The applicability of the method was demonstrated 
with patient-specific models of a stented coronary artery bifurcation and basilar trunk 
aneurysm to reveal how it can be used to investigate differences in hemodynamic 
performance in complex vascular beds for a variety of clinical scenarios. 

To identify hemodynamically optimal stents designs, a computational framework 
was constructed to couple CFD with a derivative-free optimization algorithm. The 
optimization algorithm was fully-automated such that solid model construction, mesh 
generation, CFD simulation and time-averaged wall shear stress (TAWSS) quantification 
did not require user intervention. The method was applied to determine the optimal 
number of circumferentially repeating stent cells (NC) for a slotted-tube stents and various 
commercial stents. Optimal stent designs were defined as those minimizing the area of 
low TAWSS. It was determined the optimal value of NC is dependent on the intrastrut 
angle with respect to the primary flow direction. Additionally, the geometries of current 
commercial stents were found to generally incorporate a greater NC than is 
hemodynamically optimal. 

 The application of the virtual stent implantation and optimization methods may 
lead to stents with superior hemodynamic performance and the potential for improved 
clinical outcomes. Future in vivo studies are needed to validate the findings of the 
computational results obtained from the methods developed in this thesis.
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Chapter 1 
  

Background and Specific Aims 

1.1 Stents for the treatment of cardiovascular disease 

 Cardiovascular stents are commonly used as vessel scaffolding to alleviate an 

arterial narrowing or stenosis and restore blood flow to the distal vasculature. Since their 

inception in the mid 1980s, stents have gained popularity in the medical community 

because they allow diseased vessels to be treated using minimally invasive surgical 

techniques thereby reducing the trauma, cost and many complications associated with 

traditional surgery. Though stents have primarily been used to treat stenosis within 

coronary arteries, they have also been adopted for treating peripheral arteries, such as the 

carotid, renal and femoral arteries [20, 99].  

In addition to being used as vessel scaffolding, stents have recently been used as 

flow diversion devices. When used as flow diverting devices, stents are placed across 

aneurysms with the goal of occluding blood flow to the aneurysm and preventing 

potential rupture. Not to be confused with stent-grafts (fabric covered stents), flow 

diverting stents are not covered and rely on low porosity designs to alter blood flow. To 

date these devices have most commonly been used to treat intracranial aneurysms [22]. 
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Despite widespread use and several decades of research, the success of 

cardiovascular stents has been limited in some cases by adverse clinical outcomes. In-

stent restenosis, or a re-narrowing of a previously treated vessel due to excessive tissue 

growth, is the primary complication following stent implantations across all vascular 

beds. In the coronary vasculature, restenosis requiring revascularization occurs in over 

20% of patients [23, 76]. Rates of restenosis between 10-15% have also been reported in 

the peripheral arteries [4, 106, 110]. In an effort to reduce restenosis, drug-eluting stents 

(DES) have been developed in which bare-metal stents (BMS) are coated with an 

antiproliferative pharmaceutical agent to suppress smooth muscle cell (SMC) growth that 

leads to restenosis. Though DES have decreased the incidence of restenosis compared to 

BMS, retrospective studies of DES still report restenosis rates as high as 10% [48, 67, 74, 

121]. Moreover, by inhibiting SMC growth, DES also inhibit the growth or migration of 

endothelial cells atop stent struts [32, 46]. The lack of a confluent layer of endothelial 

cells over stent struts increases the susceptibility of the artery to late stent thrombosis. In 

the coronary vasculature, the incidence of late stent thrombosis is only 1%, but it results 

in acute myocardial infarction in 40-70% of cases [44, 55]. DES are less commonly used 

in the peripheral arteries, but it should be noted that late stent thrombosis in supra-aortic 

arteries can result in ischemic stroke [20]. 

As noted above, advancements in stent technology have decreased the prevalence 

of adverse clinical outcomes to about 10%, but the affected population is still rather large 

given that over one million stents are implanted each year [28]. Based on a large body of 

evidence suggesting hemodynamic forces influence the vascular response following stent 
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implantation, this thesis aims to develop new techniques to investigate these forces with 

the goal of further improving stent design and clinical outcomes. 

1.2 Patterns of wall shear stress influence the progression of cardiovascular disease 

Wall shear stress (WSS), defined as the tangential force imposed on the vessel 

wall by blood flow, plays an important role in the autoregulation of vessel caliber and 

vascular remodeling. In general, arteries remodel to preserve a homeostatic level of WSS. 

Increases in WSS caused by a decreased lumen diameter or increased flow have been 

shown to cause outward arterial remodeling [36, 47]. Furthermore, extremely high values 

of WSS are associated with vessel remodeling responsible for aneurysm initiation and 

progression [38, 102]. Conversely, regions of low WSS correlate with inward vascular 

remodeling and the progression of atherosclerosis [54]. This relationship between 

vascular remodeling and WSS suggests that stents designed to preserve the homeostatic 

level of WSS may suppress the progression of atherosclerosis and tissue growth that 

leads to restenosis. 

1.3 Stent implantation alters local hemodynamics 

Though stents are designed to reduce alterations in hemodynamics that lead to 

atherosclerosis and aneurysm formation, stent implantation may also induce detrimental 

changes in the local hemodynamic environment. Stents impart a chronic radial force 

resulting in a large compliance mismatch between the vessel and the more rigid stent [15, 

57]. The disparity in compliance at the ends of the stent introduces sites of pressure wave 

reflection that create flow disturbances in the stented vessel [1, 80]. More importantly, 

stent implantation introduces localized areas of low WSS and flow stagnation near stent 
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struts [16, 56]. In an in vivo study of stents implanted in rabbit iliac arteries, it was 

determined that these areas strongly correlate with increased neointimal hyperplasia that 

leads to restenosis [63]. Additionally, areas of complex flow near stent struts facilitate 

platelet deposition onto the arterial wall which likely affects the progression of late stent 

thrombus formation in the absence of a confluent layer of endothelial cells [24, 29]. 

1.4 Design and geometry affect the outcome of stent implantation 

Not all stents alter local hemodynamics in the same manner. Previous animal 

studies indicate that the arterial response to stent implantation varies depending on the 

stent design. For example, Rogers and Edelmen studied the difference between coronary 

stent designs by implanting stents with two different configurations but identical 

diameters, surface area and material into the iliac arteries of rabbits [93]. They found that 

simply changing the stent configuration could reduce vascular injury, thrombus and 

neointimal hyperplasia. Similarly, Sadasivin et al. induced saccular aneurysms in rabbit 

carotid arteries to analyze various flow diverting stents and determined that increased  

pore density generated a greater amount of flow stasis in the aneurysm subsequently 

improving stenting success [94]. In both of these examples, the disparity in stent 

performance can likely be attributed to the difference in the hemodynamic environment 

create by the stent geometry. 

1.5 Quantifying stent-induced changes in hemodynamics 

Hemodynamic indices (i.e. pressure, velocity, WSS etc.) associated with stent 

implantation are difficult to quantify in vivo. Noninvasive imaging techniques such as 

ultrasound and phase-contrast magnetic resonance imaging can measure in vivo blood 
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velocity, but these systems lack the resolution necessary to accurately compute WSS 

following stenting implantation [50]. Even if imaging systems could accurately measure 

WSS, often these systems only quantify WSS in a two-dimensional plane. Computational 

fluid dynamics (CFD) provides a practical means of modeling arterial blood flow to 

overcome the limitations of current imaging technology. Assuming the vessel geometry 

and blood flow can be accurately recreated, CFD models enable hemodynamic indices to 

be quantified in three dimensions, and the use of high density computational meshes 

facilitates the detailed investigation of hemodynamic indices near stent struts.  

Furthermore, CFD can be used to provide estimates of stent performance without 

necessitating the high cost of stent manufacturing or clinical models. 

1.6 Thesis motivation and specific aims 

 While previous CFD studies of stent performance have been invaluable, they have 

often been confined to simplified stent models, idealized vascular representations and 

only compare a handful of possible designs. The objective of this thesis is to address 

these limitations by developing robust computational methods to better evaluate current 

and emerging stent designs based on their hemodynamic performance. The development 

of these tools can be organized into the two specific aims described below. 

SPECIFIC AIM 1: Develop and demonstrate a rapid and computationally inexpensive 

method to virtually implant current and next-generation stents into patient-specific 

computational fluid dynamics models 
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 This investigation builds on a previously described methodology for modeling 

stents in simple patient-specific geometries reconstructed from medical imaging data 

[116]. The method is improved to facilitate the modeling stents in complex patient 

geometries and rapid parametric analysis of commercially available stent designs. 

Additionally, advanced quantification methods are developed to analyze hemodynamic 

stent performance within irregular patient-specific geometries. The applicability of the 

method is demonstrated using patient-specific models of a stented coronary artery 

bifurcation and basilar trunk aneurysm. 

SPECIFIC AIM 2: Construct a computational framework which couples an established 

optimization algorithm with computational fluid dynamics to improve cardiovascular 

stent design. 

 The solid model generation, CFD simulation and WSS quantification used to 

evaluate stent performance is coupled with the surrogate management framework [73] to 

construct a fully-automated computational algorithm for optimizing stent designs. The 

framework is used to determine the optimal configurations of a simple slotted-tube stent 

along with three commercially available coronary stent designs.   
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Chapter 2 
  

A Rapid and Computationally Inexpensive Method to 
Virtually Implant Current and Next-Generation Stents into 

Patient-Specific Computational Fluid Dynamics Models 

2.1 Introduction 

Computational fluid dynamics is often used to quantify hemodynamic alterations 

induced by stenting, but frequently uses simplified computational models of deployed 

stents and idealized vascular geometries [60, 61]. Solid mechanics, or finite element 

analysis (FEA), studies of stent expansion with subsequent flow analysis undoubtedly 

offer an ideal approach for scrutinizing devices, but involve several potential limitations. 

For example, these studies are typically performed with only a portion of the stent, 

representing a few millimeters in length, but the typical length of stents implanted in the 

superficial femoral arteries can exceed 100 mm in length. A finite element approach may 

also require the non-trivial process of converting a discrete finite element mesh into a 

parametric surface to create CFD meshes [11]. Moreover, patient-specific modeling of 

stent implantation using solid mechanics would further increase the time and 

computational cost of an already computationally expensive CFD simulation process. As 

a result, a full-scale analysis of this type is rare. 

The objective of this investigation was to develop a rapid and robust method for 

assessing the influence of current and next-generation stents on patient-specific local 
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hemodynamics and vascular biomechanics quantified by CFD. As opposed to a full-scale 

approach of solid mechanics modeling with subsequent CFD, the post-implantation 

deformation of strut linkages for a portion of the investigated stent is determined using 

finite element analysis or microscopy if the expanded orientation of linkages is not 

previously known, and computer aided design (CAD) is then used to propagate the 

knowledge of strut deformation throughout the full length of a stent for virtual 

implantation into patient-specific CFD models. The sections below begin with a 

description of the methods used to virtually implant commercially available, next 

generation or prototype stents within a CFD model along with techniques for quantifying 

their hemodynamic performance. The use of this new method is then applied in two case 

studies using patient-specific CFD models generated from the coronary and cerebral 

portions of the arterial vasculature. Importantly, each of these examples highlights the use 

of these methods to investigate current clinical sequelae and potential sources of long-

term morbidity thought to be influenced by adverse hemodynamic alterations. 

2.2 Model construction and simulation methods 

2.2.1 Patient-specific CFD model creation 

 Computational representations of the vasculature were created using Simvascular 

open-source software (https://simtk.org/home/simvascular), which facilitates volume 

visualization and conversion of medical imaging data into geometrically representative 

computer models (Figure 2.1: A1-A3). The process involves finding the centerline path 

of each artery, performing segmentation to delineate the arterial wall and connecting 

these segments to form a Parasolid model (Siemens, Plano, TX)[118]. In cases where the 

stent-to-artery deployment ratio used clinically would alter the global geometry within 
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the stented region (i.e. for balloon-expandable stents) physician guidance is required to 

alter segments within the stented region of the vessel according to standard interventional 

procedures [93, 109]. 

 
Figure 2.1: Method of patient-specific model construction. Imaging data, shown as a 
volume rendering (A1), is used to generate vessel centerlines and 2-D segments of the 
arterial geometry (A2). The segments were lofted together to create a 3-D solid model 
(A3). A parameterized sketch of the stent cell (B1) is wrapped around a thick tube (B2) 
and propagated along the length of the tube to create model of a thick stent (B3). The 
thick stent is flexed to match the arterial geometry (B4). The solid vessel (C1) is 
hollowed to radial thickness equal to that of the stent, such that the intersection of the 
thick model of the stent and thin vessel (C2) yields a patient-specific stent (C3) that is 
subtracted from the solid model to produce the flow domain (C4). 

2.2.2 Creation of stent models 

The approach discussed below requires knowledge of the expanded orientation of 

strut linkages. If not known, this information can be determined in a number of ways 
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including performing FEA for a portion of the stent [83, 113] or deploying a stent and 

quantifying the orientation of its strut linkages using light microscopy or microfocal x-ray 

computed tomography [83, 91]. A CAD drawing of the expanded stent pattern is then 

created. The drawing is constrained using a set of equations and other criteria that allow 

the user to easily control specific features of the model (Figure 2.1: B1). This parametric 

approach allows for properties including the number, width and circumferential or 

longitudinal spacing (i.e. scaffolding) of struts, as well as the implantation diameter and 

stent length, to be easily adapted using variables. The drawing, and subsequent stent 

model, can then automatically be regenerated for rapid parametric analysis of the 

contribution of these design properties to resulting hemodynamic alterations. 

The drawing of the expanded stent is wrapped around a tube with a diameter 

slightly larger than the vessel in which the stent will be virtually implanted and a 

thickness >5-times the desired stent thickness. The cell geometry of the stent is then cut 

out of the tube, resulting in a stent design that accurately represents a commercially 

available stent with an accentuated radial thickness (Figure 2.1: B2-B3). Each stent 

design in this study was created using CAD software capable of saving a Parasolid 

document such as Solidworks (Solidworks Corp., Concord, MA) or SolidEdge (Siemens, 

Plano, TX) in order to facilitate integration of the vessel and stent models.  

2.2.3 Virtual stent implantation 

 Virtual stent implantation is achieved using a series of Boolean operations. The 

thick stent is flexed to match the curvature of the vessel (Figure 2.1: B4). A separate solid 

model of the vessel to undergo virtual stenting is created and hollowed to the desired 

stent thickness (Figure 2.1: C1). A Boolean intersection operation is then performed with 
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the hollowed vessel and thick stent to yield a computational representation of the stent to 

undergo virtual implantation (Figure 2.1: C2-C3). Then a Boolean subtraction operation 

is performed with this stent and the patient-specific model in order to remove the stent 

from the lumen and generate the flow domain for CFD analysis (Figure 2.1: C4). In the 

presence of branching arteries, the Boolean intersection that yields the patient-specific 

stent is performed only on the main vessel, with any branching arteries removed from the 

model. The subsequent subtraction of the patient-specific stent is performed on the entire 

model of the vasculature such that the struts of the stent partially occlude the branching 

arteries. 

