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ABSTRACT 
SENSITIVITY OF MOTOR ADAPTATION TO THE STATISTICAL 

PROPERTIES OF AN ENVIRONMENTAL LOAD 
 

Timothy M Goetz-Haswell, B.S. 

Marquette University, 2010 

 

Linear, limited-memory models capture many important features of adaptive motor 
performance during reaching, stepping and pointing. A recent study in our lab found that a 
model fitted to data obtained from subjects reaching against elastic loads which varied from 
trial-to-trial later failed to fit the steady-state response behavior of subjects exposed to 
deterministic, step changes in load. Does motor adaptation depend on statistical properties 
of the environment (eg. mean load strength and variability)? Neurologically intact volunteers 
(n=14) made 6 blocks of 100 planar, ballistic, 10cm, out-and-back reaching movements 
against spring-like loads having equilibrium positions at the hand’s starting point. View of 
the limb was not allowed. Load stiffness varied trial-by-trial, and each block of movements 
differed in mean and/or variance such that three, 3-block contrasts were evaluated: 
increasing standard deviation (VAR), increasing mean (MEAN), and proportionally 
increasing standard deviation and mean (WEBER). In the VAR and MEAN contrasts, either 
the mean or the standard deviation of the load stiffness sequence was held constant while 
the other parameter varied systematically. In WEBER contrast, mean and standard deviation 
scaled proportionally over the contrast. The zero location of the transfer function moved 
toward the origin as variability increased.  This trend in the zero location was the result of an 
unbalance in the decrease in the influence of previous load and the decrease of effective limb 
compliance with increasing variability.  Specifically, the decrease in the influence of prior 
load was greater than the decrease in effective limb compliance.  Effective limb compliance 
decreased to a larger extent in the MEAN and WEBER contrasts, which both presented an 
increase in mean load.  In the MEAN contrast, the decrease in effective limb compliance 
with increasing mean load was balanced by an equivalent decrease in the influence of prior 
load, resulting in no significant change in the transfer function zero location.  No changes in 
the influence of prior errors were observed in any of the contrasts. Thus, motor adaptation 
adjusts in two ways: the influence of prior load on subsequent movements decreases both 
when the environment is more variable and when effective limb compliance decreases with 
the mean load.
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RATIONALE AND SPECIFIC AIMS 
 

 

Motor adaptation is an important form of learning whereby trial-by-trial adjustments 

are made to motor commands in order to recover some desired performance despite 

persistent perturbation or change in load. Systems identification techniques have been used 

to characterize motor adaptation (Bock 2003; Conditt et al. 1997; Lai et al. 2003; Scheidt et 

al. 2005; Scheidt et al. 2001), finding that a linear, limited memory model captures many 

important features of the adaptive response (Scheidt et al. 2005; Scheidt et al. 2001). This 

model has a form identical to that of an infinite impulse response (IIR) filter used in signal 

processing applications. Very recently, Scheidt and colleagues have demonstrated that the 

impulse response properties of motor adaptation vary depending on the sensory context 

within which adaptation takes place (Scheidt et al. 2005). Here we seek to determine whether 

the response properties of this adaptation also depend on the statistical properties of the 

environment, namely the mean strength of load and its variability.  

Lai et al. (2003) have examined how the extent of motor adaptation varies with the 

magnitude of environmental perturbations. Although their assessment of adaptation showed 

some variation over the five perturbation levels tested, this trend was not found to be 

statistically significant. This equivocal outcome likely occurred because the range of 

perturbation strengths was too limited to evoke movement errors that varied systematically 

with load condition. 

A recent study conducted in our lab has characterized the motor adaptive response 

to elastic loads that vary randomly from one trial to the next (Judkins 2004). A limited-

memory model of sensorimotor adaptation derived from trials with unpredictable loads fit 
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the transient response behavior of hand path errors with fidelity.  However, these same 

models failed to fit steady-state errors when subjects were exposed to deterministic, step 

changes in load.  Since a step change in load is very predictable after the initial impulse, it is 

possible that subjects may have adopted different adaptive strategies depending on the 

statistical properties of the load.  For example, when reaching against a highly predictable 

perturbing force (low variability), performance errors likely reflect variability and/or errors in 

motor planning which should be compensated for on subsequent movement attempts. In 

contrast, when reaching against an unpredictable loads (i.e. environments with high 

variability), performance errors may reflect errors induced by the changing load to a greater 

extent than errors in motor planning. We propose to evaluate whether and how subjects 

alter their motor adaptation strategy depending on the statistical properties of the mechanical 

load. 

Since motor adaptation is driven by sensory inputs, it may be necessary to consider 

the role of sensory-perception processing in motor adaptation.  It has long been known that 

neurosensory mechanisms are sensitive to the statistical properties of environmental stimuli. 

Weber's law, a central tenet of the study of human sensation and perception (psychophysics), 

states that for a particular amplitude of a given stimulus (I0), the following stimulus (I1) must 

increase (or decrease) by a constant proportion (k) of the original stimulus level to bring 

about a just noticeable difference (jnd) in sensation (Weber, 1978; Gescheider 1985; Matlin 

and Foley 1997): 

k
I

II

I

I =−=∆

0

01

0

      (1) 
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(Note that k is unitless.)  If the sensory mechanisms contributing to motor adaptation are 

subject to similar neuro-physiological constraints giving rise to Weber's law, then sets of 

pseudorandom stiffness loads whose mean and standard deviations scale by a constant ratio 

will be perceived as having similar distributions, thus giving rise to similar trial-by-trial 

adaptations.  We propose to test this hypothesis by comparing adaptation models derived 

from sets of loads having carefully selected statistical properties. Specifically, our aims are: 

1) To test the hypothesis that the sensorimotor information processing leading to 

motor adaptation is sensitive to statistical properties of the environmental load, and 

2) To test the hypothesis that sensorimotor information processing serving motor 

adaptation adheres to Weber's Law for sensation. 

We expect the experimental results will increase our understanding of how recent 

experience shapes motor performance. This knowledge will likely be necessary for 

improving practice-based therapies promoting recovery from motor impairments following 

injury to the neuromotor pathways (e.g. stroke). 
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BACKGROUND AND SIGNIFICANCE 
 

 

This section will review the core research motivating this study. This study focuses 

specifically on motor adaptation, which we differentiate from visuomotor adaptation in that 

this work is conducted in the absence of concurrent visual feedback.  This makes the 

experimental task adaptations localized to the proprioceptive sensory and motor systems as 

opposed to the visuomotor system.  This allows us to focus on the use of proprioception as 

it applies to planning of movements performed without concurrent visual feedback and 

removes complicating and conflicting factors such as visuospatial transformations, the 

proportions of visual and proprioceptive contributions to feedforward planning of 

movement, and attention paid to visual feedback. We will also briefly discuss the relation of 

the motor adaptive process to Bayesian processes and how Weber’s Law, as interpreted by L. 

L. Thurstone (Thurstone 1927), complies with Bayes’ Theorem. 

 

Adaptive Motor Responses to Changing Environmental Loads 

Motor adaptation is an iterative process by which deviations in movement caused by 

some perturbation or load are reduced over a number of repetitions in an attempt to regain a 

level of performance similar to that occurring prior to introduction of the perturbation or 

load. Many types of load have been evaluated experimentally and have been shown to be 

compatible with this process, demonstrating that it is a robust mechanism for correcting 

motion. Motor adaptation appears to be able to compensate for position-, velocity-, and 

acceleration-dependant dynamic loads (stiffness (Weeks et al. 1996), viscous/viscous-curl 

(Hannaford et al. 1984; Lai et al. 2003; Scheidt et al. 2001; Scheidt et al. 2000), and inertia 
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(Sainburg et al. 1999), respectively) and combinations thereof. However, there is evidence 

that one cannot adapt to time-dependant dynamic loads per se but rather that the motor 

system appears to "learn" such loads via a kinematics-dependant approximation (Conditt et 

al. 1997). The internal sense of limb kinematics (termed proprioception) clearly plays a role 

in motor adaptation. Research has demonstrated that most people will rely on vision if it is 

available, suggesting that it is believed to be more accurate and/or reliable. However, 

evidence indicates that vision is not necessary for adaptation (Conditt et al. 1997; Sainburg et 

al. 1999; Scheidt et al. 2005; Scheidt et al. 2001; Scheidt et al. 2000).  This indicates that 

proprioception is a sufficient sensory input for motor adaptation. 