2.2.4 Specification of CFD boundary conditions and simulation parameters 

Boundary conditions varied slightly between applications and specific details 

unique to each vascular bed will be presented in the subsequent examples. Generally, 

inlet boundary conditions were obtained from experimental data [33, 57] and outlet 

boundary conditions that replicate measured blood flow and pressure were applied. To 

replicate the physiologic influence of vessels distal to CFD model branches, a three-

element Windkessel representation was imposed at model outlets using a coupled-

multidomain method [112]. The three-element Windkessel method provides a good 

estimate of the arterial tree beyond model outlets [105] and can be described by three 

main parameters with physiologic meaning: Rc, C and Rd. Rc is the characteristic 

impedance representing the resistance, compliance and inertance of the proximal artery of 

interest, C is the arterial capacitance and represents the collective compliance of all 

arteries beyond a model outlet, and Rd describes the total distal resistance beyond a given 
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outlet. The procedure for calculating the Windkessel parameters at each outlet is as 

follows: 

1) Compute the total resistance (Rt) for the entire model based on mean blood 

pressure (BP) and flow (Q) measurements. Note that BP=Q*Rt. 

2) Estimate the total arterial compliance (TAC) for the entire model from 

measured inflow and BP measurements using the pulse pressure method 

[105]. Assume a Rc:Rt ratio of 6%, where Rt= Rc+Rd [65]. 

3) Distribute TAC and Rt among the model outlets according to the blood flow 

distribution to the outlets. Tune the Rc:Rt ratio at each outlet using the pulse 

pressure method thereby replicating the desired BP values at each outlet [105]. 

Blood was assumed to behave as a Newtonian fluid with a density of 1.06 g/cm3 

and dynamic viscosity of 4 cP. Three or four cardiac cycles were run to ensure simulation 

results were converged with a maximum error between equivalent time points in 

successive cardiac cycles <1 mmHg and 1 mm3/s for pressure and flow, respectively. The 

simulation time-step was chosen for a Courant, Friedrichs and Lewy condition <1. 

Simulations were also scrutinized to ensure results were independent of the number of 

mesh elements in each model. Anisotropic meshes were created with unstructured 

tetrahedral elements using a commercially available, automatic mesh generation program 

(MeshSim, Simmetrix, Clifton Park, NY). Initial meshes were generated such that the 

density of elements around the stent struts was much greater than throughout the rest of 

the model. Meshes were further adapted after each pulsatile simulation to place more 

elements near struts and other regions where they are most needed within the flow 

domain while inserting fewer elements where a coarse density is sufficient [84]. The 
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desired mesh independence criteria strived for a change in time-averaged WSS values 

<0.1 dynes/cm2 at predetermined proximal and distal intrastrut regions between 

successive meshes [56, 87]. Simulations were performed using a stabilized finite element 

method to solve equations for conservation of mass (continuity) and balance of fluid 

momentum (Navier-Stokes). Vessel wall elastodynamics equations were also solved in 

cases where a deformable model was used to define the vessel wall[112]. 

2.3 Simulation quantification methods 

 The following portion describes the post-processing techniques for quantifying 

and visualizing hemodynamic indices associated with stent performance. While they are 

presented as a general set of quantification methods, these techniques may not be 

applicable to all stenting scenarios. For example, the turbulent kinetic energy described 

below is often quantified in aneurismal geometries, but it would not be investigated in a 

study of coronary stents where flow is largely laminar. 

2.3.1 TAWSS, OSI and displacement computation and visualization 

After verifying that simulation results were mesh independent and replicated 

aimed BP and flow distributions, time-averaged wall shear stress (TAWSS) and 

oscillatory shear index (OSI) were computed over the last cardiac cycle as previously 

described [108]. Specifically, TAWSS was computed at each node on the surface of the 

CFD mesh as: 

𝑇𝐴𝑊𝑆𝑆 =  �
1
T
�𝑊𝑆𝑆���������⃑  𝑑𝑡
T

0

� 
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where 𝑊𝑆𝑆���������⃑  is the WSS vector at a node and T is the period of one cardiac cycle. 

Similarly, OSI was computed at each surface node as: 

𝑂𝑆𝐼 =  
1
2
�1 −

�1𝑇 ∫ 𝑊𝑆𝑆���������⃑  𝑑𝑡𝑇
0 �

1
𝑇 ∫ �𝑊𝑆𝑆���������⃑ �𝑑𝑡𝑇

0

�𝑊𝑆𝑆���������⃑  

OSI is a measure of the directionality of WSS in which lower OSI values indicate WSS is 

oriented predominately in the primary direction of blood flow while a value of 0.5 is 

indicative of bi-directional WSS with a time-average value of zero throughout the cardiac 

cycle.  

In cases where the model walls were defined as a deformable surface, the 

maximum circumferential strain (𝜖) was computed as: 

𝜖 =
𝑐𝑠𝑦𝑠 − 𝑐𝑑𝑖𝑎

𝑐𝑑𝑖𝑎
  

where csys and cdia represent the vessel circumference during systole and diastole. The 

circumference was measured at a vessel cross-sections perpendicular to the vessel 

centerline. 

2.3.2 Unwrapping the vessel surface geometry 

To better visualize TAWSS, or other relevant hemodynamic indices at the vessel 

wall, the surface geometry of a vessel was unwrapped whereby each (x, y, z) node of the 

surface mesh was mapped to a (θ, l) coordinate system. The dimension θ represents the 

angular position of the node for 0-360 degrees in which the zero degree location was 

arbitrarily chosen, but most often selected to lie along some convenient landmark such as 

the inner or outer curvature of a vessel. The dimension l represents the length along the 

vessel in which the node was located.  
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The length along the vessel was measured relative to the centerline of the vessel. 

Unfortunately, the centerline path created when modeling the vessel geometry from the 

imaging data (Figure 2.1: A1) could not be used to unwrapped the surface geometry 

because it was a user-created path and may not accurately represent the center of the 

vessel. Since θ is measured relative to the centerline, an off-center path would distort the 

θ measurement (Figure 2.2). It was therefore necessary to create an unbiased centerline 

path to unwrap the vessel surface geometry. 

 
Figure 2.2: Comparison of θ quantification with using an off-center and a centered vessel 
path. (Left) A 3D representation of the vessel and the two paths. (Right) Cross-section of 
the vessel with path/plane intersections of the paths denoted. A 90° section of the vessel 
wall is denoted with within the gray shaded areas originating from the two paths. Note 
that the extent of the vessel wall included within the 90° section differs depending on the 
location of the centerline. 

The corrected path was computed using the original, or model construction, path 

as a guide. The model construction path was traversed and planar cross-sections of the 

vessel surface mesh were computed at regular intervals. The center of each cross-section 

was calculated as the center of an algebraic least-squares fit of a circle [34]. The 

computed centers of each cross-section were then used to construct the corrected path. 

Initially, it was proposed the centroid of the cross-section could be used as the center of 
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the cross-section. However, using the centroid caused the correct path to be skewed away 

from bifurcating vessels (Figure 2.3), thus a circle fitting algorithm was adopted. 

 
Figure 2.3: Comparison of algorithms for computing the centerline of a vessel at a 
bifurcation. (Left) 3D representation of the bifurcation and the centerline path computed 
using the centroid (red) and circle-fitting (black) algorithms. (Right) Cross-section of the 
main vessel at the bifurcation. The centroid (red dot) of the vessel is computed using the 
area shaded in gray. Because the branching vessel is removed during the analysis, the 
centroid is skewed away from branch location. The center of the fitted circle (large black 
dot) was computed using the points from the surface of the main vessel geometry (small 
black dots). Note that the fitted circle (black line) provides a good approximation of the 
center of the vessel even when a large portion of the vessel cross-section is removed. 

The corrected path was then used as the reference from which l was computed for 

each node of vessel surface geometry. A Frenet-Serret frame was used to define a local 

coordinate system along the centerline of the vessel. This moving coordinate system 

consisted of a tangent (T), normal (N) and binormal (B=T×N) vector as shown in Figure 

2.4. Using this coordinate system, l was defined for each node as the length along the 

centerline where the surface mesh node intersected the plane defined by the normal and 

binormal vector (NB-plane). The distance (d) between a mesh point (pm) and the NB-

plane was given by: 

𝑑 = 𝑇(𝑙) ∙ 𝑝𝑚 − 𝑇(𝑙) ∙ 𝑝𝑐(𝑙) 
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where pc is the point along the centerline at some length l. The length l along the 

centerline for each mesh point was determined by setting d=0 and solving the remaining 

equation. However, this was not a trivial computation since it is dependent on the 

definition of T(l) and pc(l). The simplest method to define T and pc is using piecewise 

linear interpolation between the points of the corrected centerline, but this results in 

somewhat uneven vessel mapping due to the discontinuities at each point of the 

centerline. For smoother mapping, piecewise Hermite cubic spline interpolation was used 

as it provides C1 continuity at each  point of the centerline [82]. 

 
Figure 2.4: Moving coordinate system used when computing the distance, or length, 
along the centerline path for a point on the surface mesh of the vessel. 

The last step to unwrapping the surface geometry of a vessel was computing the 

angular position, θ, relative to the center for each point on the surface mesh. This 

calculation was performed in the NB-plane. One option for computing angular position 

was to calculate the angle between the vectors (pm – pc) and N, where N is defined as the 

0° position. However, when using a Frenet-Serret frame, N is always directed towards 

the center of the curvature which causes erratic orientation changes, or twisting of the 0° 
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position.  For the purposes of visualizing hemodynamic parameters, it is more desirable 

to use the parallel transport method [17, 37] to minimize the amount of twisting of the 

reference 0° position. Thus, θ was calculated at each point on the surface of vessel 

geometry as the angle between the vectors (pm – pc) and a parallel transport vector 

(Figure 2.5). 

 
Figure 2.5: Comparison of methods for computing the angular position when 
unwrapping a vessel geometry. (Left) The 3D vessel geometry of a stented coronary 
artery. The vessels centerline path is shown along with the vectors indicating the 0° 
position computed using the Frenet-Serret coordinate system (red) and the parallel 
transport method (blue). (Right) Resulting unwrapped vessel computed using the Frenet-
Serret coordinate system (red) and the parallel transport method (blue). The difference 
between the methods is shown using a stented vessel as the stent struts illustrate the 
amount of twisting associated with each method. 

2.3.3 Computing mean exposure time 

Flow stasis was quantified by computing mean exposure time (MET), recently 

defined by Lonyai et al. [71]. Using a particle tracking scheme, MET measures the 

duration massless particles reside within in each element of an MET mesh. In the stented 

models of this investigation, the mesh adaption process created highly anisotropic meshes 
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with more elements along the stent struts, which was not suitable for computing MET. 

Auxiliary isotropic meshes were therefore used as part of a post-processing step for the 

MET calculations since this index depends on element size. To calculate MET for an 

element e, 𝑁𝑒 is defined as the number of times a particle passes through the element, 𝑉𝑒 

as the volume of the element, 𝑁𝑡 as the total number of particles released, and 𝐻𝑒
𝑝(𝑡) as 

equal to 1 when a particle p is located inside the element at time t and is equal to 0 

otherwise such that the MET is given by: 

𝑀𝐸𝑇 =
1

𝑁𝑒𝑉𝑒
1
3�
�� 𝐻𝑒

𝑝(𝑡)𝑑𝑡
∞

0

𝑁𝑡

𝑝=1

 

Because the duration a particle resides within an element (i.e. the summation on the right 

side of the MET equation) is normalized by the 𝑁𝑒, MET distinguishes between 

recirculating particles and stagnant particles unlike other flow stasis measurements that 

quantify a cumulative duration. For example, if the duration a particle spends in an 

element is equal to 1.0 second and the particle encountered the element once, the 

computed MET would be higher than a recirculating particle that passes through the 

element twice whose cumulative duration within the element was 1.0 second.  In this 

manner, flow stagnation is weighted higher than recirculation when computing MET. 

In the previous study of MET around venous pacemaker leads, Lonyai et al. also 

normalized the duration a particle resides within an element to 𝑉𝑒 [71]. In this 

investigation the duration a particle resides within an element was instead normalized to 

𝑉𝑒
1
3� , since it was noticed that variations in element size can result in large variations in 

MET if normalized to 𝑉𝑒, as illustrated in Figure 2.6. Given the relatively small element 

size of the auxiliary meshes used in this investigation, it could be assumed particle 
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movement through the elements was highly one-dimensional, and normalizing the 

duration a particle resides within an element to 𝑉𝑒
1
3�  reduced variations in MET resulting 

from differences in element volume. 

 
Figure 2.6: A simple example of the variation in mean exposure time (MET) caused by 
differences in element size. A particle moving with a velocity = 1 is shown passing 
through a small cubic element (top) and a cubic element with an edge size twice as large 
(bottom). It is assumed the particle passes through each element once (Ne=1) with a one-
dimensional trajectory, such that the duration (D) the particle resides in the element is 
proportional to the edge size. Using the MET definition of Lonyai et al., MET=D/(NeVe), 
the computed MET differs between the elements due to the large variation in the volume 
of the element (Ve). Applying the MET definition used in this investigation, 
MET=D/(Ne 𝑉𝑒

1
3� ), results in a computed MET of 1 for each element. 

 The results of the MET analysis may be sensitive to the strategy with which 

particles are released. There are two primary methods for seeding the computational 

domain, uniformly seeding the entire model or seeding just the inlet. Uniformly seeding 

the entire domain ensures particles populate all regions of the model, but it is likely that 

proximal regions of the model will not encounter as many particles as the distal regions. 

In contrast, seeding the inlet of the model ensures both the proximal and distal regions of 

the vasculature encounter an equal number of particles, but there is the potential that 
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particles would not populate areas of slow or recirculating flow. To overcome the 

disadvantages of both release strategies, a hybrid release strategy was used in which an 

initial uniform seeding of the entire model was supplemented with particles released from 

the inlet of the model over the course of one cardiac cycle. The inlet particles were 

released in a fashion uniform with respect to both space and time such that a greater 

number of particles were released in high velocity areas, shown in the simplified example 

in Figure 2.7. After one cardiac cycle, the inlet release was ceased, and the MET analysis 

was continued for additional cycles until all the particles exited the domain. 

 
Figure 2.7: A simple, two-dimensional example of a particle release into steady flow at 
the inlet of an ideal tube. Particles are shown as being released from the inlet (diameter = 
1) at uniformly spaced locations (spacing = 0.1). The timing of the particle release is 
computed such that additional particles are released at each location in a similarly 
uniform fashion.  

 In addition to the particle release strategy, the density of particles released likely 

influences the results of the MET analysis as well. To analyze the effect of particle 

density, MET analyses with different particle densities were performed for both the 

coronary and cerebral stenting applications. In each case, the first analysis was performed 

with about 1.5 million particles, followed by a second analysis with about 3 million 
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particles and third with about 6-7 million particles. To examine the effect of particle 

density within the entire geometry, a histogram, or discrete probability density function 

(PDF), was computed to characterize the distribution of MET for both the low, medium 

and high particle density MET computations. The PDF bin size was 0.0025 s/cm over a 

range of 0 to 0.4 s/cm. For both the coronary and cerebral applications, a bin to bin 

comparison of the MET histograms revealed a maximum difference >20% between the 

low and medium particle density MET computations but a maximum difference <2.5% 

between the medium and high particle density releases. Thus, MET computations 

performed with 3 million particles were assumed to adequately resolve the MET field, 

but the results of the high density releases are reported in the subsequent examples given 

that these results were already computed for this analysis. 