Proprioceptive sensory information can come from a number of different sensory 

organs in the skin, joints, and muscles.  Typically, muscle spindles are assumed the primary 

sensory organ responsible for the transduction of length and length change in extrafusal 

(voluntary) muscle. Two related sensory organs comprise muscle spindles – the nuclear bag 

fiber and the nuclear chain fiber.  The nuclear bag fibers are named for their bulged central 

region that contains most of the nuclei of their constituent cells.  These fibers are very 

sensitive to the rate of length change and their response is transmitted to the CNS on group 

Ia (primary) afferents.  Nuclear chain fibers are shorter and thinner than nuclear bag fibers 

and get their name from the single-file arrangement of their nuclei.  Nuclear chain fibers vary 

their firing rate in proportion to the length of the muscle.  Nuclear chain fibers transmit their 

signals on both group Ia (primary) and group II (secondary) afferents.  During rapid length 

changes, the response of the nuclear bag fibers obscures the response of the nuclear chain 

fibers on the primary afferent as it is much larger.  These organs contain their own 

contractile elements (intrafusal muscle fibers) that are innervated by γ-motor efferent 

neurons. These γ-motor efferent pathways appear to have activity proportional to the 
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primary (α-) motor efferent activity directed to the extrafusal muscle fibers (Granit, 1975; 

Guyton and Hall 2000; Hulliger and Prochazka, 1983).  Some have proposed that the central 

nervous system (CNS) controls the sensitivity of muscle spindles by changing the "gain" of 

the γ-motor drive relative to the α-motor drive (Prochazka et al. 1985), leading to a disparity 

in the length change of the spindle relative to the surrounding extrafusal muscle fibers.  This 

causes the spindle length to deviate from its normal resting length increasing its firing rate in 

the case of an elongated spindle and reducing sensitivity in the reverse case.  Ribot-Cisar et al 

(2000) conducted a microneurographical study of passive human ankle movements 

attempting to train subjects to adjust their γ-motor drive.  The subjects could only reduce γ-

motor drive through focused whole-body relaxation and these efforts were disrupted by 

mental computation. Other studies have not uncovered any greater successes in voluntary γ-

efferent control (Gandevia et al. 1997; Kakuda et al. 1997) despite success in training animals 

to change γ-motor drive signals (Gandevia and Burke 1985) and observations that a number 

of external stimuli can give rise to changes in spindle activation threshold (Burke et al. 1980).  

These findings suggest that either humans have poor voluntary control of γ-motor drive or 

that much more practice is required to gain this voluntary control (given that animal studies 

use much more extensive training than human studies).  

While force feedback, from Golgi tendon organs or hand mechanoreceptors, may be 

involved in motor adaptation, rapid minimization of applied force does not appear to be the 

principle factor driving motor adaptation in reaching tasks with position goals. A reaching 

study by Scheidt et al (2000) demonstrated that subjects continue to generate similar 

corrective forces to those needed to compensate for an adapted perturbing load when they 

continue to experience a mechanical resistance to their efforts even if those forces no longer 

have the same dynamics of the adapted perturbation. In this study, subjects adapted to a 
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perturbing load, then a stiff controller was enabled that held them to their desired straight-

line-reach path.  Subjects were not directly notified of this change and continued to generate 

similar forces against the new load and exhibited only a slow decay in corrective force 

production. This decay had a time constant more than 16 times greater than that observed in 

subjects returning to their unperturbed kinematics while interacting with a passive 

manipulandum (Scheidt et al. 2000). This suggests that humans are not likely to make large 

changes to their motor commands if their efforts do not result in large over-compensatory 

movements. It does not appear that the sense of the applied force is particularly sensitive to 

the dynamics of the perturbing force given that subjects do not quickly realize that the new 

force field is assisting them in making straight reaches. This evidence suggests that, while 

force output is a motor plan parameter that is adjusted in adaptation during horizontal planar 

reaching, the appropriateness of the force output is determined by kinematic (most likely 

positional) deviations from the intended path. From these findings, if force information is 

used in human motor planning, then it has a much larger time constant than that applied to 

positional feedback. 

 

Motor Adaptation: A Bayesian Perspective 

Some researchers have proposed that motor adaptation can be modeled using a 

Bayesian conceptual framework (Bays and Wolpert 2007; Burge et al. 2008; Kording et al. 

2007; Korenberg and Ghahramani 2002; Krakauer et al. 2006; Wei and Kording 2009; 

Wolpert 2007).  The models they have proposed are similar in structure to existing models in 

that they typically use kinematic error and occasionally perturbation or load strength with 

very limited memory to estimate model parameters. However, these models estimate the 
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variance of certain noise sources such as sensory noise and execution noise and are fit by 

maximizing probability, rather than minimizing error.   

Bayes’ Theorem guides the underlying logic for Bayesian models. This theorem 

describes the update of probability based on new information.  P(H|E) is the new (or 

posterior) probability of hypothesis H given new evidence E, P(H) is our original (or prior) 

estimate of the probability of hypothesis H, P(E|H) represents the likelihood of “seeing” 

the new information E assuming we are correct in our assumption of the value of H, and 

P(E) is the sum of all possible products P(E|Hi)P(Hi) for every possible hypothesis Hi, 

called the marginal probability.  The marginal probability ensures that the probabilities for all 

hypotheses Hi sum to 1.  The determination of the posterior probability P(H|E) allows us to 

update our belief of the probability of our hypothesis H given the new information E and 

this can be done iteratively by setting the prior probability P(H) equal to the posterior 

probability estimate P(H|E) and calculate a new posterior probability each time new 

information E is made available.   

In the case of motor adaptation, one can have a hypothesis of a particular 

environmental load magnitude (H) and update that hypothesis (P(H|E)) using measurement 

estimates (E) gleaned from reaches made in the environment in the form of movement (e.g. 

reach extent, lateral deviation, etc.) error or a sense of effort (e.g. efference copy, Golgi 

tendon organ information, etc.) (Wei and Kording 2009; Wolpert 2007). 

∑
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A number of researchers (Burge et al. 2008; Korenberg and Ghahramani 2002; 

Todorov 2005; Wolpert 2007) have proposed the use of an extension of Bayes’ Theorem 
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know as a Kalman filter to model the motor adaptive process.  The Kalman filter attempts 

to determine the true value of some input signal by estimating the probability that each 

measurement of that signal is correct rather than corrupted by noise. To do this, the 

variability of the noise and the variability of true signal are estimated recursively as each new 

measurement becomes available. If the noise has stationary statistical properties, the filter 

will converge on an estimate of these properties and provide a very good estimate of the true 

signal. 

The Kalman filter is implemented as a series of equations that can generally be 

divided into “prediction” and “correction” groupings (Maybeck 1979; Welch and Bishop 

2006). The prediction equations (3) and (4) form a prediction ( −
ix̂ ) of the measurement ( iz ) 

that will be made on the next time step (i ) and the variance of the signal (
−2

iσ ) using the 

existing estimates of the true value of the signal being measured ( 1ˆ −ix ) and the statistics of 

the signal ( 2
1−iσ ).  The correction equations (5), (6), and (7) update the estimates of the true 

signal ( ix̂ ) and its variance ( 2
iσ ) in light of the new measurement ( iz ), and the process 

repeats.  In these equations, A and B are the coefficients of the difference equation (3) that 

describe the relationship between the signal of interest ( ix̂ ) and an (optional) input signal 

( 1−iu ).  The Kalman gain (K) controls the influence of the measurement residual, or 

prediction error, ( −− ii xz ˆ ) on the update of the estimation of the true signal ( ix̂ ) in (6).  The 

Kalman gain is calculated in (5) from the ratio of the predicted variance of the input signal 

(
−2

iσ ) and the variance of the noise in the measurement ( 2
zσ ), which is the step that make 

the Kalman filter a Bayesian estimator.  Typically, the variance of the measurement noise 

( 2
zσ ) can be determined empirically before its use in the Kalman filter.  The 2

processσ  term 
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represents a guess at the variance of the signal of interest and is usually not critical because it 

is recursively adjusted in (4).   

Kalman Filter Prediction Equations: 

11ˆˆ −−
− += iii BuxAx        (3) 

22
1

2
process

T
ii AA σσσ += −

−
      (4) 

 

Kalman Filter Correction Equations: 
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       (5) 

( )−− −+= iiiii xzKxx ˆˆˆ        (6) 

( ) −−= 22
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An example of the use of a Kalman filter for modeling motor adaptation can be 

found in the work of Burge et. al. (2008).  These researchers used a Kalman filter to model 

the visuomotor adaptation of subjects reaching without concurrent visual feedback, but 

receiving feedback of reach end point.  The measured signal ( z ) was reach end point error 

and the output ( x̂ ) was an estimation of the magnitude of the visuomotor mapping that the 

researchers applied to the visual feedback presented to the subject.  The imposed 

visuomotor mapping in this case was a displacement between the true reach end point and 

the corresponding visual feedback of the reach end point.  Burge et. al. manipulated the 

measurement uncertainty ( 2
zσ ) by blurring the visual feedback with a zero-mean Gaussian 

distribution with standard deviation blurσ .  They used a visual discrimination task prior to 

the reaching experiment to empirically measure 2
zσ  for each blurring magnitude ( blurσ ).  