To facilitate several MET analyses with a large number of particles, the MET 

code was ported to a computer cluster and parallelized to improve the speed of the 

analysis. Unlike the parallel CFD solver, the MET code was not parallelized by splitting 

up the model geometry. Instead, the entire model and CFD results were distributed to 

each processor and the particle release was split among the processors. This 

parallelization strategy was chosen to minimize the amount of data transferred between 

the processors. This is best illustrated with a simple example. Consider an MET analysis 

split up among five processors. Each processor would receive a copy of the CFD results 

but would only be assigned about 1/5 of the particles. After each processor completes its 

analysis, the computed MET for each processor is combined on an element by element 

basis to produce the complete MET analysis. This parallelization strategy is most 

efficient when the number of particles assigned to each processor is equal. Since the 
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speed of the MET code on one processor is proportional to the number of particles 

released, an uneven distribution causes processors with a greater number of particles to 

create a bottleneck for the entire analysis. For this reason, it is not efficient to parallelize 

the particle release based on time (e.g. Five processors, each processor advects the 

particles released during 1/5 of the cardiac cycle), because more particles would be 

assigned to processors that analyze systole than those that analyze diastole. As shown in 

Figure 2.8, distributing the particle release among the processors based on flow rate 

results in an equal and more efficient distribution of particles among the processors. 

 
Figure 2.8: An example of time based and flow rate based strategies for distributing the 
particle release among multiple processors to compute MET. In this example, the release 
of six million particles over one cardiac cycle is distributed among five processors. The 
portion of the particle release assigned to each processor is denoted by the alternating 
gray and white areas under the flow waveform. The number of particle assigned to each 
processor is also denoted (in millions). 
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2.3.4 Computing turbulent kinetic energy 

Turbulence was quantified as the cycle-to-cycle variation within the velocity field 

as previously described [95]. Once simulations were considered converged, four more 

cardiac cycles were simulated, resulting in five well-converged cycles. An ensemble-

averaged velocity for each time point within the cardiac cycle was then computed over 

the last five cycles. Subtracting the ensemble-averaged cycle from the original velocity 

field results in the fluctuating component of the velocity, 𝑢��⃑ (�⃑�, 𝑠). Mathematically, the 

fluctuating velocity field can be used to compute the turbulent kinetic energy as: 

𝑇𝐾𝐸(�⃑�, 𝑠) =
1
2
𝜌[〈𝑢�12〉(�⃑�, 𝑠) + 〈𝑢�22〉(�⃑�, 𝑠) + 〈𝑢�32〉(�⃑�, 𝑠)],∀𝑠 ∈ [0, ��𝑇) 

where T is the period of the one cardiac cycle, ρ is the density of blood, 𝑢�1, 𝑢�2, and 

𝑢�3represents the x, y, and z components of the fluctuating velocity, and 〈𝑢�〉(�⃑�, 𝑠) denotes 

an ensemble average of a fluctuating velocity component. Similarly, the ensemble-

averaged kinetic energy (KE) is computed as: 

𝐾𝐸(�⃑�, 𝑠) = 1
2
𝜌[〈𝑢12〉(�⃑�, 𝑠) + 〈𝑢22〉(�⃑�, 𝑠) + 〈𝑢32〉(�⃑�, 𝑠)],∀𝑠 ∈ [0, ��𝑇)   

where 𝑢1, 𝑢2, and 𝑢3 represents the x, y, and z components of the ensemble averaged 

velocity.  Finally, the ratio of TKE\KE was computed at peak systole. 

2.4 Case Study 1: Comparing the hemodynamic alterations between stents after 

virtual implantation across a coronary bifurcation 

 In the coronary vasculature, the stenting of bifurcation lesions, which accounts for 

15-20% of treated lesions, is associated with high rates of restenosis and thrombosis [44, 

98]. To date the majority of bifurcation stenting studies has analyzed the effects of 

various single and multiple stenting strategies. Because a large emphasis has been placed 
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on the stenting technique, very little is known about the potential influence of stent 

design when used to treat bifurcations. Thus, the objective of the case study was to apply 

the virtual stenting method to characterize the hemodynamic differences between two 

stent designs placed across a bifurcation. It should be noted that the predominant 

bifurcation stenting technique is main vessel stenting with provisional side branch 

stenting [103], which results in the presence of stent struts across the ostium of the side 

branch. For this reason, both the local hemodynamics within the main vessel and side 

branch need to be considered when examining the hemodynamic performance of each 

stent. 

2.4.1 Methods 

 A CFD model was created as described above from computed tomography data 

obtained from the OsiriX medical imaging repository (http://pubimage.hcuge.ch:8080/). 

The patient did not have a significant stenosis and the left anterior descending (LAD) and 

first diagonal branch diameters, branch angle and radius of curvature matched published 

normal values [30, 90]. Computational representations of an open-cell ring and link 

design (Stent A) and a close-cell slotted tube prototype design (Stent B) created through 

contract manufacturing for use with experimental investigations were virtually implanted 

using the methods described above (Figure 2.9). The resulting stented vessels mimicked 

the clinical practice of main vessel stenting without subsequent side branch balloon 

angioplasty.  
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Figure 2.9: Coronary model in which an open-cell ring and link, Stent A, and a closed-
cell slotted-tube, Stent B, design were virtually implanted. 

An LAD blood flow waveform at rest [56] was applied at the model inlet. At the 

outlets, the three-element Windkessel was applied, although in the coronary vasculature 

the Windkessel parameters are difficult to compute as ventricular contraction causes 

time-varying changes in resistance [53]. Van Huis et al. demonstrated that the in the 

absence of ventricular contraction the system can be assumed as linear, and the zero hertz 

impedance, Z0, is between 22-65% less than the total resistance [111]; therefore the total 

resistance total resistance (Rt), was scaled by 65% to fall with this range. The 

characteristic impedance (Rc), was calculated from the pulse wave velocity of coronary 

arteries as [111]: 

 𝑅𝑐 = 𝜌∙𝑐𝑝ℎ
𝜋𝑟2

 

where ρ is the density of blood, cph is the arterial pulse wave velocity, and r is the artery 

radius. A pulse wave velocity of 8.6 m/s was used in this investigation [5]. Given, Rc and 

the scaled Rt, the arterial capacitance parameter was computed as described earlier to 



27 
 

replicate the desired BP. At the vessel wall, the stent was modeled as rigid while the 

vessel was modeled as deformable. The modulus of elasticity and thickness of the vessel 

wall were selected to match the deformation previously observed during resting flow 

conditions [89]. 

Previous studies have demonstrated that distributions of TAWSS <4 dyn/cm2 and 

high temporal oscillations in WSS quantified by OSI are associated with cellular 

proliferation, intimal thickening and inflammation [39]. In addition to unwrapping the 

vessel geometry to visualize these hemodynamic parameters, the area of the stented 

region exposed to TAWSS <4 dynes/cm2 and the area of the lumen surface containing 

OSI >0.1 were quantified. Due to differences in intrastrut area (i.e. scaffolding) and the 

number of strut linkages between the similarly sized stents, TAWSS and OSI were 

normalized to the overall area of the stent interfacing with the luminal wall. Vessel wall 

strain was quantified within each intrastrut area at the point of the largest wall 

displacement. MET was computed at the bifurcation to visualize flow stasis in both the 

main and side branches induced by stent placement. 

2.4.2 Results 

Two stented models and a corresponding unstented model of a coronary 

bifurcation were created using the described method of stent implantation. The stent 

creation and implantation into the previously built vessel geometries was accomplished in 

12-16 hours for each coronary stent. CFD simulations of the final stented coronary 

meshes (3.2 million elements) took about 2.9 hours per cardiac cycle, whereas the 

unstented coronary geometry (2.2 million elements) took 1.75 hours per cardiac cycle.  
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 Distributions of TAWSS in the coronary arteries for the two stent types are 

illustrated in Figure 2.10. The main branch stent struts induced non-uniform distributions 

of WSS in the side branch immediately distal to the stent (Figure 2.10, epicardial and 

myocardial inserts). Regions of low TAWSS (<4 dynes/cm2) were localized near the 

struts and more prevalent distal to the bifurcation in both stent models. The total intra-

strut area of the lumen exposed to low TAWSS was higher for the open-cell ring-and-link 

design (Stent A) (75.6%) than the close-cell slotted-tube design (Stent B) (59.3%). The 

curvature of the model caused localized areas of low TAWSS along the myocardial side 

of the LAD lumen in both models. Analysis of the unstented model (results not shown) 

revealed the amount of lumen exposed to low TAWSS due to native vessel geometry is 

5.8%, thus the amounts of stent-induced low TAWSS are 69.8% and 53.5%. There were 

only modest differences in the area of the luminal surface exposed to high OSI between 

the two stent models (<1% for both models), but localized areas of high OSI were found 

to correspond to areas of low TAWSS along the myocardial lumen surface just distal to 

the bifurcation. 
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Figure 2.10: Comparison of hemodynamic indices between coronary Stent A and Stent 
B. Time-averaged wall shear stress (TAWSS) is shown on the vessel (left) and the inserts 
show the distribution at the bifurcation as a result of partial side branch occlusion. The 
main branch of the vessel was unwrapped to visualize intrastrut TAWSS and vessel wall 
displacement. 

 Displacement of the wall in the intrastrut region was ten times less than that in 

other portions of the LAD (Figure 2.10). The larger open-cell geometry of Stent A 

allowed for a greater intrastrut peak displacement. However, the closed-cell design of 

Stent B allowed for a greater average circumferential wall strain due to the pattern of wall 
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deformation within the intrastrut region (0.0035 vs. 0.0040). These values were much less 

than the strain of vessel wall distal to the stent which was near 0.03. 

 Approximately 6.2 million particles were released in each bifurcation model over 

the course of one cardiac cycle and tracked for an additional 19 cardiac cycles to compute 

MET. Figure 2.11 illustrates several cross-sections of the MET field (computed with 6.2 

million particles) near the bifurcation. Stent implantation increased the region of high 

MET near the wall of the vessel in the main branch (Figure 2.11, bifurcation plane and 

cross-section A). The most pronounced difference in MET due to stent implantation was 

in the side branch, just distal to the stent (Figure 2.11, cross-section B).  In this region, 

the MET mimicked the stent design, placement, and number of struts in the side branch 

which caused MET near the center of the vessel to increase relative to the unstented 

model.  Approximately 1.25 mm distal to cross-section B the MET field of the stented 

models reflected that of the unstented model, with only slight differences in area of high 

MET near the vessel wall. The MET was lowest near the carina of the bifurcation which 

corresponds to increased velocity in this region. 
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Figure 2.11: Cross-sections of the mean exposure time (MET) at the coronary 
bifurcation for one unstented and two stented models. MET is visualized in a plane 
parallel to the bifurcation and three planes perpendicular to the vessel (top, left). The two 
planes in the side branch of the bifurcation (B-C) are separated by a centerline distance of 
approximately 1.25 mm. 

2.4.3 Discussion 

 Several properties of coronary stent design influence local hemodynamics within 

the coronary vasculature, such as strut size, width, deployment ratio, etc [60, 93]. In this 

study, the area of low WSS, an indicator for the localization of neointimal hyperplasia 

and subsequent restenosis, was determined to be greater for the open-cell ring-and-link 

design (Stent A). Since strut radial thickness and deployment ratio were kept constant for 

both stent designs, the higher WSS of the closed-cell slotted-tube design (Stent B) is 

likely the result of a longitudinal stent strut angle which is more aligned in the primary 

blood flow direction [62].   
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Using circumferential strain as a measure of the wall motion, Stent B allowed for 

slightly more wall motion than Stent A. Although somewhat counter-intuitive since initial 

visual inspection of calculated wall displacement indicated Stent A had higher peak 

displacement, the longer longitudinal length of the stent cell geometry of the prototype 

stent allows for a greater amount of strain to be generated in intrastrut regions. It should 

be noted the vessel was modeled with a constant compliance throughout the geometry, 

but compliance may vary spatially due to the presence of atherosclerotic lesions. 

MET in the side branch just distal to the coronary stent is highly influenced by 

both the stent design and stent position (Figure 2.11, cross-section B), and it is difficult to 

predict which stent design performs best. Interestingly, the difference in MET due to 

struts crossing the side branch is quite diminished 1.25 mm distal to the stent (Figure 

2.11, cross-section C), and it is unknown if the small volume of high flow stasis within 

this region is hemodynamically significant. While the effects of stent position were not 

considered in this investigation, Williams and Koo et al. modeled a worst case and best 

case stent position across the side branch in an ideal model and observed minimal 

changes in hemodynamics between the models [117]. Still, additional studies are needed 

to better understand the effects of the stent position on disease progression within stented 

bifurcations. The method of stent implantation demonstrated in this investigation is well-

suited for investigating stent positions due to the control the user has during stent 

placement. 
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2.5 Case Study 2: Quantifying the effect of stent strut size on cerebral aneurysm 

hemodynamics 

 Cerebral aneurysm rupture is the second leading cause of stroke in the United 

States [69]. To avoid rupture, blood flow to an aneurysm can be occluded to promote 

flow stagnation and induce thrombosis by means of surgical clipping or endovascular 

devices including coils and stents. In saccular aneurysms, coiling has been shown to be 

an effective treatment for rupture prevention [79]. Wide-necked aneurysms are more 

difficult to treat, and often a stent is used in conjunction with coiling to facilitate 

thrombosis in these cases [97, 114]. Stent porosity, strut size, and cell geometry have all 

been identified as factors that affect cerebral stent performance [12, 52]. Decreased strut 

size of helical stents has been shown to favorably alter flow in idealized aneurysms 

geometries using particle image velocimetry (PIV) [68]. The objective of this example 

was to evaluate how the strut size of stent designs similar to the commercially available 

Neuroform2 stent (Boston Scientific Neurovascular, Fremont, CA) affects hemodynamics 

in a patient-specific model of a wide-necked aneurysm using the computational stenting 

methods described above. 

2.5.1 Methods 

A cerebral model of a patient with a large basilar trunk aneurysm was constructed 

from magnetic resonance imaging data also obtained from the OsiriX medical imaging 

repository. Three stent designs similar to the Neuroform2 were modeled in an expanded 

configuration using the parametric modeling techniques described earlier (Figure 2.12). 

All stents had the same porosity but their strut size was varied for use in three CFD 

simulations. The number of longitudinal and circumferential repetitions was increased as 
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stent strut size decreased in order to maintain a constant porosity in each model as shown 

by the design specifications in Table 2.1. Though these stents are often used in 

conjunction with coils, only a stent model was placed across the neck of the aneurysm in 

order to isolate and characterize stent performance.  

Unlike the coronary stenting case study, both the stent and vasculature were 

assumed to be rigid. Time-varying waveforms were imposed at the model inlets (2 

vertebral and 2 internal carotid arteries) based on previously characterized flow 

waveforms in this area of vasculature [33]. Three-element Windkessel model 

representations were prescribed at the six outlets of the model (2 anterior, 2 middle, and 2 

posterior cerebral arteries) to match the flow distribution in the Circle of Willis [107]. 