They also manipulated visuomotor mapping uncertainty ( 2σ ) by adding a random walk with 

a standard deviation walkσ  to the step change in visuomotor mapping they used to probe the 

adapting subjects. Note that a random walk is a set of values created by iteratively adding a 
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value taken from a random distribution (in this case a zero-mean, Gaussian-distribution) to 

the previous value in the set, creating a randomly varying, but autocorrelated set of values.  

They found that as they increased blurσ , increasing measurement uncertainty 2
zσ  in viewing 

the reach end point feedback, the convergence toward the true visuomotor mapping 

(adaptation rate) slowed. They also found when  walkσ  was increased, increasing the 

variability of the measured signal (the visuomotor mapping), the estimated visuomotor 

mapping changed more rapidly (adaptation rate increased).  Since subjects’ behavior was well 

described by the Kalman filter, the interpretation was that when blurσ  is high, subjects 

“trust” the measurement (visual feedback) less and do not allow visual feedback to change 

the estimated visuomotor mapping quickly.  When walkσ  was increased, the visuomotor 

mapping uncertainty ( 2σ ) increased and reach end point errors in the visual feedback were 

“trusted” because the visuomotor mapping was likely to vary.   

In Bayesian models, the variance of the estimated noise controls the responsiveness 

of the model parameter update.  Specifically, when the magnitude of new input data is 

improbable given the current model parameter and noise variance estimates, its contribution 

to the model parameter estimates is minimized and the noise estimate is adjusted.  After 

several trials, as the noise estimate becomes accurate, the model parameter estimates obtain 

good noise rejection.  The interpretation is that if environmental variability is small (i.e. 

within the range of intrinsic sensorimotor variability), then systematic errors (like a bias 

toward over-reaching) are likely the result of motor command errors and should be 

corrected.  If environmental variability is large, then errors are likely to be variable rather 

than systematic and due, in large part, to this high environmental variability rather than an 

error in the motor command.  This variability may also make it difficult to determine the 
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contribution of motor command error to the total error.  In the experiments we describe in 

this report, we will model the responses of human subjects to changes in environmental load 

variability and mean load strength.  In doing so, we are exploring whether or not motor 

adaptation might be described as optimal, in the sense that it adheres to Bayes' Theorem. 

 

Physiological Mechanisms Contributing to Motor Adaptation 

Psychophysics is the area of research concerned with characterizing the relationships 

between sensation, perception and action. Sensation refers to the act of translating (i.e. 

transducing) stimulus energy into neural signals, perception refers to the detection of the 

sensed stimulus and the formation of a mental representation of its magnitude and action 

refers to the generation of a physical response to the stimulus.  Determining a mathematical 

relationship between these concepts has long been a goal of the motor control community. 

Some of these efforts have given rise to models such as Weber's Law, the Weber-Fechner 

Law, and the Stevens Power Law, which make use of another concept termed "just 

noticeable difference" or "jnd".  The jnd can be thought of as the 'resolution' of perception, 

in that it describes how much the stimulus intensity needs to change (relative to a control 

condition) in order that a difference is perceptible.  From his work, Weber found (for the 

stimuli he studied) that the magnitude of a stimulus change must increase by a constant 

proportion of the initial (control) intensity to elicit a jnd regardless of control magnitude.  

This constant proportion has come to be know as the Weber fraction I
Ik ∆= , where I is a 

given stimulus intensity and ∆I is the change in stimulus intensity necessary to elicit a "jnd" 

(Weber, 1978; Gescheider 1985; Matlin and Foley 1997).  Perception of many different 
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sensory stimuli has been found to conform to this basic relationship, although different 

constants (k) are associated with the different sensory stimuli (Gescheider 1985). 

Weber’s Law can be viewed as a discrete empirical model of a continuous statistical 

process. In his experiments and others like them, the just-noticeable-difference (jnd) was 

assigned some fixed probability, typically 75% chance of correctly detecting a stimulus 

change.  In doing so, Weber and others were essentially asking their subjects to perform a 

sensory-perceptive t-test with an alpha level of 0.25, discretizing the continuous process into 

a true-false response. This view is by no means a new one, in fact it was proposed in 1927 by 

L. L. Thurstone (Thurstone 1927).  Thurstone proposed that Weber’s Law is a simplification 

of the real continuous discriminatory process that was occurring since the laws used a fixed 

detection threshold.  Noise exists in all sensory inputs to varying degrees depending on the 

environment. Nevertheless, the sensory system appears quite capable of discriminating 

useful information from the noise despite potential non-stationarity of that environmental 

noise. The dependence of perception on stimulus intensity as described by Weber’s Law is 

likely a result of the increasing difficulty in discriminating differences in sensory information 

subject to signal-dependent noise, as has been demonstrated in the visual system (Todorov 

2005).  Given the broad application of Weber’s Law, we hypothesize that signal-dependent 

noise sources in the motor system may also contribute to the observation of a similar scaling 

relationship in the way subjects respond as they adapt to blocks of trial-by-trial varying loads 

of different average intensity. 
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Computational Models of Motor Adaptation 

Several groups have successfully constructed mathematical models that capture some 

of the key features of motor adaptation (Bays and Wolpert 2007; Bock 2003; Conditt et al. 

1997; Conditt and Mussa-Ivaldi 1999; Fine and Thoroughman 2007; Kording et al. 2007; 

Korenberg and Ghahramani 2002; Lai et al. 2003; Scheidt et al. 2005; Scheidt et al. 2001; 

Scheidt et al. 2000; Scheidt and Stoeckmann 2007; Thoroughman and Shadmehr 2000). The 

typical observation is that the process is reasonably well described by a linear, constant-

weighted sum of perturbation strengths (or load magnitudes) and kinematic errors from a 

limited memory of past attempts at the reaching task. The autoregressive, limited-memory 

model (8) proposed by Scheidt et al (2001) captures the relationship in a succinct manner 

and has been chosen to characterize motor adaptation in this experiment.  

1 1 0 1 1i i i ia b K b Kε ε − −= + +      (8) 

In this model, Ki and εi are the magnitude of the stiffness load experienced in and the 

kinematic error resulting from the reach attempt for the upcoming trial i, respectively. Terms 

with an i-1 subscript denote information experienced in the trial previous to trial i.  This 

model uses both of the previous experience (εi-1, Ki-1) terms and the load magnitude in the 

upcoming trial (Ki) to predict performance (εi) in the upcoming trial.  Model coefficient b0 

characterizes the relationship between the load stiffness and kinematic error in the upcoming 

trial lending to an interpretation as the “effective endpoint compliance” of the adapting 

motor system.  Model coefficient b1 describes the relationship of the previously experienced 

load stiffness to the error in the upcoming trial indicating the degree of influence this past 

experience had on the motor planning for the upcoming trial; this term will be described as 

the “influence of prior load.”  The final model coefficient a1 relates the kinematic error on 
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the previous trial to that on the upcoming trial. This term will be interpreted as the 

“influence of previous error” on the upcoming motor plan. The model can also be rewritten 

in transfer function notation (9) using the z-transform and interpreted as a filter that 

transforms load stiffness information into kinematic error.  In this form, a1 is the system 

pole, which specifies the decay rate of the system output.  This transfer function 

representation also defines a system zero of –b1/b0, which reflects a compromise between 

transient response fidelity and steady-state response accuracy.   

( )
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0 1 0
01 1

1 1

1( )

( ) 1 1
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− −

++= = =
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Recent experimental evidence suggests that motor adaptation is not a fixed process, 

but rather that adaptation itself changes depending on environmental context.  For example, 

Fine and Thoroughman (2006, 2007) looked at the adaptive response of reaching 

movements to brief environmental disturbances that varied in their time of onset within a 

movement as well as in their relative frequency across movements. In the first study, subjects 

were perturbed by brief force pulses that occurred pseudo-randomly at one of several 

distances along the reach path and with pseudo-random direction (leftward or rightward) 

and in one experiment the force pulse also had a pseudo-randomly selected amplitude from 

the set {6, 12, 18} N. Force pulses were experienced in 20% of the experienced reaching 

trials and were never experienced consecutively.  Adaptation was quantified by the difference 

in perpendicular deviation of the hand path between the post-pulse and pre-pulse trial. From 

this they observed only a categorical adaptation; on average subjects only demonstrated a 

direction-dependent response to the perturbations, even those that varied in magnitude. In 

the second study, subjects’ reaches were perturbed in 80% of trials by a viscous-curl field 

with strength that varied pseudo-randomly according to one of three distributions (each 
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distribution contained 6 field strengths). The distributions were described as strongly-biased, 

weakly-biased, and zero-biased. The strongly-biased distribution contained only field 

strengths that were directed either leftward or rightward depending on the subject group. 

The weakly biased distribution contained four field strengths directed in the same subject-

group-dependent direction and two in the opposite direction. Finally, the zero-biased 

distribution contained equal number of leftward and rightward directed field strengths. 

Using these perturbations, these researchers found that subjects expressed categorical 

adaptation for all but the strongly-biased distribution. They also found that reducing the 

proportion of perturbed trials for the strongly-biased distribution to 50% or 20% restored 

the categorical adaptive response.  For this study, Fine and Thoroughman used a state-space 

model, which was of a form that was demonstrated to be algebraically equivalent to the 

model used in this work to analyze motor adaptation (Scheidt 2004; Scheidt et al. 2001).  

Despite observations of categorical adaptation, this proportional adaptation model was able 

to account for more than 98% of the variance in the behavioral data for all conditions.  

These observations support the broad utility of limited memory models of motor adaptation 

under a variety of experimental conditions.  
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RESEARCH METHODS 
 
 
 
 
Fourteen subjects (4 female; median age of 24 years; range: 18 to 58 years) provided 

informed consent to participate in these experiments. All experimental procedures were 

approved by Marquette University’s Office of Research Compliance as Protocol # HR-1179.  

Subjects were instructed to reach smoothly and accurately with their right hand out-

and-back from a single home position to a fixed target position 10 cm anterior to the home  

(the goal) while holding the handle of a 2-DOF robotic manipulandum (i.e. a "reach-and-

return" motion). A lightweight, low-friction arm trough supported the reaching arm against 

gravity throughout the experiment. The home and goal target locations were presented 

visually on all trials as 1 cm diameter circles projected on to a horizontal screen directly 

above the plane of arm motion. On some trials (described below), a cursor was also 

projected directly above the hand’s location at the peak reach extent as a 5 mm diameter 

circle providing visual feedback (knowledge of results) of reach extent. The projection screen 

blocked direct view of the arm throughout the experimental session. Volunteers were 

instructed to make movements such that the centrifugal (outward) phase took 250 ± 13 ms 

(± 5%) to execute.  Feedback of movement time was provided visually using a linear scale 

that appeared at the end of each trial. The desired movement time of 250 ms was clearly 

indicated on the display, and the scale changed color depending on whether movement time 

was within (green), greater than (blue), or less than (red) the desire range. Thus, a blue time 

bar indicated that the movement was too slow and a red corresponded to a faster movement 

than desired. 
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Data Collection 

The robotic manipulandum recorded the forces, moments, and linear and angular 

accelerations at the subject’s hand using an analog 12-DOF load cell (Model 200N12, JR3, 

Woodland, CA) and the angular position of each motor shaft using 17-bit absolute encoders 

(Gurley Precision Instruments, Troy, NY). These data were acquired at 1 kHz by analog-to-

digital (A/D) conversion (Model PCI 6031E, National Instruments, Austin, TX) and digital 

input/output (I/O) hardware (Model PCI DIO48H, Computer Boards, Norton, MA) for 

these two types of sensors, respectively. The analog signals from the 12-DOF load cell were 

low-pass, anti-alias filtered at 500 Hz prior to A/D conversion. These data were stored to 

hard disk as well as used to control the manipulandum throughout the experiment. In 

addition, the commanded motor torques, Cartesian position of the manipulandum handle, 

and the parameters of the trial configuration were recorded to hard disk for post processing 

and verification of manipulandum performance.  

Bipolar, differential EMG electrodes (Model Bagnoli-8 system with Model DE2.1 

electrodes, Delsys, Boston, MA) were attached to the skin over the muscle bellies of eight 

arm and shoulder muscles: brachioradialis (BRD), lateral head of the biceps brachii (BiLat), 

medial head of the biceps brachii (BiMed), long head of the triceps brachii (TriLong), lateral 

head of the triceps brachii (TriLat), pectoralis major (Pec), anterior deltoid (AD), and 

posterior deltoid (PD). EMG signals were band-pass filtered to a range of 20 to 450 Hz, by 

the EMG hardware, prior to A/D conversion at 1000 Hz. Limb segment lengths were 

measured with a tape measure and joint angles were measured with a goniometer while the 

subject held the handle of the 2-DOF robot at both the home and goal target positions. The 

upper arm length was measured from the acromion (scapula) to the lateral epicondyle 

(humerus) and the lower arm length was measured from the lateral epicondyle (humerus) to 
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the center of the handle of the 2-DOF robotic manipulandum. The joint angles were 

measured with the arms of the goniometer centered on the limb segments and the 

goniometer hinge centered over the bony landmarks. Subjects' wrists were splinted in a 

neutral position during experimentation to allow the forearm and hand to be treated as a 

single link. 

 

Experimental Protocol 

During the experimental session, subjects performed six blocks of 151 reaching 

movements while the robot simulated mechanical loads consisting of a 2 kg point mass 

connected to one end of a spring-like load which was, in turn, connected on the other end to 

the home target location (Figure 1). The robot also constrained hand motion to the line 

perpendicular to the subject's chest (i.e. the y-axis of the robot’s reference frame) using stiff 

PID position control.  The environmental loads can be summarized by the following pair of 

equations:  
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    (10) 

where ,x yF F  are the forces generated by the manipulandum; , , , , ,x y x y x yd d d d d d& & && &&  are 

x- and y-axis components of hand displacement, velocity, and acceleration from the home 

target location, respectively; , ,m c k are the mass, viscous friction, and stiffness properties 

on the system along the y-axis (anterior-posterior movement); and DIP GGG ,,  are the 

gains of the stiff PID controller acting along the x-axis (lateral movement).  The system 

viscosity in the direction of movement (c = 10 N�s/m) was constant across all trials and was 
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included to promote stability of motion.  Only the stiffness of the virtual spring (k) changed 

during the experimental sessions; changes in load stiffness were considered as perturbations 

which subjects must compensate in order to reach accurately from the home to goal targets.  

Manipulating the elastic component of the load resulted in a low average damping ratio 

(0.156 ± 0.0140) that demonstrated only minute variation. The natural frequency (17.2 ± 1.4 

Hz) remained well above the frequency content of the subjects reaches (approximately 0 to 2 

Hz) and also did not vary greatly. The loads presented to subjects had consistent and stable 

behavior over the course of the experiment. 

Prior to the experimental session, subjects were permitted to practice reaching 

against the load with a very weak elastic component (25 N/m) to allow for familiarization 

with the required task and timing. Once subjects became comfortable with the task, they 

were guided through two sets of maximum voluntary contraction (MVC) exercises while the 

researcher provided the resistance. Each set of MVC exercises consisted of a maximal 

contraction in elbow flexion, elbow extension, shoulder horizontal abduction, and shoulder 

 
 

Figure 1: Diagrammatic Representation of the Mechanical Environment 
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horizontal adduction while the arm was held in the approximate configuration attained 

during experimentation. After a short break, an initial Effort-Test trial was performed against a 

stiff load of 1000 N/m to establish a baseline set of EMG activity for later comparison. 

During Effort-Test trials, subjects were asked to reach to the target and hold it there for five 

seconds before bringing their hand back to the home position. Concurrent cursor feedback 

of hand position was provided in this phase to facilitate target acquisition and maintenance. 

In all other trials, subjects were asked to reach-and-return in one fluid movement (i.e. with 

no pause at the distal target). 

Each block of trials was comprised of five separate phases, and the six trial blocks 

differed in the mean and variability of the spring-like loads applied during the fourth (test) 

phase.  Each block started with 20 trials (phase 1; practice) in which subject practiced 

moving against the average load they would experience in the upcoming test phase. In these 

trials, visual feedback of maximum reach extent (a cursor projected directly above the 

farthest hand position from the home target location) was provided so that subjects could 

calibrate their reach extent for the upcoming test phase.  The next 5 trials (phase 2; baseline) 

were also performed against the average load to be experienced in the upcoming test phase, 

but here visual feedback of reach extent was eliminated.  The purpose of these trials was to 

provide an estimate the subject’s average performance while reaching against the current 

mean load value to the remembered goal location without cursor feedback.  

The next 100 trials (phase 3; test) were performed without visual feedback and 

against a sequence of spring-like loads that varied in magnitude from trial-to-trial.  The 

stiffness values for each trial were predetermined and pseudo-random so each subject 

experienced the same sequence of loads for any given block.  The descriptive statistics (mean 

and standard deviation) of the pseudo-random sequence for each block are described in 
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Table 1 and as histograms in Figure 2.  All subjects experienced each of the six blocks over 

the course of the experimental session, and the presentation of blocks was randomized 

across subjects to minimize the effect of presentation order. 