Table 2.1: Design parameters for three cerebral stents with a constant porosity. 

Stent Abbreviation 
Longitudinal 
Repetitions 

Circumferential 
Repetitions Strut Width (µm) 

N2-8x8 8 8 93.7 
N2-10x12 10 12 73.4 
N2-12x16 12 16 65.0 

 
Figure 2.12: Basilar truck aneurysm in which three stents similar to the Neuroform2 
were virtually implanted. 

Vascular remodeling is known to occur in areas of elevated WSS. The area of the 

impact zone (TAWSS >20 dynes/cm2) created by velocity impinging on the aneurysm 
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surface was quantified in addition to the area of low TAWSS <4 dynes/cm2 [41, 78]. To 

quantify flow stasis, each model was virtually clipped at both ends of the stented region 

to isolate the aneurysm following simulation and convergence. MET was then computed 

as previously described by releasing particles at the inlet and throughout the isolated 

geometry.  

2.5.2 Results 

 Three cerebral stent models and one unstented model were created using the 

described method of stent implantation. The stent creation and implantation into the 

aneurysm geometries was accomplished in about 12 hours for the N2-8x8 cerebral stent. 

Subsequent modification of the N2-8x8 design to create the N2-10x12 and N2-12x16 

designs only took about 45 minutes per model. Using 64 cores, the final meshes of the 

stented (3.1 million elements) and unstented cerebral models (3.1 million elements) were 

simulated in 2.3 and 1.8 hours per cardiac cycle respectively. 

  Peak systolic velocity, TAWSS and peak systolic TKE for the three cerebral 

aneurysm stent designs are shown in Figure 2.13. Peak systolic velocity in the dome of 

the aneurysm decreased as stent filament (i.e. linkage) size decreased, as well as the size 

of the high velocity jets through the stent. Decreasing filament size also reduced TAWSS 

on the distal wall of the aneurysm, and caused the area of high TAWSS to move from the 

dome of the aneurysm towards the neck. The area of the impact zone (TAWSS >20 

dynes/cm2) was 7.2%, 3.2%, 2.6% and 1.7% of the total aneurysm lumen area for the 

unstented, N2-8x8, N2-10x12 and N2-12x16, respectively. Similarly, the area of low 

TAWSS (<4 dynes/cm2) was 33.9%, 55.4%, 59.3% and 64.9%. Qualitatively, the TKE in 

the aneurysm was minimal throughout the cardiac cycle. Only mildly unsteady flow was 
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present during peak systole. Volume rendered TKE showed no apparent relationship 

between the TKE and stent filament size (Figure 2.13). Similarly, mean TKE values, 

measured in the stented region (Table 2.2) do not indicate a trend consistent with the 

observed decreases in velocity and TAWSS. The unstented geometry had the largest 

TKE, the N2-12x16 had the lowest TKE, but the N2-10x12 and N2-8x8 have similar 

values of TKE. The basilar artery proximal to the aneurysm had a diameter of 3.6 mm 

and computed peak and mean Reynolds numbers (Re) of 472 and 240 over the cardiac 

cycle, respectively. 
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Figure 2.13: Summary of the hemodynamic indices within the stented cerebral aneurysm 
models. (Top) Magnitude of velocity in a slice in through the center of a cerebral 
aneurysm and stent during peak systole. (Middle) Time-averaged wall shear stress 
(TAWSS) on the lumen of the aneurysm visualized on the distal surface of the aneurysm 
where blood entering the aneurysm impinges on the lumen. (Bottom) Volume rendered 
turbulent kinetic energy (TKE) in the aneurysm at peak systole. The models on the left 
illustrate the position of the velocity slice and the perspectives from which TAWSS and 
TKE were visualized with respect to the basilar (BAS), left posterior cerebral artery 
(LPCA) and right posterior cerebral artery (RPCA). 
 
Table 2.2: Mean turbulent kinetic energy (TKE) and mean kinetic energy (KE) within 
the cerebral aneurysm models during peak systole. 

 No Stent N2-8x8 N2-10x12 N2-12x16 
TKE (g cm-1 s-2) x10-4 5.22 1.64  2.00  0.57 
KE (g cm-1 s-2)  4.14 3.89 5.28 4.28 
TKE/KE Ratio x10-5 9.9 3.83 4.83 1.47 

Mean exposure time within the unstented aneurysm model and the model stented 

with the N2-12x16 stent are shown in Figure 2.14.  MET calculations were performed 

with 6.9 million particles released over the course of one cardiac cycle and tracked from 
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an additional 19 cardiac cycles for each model. As shown in Figure 2.14, the greatest 

increase in MET was near the wall of the model and in the middle of the aneurysm.  The 

stent struts also induced a small area of high MET near the stent/lumen interface (Figure 

2.14 Cross-section B of the N2-12x16). The MET field of the N2-8x8 and N2-10x12 

(results not shown) exhibited similar patterns of MET to those in the unstented and N2-

12x16, with magnitudes greater than the unstented and less than the N2-12x16 models. 

Figure 2.15 illustrates the changes in the PDF and cumulative distribution function, 

computed by integrating the cumulative distribution function (CDF) of the MET field 

within the stented and aneurysm region for the various cerebral models. With decreased 

stent filament size, the PDF shifted towards larger higher MET values. The CDF also 

indicates the unstented model has the highest volume of low MET, whereas the stented 

models have decreased volumes of low MET. 

 
Figure 2.14: Cross-sections of the mean exposure time field at three locations within an 
unstented aneurysm and an aneurysm with the N2-12x16 stent across the aneurismal 
neck. 
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Figure 2.15: Probability density function (PDF) and corresponding cumulative 
distribution function (CDF) of the mean exposure time field within the aneurysm volume 
of four basilar trunk aneurysm models in which various stents were placed across the 
neck of the aneurysm. 

2.5.3 Discussion 

 Within the cerebral aneurysm model, the velocity, MET, and WSS results indicate 

that stent implantation increases flow stasis, and decreased stent strut size further 

increases flow stasis within the aneurysm. Though the porosity of each stent was 

identical, velocity within the aneurysm decreased as the stent strut size decreased and 

reduced the area of the impact zone while increasing the area of low TAWSS. None of 

the stent designs completely eliminated the impact zone, so it is likely vascular 

remodeling would degrade the aneurysm wall in this region. Interestingly, the magnitude 

of TAWSS in the impact zone is similar to that in the basilar artery proximal to the 
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aneurysm, but the tissue response to the WSS stimuli is likely different. Recently Meng et 

al. induced basilar aneurysms in rabbits and found that diseased tissue within an 

aneurysm continues expanding and remodeling even after the hemodynamic stimulus that 

initiated aneurysm formation is removed, unlike healthy vascular tissue which ceases to 

remodel once stress levels return to a preferred physiologic level [77].  

The results did not indicate any relationship between TKE and stent design. 

Overall the low Reynolds number and small TKE values in each aneurysm geometry 

indicates that blood flow in the aneurysm is quite steady, so it is difficult to draw any 

conclusion about chaotic blood flow in this region. If blood flow to this region were 

increased by simulating exercising conditions, differences among the stent designs may 

be more apparent.  

The current findings coincide with those of Lieber et al., who showed that 

decreased filament size correlated with improved hemodynamic results in a previous PIV 

study of helical stents [68]. However, this previous study also observed pronounced stent 

movement with very small filament size which caused increased circulation within the 

aneurysm for the smallest filament size considered. By modeling the stent as rigid, stent 

motion was not considered in the current investigation. Another previous PIV study of 

twenty different stent models, including helical stents, ring-and-link stents, etc., was 

unable to identify a simple relationship between either stent porosity and stent 

performance or stent strut size and stent performance [12]. Since the present work was 

able to quantify the effects of strut size at a constant porosity, future work may include 

repeating this study with the same basic designs, but using parametric modeling 

techniques to model three stents with identical strut size, allowing the porosity of the 
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stents to vary. In this manner, it might be possible to identify which stent design 

parameters have the greatest influence on stent performance in cerebral aneurysms. 

2.6 Discussion of patient-specific modeling techniques 

2.6.1 Summary 

The described virtual stenting method provides a rapid and robust means for 

evaluating the performance of commercially available and next-generation stents in 

patient-specific geometries using CFD. The complexity of the coronary bifurcation and 

large basilar trunk aneurysm models demonstrates the applicability of these methods 

across vascular beds. Though the CFD results were quantified using some custom 

computer programs, the model creation and stent implantation process was completed 

using only open source software and commercially available CAD packages already 

frequently used by stent design engineers. The method provides a process and examples 

of results that were previously difficult or laborious to obtain. Localized changes in 

indices known to correlate with restenosis including WSS can now be obtained for almost 

any conceivable stent design. Results not often reported such as intrastrut displacement 

due to differences in stent-induced scaffolding or parameterized contributions of design 

features to flow stasis can also be obtained rapidly.  

Both vascular geometry and stent design are known to influence the post-

procedural outcomes of stenting in most diseases treated by stenting. The method of 

virtual stent implantation employed in this investigation demonstrates a means of 

representing a complex vessel and full stent geometry to further understand the 

hemodynamic interactions between them. It is worth noting that other ways of virtually 

implanting stents into patient specific vessels have been developed previously [3, 51], but 
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the series of Boolean operations described here are computationally inexpensive to 

include and ensure the stent model is in good apposition to the vessel wall. 

Using the methods outlined in this investigation, most commercially available and 

next-generation stents could be modeled with the exception of braided stents with a 

circular strut profile or other more complicated strut profiles. Stents with complex strut 

profiles could be generated using the same modeling techniques described in this 

investigation when simulating blood flow through ideal vessels, but implanting these 

stents in a patient-specific geometry in which the dimensions of the vessel are not well 

defined is not possible using the current methods. Nevertheless, the current virtual 

stenting process provides a framework for rapidly producing and analyzing various stent 

designs. In this investigation, the deployed configuration of the each stent design was 

modeled as using parametric design techniques enabling rapid generation of several 

variations for a particular stent design. Modeling the stent in a deployed configuration 

further decreased the amount of time necessary to numerically compute the expanded 

configuration of the stent. Three cerebral aneurysm stent models were all generated from 

the same basic design that was created and virtually implanted in the aneurysm model 

within a few hours after establishing the variables for use with the initial stent geometry. 

Given that generating, modifying, and virtual implanting a stent design using the current 

method can be performed quickly, this process of stent modeling is well-suited for design 

optimization. 

In addition to presenting a novel technique of stent implantation, this investigation 

demonstrates post-processing techniques of CFD data which enable a better 

understanding of flow dynamics within stented geometries. Computation of MET 



43 
 

provides insight into changes in bulk flow characteristics within a volume of interest 

(Figure 2.14) and pinpoints specific locations of flow stasis (Figure 2.11, Figure 2.13), 

whereas the commonly used metric of aneurysm turnover rate only provide information 

about bulk flow. Moreover, aneurysm turnover is computed by quantifying the flow 

across a plane at the aneurysm inlet. This plane may be difficult to define within irregular 

patient-specific geometries, as was the case in this investigation. This investigation also 

demonstrates an unwrapping technique that facilitates the visualization and comparison 

of CFD results, such as TAWSS and displacement, within stented regions in a manner 

similar to that described by Antiga et al. [2] 

2.6.2 Limitations 

The current results should be interpreted within the constraints of several potential 

limitations. Notably, the stent implantation method does not model the mechanical 

interaction between the stent and the vessel during stent deployment. Accurately 

modeling stent deployment would require more extensive computations and knowledge 

of stent geometry and material along with the vessel geometry and morphology, which 

can be difficult to obtain in vivo. The described methodology does not account for 

compliance mismatch between the stent and vessel wall which often causes vessel 

straightening in curved vessels [42, 83, 115], asymmetric stent deformation across 

aneurysm necks or branching arteries [25, 43], kinking of the stent in regions of acute 

curvatures [25], vessel prolapse into the flow domain [14, 61, 85], or stent malapposition 

[14]. From previous CFD studies of the coronary arteries with and without straightening 

induced by stenting, it would be expected that extreme changes in curvature near the 

proximal and distal ends of stent may induce harmful distributions of WSS that leads to 
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restenosis [59]. Vessel prolapse has been incorporated into idealized CFD models of 

commercial stents and was found to decrease the amount of the vessel exposed to low 

WSS [85]. Conversely, previous idealized models [61] and a more recent study of stent 

deployment in a canine artery ex vivo [14] have found that prolapse of the vessel into the 

flow domain increased levels of WSS; therefore hemodynamic alterations due to vessel 

prolapse likely depends on the stent design and how prolapse is modeled. The ex vivo 

canine model of Benndorf et al. was also used to study stent malapposition in straight 

vessels and identified increased low WSS distal to the malapposition [14]. Although stent 

implantation method described in this investigation does not account for the stent/vessel 

interactions discussed above, visual comparison of the coronary model in this 

investigation to that of Benndorf et al. indicates that deviations from reality appear to be 

modest when this method is used in a relatively straight geometry. In vessels of acute 

curvature, the inability to predict changes in wall curvature and stent kinking are inherent 

limitations of the method described here. Future research on the virtual stent implantation 

methodology will work to address these limitations. 

Modeling large portions of the vasculature in addition to a stent made it difficult 

to achieve mesh independence as defined by a change in time-averaged WSS at 

predetermined proximal and distal intrastrut <0.09 dynes/cm2 between successive 

meshes. In the coronary stenting simulation, this level of accuracy was achieved with ~3 

million elements, but was not attainable in the cerebral aneurysm models due to the 

computational limitations of generating large meshes for vessels over such a wide range 

of sizes. Therefore, conclusions regarding intrastrut distributions of TAWSS were not 

made for these models. Measured levels of TAWSS within a 1.5 mm thick slice of the 
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model proximal and distal to the stent changed by <1% for the cerebral aneurysm model. 

Though mesh-independence was not attained as defined, stent struts extending across the 

neck of the cerebral aneurysm had >5 elements across their face for simulations with the 

densest meshes. 

2.6.3 Virtual stent implantation in retrospective models 

Most of the limitations of the virtual stenting method in this investigation are only 

valid when creating a priori models using the stenting procedure. The method can also be 

used to reconstruct patient-specific geometries post-stent implantation with much greater 

accuracy since the final geometry of the deployed stent and associated vessel is known. 

For example, Figure 2.16 illustrates a modified version of the virtual stent implantation 

method using models constructed from high resolution optical coherence tomography 

imaging data obtain immediately following a stenting procedure [27]. In this case, the 

vessel lumen and outer surface of the stent were segmented and lofted separately to create 

two distinct models (Figure 2.16, A and D). The stent radial thickness was then 

subtracted from the solid model representing the outer surface of the stent (Figure 2.16, 

A). Subtracting the thinner lofted stent model from the thick stent yielded a patient-

specific stent model that mimicked the inner surface of the stent (Figure 2.16, B and C). 

The final subtraction of the patient-specific stent model (Figure 2.16, C) from the lumen 

model (Figure 2.16, E) generated the flow domain used for subsequent CFD simulations 

(Figure 2.16, F).  Using this modeling technique, the stent position is represented as it 

appears in vivo with the only limitation being the inability to model small non-uniform 

expansion of stent cells. Features such as vessel prolapse and thrombosis can also be 

represented in the CFD model.  
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Figure 2.16: Modified virtual stent implantation method that can be used in conjunction 
with high resolution optical coherence tomography imaging data post-stenting procedure.  

2.7 Conclusion 

 In summary, the current investigation describes an efficient method for virtual 

stent implantation in patient-specific models in order to analyze alterations in 

hemodynamics using CFD. Unlike idealized computational models of stent designs, this 

method can be used to quantify differences in stent performance in complex vascular 

models for most stenting procedures, as demonstrated in this investigation through the 

construction of two arterial models with varying degrees of complexity. For each model 

in this investigation, the method of virtual stent implantation was used to quantify the 

potential impact of partially occluding downstream vascular regions by stent struts and 

therefore may be used in future studies to investigate various stenting strategies at 

bifurcations or in response to treatments in order to provide additional insight into ways 

of improving stents for particular portions of the vasculature.  
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Chapter 3 
  

Optimization of Cardiovascular Stent Design Using 
Computational Fluid Dynamics 

 

3.1 Introduction 

While previous CFD studies have provided useful insight for improving stent 

design, they only analyze a small number of possible stent geometries in order to identify 

the general trends that govern stent design. For example, computational studies of 

idealized stent geometries have shown that thinner struts and those more aligned with the 

primary flow direction decrease the amount of low WSS at the arterial wall using only 

three or four models [60, 62].  Similarly, within this thesis (Chapter 2, Case Study 2) only 

three variations of a simple flow diverting stent were modeled to investigate improved 

stent designs. 

 Conversely, incorporating a shape optimization algorithm with a proven 

convergence theory into the design process allows engineers to systematically identify 

the most favorable designs. Previous CFD optimizations of coronary stent design have 

been limited to 2-D stent models or optimizations of a single stent cell [6, 18, 101]. The 

objective of this investigation was to develop a fully automated framework for designing 

hemodynamically optimal coronary stents using CFD of complete, 3D stent geometries. 

While traditional gradient-based optimization methods often require invasive changes to 
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the solver code, therefore limiting potential applications, the use of a derivative-free 

method in this work allowed for a flexible and efficient framework. The utility of this 

framework is then demonstrated with two case studies of coronary stent geometries. The 

first case study examines the relationship between the optimal number of 

circumferentially repeating stent cells (NC) and the intrastrut angle of generic slotted-tube 

stent design. Building on the results of the first case study, the second case study analyzes 

the relationship between vessel diameter and the optimal NC for a generic slotted-tube 

and three commercially available stent designs. For each case study, the stent design that 

best maintains the homeostatic of level WSS was defined as optimal. 

3.2 Methods 

3.2.1 Stent and vessel model construction 

Similar to the technique used for generating patient-specific stent models, stents 

were parameterized and modeled in an expanded state using SolidWorks. However, the 

previous technique for creating stent models (Figure 2.1, B1-B2) required user interaction 

to manually alter stent design parameters. In order for the optimization framework to be 

fully automated, a custom software program was written using the SolidWorks 

application programming interface to generate solid models of stent designs for a given 

set of parameters (Figure 3.1, A). The program did not generate stent models from 

scratch because the steps for modeling commercial stents differ slightly depending on the 

design, which would require a new program to be written for each design. Instead the 

program opened a previously parameterized stent model, altered the specified dimensions 

and rebuilt the model such that the same program could be used for all of the stent 

geometries regardless of the techniques used to create the model. 
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Idealized vessel models were also constructed using SolidWorks. All vessels were 

modeled with a stent-to-artery diameter ratio of 1.1:1 [35], but the length of the expanded 

stented region of the vessel differed depending on the stent design. A 2.0 mm tapered 

section connected the expanded stented section of the vessel to proximal and distal 5.0 

mm sections of unstented vessel [86]. A Boolean subtraction operation was performed to 

remove the stent model from the vessel model resulting in a solid model of the flow 

domain (Figure 3.1, B). 

 
Figure 3.1: Description of the steps necessary for evaluating a stent design. The TAWSS 
is shown normalized to the average TAWSS in the proximal, unstented region of the 
model. 

3.2.2 Computational fluid dynamic simulations 

Solid models of the flow domain were discretized into unstructured tetrahedral 

finite element meshes using MeshSim. The mesh generation was tailored to create one 

highly anisotropic mesh for each model. A coarse mesh was prescribed in the proximal 
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and distal unstented regions of the vessel, with a finer mesh density prescribed to the 

stented region, and a very fine mesh density pres 

cribed in the intrastrut regions that are later quantified as part of the optimization 

routine (Figure 3.1, C). Using highly anisotropic meshes ensured the near-wall 

hemodynamics were well resolved within the portion of the model later quantified by the 

optimization routine without incurring the high computational cost of dense isotropic 

meshes. 

The boundary conditions prescribed to the discretized stent model were similar to 

those used for the patient-specific coronary bifurcation model (Section 2.4.1). Briefly, the 

artery was assumed to be rigid and a no-slip boundary condition was prescribed on the 

vessel and stent surfaces. Blood was assumed to be a Newtonian fluid with a density of 

1.06 g/cm3 and a viscosity of 4 cP. A time-varying canine left-anterior descending 

coronary artery flow waveform [57] with characteristics similar to those found in humans 

was imposed at the model inlet using a Womersly velocity profile (Figure 3.1, D). The 

inflow rate was not scaled for different diameter vessels. Outlet boundary conditions 

were prescribed using a three-element Windkessel approximation to replicate the 

physiologic impedance of the downstream vasculature (Figure 3.1, D). The outlet 

boundary conditions were modified to account for the resistance of ventricular 

contraction as previously described (Section 2.4.1). 

 CFD simulations were run using an in-house stabilized finite element solver with 

commercial linear solver component LESLIB (Altair Engineering, Troy, MI) to solve the 

time-dependent Navier-Stokes equations. The time-step was chosen for a Courant, 

Friedrichs and Lewy condition <1. Simulations were run until the outlet pressure and 



51 
 

flow were periodic, defined as a maximum error between equivalent points in successive 

cardiac cycles <1 mmHg and <1mm3/s. TAWSS was then computed over the last cardiac 

cycle as previously described (Section 2.3.1). Cells in the middle of the stented region 

were extracted for subsequent evaluation in the optimization routine (Figure 3.1, F).  

3.2.3 Computing design cost 

The formulation of the optimization cost function was based on the physiologic 

theory of TAWSS homeostasis, which suggests vessels remodel to maintain a nominal 

level of TAWSS. Favorable stent models were defined as those which would 

theoretically attenuate vascular remodeling within the stented region by minimizing the 

disparity between TAWSS in the stented region of the model (𝑇𝐴𝑊𝑆𝑆����������𝐼𝑆) and the 

nominal level of TAWSS in the unstented region of the model (𝑇𝐴𝑊𝑆𝑆����������𝑈𝑆). Thus the 

design cost (J) of a stent model was expressed using a ratio of 𝑇𝐴𝑊𝑆𝑆����������𝐼𝑆 to 𝑇𝐴𝑊𝑆𝑆����������𝑈𝑆 as: 

 𝐽 = 1 − 𝑇𝐴𝑊𝑆𝑆����������𝐼𝑆
𝑇𝐴𝑊𝑆𝑆����������𝑈𝑆

  

in which 𝑇𝐴𝑊𝑆𝑆����������𝐼𝑆 is defined as the integration of TAWSS over the intrastrut surfaces (s) 

normalized to the area of those surfaces: 

 𝑇𝐴𝑊𝑆𝑆����������𝐼𝑆 = ∫ 𝑇𝐴𝑊𝑆𝑆 𝑑𝑠𝑠

∫ 𝑑𝑠𝑠

  

The value of 𝑇𝐴𝑊𝑆𝑆����������𝐼𝑆 was computed over the intrastrut regions with the highest mesh 

resolution (Figure 3.1, C). This computation also mitigated any effects of slightly varying 

stent lengths and flow disruptions near the ends of the stented regions. A custom software 

program that used the Visualization Toolkit (VTK, Kitware, Clifton Park, NY) libraries 
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was written to compute the integral described above. The nominal level of TAWSS in the 

unstented portion of the vessel was computed as: 

 𝑇𝐴𝑊𝑆𝑆����������𝑈𝑆 = 4𝜇𝑄
𝜋𝑟3

  

where Q is the mean flow, µ is the viscosity and r is the vessel radius.  

3.2.4 Optimization routine 

The surrogate management framework (SMF) previously described by Booker et 

al. and applied to cardiovascular engineering problems by Marsden et al. was used to 

determine optimal stent designs [19, 73]. The general formulation of the optimization is 

given by: 

 minimize 𝐽(𝒙)  

 subject to 𝒙 ∈ Ω 

where J represents the cost function for a given vector of parameters x in the domain Ω. 

The SMF framework is a derivative-free optimization algorithm that relies on pattern 

search theory for convergence of the cost function to a local minimum. The method 

restricts all parameters to lie on a discrete parameter mesh that may be refined to increase 

the resolution of the parameter space as the algorithm progresses. The implementation of 

the SMF algorithm in this investigation used a mesh adaptive direct search (MADS) 

polling method, which has  a stronger  convergence theory compared to previous 

generalized pattern search methods [7]. Used by itself, the MADS pattern search method 

may require numerous cost function evaluations to converge on a local minimum, which 

would be detrimental to this investigation since computing the cost of a single stent 

design is computationally expensive (requires model generation, meshing and time-
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dependent CFD). The SMF uses a surrogate function to approximate the “true cost 

function” and predict the location of the local minimum, thereby increasing the efficiency 

of the optimization by reducing the number of cost function computations necessary to 

search for the location of the minimum [19]. Though various surrogate functions can be 

used with the SMF method, this investigation incorporated a Kriging surrogate function  

using the MATLAB DACE package [72] to easily extend this approach to multiple 

dimensions and avoid problems of overshoot found in polynomial interpolation.  

The SMF optimization algorithm is schematically illustrated in Figure 3.2. The 

algorithm is initialized using Latin Hypercube Sampling (LHS) to generate a well-

distributed set of input variables, or trial points, over the discrete parameters space [75]. 

Stent models are constructed and evaluated for each trial point and the resulting cost 

function values are used to construct the initial surrogate function. 

The optimization loop consists of two fundamental steps, SEARCH and POLL. 

During the SEARCH step, the surrogate function is used to predict the location of 

parameters that minimize the cost function. If evaluation of the trial points generated by 

the SEARCH steps improves the current best point, another SEARCH steps ensues. After 

every SEARCH step, the surrogate function is updated to incorporate all new cost 

function values. If the SEARCH step fails to improve the current best point, a POLL step 

is performed. MADS is used to identify a set of n+1 positively spanning POLL points 

that neighbor the current minimizing point, where n is the number of parameters [7]. If 

the POLL step succeeds in improving the current best point, the algorithm returns to the 

SEARCH step. If the POLL step is not successful, then a mesh local optimizer has been 

found, and the optimization algorithm will either complete, or the parameter mesh will be 
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refined. In this investigation, refining the parameter space decreased the parameter mesh 

size (Δm) by ¼. When the POLL step fails and the parameter mesh has been refined to the 

specified tolerance, the optimization algorithm stops. 

 
Figure 3.2: Flowchart of the Surrogate Management Framework optimization routine. 
Each bolded box indicates a point in the routine where the cost function for a stent design 
is evaluated.  The optimization stops when the size of the discrete parameter mesh (Δm) is 
refined beyond a user specified tolerance (tol). 

To fully-automate the optimization routine, the optimization algorithm was 

coupled to the cost function evaluation using TCL scripting capabilities within 
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Simvascular (www.simtk.org). The scripts called external programs to execute the 

optimization algorithm (MATLAB), build models (SolidWorks), perform CFD, and 

compute cost values (VTK). Because MeshSim is directly integrated into Simvascular, 

meshing and prescribing boundary conditions was performed using built-in Simvascular 

subroutines. The majority of the optimization routine was executed on a standard 

personal computer except for the CFD simulations, which were performed on a high 

performance computing cluster. 

During some steps of the optimization routine the parameters of multiple trial 

points may be known, such as during the LHS and POLL steps, in which case the cost of 

multiple stent models can be computed simultaneously for increased efficiency. The 

initial implementation of the optimization framework serially evaluated the cost of 

multiple trial points whereby each stent model was built (model construction and 

meshing), run (CFD) and quantified (compute cost) before another model could be 

evaluated. It was later determined that TCL’s multithreading abilities could be used to 

evaluate trial points in parallel by spawning a new thread to build, run, and quantify each 

model. Using this approach, evaluating multiple models would theoretically take the 

same amount of time as evaluating a single model. Unfortunately, in this investigation it 

was not possible to build several models in parallel due to the memory constraints of the 

desktop computer used. Nevertheless, the CFD simulations could still be run in parallel, 

since this portion of the optimization was performed on a computer cluster in which there 

were no memory constraints. Thus trial points were evaluated in a pseudo parallel fashion 

in which each model was serially built, but a new thread was spawned to run and quantify 

the model. This approach still provided better performance than serially evaluating 
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multiple trial points, but the efficiency of the optimization could be further improved by 

evaluating multiple trial points in parallel in future studies, possibly by transferring the 

modeling building code to high performance computing cluster. The difference between 

serial, pseudo-parallel and parallel is illustrated in Figure 3.3. 

 
Figure 3.3: Comparison of serial, pseudo-parallel and parallel algorithms of evaluating 
multiple trial point during the optimization a stent design. Each algorithm is illustrated 
with a flow chart of the various steps necessary to evaluate the total number (TN) of stent 
models. Note that the parallel and pseudo-parallel algorithms spawn new threads to 
simultaneously execute certain portions of the algorithm and increase the performance of 
the optimization.  

3.3 Case Study 1: Optimization of a generic slotted-tube stent with a constrained 

intrastrut area 

A previous CFD study of slotted-tube stent designs indicated stents which 

minimize the number of stent strut intersections reduce the area of the vessel exposed to 
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potentially deleterious levels of low TAWSS [60]. Because this study only compared two 

stent designs and varied both NC along the number of axial repeating stent cells (NA), it is 

difficult to isolate the hemodynamic effects of either NC or NA. To further understand the 

effects of these parameters, this case study aimed to simply optimize NC. During the 

course of this investigation, it was hypothesized that the strut angle relative to the 

primary direction of flow may dictate the optimal value of NC. Therefore, a second set of 

optimizations was performed to determine if the optimal strut angle correlates with the 

optimal values of NC computed in the first optimization.  

3.3.1 Parameterization of stent models 

Generic slotted-tube stents, similar to the Palmaz-Schatz design, were generated 

from a parameterized stent model in which the cell axial length (la), circumferential 

distance between adjacent struts (lc) and intrastrut angle (θ) could be altered (Figure 3.4). 