 

 

 

Table 1:  Experimental Condition Notation 

 

 Mean (N/m) 

 Low: 250 Mid: 500 High: 1000 

Low: 80 mLvL mMvL mHvL 

Mid: 160  mMvM  
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High: 320  mMvH mHvH 

Control Load Types: fixed stiffness 

Constant: very low stiffness (25 N/m) for washout blocks. 

Effort-Test: high stiffness (1000 N/m) used for periodic fatigue monitoring. 

Experimental Load Types: pseudo-random, normally distributed 
stiffness (mean ± 2 standard deviations) 

mLvL: low mean, low variability set (250 ± 80 N/m)  

mMvL: middle mean, low variability set (500 ± 80 N/m) 

mMvM: middle mean, middle variability set (500 ± 160 N/m) 

mMvH: middle mean, high variability set (500 ± 320 N/m) 

mHvL: high mean, low variability set (1000 ± 80 N/m) 

mHvH: high mean, high variability set (1000 ± 320 N/m) 

Load Contrast Levels: Low  Mid High 

MEAN Contrast: mLvL mMvL  mHvL 

VAR Contrast: mMvL mMvM mMvH 

WEBER Contrast:  mLvL mMvM mHvH 
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The next 25 trials (phase 4; washout) were performed against a load having a very 

weak elastic component (25 N/m).  These trials required subjects to adapt to a very different 

load than they had just experienced, with the intention of minimizing carry-over of learning 

from one block of trials to the next.  Previous work suggests that our 25-trial washout phase 

was sufficiently long regardless of potential differences in the adaptation to the washout 

phase load (Lai et al. 2003; Patton and Mussa-Ivaldi 2004; Scheidt et al. 2001). 

The final reaching trial (phase 5; effort test) was performed in the same manner as 

the initial effort test preceding the experimental blocks. Including this trial in each block 

allowed us to calculate an EMG to force ratio (Kirsch and Rymer 1987) to assess the 

evolution of muscular fatigue throughout the experimental session.  Each block was 

followed by a minimum of 2 minutes of rest that was intended to delay and reduce the onset 

of muscular fatigue. 

 

The trial blocks were classified according to the mean (m) and variability (v) of the 

loads experienced during the experimental test phases: [mLvL, mMvM, mHvH, mMvL, mHvL, 

mMvH] depending on whether the mean or variability were defined to be low (L), middle 

VAR 

mL = 2.5 mM = 5.0 mH = 10.0 

vL = 0.4 

vM = 0.8 

vH = 1.6 

WEBER 

Mean Stiffness [N/cm] 

Stiffness 
Variability 

[N/cm] 

MEAN 

 

Figure 2: Histograms of stiffness distributions for experimental blocks. 
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(M), or high (H) (Table 1).  Each block was limited to a range equal to the specified mean ± 

twice the specified standard deviation (variability). The sequences were designed so that they 

had no significant autocorrelation values beyond lag 0, by comparison to a 95% confidence 

interval (Figure 3). The six load types allowed motor adaptation to be modeled for three 

blocks each along three trends in load statistics that we will call contrasts. These contrasts 

are (1) increasing mean with constant standard deviation (MEAN contrast), (2) constant 

mean with increasing standard deviation (VAR contrast), and (3) equally increasing mean and 

standard deviation (WEBER contrast).  Diagrammatically, these contrasts are shown by the 

arrows overlaid on the histograms presented in Figure 2.  The experimental design used 

these six blocks – arranged as three contrasts – instead of all nine blocks representing each 
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Figure 3: Autocorrelation values for the stiffness load series of each block of trials. Each block of 
stiffness loads only has a significant autocorrelation at lag 0. Red dashed lines represent the 95% 
confidence interval for H0: autocorrelation value at this lag is not different from 0. 
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combination of mean and standard deviation because we were concerned that the additional 

375 trials would increase the risk of subject fatigue to an undesirable level.  

 

Data Analysis 

We evaluated whether there were systematic differences in the kinematics and 

kinetics of reaching as a function of block type using several performance measures. These 

included peak movement extent; peak velocity, acceleration, and force; and the reach extent 

at which these last three peak values occurred.  All performance measures were obtained 

using an automated algorithm within the MATLAB computing environment (MathWorks, 

Natick, MA). Reach extent was taken as the furthest distance reached within a 200 ms 

window centered on the first time point where the outward reach velocity dropped below a 

threshold of 0.1 m/s.  We then computed a scalar movement extent error (ε) for each trial, 

which was the primary performance measure in subsequent analyses. Extent error was 

calculated as the signed difference between reach extent and the desired target distance of 

10cm.  The trial sequences of extent error ε and the load stiffness K were used to calculate 

weights in a motor learning model (8) developed by Scheidt and colleagues (Scheidt et al. 

2001). 

Before we used analyzed individual subject data, we wanted to assess whether these 

data demonstrate a similar relationship to that observed by Scheidt and colleagues (2001) and 

whether an alternate number of parameters would better describe the adaptive process under 

these experimental conditions.  We used the MATLAB System Identification Toolbox to fit 

a set of higher-order models of the form (11), which the limited-memory, autoregressive 

models (8) in a member where L and M both equal 1 (have 1 history element).  Since each 
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subject experienced the same pseudo-random stiffness load sequence for each block, we 

were able to average the extent errors made by subjects for each trial of each block, creating 

an ensemble average of extent error.  This ensemble average of the extent error of all 14 

subjects was used to calculate the coefficients of this set of models (11) for up to 10 trials 

into the past (L and M equal 10).  

1 0

i L i M

i i i j k i k

j k

a b Bε ε
− −

− −
= =

= +∑ ∑     (11) 

Ensemble averaging reduces the uncorrelated execution noise, which strengthens the 

underlying trend and allows the optimization algorithms to choose the best model more 

efficiently. In all cases, the linear trend was removed from the extent error and stiffness 

magnitude sets of each block to focus on the trial-to-trial relationships in the data. The block 

data were split in half; the last 50 trials were used to estimate the coefficients of the models 

for each block, and then the first 50 trials served to validate the respective models. Models 

were compared using the minimum descriptor length (MDL) criterion described by equation 

(12) (Ljung 1999), which determines the optimal model by minimizing a modified mean-

squared-error (MSE) equation:  

log( )
1MDL

k
MSE MSE n

k
 = + 
 

     (12) 

where n is the number of parameters in the model and k is the number of data points used 

to estimate the coefficients. This modification to the standard MSE equation balances model 

fit and complexity. 

 Once the appropriate model order had been determined, each subjects’ reaching data 

was individually fit to the chosen model.  The model coefficients were calculated using linear 
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regression methods in Minitab (MiniTab Inc., State College, PA).  Linear trends were 

removed from each regressor (extent error and load stiffness) to focus regression on the 

trial-by-trial dynamics of the adaptation process. The regressors were transformed into 

principle components prior to regression analysis to provide a set of orthogonal signals that 

comply with the underlying assumptions of linear regression. The final coefficients were 

transformed back to "physical space" ( physq
s

) from "principle component space" ( PCq
s

) using 

the correlation matrix (Mcorr) of the principle component analysis and the standard deviations 

of each regression signal ( qσs ) calculated prior to the transformation (13).  

( ) /phys corr PC qq M q σ=
s s s

     (13) 

 

Outlying data points were detected by inspecting externally Studentized residuals.  

Studentized residuals are equivalent to a t-statistic (Student’s t-test) where the value of each 

residual is centered and scaled by the mean and standard deviation of the set of residuals.  

Externally Studentized residuals differ in that the mean and standard deviation used for each 

value comes from a separate run of the regression where the row of data corresponding to 

the particular residual has been removed.  This process makes the externally Studentized 

residual more sensitive to situations were removing the row of data has a large impact on the 

statistics of the residuals. Comparing externally Studentized residuals against a threshold of 

±3.75, represents a test for the presence of an outlier in a linear model with an α-level of 

0.01 as described by Lund (Lund 1975).  We chose to use an α-level of 0.01 to be very 

conservative on the removal of data because outlier removal was included only as a 

precaution. On average, one trial was removed from each subject’s data as an outlier, which 

constitutes removal of approximately 0.167% of the data.  The outlier with the largest 
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externally Studentized residual beyond the specified threshold was removed and the 

principle component analysis and linear regression described above were recomputed.  Only 

one outlier was removed at a time to allow the principle components, regression coefficients, 

and externally Studentized residuals to be recalculated without the potentially misleading data 

point.  

 

Statistical Hypothesis Testing 

Extent error and movement time were compared to the target regions (± 0.5 cm 

target region and 250 ± 13 ms (± 5%) movement time, respectively) using one-sample t-tests 

against the bounds of these target regions (see Results).  For our remaining kinematic and 

kinetic performance metrics, each peak measure, and the reach extent at which it occurred, 

was analyzed using ANOVA to look for systematic trends as a function of contrast level 

within each contrast separately.  The three contrasts (MEAN, VAR, and WEBER) were 

analyzed using repeated measures ANOVA to detect trends in adaptation strategies, as 

predicted by the limited memory model of motor adaptation.  Whenever a significant trend 

was found by ANOVA, post hoc t-tests were always conducted using the Tukey method.  The 

one-sample t-tests and the ANOVA's (as well as subsequent Tukey post hoc t-tests) assumed 

an alpha level of 0.05.  This analysis on model parameters was discussed with Dr. Bansal of 

the Marquette University Mathematics, Statistics, and Computer Science Department, who 

has determined that it appears reasonable. 
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EMG Analysis 

Average EMG data as a function of contrast level was inspected to look for trends in 

bulk muscle activity in response to our experimental conditions.  EMG signals were 

processed by removing the mean of the raw signal then rectifying and smoothing the signal.  

The data was smoothed using a moving-window-average filter with a 50 ms window.  This 

filter smoothes the signal by computing the average over a window of data 50 ms long then 

the window is shifted over sample-by-sample and a new average is calculated at each point.  

Rectified, smoothed EMG signals were then processed in two ways.  First, it was averaged 

across trials within each of the 6 experimental blocks to get an average time series for each 

block for each subject.  Second, it was integrated over the duration of each trial to get a 

scalar EMG magnitude for each trial.  These integrated EMG values were then averaged 

across the trials within each block for each subject.  The average integrated EMG for each 

block and each subject were then inspected using one-way, repeated-measures ANOVA for 

each muscle separately.  Significant trends found by ANOVA were further analyzed using 

Tukey post hoc tests. 

 

Fatigue Assessment 

In an effort to quantify the progression of fatigue of the course of the experiment, 

we analyzed the trends of a metric roughly adopted from Kirsch and Rymer (Kirsch and 

Rymer 1992; 1987). The fatigue metric consisted of the ratio of the average of the EMG (as 

%MVC) divided by the average of the hand force measured while the subject applied a force 

against a 1000 N/m elastic load. The averages were calculated after the applied force had 

reached a steady state up to either the end of the trial or the point at which the applied force 
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dropped below 10% of the target force (100N). These EMG to Force ratios were then 

standardized as a percent difference from the first Effort-Test trial.  Finally, one-way, 

repeated-measures ANOVA was used to determine whether there was a significant change 

in this ratio from the initial Effort-Test trial that might indicate that subjects experienced 

fatigue due to the loads.
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RESULTS 
 

 

Subjects reached smoothly and accurately to the target in each training condition 

despite the frequent absence of concurrent visual feedback of hand trajectory (Figure 4).  

Reaches had a single velocity peak in both the outward (centripetal) and inward (centrifugal) 

phases of movement.  Across subjects, movements in all load conditions averaged within 

±0.01m (10%) of the desired extent and ± 15 ms (6%) of the desired movement time.  

Average movement extents were within the target region for all trial blocks (p > 0.175 in all 

cases), with the grand average extent error for the entire protocol equal to -0.0004 ± 0.0067 

m.  Average movement time was also within the specified range for each block (p ≥ 0.12 in 

all cases), with the grand average for the entire protocol equal to 255 ± 9 ms.  Overall, 

subject performance complied with the both the positional and movement time 

requirements expressed to them during the instruction phase of this protocol. 

ANOVA found that peak hand force varied significantly within the MEAN (F2,42 = 

681.37, p < 0.00005) and WEBER (F2,42 = 751.54, p < 0.00005) contrasts, but not the VAR 

(F2,42 = 1.75, p = 0.191) contrast.  Within the MEAN and WEBER contrasts, all post hoc pair-

wise comparisons had a p-value less than 0.00005 by the Tukey method.  Taken together, 

these three comparisons indicate more specifically that peak hand force (Figure 4) varied 

systematically with the prescribed mean of experimental blocks.  Average peak forces by 

prescribed mean block stiffness were mLvX = 10.8 ± 1.50 N, mMvX = 33.6 ± 2.52 N, 

mHvX = 73.2 ± 4.04 N.  These levels of average peak forces reflect the doubling of load 

stiffness with each increase in prescribed mean load. 
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Figure 4: Kinematic and kinetic time series. The shaded region centered on 0.1 m for the 
displacement figures represents the size of the reach target. (A) Example raw data from a 
representative subject. One trial from each block of the MEAN contrast was included. (B) Average 
data across subjects by contrast level and grouped by contrast. Shaded regions around each trace 
represent ± 2 SEM from averaging across subjects. 
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Figure 5: Average across subjects of peak displacement and displacement at peak velocity and peak 
acceleration by block. Error bars are ± 2 SEM. 
 

Adaptation Model Structure Selection 

For each of the ensemble-averaged responses considered, movement errors elicited by 

interaction with the robot were reasonably well described as a linear function of load 

magnitude (Figure 6). We therefore used linear systems analysis techniques to characterize 

how subjects use information from prior reach-attempts to guide motor adaptation.  Of all 

candidate models of moderate complexity having the form (11), the model (8) was identified 

as the minimum descriptor length (MDL) structure of choice for each of the six average 

responses. The MDL criterion indicated that the original model (8) described by Scheidt et. 

al. (Scheidt et al. 2001) provided the most parsimonious representation of the adaptive 

process for all six blocks. Higher order models offered negligible improvement to model 

performance. The AIC algorithm typically chose models with an average of 4.5 ± 2.3 

additional parameters for stiffness and 2.2 ± 0.61 more for extent error, these models only 
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demonstrated an average improvement of 1.63 ± 0.85 %VAF.  For a few blocks, the 

systems identification suite found models even larger than those chosen by the AIC 

algorithm to have the highest VAF, but these models also provided little improvement in 

model fit.  Given the model with best VAF for each block, the average improvement in fit 

over the model described in (8) was 1.89 ± 0.97 %VAF and required 6.33 ± 3.0 additional 

parameters, which represents an average improvement of 0.35 ± 0.15 %VAF/parameter.  

The model described by (8) accounts for 87.8 ± 4.48 %VAF, providing a parsimonious 

description of the data without incorporating extraneous terms.  Thus, (8) captures the 

average trial-by-trial changes in movement error irrespective of load conditions.   

0.01 m

mMvM mHvHmMvH

mMvL mHvL

Lowest Highest
Binned Perturbation Stiffness

 
 

Figure 6: Average kinematic error by binned load stiffness values across subjects.  Each bin 
represents 20% of the trials for the corresponding block where the trials have been sorted by the 
load stiffness from lowest (left) to highest (right).  Plots illustrate the linear relationship between 
kinematic error and load stiffness.  Error bars represent ± 2 SEM.  

 

Adaptation models fit to individual subject data as described previously accounted 

for 53.8% ± 4.20% of the variance in their extent error.  Of the three principle components 

used as regressors in each modeled data set (of which there were 14 subjects x 6 blocks = 84 

modeled data sets), two or more of these principle components were significant (α = 0.1) 

regressors in 97.6% (82/84) of the modeled data sets.  Every modeled data set had at least 

one significant principle component regressor after iterative removal of outlying data. 
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Effect of Environmental Variability on Motor Command Updating 

The zero location in the adaptation model depended on the variability of the 

stiffness load sequence.  Specifically, the VAR trend, which represented changes in load 

variability, demonstrated a decrease in the zero 

location as the variability of the blocks of 

environmental loads increased (F2,42 = 3.64, p = 

0.040).  The zero location decreased an average 

of 0.147 ± 0.220 per level of the contrast 

(Figure 7A), with a significant difference 

between the low and high variability conditions 

(p = 0.032).  Systematic changes were observed 

in the effective limb compliance (b0; F2,42 = 

5.72, p = 0.009) and in the influence of prior 

load (b1; F2,42 = 8.49, p = 0.001) with increasing 

variability (Figure 7B).  The influence of prior 

load decreased an average of 0.212 ± 0.206 per 

contrast level with a significant difference 

between the low and high variance levels (p = 

0.001).  Conversely, the effective limb 

compliance decreased 0.103 ± 0.122 per level 

with increasing load variability, with a 

significant difference between the low and high 

variability levels (p = 0.006).  
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Figure 7: Average adaptation model 
parameters for the VAR contrast (increasing 
load variability) across subjects. Error bars 
are ± 2 SEM and overbars indicate a 
statistically significant difference at α = 0.05. 
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Parameter a1 in the adaptation model (i.e. the transfer function pole location) did not 

change as the variability of the load sequence increased (VAR: F2,42 = 0.77, p = 0.474).  