Stent strut radial thickness and intrastrut area were explicitly defined to prevent the 

optimization routine from pursuing infeasible stent designs since the objective of 

maintaining the homeostatic level of TAWSS within a stented vessel is ideally met by a 

stent design with negligible strut thickness and large intrastrut areas if these parameters 

are not kept constant. This intuition was confirmed by preliminary optimizations before 

the strut width and thickness were defined as 100µm, similar to the size of an average 

stent. The intrastrut area of commercial closed-cell stents varies between 1mm2 and 

3mm2, and an ideal area is not known. Therefore optimizations were performed with 

intrastrut areas of 1mm2, 2mm2 and 3mm2 (Figure 3.4) to examine the effect of this 

parameter on optimal stent design within the range of commercial stent designs. 
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Figure 3.4: (Top) Parameterized drawing of a stent cell which is characterized by the cell 
axial length (la), circumferential distance between struts (lc) and intrastrut angle (θ). 
(Bottom) Examples of three stent models with different intrastrut areas shown to the left 
of each model. 

Vessels were modeled with an expanded, or stented, length of 18 mm. With the 

addition of an unstented and a tapered section, the total model length was 32 mm. To 

analyze the effect of vessel diameter on optimal stent designs, all optimizations were 

performed in both small (SV) and large vessels (LV) with diameters of 2.25 mm and 3.0 

mm corresponding to stent diameters of 2.475 mm and 3.3 mm, respectively. 

3.3.2 Method for optimizing the number of circumferentially repeating stent cells 

When determining the optimal value of NC for a given stent design the intrastrut 

area and vessel diameter remained constant while NC was allowed to vary. To determine 

the cell geometry for a given NC, lc was computed based on the stent diameter and the 

value of NC specified by the optimization routine. The axial cell length was then 
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computed to maintain a constant intrastrut area of either 1mm2, 2mm2 or 3mm2. Lastly, 

NA was computed to achieve a target stent length of 18mm or less. 

The optimal value of NC was computed for each combination of vessel size and 

intrastrut area for a total of six stent design optimizations. For each optimization, the 

initial parameter mesh was defined to include all possible integer values. The parameter 

mesh was not refined during the optimization since NC was not a continuous variable. 

3.3.3 Method for optimizing the intrastrut angle 

The model construction method described in the previous section could not be 

used to optimize θ because the constraints of an integer number of circumferentially 

repeating cells and a constant intrastrut area only allows for the creation of stent models 

with discrete θ values. Instead, stent models were created in which θ was a continuous 

variable and consequently, NC was also allowed to be a continuous variable. Models 

created using this approach had a repeating strut configuration that propagated around the 

circumference of the vessel, but did not necessarily meet to form a continuous pattern 

(Figure 3.5). While this approach may not create feasible stent designs, it does provide a 

means of investigating the optimal intrastrut angle with fine detail. To create a stent 

model for a given θ, la was first computed to maintain a constant intrastrut area of either 

1mm2, 2mm2 or 3mm2 and subsequently NA was computed to achieve a target stent length 

of 18 mm. 
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Figure 3.5: An example of a stent model that was generated when optimizing the 
intrastrut angle. Note that the number of circumferentially repeating cells was not 
constrained to being an integer resulting in an infeasible stent model that appears broken. 

As with the optimization of the number of repeating circumferential units, the 

optimal θ was computed for each combination of vessel size and intrastrut area. The 

intrastrut angle was a continuous variable so initial parameter meshes were defined as 

have a spacing of 8° with three refinements performed during the optimization. This 

resulted in a final parameter mesh resolution of 0.5°. 

3.3.4 Results of optimization of the number of circumferentially repeating stent cells 

The number of circumferential repeating cells was optimized for stent designs 

with intrastrut areas of 1mm2, 2mm2 and 3mm2 in both large and small vessel models. 

The optimal design parameters are summarized in Table 3.1. For stent designs with 

equivalent intrastrut areas, the optimal number of circumferential repeating cells 

increased with increased vessel size, and the optimal cost was lower in the small diameter 

vessel (e.g. SV-1mm2: NC=7, J=0.590 vs. LV-1mm2: NC=9, J=0.613). Within vessels of 

the same diameter, the optimal cost decreased with increased intrastrut area (e.g. SV-

1mm2: J=0.590 vs. SV-2mm2: J=0.500). Each optimization converged on an optimal 

design using seven or fewer function evaluations. 
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Table 3.1: Results from optimizing the number of circumferentially repeating stent cells. 

Stent Design Cost (J) 
Circumferential 
Repetitions (NC) 

Number of Function 
Evaluations 

SV (Ø = 2.25 mm)    
1mm2  0.590 7 6 
2mm2  0.500 5 6 
3mm2  0.460 4 4 

LV (Ø = 3.0 mm)    
1mm2  0.613 9 7 
2mm2  0.520 7 5 
3mm2  0.477 6 5 

SV=small vessel; LV=large vessel 

Plots of the cost function versus the number of circumferentially repeating cells 

and corresponding intrastrut angles are shown in Figure 3.6. Visual inspection of 

intrastrut TAWSS distributions (Figure 3.6) indicates that designs with less than the 

optimal number of repeating circumferential units exhibited a greater area of low 

TAWSS as a result of struts that were more misaligned with the primary direction of flow 

and decreased cell axial length. Stent designs with greater than the optimal number of 

circumferentially repeating cells also exhibited a greater area of low TAWSS. In this case 

the increased area of low TAWSS resulted from the close proximity of adjacent struts 

which decreased near wall blood flow velocity, and subsequently TAWSS, within the 

intrastrut region. 
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Figure 3.6: The cost function versus the number of repeating circumferential units for 
stent models with various intrastrut areas in a small vessel (left) and large vessel (right). 
The intrastrut angle corresponding to the number of repeating units is denoted on the 
individual plot axes for each design and the optimal design is circled on each plot. 
Patterns of normalized TAWSSIS are shown for the least, most and optimal number of 
circumferential repeating units. 

3.3.5 Results of optimization of intrastrut angle 

When the intrastrut angle was allowed to vary continuously, the optimal θ was 

found to be between 38.5° and 46.5° for all stent designs. This indicates that the optimal 

intrastrut angle is largely independent of the vessel size and intrastrut area. Plots of the 

design cost relative to the intrastrut angle are shown in Figure 3.7 (black lines). For 

comparison, the cost from the optimization of the number of circumferentially repeating 

cells is also shown in Figure 3.7 (gray lines). The optimal number of circumferentially 

repeating cells (Figure 3.7. gray circles) corresponds to the stent design closest to the 
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optimal intrastrut angle, indicating that the intrastrut angle dictates the optimal number of 

circumferentially repeating units. 

 
Figure 3.7: The cost function versus the intrastrut angle for stent models with various 
intrastrut areas in a small vessel and large vessel (black). The intrastrut angles that 
correspond to feasible stent designs are shown as vertical lines (gray). The cost function 
versus the number of circumferentially repeating stent cells is plotted along gray lines 
and the number of circumferentially repeating cells is denoted above the lines for models 
that have been evaluated. Optimal stent designs are circled on all plots. 

The convergence history for the optimization of intrastrut angle is shown in 

Figure 3.8. LHS accounted for the first three function evaluations. Although the 

optimization method allowed for three mesh refinements, all optimization runs converged 

with less than 20 function evaluations, with the majority of runs only requiring 10 to 15 

function evaluations. 
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Figure 3.8: Convergence history for the optimization of intrastrut angle for stent models 
with various intrastrut areas in a small vessel and large vessel. The Latin Hypercube 
Sampling (LHS) portion of the optimization routine is shaded in gray. The Surrogate 
Management Framework (SMF) represents the portion of the optimization algorithm that 
used alternating SEARCH and POLL steps to converge on the optimal stent design. 

3.3.6 Discussion 

The application of the optimization produced two novel findings pertaining to the 

optimal design of a generic slotted-tube stent. The optimal number of circumferential 

repeating stent cells is dependent on the intrastrut angle, and the optimal intrastrut angle 

is independent of both vessel size and the intrastrut area of the stent cell. It should also be 

noted that the inflow waveform to the models was kept constant for both vessel diameters 

in this investigation, which created a large difference in the magnitude of TAWSS 

between the different diameter vessels as a result of the cubic relationship between 

TAWSS and vessel diameter. Thus, it can also be concluded that the optimal intrastrut 

angle is independent of the magnitude of TAWSS. 

The current results confirm and extend the findings of previous stent CFD studies. 

In a previous study of stent foreshortening, stents with intrastrut angles of 58°, 68° and 

78° degrees were constructed, and it was determined that stents with struts more aligned 

with the primary direction of flow decrease the area of low WSS [62]. Because angles 

less than 58° were not tested, this study was unable to determine that further decreasing 

the intrastrut angle (<40°) would actually increase the area of low WSS, as was shown in 
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this investigation. Numerous 2D and 3D studies have also found that increasing the axial 

distance between struts, effectively increasing the intrastrut area, is hemodynamically 

advantageous, as it allows for a greater area of flow reattachment between the struts [16, 

40, 60]. In the current results this trend was also demonstrated among stent designs in 

vessels with the same diameter. For these models, the cost function decreased for designs 

with a greater intrastrut area, indicating a greater intrastrut area is hemodynamically 

advantageous.  

To prevent the optimization from converging on an infeasible design solution in 

which there is no flow obstruction (i.e. no stent) in the vessel, stent thickness and 

intrastrut area were kept constant in this investigation. Intuitively, decreasing stent 

thickness and increasing intrastrut area would increase TAWSS, but this may reduce the 

radial strength of the stent and subsequently inhibit the ability of a stent to maintain 

arterial patency. Because of the mechanical constraints of stent design, the optimal strut 

thickness and intrastrut area cannot be determined based solely on stent hemodynamics.  

3.4 Case Study 2: Identification of optimal coronary stent designs based on vessel 

caliber 

 Target vessel caliber is a known predictor of restenosis following percutaneous 

stent implantation for the treatment of coronary artery disease [26, 42]. Rates of 

restenosis are significantly higher in patients with small diameter vessels since even a 

small amount of neointimal growth can severely restrict blood flow and require 

revascularization. Even when DES are used to inhibit neointimal growth, rates of 

restenosis remain high in this difficult patient subset [21, 49]. Depending on the 

definition applied, treatment of small vessel lesions constitutes 35-67% of percutaneous 
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interventions [81]. In contrast, large coronary vessels can sustain a greater amount of 

neointimal growth before requiring revascularization, and the use of DES over BMS in 

vessels >3.5 mm in diameter may not even be necessary [104]. 

Currently stent designs are often altered based on the vessel diameter in which the 

stent is deployed. While the underlying pattern of the stent design is not changed, the 

number of circumferentially repeating crowns or crests (NC) is increased for vessels of a 

larger caliber and vice versa. For larger vessels, the increase in NC provides more 

scaffolding and allows the stent to be expanded to a greater diameter. As demonstrated by 

the previous case study, increasing NC with increasing vessel diameter may also be 

hemodynamically advantageous.  

Building on the work of the previous case study (Section 3.3), the objective of the 

current investigation was to further analyze how vessel diameter affects the 

hemodynamically optimal stent configuration for both a generic slotted-tube stent along 

with three commercially available stents. In contrast to the previous case study, this 

investigation reframes the optimization problem in a manner that enables the relationship 

between vessel diameter and the optimal stent design stent to be examined in more detail 

than using discrete vessel diameters. Previously the vessel diameter and intrastrut area 

were kept constant and the optimal stent configuration was computed for vessel diameters 

of 2.25 mm and 3.0 mm. In this investigation, the stent configuration is kept constant and 

the optimal vessel diameter is computed. With this approach the expanded stent geometry 

is approximated for any diameter vessel in a manner that mimics the realistic expansion 

of a stent. Interestingly, this reframing of the optimization problem causes both the 

intrastrut area and intrastrut angle to vary for vessels of differing diameters. As a stent 
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expands the angle of the struts becomes more misaligned with the primary direction of 

flow resulting in localized areas of low WSS adjacent to misaligned struts. This suggests 

increasing NC may be hemodynamically advantageous as it would reduce the degree of 

strut misalignment. In contrast, reducing NC generally increases the intrastrut area of the 

expanded stent, allowing for a greater area of flow reattachment and higher WSS between 

stent struts. It is therefore hypothesized that there exists a hemodynamically optimal stent 

configuration in which the competing effects of strut misalignment and increasing 

intrastrut area are balanced. 

3.4.1 Stent and vessel model construction 

The designs of a generic slotted-tube stent (Figure 3.9, Stent A) along with three 

designs that resemble commercially available stents (Figure 3.9, Stents B-D) were 

investigated. Stents B and C were based on the BX Velocity (Cordis, Bridgewater, NJ) 

and Express2 (Boston Scientific, Natick, MA) stents respectively. Stent D was not based 

on any single stent design, but rather represents a simplified version of the Multi-Link 

family of stents (Abbott Vascular, Redwood City, CA), which includes the Vision, Mini 

Vision, Ultra and Zeta. The chosen stents geometries correspond to peak-to-peak (A and 

B), peak-to-valley (D), and hybrid (C) designs. 
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Figure 3.9: The geometry of a single cell with related dimensions along with an 
expanded configuration for each of the stent designs. All of the dimensions of the stent 
cells are given in millimeters. Each of the expanded stents shown has a diameter of 3.3 
mm. Stents A, B, and C are shown with a six crown configuration whereas stent D is 
shown with five crown configuration that incorporates both the two and three crown cell 
geometries. 

The geometry of a single cell of each design is illustrated in Figure 3.9 along with 

the dimensions relevant for approximating the expanded geometry of the stent, including 

the strut length (ls), arc length (la) and connector length (lc). The dimensions of stents B, 

C and D were based on product literature distributed by the manufactures. When 

generating a stent model, parameter d was computed based on vessel diameter and NC. 

Although the intrastrut angle (θ) is shown in Figure 3.9, it was not used to define the cell 

geometry. Rather the intrastrut angle was used extensively to quantify the results of the 
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optimizations as it provides a design independent measurement of the expanded stent 

geometry. The strut radial thickness and width for each design is given in Table 3.2. All 

stents were modeled using the 18 mm version of the stent, with the exception of Stent C 

which was modeled as 16 mm since an 18 mm Express2 stent is not available.  

Table 3.2: Strut dimensions for each of the stent designs in Figure 3.9. 
 Macro Struts Micro (or link) Struts 

Stent 
Design 

 Radial 
Thickness (µm) Width (µm) 

 Radial 
Thickness (µm) Width (µm) 

A 100 100 — — 
B 140 143 140 60 
C 132 91 132 61 
D 81 100 — — 

In the case of stents A, B and C, the number of circumferential repeating cells was 

simply varied to generate models with different values of NC. It should be noted that NC 

refers to the number of circumferentially repeating crowns, not the number of repeating 

cells (e.g. Stent C, NC=6 corresponds to 3 circumferentially repeating cells). Because the 

commercial versions of stent D contain both two and three crown cell geometries, 

permutations of stent D were allowed to incorporate both cell geometries into a single 

model. To distinguish between the various permutations, designs of stent D are referred 

to by the number of crowns and the cells used to create the design. For example, 6-3:3 

and 6-2:2:2 both refer to six crown designs but constructed with different permutations of 

cells. 

During the optimization of a single stent design, the stent configuration (i.e. NC) 

was kept constant and the expanded geometry of the stent was modeled for the vessel 

diameters chosen by the optimization routine. The expanded geometry was approximated 

by constraining the strut and arc lengths to be constant. This enabled quick generation of 
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stent models using SolidWorks. For stent design B, which incorporated a flexible link, it 

was assumed that the link maintained its shape across all diameters. 

Since the vessel diameter was allowed to vary during the optimization routine, a 

separate vessel model was generated for each stent model. The solid model of each vessel 

was constructed after the stent model was generated such that the expanded portion of the 

vessel could be modeled to the exact length of the expanded stent. In this manner the 

effects of stent foreshortening would also be incorporated in to the model (Figure 3.10). 

 
Figure 3.10: Illustrations of the expanded geometry of single stent cell (left) that was 
used to generate the three representative solids models of an idealized stented coronary 
(right). The vessel diameter depicted above each model corresponds to stent diameters of 
2.2 mm, 3.85 mm and 5.5 mm. The six crown configuration of Stent B is depicted in each 
model. 

3.4.2 Computational simulation and optimization methods 

 In the previous case study of slotted-tube stents, the greatest CFD mesh density 

was simply assigned to the stent cells in the middle of the stented region of the model. 

The middle stent cells were more difficult to define for the more elaborate designs of the 

commercial stents. For this case study, the middle stent cells were consistently 

determined by placing a plane through the middle of the vessel perpendicular to the 

direction of blood flow. Then the greatest mesh density was assigned only to intrastrut 

cells that intersected this plane (Figure 3.11). These cells also represent the surface over 
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which 𝑇𝐴𝑊𝑆𝑆����������𝐼𝑆 was computed. Depending on the stent model and vessel diameter, this 

meshing technique resulted in mesh sizes between 2.5 and 7 million elements. 

 
Figure 3.11: (Left) Anisotropic CFD meshes for stent designs A, B, C and D. (Right) 
TAWSS depicts on the stent cells are extracted and quantified during the optimization 
routine. TAWSS is shown normalized to the analytically computed value of TAWSS in 
an unstented portion of the vessel. 
 

To determine the optimal vessel diameter for a given stent configuration, a one-

dimensional parameter mesh was constructed for a range of vessel diameters between 2.0 

and 5.0 mm with an initial spacing of 0.5 mm. Over the course of the optimization, the 

parameter mesh was refined three times resulting in a final parameter mesh resolution of 

0.03125 mm. 

3.4.3 Results 

Some optimizations converged to the boundary of the allowable vessel diameter 

range (Table 3.3). Only 6-7 function evaluations were necessary in these cases, 

corresponding to the three vessel diameters of the initial set of design points and the three 

mesh refinements necessary to provide convergence to the boundary. In cases where the 

optimization did not converge to a boundary of the allowable vessel diameter range, the 

optimization routine required 9-18 function evaluations regardless of stent design. Each 
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optimization required four to seven days to complete depending on the number of 

function evaluations required. 

The optimal vessel diameter was identified for four stent designs in various 

configurations (i.e. different values of NC) for a total of 21 optimizations. The results of 

each optimization are summarized in Table 3.3. As expected, the hemodynamically 

optimal vessel diameter increased as NC increased for all stent designs (e.g. A NC =6, 

Ø=2.63 mm vs NC=7, Ø=3.13 mm). For designs A, B and C, the cost of the optimal 

design also increased with increasing vessel diameter (e.g. A NC=6, J=0.526 vs NC=7, 

J=0.535). This trend is less apparent for stent D, in which the optimal cost did not 

increase between the 4-2:2 and 5-2:3 designs or 6-2:2:2 and 7-2:2:3 designs.  
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Table 3.3: Optimal design cost and model parameters for each stent configuration. 
Circumferential 
Repetitions (NC) Cost 

Vessel Diameter 
(mm) 

Intrastrut 
Angle (°) 

Number of Function 
Evaluations 

Stent A     
5* 0.511 2.00 44.59 7  
6 0.526 2.63 50.74 11 
7 0.535 3.13 52.22 12 
8 0.542 3.75 55.97 10 
9 0.548 4.22 55.97 18 
10 0.552 4.81 58.09 15 

     
Stent B     

4* 0.538 2.00 61.42 6 
5 0.560 2.66 68.12 15 
6 0.572 3.50 79.96 9 
7 0.581 4.00 77.17 9 
8 0.587 4.75 82.45 9 

     
Stent C     

4 0.582 2.09 47.13 10 
6 0.611 3.88 66.69 12 
8* 0.625 5.00 63.22 7 

     
Stent D     

4 – 2:2 0.529 2.38 87.09 10 
5 – 2:3 0.529 3.13 96.88 11 
6 – 2:2:2 0.536 4.06 111.09 15 
6 – 3:3 0.530 3.88 104.00 11 
7 – 2:2:3 0.536 4.63 107.04 11 
8 – 2:3:3* 0.537 5.00 97.25 7 
9 – 3:3:3* 0.544 5.00 79.68 7 

* Optimization converged to the boundary of the parameter space 

The intrastrut area as a function of d (i.e. cell expansion curve) for a single stent 

cell is plotted in Figure 3.12. For the peak-to-peak stent designs (A and B), the cell 

expansion curve represents a concave function. This relationship is linear for the peak-to-

valley design (D). As a hybrid of peak-to-peak and peak-to-valley designs, the cell 

expansion curve for stent C is fairly linear with a small degree of concavity. The degree 

of expansion for each of the optimal models is also denoted in Figure 3.12. The optimal 
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intrastrut angle is generally smaller for designs A, B and C (A: 50-58°, B: 68-82°, C: 47-

67°) than that of design D (87-107°). 

 
Figure 3.12: The intrastrut area relative to the parameter d (expansion curve) for a single 
cell of each stent design. For stent D, the expansion curves of both the two crown (2c) 
and three crown (3c) cells are shown. The value of d corresponding to the cell geometry 
of each optimal model is denoted along the curve as a black dot. Only configurations in 
which the optimization did not converge to a boundary are plotted. As an additional 
reference, the intrastrut angle is also denoted above the x-axis. 

Plots of the design cost relative to the vessel diameter are shown in Figure 3.13. 

These plots can be used to identify the optimal stent configuration for any given vessel 

diameter. The optimal configuration is simply the curve with the minimum cost for a 

given vessel diameter. Similarly, an optimal vessel diameter range for each stent 

configuration can be estimated from the intersection of the cost function with adjacent 

stent configuration. For example, the cost curves for the NC=5 and NC=6 configurations 

of design A intersect at about 2.6 mm and the curves for the NC=6 and NC=7 

configuration of design A intersect at about 3.2 mm. Thus, the optimal vessel diameter 

range for the NC=6 configuration of design A is between 2.6 and 3.2 mm. The optimal 

vessel diameter ranges for each stent design is denoted by the alternating white and gray 

boxes on Figure 3.13. The 6-2:2:2, not the 6-3:3, stent design was used when computing 

the optimal vessel diameter range for stent design D, as this is representative of the six 

crown version of the commercially available Multi-Link Vision stent.  
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Figure 3.13: Cost function versus the vessel diameter for the various configurations of 
each stent design. The stent configuration, or number of circumferential crowns, is 
denoted above each curve. The model corresponding to the optimal vessel diameter is 
circled for each stent configuration. The optimal vessel diameter range for each 
configuration is denoted by the alternating gray and white shaded areas. Both the 3:3 and 
2:2:2 configurations of stent D represent a six crown stent, but the optimal vessel 
diameter range was not computed for the 3:3 configuration so it is denoted with a dotted 
line. 

Using a similar analysis, a comparison of the hemodynamic performance among 

the various stent designs is shown in Figure 3.14 by plotting a least cost curve for each 

design. The least cost curve is constructed by extracting the minimum possible cost from 

among all the configurations of a stent design for entire vessel diameter range as plotted 

Figure 3.14. A comparison of the least cost curves indicates that in the most 

hemodynamically favorable configuration, stent design C performs worse than all other 

stent designs regardless of vessel diameter. Stent D is the best performing commercially 

inspired stent design, while the generic slotted-tube stent is the best performing design in 

vessels less than 3.0 mm in diameter. 
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Figure 3.14: Comparison of the least cost curves of each stent design. The least cost 
curve represents the most best hemodynamic cost of a stent design for all vessel 
diameters between 2.0 and 5.0 mm in diameter. 

Histograms of the normalized TAWSS over the intrastrut area for each optimal 

model are shown in Figure 3.15. Each histogram was constructed with a bin size of 

normalized TAWSS equal to 0.02. For a given stent design, the histograms of normalized 

TAWSS are similar for the optimal models among all configurations, thus the pattern of 

TAWSS is only shown for one representative stent cell. The histograms of stent designs 

B and C are more skewed towards lower values of TAWSS when compared to designs A 

and D, indicating a greatest area of low TAWSS is generated by the optimal models for 

these stent designs. Visual inspection of the TAWSS over the stent cell of design B 

illustrates a majority of the low TAWSS is localized near the connector element (Figure 

3.15, Stent B dotted line). Similarly, the design of stent C produces localized areas of 

decreased TAWSS near connector elements as well as in the middle of the intrastrut area 

(Figure 3.15, Stent C dotted lines). 
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Figure 3.15: Histogram of the TAWSS over the intrastrut area of optimal stent models 
along with a representative pattern of TAWSS on an optimal stent geometry. Histograms 
are only plotted for optimizations that did not converge to a boundary. TAWSS is shown 
normalized to the TAWSS computed in the unstented portion of the vessel. Localized 
areas of low TAWSS near cell connector elements are indicated by the dotted lines for 
stents B and C. 

 Given that the designs of stents B, C and D closely resemble the commercially 

available BX Velocity, Express2 and Multi-Link stents respectively, a comparison of 

hemodynamically optimal vessel diameter range (Figure 3.13) to that of the 

manufacturer’s recommended diameter range is presented in Table 3.4. The expanded 

geometry of a single stent crown at the minimum and maximum of each range is also 

depicted in Figure 3.16. For any given vessel diameter, the commercial stents are 

configured with a greater number of crowns than the hemodynamically optimal 

configurations. 
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Table 3.4: Comparison of the vessel diameter range recommended by stent manufactures 
and the hemodynamically optimal vessel diameter range predicted by the CFD 
simulations in this investigation. 

 Diameter Range (mm) Intrastrut Angle Range (°) 
Circumferential 
Repetitions (NC) Manufacturer 

Simulation 
Based Manufacturer* 

Simulation 
Based 

(N/A)/A     
5  – 2.58  – 65.4 
6  2.58 – 3.22  50.6 – 67.4 
7  3.22 – 3.75  54.3 – 67.4 
8  3.75 – 4.34  55.9 – 68.4 
9  4.34 – 4.82  58.0 – 68.1 
10  4.83 –   58.7 – 

     
BX Velocity/B     

4  – 2.55  – 93.4 
5  2.55 – 3.28  63.5 – 97.4 
6 2.25 – 3.00  3.28 – 3.98 36.6 – 61.4 70.8 – 100.4 
7 3.00 – 3.50 3.98 – 4.59 46.9 – 61.4 76.3 – 99.5 
8  4.59 –  78.5 – 

     
Express2/C     

4  – 3.24  – 85.6 
6 2.25 – 3.50  3.24 – 4.98 20.4 – 48.2 43.7 – 86.3 
8 4.00 – 5.00 4.98 – 36.8 – 54.1 53.7 – 

     
Multi-Link/D     

4 – 2:2  – 2.71  – 103.7 
5 – 2:3  2.71 – 3.75  71.5 – 130.6 
6 – 2:2:2 2.00 – 3.00  3.75 – 4.33 29.6 – 61.7 89.8 – 117.7 
7 – 2:2:3  4.33 –  89.1 – 
8 – 2:3:3     
9 – 3:3:3† 3.50 – 5.00   41.4 – 75.4  

* Manufacture’s intrastrut angle was computed using the designs of stents B, C and D 
† Manufacture’s diameter range based on combination of Multi-Link Vision and Ultra 
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Figure 3.16:  Comparison of the vessel diameter range of each commercially available 
stents to the hemodynamically optimal diameter configuration diameter range. The 
expanded geometry of a single circumferential crown corresponding to the minimum and 
maximum cell expansion of each range is also shown. 

3.4.4 Discussion 

This case study used the stent optimization method to identify the 

hemodynamically optimal vessel diameter for various configurations of a generic slotted-

tube and three commercially available stent designs. The results indicate that current 

commercial stent configurations have a greater number of circumferentially repeating 

stent crowns than is hemodynamically optimal. Presumably a larger number of stent 

crowns provide a greater amount of vessel scaffolding, but the current results 

demonstrate that this also increases the area of the vessel exposed to potentially 

deleterious levels low TAWSS.  
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The unique framing of the optimization problem in this case study facilitated a 

thorough and detailed analysis of the relationship between vessel diameter and stent 

configuration without necessitating numerous optimizations. The main objective of the 

investigation was to identify the optimal value of NC for a given stent design and vessel 

diameter. This naturally implies formulating the optimization problem to directly solve 

for the optimal value of NC while maintaining vessel diameter constant. Instead this 

investigation used the reverse formulation to identify the optimal vessel diameter for a 

given NC. This approach did not directly solve for NC, but rather indirectly computed the 

optimal value of NC for a given stent design and vessel diameter by examining the 

relationships between the cost function and vessel diameter (Figure 3.13). Moreover, the 

reverse formulation also enabled the analysis of the optimal intrastrut angle and quick 

computation of the optimal vessel diameter range for each stent configuration. The direct 

approach would require numerous optimizations to compute these parameters with the 

same accuracy achieved using the reverse formulation. 

The results of this investigation confirm and extend the findings of the previous 

case study (Section 3.3) in which it was determined that the optimal value of NC 

depended on the intrastrut angle for a generic slotted-tube stent, similar to stent A. As 

shown by the intrastrut angles of the optimal models (Table 3.3), the small range of 

optimal angles for each stent design supports the previous conclusion that the optimal 

value of NC is dependent on the intrastrut angle. However, contrary to the findings of the 

previous study, the current results indicate that the optimal intrastrut angle is somewhat 

dependent on vessel size. The optimization routine generally converged to designs with a 

smaller intrastrut angle in small diameter vessels (Table 3.3). The discrepancy between 
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the findings of these studies is likely caused by the difference in design constraints used 

in each study. In the previous study, the intrastrut area was constrained to 1 mm2, 2 mm2 

or 3 mm2 and optimization were only performed with 2.25 mm and 3.0 mm diameter 

vessels. The current results were obtained by constraining the stent strut dimensions and 

allowing the vessel diameter, and subsequently the intrastrut area, to vary. These 

constraints mimic the realistic deployment of a stent and result in a better approximation 

of the optimal intrastrut angle. Thus the optimal intrastrut angle for a slotted-tube design 

is likely between 50° and 60°, as opposed to the previously reported value of 40°. 

There was a large difference in the optimal intrastrut angle observed between 

various stent designs. The optimal intrastrut angle for peak-to-peak (A and B) and hybrid 

(C) designs was smaller than that of the peak-to-valley design (D). Based on the 

hypothesis that the optimal stent design represents a balance between progressive strut 

misalignment and increasing intrastrut area, this finding is likely explained by the 

nonlinear relationship between the intrastrut area and the vessel diameter for stent designs 

A, B and C (Figure 3.12). Unlike the linear relationship of peak-to-valley designs, the 

rate of increase in intrastrut area decreases with increasing stent diameter for peak-to-

peak and hybrid designs, resulting in a smaller optimal intrastrut angle. This is most 

evident for designs A and B, in which the cell geometry of each optimal model 

corresponds to a similar location on the cell expansion curve slightly less than the 

possible maximum cell area. 