Average pole location was 0.378 ± 0.097 for the VAR contrast (Figure 7C).  Thus, changes 

to the impulse response of motor adaptation across training conditions in the VAR contrast 

were isolated to changes in the zero location of the transfer function.  Specifically, the 

relative influence of prior load on motor adaptation decreased as environmental variability 

increased, and did so to a greater degree than the decrease in effective limb compliance, 

giving rise to this significant change in impulse response. 

The observed trends were not a result of differences in movement extent.  Across 

the VAR contrast, extent error was consistent (F2,42 = 2.01, p = 0.152) averaging 0.0031 ± 

0.0045 m (Figure 4).  Peak velocity (0.589 ± 0.0329 m/s) and peak acceleration (5.15 ± 0.320 

m/s²) did not vary with contrast level within the VAR contrast (VMAX: F2,42 = 0.84, p = 0.441; 

AMAX: F2,42 = 0.41, p = 0.670).  In addition, reach extent at peak velocity (0.0645 ± 0.00328 

m) and reach extent at peak acceleration (0.0199 ± 0.00178 m) were consistent across the 

contrast (Figure 5: F2,42 = 1.75, p = 0.192; Figure 5: F2,42 = 0.44, p = 0.649). Consequently, 

trends in the model parameters for the VAR contrast are the result of the change in load 

variance rather than the result of differences in kinematic states visited along the trajectory. 

 

Effect of Mean Environmental Load on Motor Command Updating 

ANOVA found zero location to be consistent in the face of increasing mean load 

strength (Figure 8A: F2,42 = 1.47, p = 0.248).  This consistency was the result of strong 

opposing systematic variations in the model parameters values used to derive the zero 

location (b0: F2,42 = 13.41, p < 0.0005; b1: F2,42 = 20.23, p < 0.0005).  Effective limb 
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compliance (b0) decreased 0.341 ± 0.263 per 

level, while the influence of previous load (b1) 

decreased 0.495 ± 0.332 per level (Figure 8B).  

So, even though the effective limb compliance 

decreased with increasing mean environmental 

stiffness, this was offset by a corresponding 

change in the influence of previous load in 

influencing upcoming motor commands.  

Thus, subjects maintained a similar transfer 

function zero location despite increases in 

mean stiffness. 

In addition to the zero location, 

parameter a1 in the adaptation model (the 

transfer function pole location) also did not 

change significantly with the mean stiffness of 

the load sequence (F2,42 = 0.91, p = 0.417), 

despite a four-fold increase in mean load 

stiffness. Average pole location was 0.409 ± 

0.230 for the MEAN contrast (Figure 8C).  

Thus, the impulse response of motor 

adaptation did not vary significantly with 

increasing mean load for the MEAN contrast despite decreases in effective limb compliance 

because it was balanced by a decrease in the influence of prior load. 
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Figure 8: Average adaptation model 
parameters for the MEAN (increasing mean 
load) contrast across subjects. Error bars are 
± 2 SEM and overbars indicate a statistically 
significant difference at α = 0.05. 
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Although some differences in kinematics existed across the MEAN contrast, the 

trends in model parameters observed were due to increasing mean load rather than these 

differences.  Extent error was significantly lower for the High level relative to the Low level 

for the MEAN contrast (F2,42 = 7.50, p = 0.002), resulting in an average difference of 0.0149 

± 0.0042 m (p = 0.0018). The remaining pairs were not different from one another (p > 

0.073).  While these values are significantly different, including extent error as a covariate 

had no observable effect on the significance of model parameters in the MEAN contrast (i.e. 

p < 0.01 for b0 and b1).  Extent error did not reach significance as a covariate for model 

parameters a1, b1, and zero (p > 0.12), but it did reach significance for b0 (p = 0.003).  Peak 

velocity was consistent (0.571 ± 0.00191 m/s) as a function of contrast level (F2,42 = 2.48, p = 

0.101) in the MEAN contrast.  Although peak velocity was consistent, differences in reach 

extent at peak velocity did vary with mean load strength (Figure 5: F2,42 = 6.92, p = 0.003).  

Tukey post hoc testing revealed that reach extent at peak velocity for the High level (0.0563 ± 

0.00048 m) was significantly shorter (12.7%) than the other two levels of the contrast (Low: 

0.0660 ± 0.00067 m, Mid: 0.0631 ± 0.00074 m), which did not differ from each other (p = 

0.544). Reach extent at peak velocity did not reach significance as a covariate for model 

parameters a1, b1, and zero (p > 0.20), but it did reach significance for b0 (p = 0.012).  

However, including reach extent at peak velocity as a covariate did not alter the significance 

of the model parameters for the MEAN contrast (i.e. p < 0.01 for b0 and b1). Finally, peak 

acceleration (Figure 4: 5.07 ± 0.0413 m/s²) and reach extent at peak acceleration (Figure 5: 

0.0193 ± 0.00022 cm) did not vary across the MEAN contrast (F2,42 = 0.14, p = 0.871 and 

F2,42 = 0.74, p = 0.486).  Taken together, these results demonstrate that the trends in model 

parameters observed in the MEAN contrast are a function of increasing mean load strength 

rather than the result of differences in peak kinematic states visited along the trajectory. 
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Effect of ‘Weber-Equivalent’ Load on Motor Command Updating 

The transfer function zero location was found to vary as a function of the 

simultaneous scaling of mean and variability in the WEBER contrast (F2,42 = 6.07, p = 

0.007). The average decrease in zero location 

was 0.251 ± 0.288 per WEBER contrast level 

(Figure 9A) and paired post hoc Tukey tests 

indicated a significant decrease in zero location 

between the Low and High levels (p = 0.005).  

This trend was the result of strong opposing 

(but unbalanced) systematic variations in model 

parameters used to derive the zero location (b0: 

F2,42 = 26.44, p < 0.0005; b1: F2,42 = 40.58, p < 

0.0005).  Effective limb compliance (b0) 

decreased 0.372 ± 0.206 per level, while the 

influence of previous load (b1) decreased 0.558 ± 

0.248 per level (Figure 9B).  So, even though the 

effective limb compliance decreased with 

increasing mean environmental stiffness, this 

was not fully offset by a corresponding decrease 

in the influence of previous load on upcoming 

motor commands resulting in a change in the 

impulse response of motor adaptation.   
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Figure 9: Average adaptation model 
parameters for the WEBER (simultaneously 
increasing load mean and variance) contrast 
across subjects. Error bars are ± 2 SEM and 
overbars indicate a statistically significant 
difference at α = 0.05. 
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In contrast, parameter a1 in the adaptation model (i.e. the transfer function pole 

location) did not change with simultaneous scaling of mean stiffness and variability (F2,42 = 

0.02, p = 0.985). Average pole location was 0.365 ± 0.172 for the WEBER contrast (Figure 

9C).  Thus, changes to the impulse response of motor adaptation across training conditions 

in the WEBER contrast were isolated to changes in the zero location of the transfer function 

(and specifically, to the mismatch between changes in the relative influence of prior load and 

changes in the effective limb compliance).  

Extent error was significantly lower for the High level relative to the other two levels 

for the WEBER contrast (F2,42 = 8.59, p = 0.001), resulting in an average difference of 

0.0099 ± 0.0080 m between the High level and the remaining two levels, which were not 

different from one another (p = 0.944).  While these values were significantly different, our 

systems identification techniques remove the mean extent error prior to modeling, thereby 

focusing on the trial-to-trial dynamics of motor adaptation.  Extent error did not reach 

significance as a covariate for model parameters a1, b1, and zero (p > 0.10), but it did reach 

significance for b0 (p = 0.011).  However, including extent error as a covariate had no 

observable effect on the model parameter trends in the WEBER contrast (p < 0.04 for b0, b1, 

and zero).  Peak velocity (0.591 ± 0.0279 m/s) and peak acceleration (5.29 ± 0.268 m/s²) did 

not vary with level in the WEBER contrast (Figure 5: VMAX: F2,42 = 0.50, p = 0.613, AMAX: 

F2,42 = 0.56, p = 0.575).  Although peak velocity was consistent, significant differences in 

reach extent existed at peak velocity in the WEBER contrast (F2,42 = 6.13, p = 0.006).  Tukey 

Post hoc tests revealed that reach extent at peak velocity was significantly shorter (9.75%) for 

the High level (0.0597 ± 0.00446 m) relative to the remaining levels (0.0662 ± 0.00273 m) of 

the contrast (Figure 5), which were not significantly different from one another (p = 0.985). 