The present findings indicate the cost of the models corresponding to the optimal 

vessel diameter of a given stent configuration increases with increasing vessel diameter 

and NC for designs A, B and C. This relationship causes the value of the optimal vessel 
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diameter to be skewed towards the low end, or fall completely outside of the optimal 

vessel diameter range for most configurations (Figure 3.13). For example, the optimal 

vessel diameter for the NC=7 configuration of design B is 4.00 mm, while the optimal 

vessel diameter range of this configuration is about 4.00-4.60 mm. The lack of this trend 

in stent D likely arises from the combined use of two and three crest cell geometries. 

Incorporating a three cell geometry into the stent configuration generally resulted in 

lower costs than the two crest cell design as evident by comparison of the 6-2:2:2 and 6-

3:3 optimization (Figure 3.13). Although the two stent designs have the same number of 

crowns, the 6-3:3 stent has a lower associated cost (0.536 vs. 0.530). 

The least cost curves (Figure 3.14) and TAWSS distributions (Figure 3.15) both 

suggest that the relative ranking of performance (best to worst) of the commercially 

inspired stent designs considered is D (Multi-Link), B (BX Velocity) and C (Express2). It 

should be noted that some commercial versions of Stent D include a flexible connector 

link that would likely produced a greater area of low TAWSS than was computed here 

which may affect this ranking. While these rankings provide insight to relative 

performance of commercial stents, they cannot be used to draw any general conclusions 

about the performance of peak-to-peak, peak-to-valley or hybrid designs as the strut 

thickness and width was selected among the stent designs to mimic the dimensions of the 

commercially available equivalents. This investigation also highlights the superior 

adaptability of the peak-to-peak and peak-to-valley designs to various vessel diameters as 

compared to the hybrid design (Figure 3.16). The number of circumferential crowns of 

the hybrid design can only be incremented by a factor of two due to the cell geometry, 

whereas the other designs allow for unit increments. 
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Compared to configurations of commercially available stents, the current results 

suggest that hemodynamically optimal stents contain fewer circumferentially repeating 

crowns, which results in greater spacing between struts. While an increase in strut 

spacing is hemodynamically advantageous, this may adversely affect other stent design 

criteria. Specifically, increasing strut spacing imposes higher focal mechanical stresses on 

the artery and may reduce the radial strength of the stent [10]. For DES stents, increased 

strut spacing reduces the uniformity of drug release along with the intrastrut drug 

concentration [45]. Interestingly, a previous study by Iakovou et al. demonstrated that 

increased strut spacing was not associated with unfavorable clinical outcomes for the 

Cypher stent, the DES version of the BX Velocity [31, 35, 88, 93, 100]. In this study six 

crown Cypher stents were overdilated beyond the suggested 3.0 mm diameter maximum 

for 3.5-4.0 diameter vessels, similar to the hemodynamically optimal vessel range for this 

stent configuration. Overdilation was not associated with increased late lumen loss or 

binary restenosis rate. However, this study was only performed in large diameter vessels 

which are generally associated with a decreased rate of restenosis and is unclear if these 

results would translate to smaller vessels. Similarly, overexpansion of the Express2 and 

Multi-Link designs has not been studied in detail. 

3.5 Discussion of the optimization methods 

3.5.1 Summary 

Stent design and geometry are known to influence clinical outcomes including 

endothelialization and restenosis after DES and BMS implantation, respectively [11, 40, 

60-62], but previous studies have largely employed a “trial-and-error” approach to 

improving stent design. This works represents the first investigation to use a 
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computationally efficient method for optimizing cardiovascular stent design in unsteady 

flow using CFD.  

The cost function used in the optimization routine measured the disparity in 

TAWSS between the stented region and unstented region. While this cost function is 

representative of the well-establish concept of WSS homeostasis, the actual value of this 

index has not previously been studied or correlated to vascular disease. Other CFD 

studies have used a critical value of 4 or 5 dynes/cm2 as the threshold of low WSS [54], 

as it has been correlated to intimal thickening [39, 66, 70, 86]. However, using a 

threshold may not be able to differentiate between device designs in flow environments 

with excessively high or low WSS. The cost function used in this investigation is more 

versatile than a thresholding cost function and capable of discriminating between stent 

designs regardless of flow environment, which was most evident in Case Study 2. The 

magnitude of WSS varied greatly among these models since the inflow rate was kept 

constant for a wide range of vessel diameters. Because the TAWSS in the stented region 

of the model was normalized to TAWSS in an unstented region of the vessel, the 

formulation of the cost function was not dependent of vessel diameter. 

In the current investigation, only the magnitude of TAWSS was considered as a 

determinant of the optimal stent design. Although low TAWSS is the most commonly 

studied index for predicting in-stent restenosis, several researchers postulate that 

oscillatory shear index, spatial or temporal wall shear-stress gradients, and wall shear 

stress angle gradients may also be useful indices for predicting restenosis [8]. The current 

optimization methodology could be adapted to perform multi-objective optimization 

[119] in order to include the effects of other hemodynamic indices in future studies. For 
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example, Yang et al. recently implemented multi-objective optimization with regard to 

energy efficiency and WSS to determine the optimal a shape for a Fontan surgical design 

which is performed on patients with single ventricle heart defects [57]. 

3.5.2 Limitations 

The present results should be interpreted within the constraints of several 

potential limitations. Each coronary vessel was modeled as an ideal cylinder which likely 

does not represent the actual vessel geometry following stent deployment. As discussed 

earlier (Section 2.1), a finite element simulation of the stent expansion may be the best 

method for determining the expanded geometry of the stent and vessel, but this approach 

would further increase the computational cost of the already computationally expensive 

optimization routine and therefore was not pursued in this investigation. Though the 

previously described patient-specific model of a coronary bifurcation employed a 

deformable wall model (Section 2.4.1), the vessel models in this investigation employed 

a rigid wall assumption for all CFD simulations for simplicity and increased 

computational efficiency. Since the compliance of stented arteries has been shown to be 

nearly zero, a rigid wall assumption is likely valid within the stented region that is 

quantified during the optimization routine [95, 96].  

The current optimization method does not consider uncertainty in simulation or 

model inputs (i.e. model inflow waveform, boundary conditions, blood rheology, stent-

to-artery ratio, etc.) that may affect the optimization output. As an example, the influence 

of the inflow waveform was analyzed by recomputing the optimal diameter of stent 

design A with NC=6 using a steady inflow instead of a pulsatile waveform. The 

optimization converged to the same vessel diameter for both inlet boundary conditions, 
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but the cost was lower for the steady inflow condition when comparing models of equal 

vessel diameter (Figure 3.17). This analysis suggests the design cost is sensitive to the 

contour of the inflow waveform, but the inflow does not affect the optimal design 

parameters. Unfortunately it is tough to elicit a definitive relationship between the inflow 

and cost since only two inflow cases were examined. It is also unknown if the 

relationship between the inflow and cost would be similar for all of the stent designs and 

the entire range of vessel diameters studied here. These potential differences in the cost 

due to the inflow may affect the computed optimal vessel diameters (Figure 3.13) and 

relatively ranking of the stent designs (Figure 3.14). Thus, each of the optimizations in 

this investigation used a pulsatile inflow similar to a human coronary waveform for 

increased physiologic realism and to reduce the potential influence of a steady inflow. 

This analysis of the model inflow underscores the difficulty in understanding the 

potential influence of possible input variables. Future studies that implement robust 

optimization techniques may provide a better understanding of the sensitivity of output 

parameters to input uncertainties [19].  

 

Figure 3.17: The cost function versus the vessel diameter for the stent B (NC=6) when a 
steady and a pulsatile inflow is applied to the CFD model. The model corresponding to 
the optimal vessel diameter is circles on each plot. 
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In the first part of this thesis (Chapter 2), the computational mesh of each stented 

model was scrutinized to ensure mesh independence by comparing WSS between 

successive meshes with increasing mesh densities. This analysis was not included in the 

optimization routine since it usually required three to five mesh refinements to reach 

mesh independence, and the process of successive mesh refinements would drastically 

increase the computational expense of the optimization routine. Instead mesh 

independence was investigated by computing the optimal vessel diameter of stent design 

B with NC=5 using two different mesh densities. The anisotropic mesh generation 

parameters were tailored to create meshes with roughly 3-4 and 6-8 million elements for 

this stent configuration. The optimization converged to a vessel diameter of 2.625 mm 

when high density meshes were used compared to 2.65625 mm for the low density 

meshes (Figure 3.18). In general, the cost of stented models was slightly increased for 

models with a higher mesh density, but the relative difference in cost was <1% between 

models with an equal vessel diameter. Since doubling the mesh size only resulted in 

small variations in the computed cost and the optimal vessel diameter, the optimization 

results were assumed to be independent of the computational mesh for the relatively low 

density meshes. The meshing parameters used to generate 3-4 million element meshes 

were used throughout the entire investigation.  
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Figure 3.18: The cost function versus the vessel diameter for the stent B (NC =5) for 
computational meshes with a density of 3-4 million elements (1x) and 6-8 million 
elements (2x). 

This work attempted to include some of the most widely used stents geometries at 

this time. The companies referred to here may now have, or be developing, newer stents 

for which the demonstrated optimization techniques could be used to identify the 

hemodynamically optimal designs configurations. The current results do describe some 

general hemodynamic characteristics of peak-to-peak, peak-to-valley stent and hybrid 

designs which are likely applicable to new designs without a complete optimization 

analysis. However, the variability among designs within these categories, as shown by 

the difference in optimal configurations of stents A and B (Table 3.3 and Figure 3.16), 

suggests a complete optimization analysis is necessary for each unique stent design. 

3.6 Conclusion 

In summary, the current investigation describes an efficient optimization 

framework that uses 3D CFD coupled with a derivative-free optimization routine to 

indentify hemodynamically optimal stents. The method was applied to analyze the 

optimal number of circumferentially repeating stents cells and intrastrut angle that 

minimize the area of low TAWSS for various stent designs. In general, the results 
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indicate that commercial stent designs incorporate a greater number of circumferentially 

repeating stent crowns than is hemodynamically optimal, which may subject the vessel to 

potential deleterious levels of low TAWSS and may partially explain why rates of 

restenosis remain high after stent implantation in small diameter vessels. Incorporating 

the results of this investigation in future stent designs may improve endothelialization 

after DES and reduce neointimal hyperplasia and subsequent restenosis after BMS.  
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Chapter 4 
  

Future Directions and Conclusion 
 

4.1 Future computational investigations 

The findings of the optimization case studies would be particularly interesting 

when coupled with additional solid mechanics, deliverability and drug-elution analyses 

often considered when designing a stent. In this investigation, the parsimonious choice of 

stent parameters ensured the optimization did not pursue infeasible stent designs. This 

resulted in only one stent or vessel parameter varying during each optimization, but the 

SMF optimization algorithm is fully capable of considering multiple design parameters 

[13, 64, 120]. Implementing a multi-objective optimization that considers additional, non-

hemodynamic design criteria would enable additional design parameters to be optimized. 

For example, optimizing the strut thickness from a purely hemodynamic perspective 

produces an optimal stent design with a negligible thickness. However, if the radial 

strength of the stent was also considered, the competing solid mechanic and 

hemodynamic effects of reducing strut thickness would prevent the optimization from 

converging on an infeasible design. Additional solid mechanics design criteria might  

also include the compliance and stress induced on the arterial wall which are known to be 

influenced by strut thickness and intrastrut area [9, 31]. In designing DES, smaller 
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intrastrut areas that promote uniform drug distribution are favorable since non-uniform 

drug concentrations resulting from stent geometry or overlapping stents have previously 

been shown to suppress re-endothialization atop stent struts [8, 119]. As discussed earlier, 

the SMF optimization technique can be adapted to perform multi-objective optimization 

[92], which would enable a thorough analysis of the trade-offs between hemodynamic 

indices the other design criteria. Therefore the largest obstacle to considering additional 

design criteria within the optimization routine is incorporating additional numerical 

analyses, such as FEA or drug advection-diffusion, into the optimization framework. 

 The optimization methodology presented here was developed to understand the 

relationship between stent configuration and vessel diameter, and possibly improve stent 

design for treating small vessel lesions. With a few modifications, this methodology 

could be used to investigate potential design improvements for treating other difficult 

lesions subsets such as those in the left main coronary artery where efficacy data for most 

stents is limited and local disruptions in the vicinity of the bifurcation increases the 

potential for flow patterns linked neointimal growth and thrombus formation [58]. 

Additionally, the optimization method could be coupled with the patient-specific stenting 

method (Chapter 2) to determine the optimal stent designs for individual patients. 

Determining the optimal geometry of the flow diverting cerebral stent (Section 2.5) 

would be a particularly interesting application for the optimization method. 

4.2 Validation of optimization results with animal models  

 The application of the stent optimization method generally indicate that 

decreasing the number of circumferentially repeating stent crowns of commercially 

available stent designs would subsequently reduce neointimal growth and promote the 
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endothelialization of strut.  To be clinical relevant, this finding needs to be validated with 

an animal model. LaDisa et al. developed a technique for implanting stents in rabbit iliac 

arteries [63], which was later used to correlate low WSS with increased neointimal 

hyperplasia . Using the computed optimal vessel diameter range for various stent 

configurations (Figure 3.16) as a guide, the stent implantation method could be used to 

implant stents with the optimal, less than optimal and greater than optimal number of 

circumferential repeating stent crowns depending on the measured diameter of the rabbit 

artery. The rabbits would then be euthanized after 21-28 days to quantify the amount 

neointimal hyperplasia within each experimental group, thereby validating the results of 

the CFD based optimization. With the addition of medical imaging, the subject-specific 

stenting methods could be also used to generate a model of the flow domain for each 

rabbit following stent implantation. 

4.3 Conclusion  

 The computational techniques for evaluating cardiovascular stent designs 

described in this thesis constitute a substantial improvement over previous CFD studies 

of stent design. Previous studies have largely relied on simple vessel and stent geometries 

to described hemodynamic alterations in response to coronary stent implantation. 

Therefore, the method of virtually implanting commercial stents into patient-specific 

vessel geometries (Chapter 2) represents a necessary advancement in stent modeling 

techniques to further understand hemodynamics in complex coronary lesions geometries 

(e.g. bifurcation lesions) that remain difficult to treat and to evaluate emerging 

applications of stent implantation (e.g. flow-diverting stents). To the author’s knowledge 

this is also the first investigation to couple an optimization algorithm 3D CFD to 
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determine hemodynamically optimal stent designs (Chapter 3). Collectively, these 

methods provide a means of systematically evaluating and improving the hemodynamic 

performance of current and next-generation stents. Moreover, these methods can be used 

to avoid the costly trial-and-error approach to stent design that has often been used in the 

past.   
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 COMPUTATIONAL MODELS AND SOURCE CODE 

The patient-specific stent models, code for advanced quantification methods and 

code implemented within the optimization framework is available by contacting Timothy 

Gundert at (920) 979-9673 or Dr. John F. LaDisa, PhD in the Department of Biomedical 

Engineering at Marquette University. 
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