Reach extent at peak velocity did not reach significance as a covariate for model parameters 
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a1, b1, and zero (p ≥ 0.10), but it did reach significance for b0 (p = 0.009).  However, including 

reach extent at peak velocity as a covariate did not alter the significance of the model 

parameters for the WEBER contrast (i.e. p < 0.04 for b0, b1, and zero).  Reach extent at peak 

acceleration (0.0196 ± 0.00158 m) did not vary as a function of level (Figure 5; F2,42 = 0.38, p 

= 0.690).  Taken together, these results demonstrate that the trends observed in the WEBER 

contrast were due to the simultaneous increase in mean load strength and load variability 

rather than a result of variations in average peak kinematic states visited in each case. 

 

Lateral Forces Against the Stiff Controller 

Subjects were constrained to a straight-line out-and-back reach by a stiff PID 

controller.  In this section, we will look at the average forces subjects applied against this 

stiff controller as a function of contrast level.  The panels of Figure 10 provide views of 

three stages of the data processing that went into this analysis. Figure 10A provides examples 

of raw lateral force data from a representative subject.  The averaged time series of lateral 

forces taken across subjects in shown in Figure 10B and the average lateral forces over the 

duration of the trial that we performed our statistics on are shown in Figure 10C with 

overbars to indicate significant differences in post hoc tests. 

Average lateral forces exhibited by subjects while reaching increased significantly 

with increasing contrast level for those contrasts that included an increasing mean load 

(MEAN and WEBER) and no significant trend with changes in load variability (VAR). 

Lateral forces showed a significant increase (Figure 10C: F3,38 = 5.37, p = 0.011) with 

increasing MEAN contrast level with a significant difference between the Low and High 

levels according to post hoc Tukey tests (p = 0.0082).  In the WEBER contrast, lateral forces 
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increased significantly with increasing contrast level (Figure 10C: F3,38 = 12.62, p < 0.0005) 

with significant differences between the High level and both the Low and Mid levels (p <= 

0.026).  No significant trend in lateral forces was observed for the VAR contrast (Figure 

10C: F3,38 = 0.38, p = 0.688).  Typically, these lateral forces were much smaller than the 

forces used to overcome the load (Figure 4).  In all, lateral forces were small but increased 

significantly with increasing mean load and did not change significantly with changes in load 

variability. 

 

Effect of Multifactor Correlation on Model Fit 

The direct effect that load stiffness has on the kinematic error made in any given trial 

creates a correlation between the Ki-1 and εi-1 terms.  Given that orthogonal predictors are an 
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Figure 10: Lateral forces applied by subjects against the stiff controller. In each panel data is 
grouped by contrast (top: MEAN, center: VAR, bottom: WEBER) and contrast level (blue: Low, 
green: Mid, red: High) (A) Example force traces from a representative subject. (B) Average 
lateral force time series taken across subjects. Shaded region indicates ±2 SEM from averaging 
across subjects. (C) Average lateral force taken over the duration of each trial. Error bars 
indicate ±2 SEM from averaging across subjects and overbars denoted significant differences by 
Tukey post hoc test at α = 0.05. 
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underlying assumption of regression, it was necessary to verify that the contrast trends were 

not an artifact of violating this assumption.  We used Principle Component Analysis (PCA) 

to create a set of orthogonal predictors to which our motor adaptation model was fit.  The 

results of this analysis were similar to those of the previously mentioned analysis.  In 

addition, we re-ran this PCA regression and set the coefficients that were not significantly 

different from zero (α = 0.1) to zero before transforming them back to load-stiffness-

kinematic-error space (i.e. a1, b0, b1).  This eliminated the effect of any uncorrelated PC’s 

coefficient(s) on the final model parameters.  The results of this PCA-regression method 

paralleled those of the previous PCA-regression method closely.  We conducted an ANOVA 

in which we compared the model coefficients generated by these three regression methods.  

The results indicate that the regression method had no significant effect on model 

parameters overall (interaction: Method * Parameter, F3,672 = 0.45, p = 0.715) and had no 

significant effect on model parameters for each block (interaction: Method * Parameter * 

Block, F15, 672 = 0.05, p = 1.000), thus supporting the statistical inferences drawn for the 

results reported. 

 

Average EMG Trends by Contrast Level 

Average EMG signals for the primary agonists of this task scaled with the mean load 

stiffness for contrasts with changing mean load (MEAN and WEBER) and did not show a 

significant trend with load variability (VAR).  One-way, repeated measures ANOVA were 

conducted across the levels of each block for each contrast and each muscle separately.  

Example rectified EMG signals from a representative subject are show in Figure 11A.  

Average EMG traces taken across subjects are depicted in Figure 11B with shaded regions 
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that indicate ±2 SEM from averaging across subjects.  These first two panels of Figure 11 

provide a view of the intermediate stages of our data processing before moving on to the 

statistical analysis. 

For the MEAN contrast, the agonists lateral head (TriLat; Figure 11C: F3,38 = 21.73, 

p < 0.0005) and long head (TriLong; Figure 11C: F3,38 = 17.15, p < 0.0005) of the triceps 

brachii showed significantly increased average activity with increasing mean load.  Tukey post 

hoc tests for TriLat indicated significant differences existed between each contrast level with p 

<= 0.026 in each comparison.  In post hoc tests, TriLong activity was significantly different 

at the High level as compared to the Low and Mid levels with p <= 0.0044 in both cases. 

The lateral head of the biceps brachii (an antagonist) also demonstrated a significant trend 

over the MEAN contrast (BiLat; Figure 11C: F3,38 = 4.46, p = 0.023) with one significant 

difference in post hoc testing between the Mid and High levels (p = 0.0312).  In the 

WEBER contrast, the agonists TriLat (Figure 11C: F3,38 = 22.31 , p < 0.0005) and TriLong 

(Figure 11C: F3,38 = 12.74, p < 0.0005) as well as the anterior deltoid (AD; Figure 11C: F3,38 = 

8.06 , p = 0.002) also demonstrated significant scaling with load level. For all three muscles 

significant, along the WEBER contrast, differences existed between the High level and both 

the Low and Mid levels (p < 0.0208 in all cases).  Finally, there were no significant changes in 

EMG activity across all muscles measured for the VAR contrast (Figure 11C: F3,38 < 2.02 , p 

>= 0.155).  In summary, agonist muscle EMG activity increased significantly with load level 

for both contrasts where we have increasing mean load (MEAN and WEBER) and did not 

change significantly when only load variability increased (VAR). 
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Fatigue 

One-way, repeated-measures ANOVA indicated that no significant change (Figure 

10: F6,96 < 1.32, p > 0.260) in EMG to Force ratio from the initial “effort test” occurred 

across subjects in all muscles except the lateral triceps.  While the lateral triceps did show a 

significant change in EMG to Force ratio (Figure 10: F6,96 = 2.75, p = 0.018), the change was 
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Figure 11: Raw and average EMG traces scaled as a percentage of MVC. In each panel, agonist 
muscles are plotted with increasing magnitude directed upward and antagonist are directed 
downward. (A) An example of rectified, raw EMG signals from a representative subject. (B) 
EMG time series averaged across subjects for each block of trials grouped by experimental 
contrast (MEAN, VAR, WEBER) and contrast level (Low, Mid, High). Shaded area surrounding 
the average EMG traces represents ± 2 SEM of the subject average. (C) Averages of EMG signals 
integrated over the duration of each trial. Error bars indicate ± 2 SEM of the subject average and 
overbars denote a statistically significant difference between contrast levels by Tukey post hoc 
tests at α = 0.05. 
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an average decrease of 11.3% ± 9.57% relative to the value on the initial effort test (p < 

0.04).  Although it did not reach significance, the average change in EMG to Force ratio was 

large (49.3% ± 65.9% increase) for pectoralis on the 4 effort test.  This is due to a single 

subject’s measurement of a 378% increase for that trial.  Without this one measurement, the 

average change in EMG to Force ratio was similar to the other trials (21.9% ± 41.0%).  Note 

that Kirsch and Rymer found that EMG to Torque ratio nearly doubled as a result of fatigue 

and this effect lasted for at least 2 hours (Kirsch and Rymer 1987).  This subject did not 

present this dramatic elevation in EMG to Force ratio in latter trials, which would have 

fallen into a 2 hour window, suggesting that this was not due to fatigue, but rather the effect 

of spurious performance error.   
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Figure 12: Average change in EMG to Force ratio for “effort test” trials relative to an initial “effort 
test” trial conducted prior to the first block of t rials.  Error bars indicate ±2 SEM and * indicates a 
statistically significant difference from the initial effort Tukey post hoc test at α = 0.05.  
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DISCUSSION 
 

 

We sought to observe if and how sensorimotor information processing leading to 

motor adaptation may be sensitive to the statistical properties of the limb's mechanical 

environment.  We explored this by requiring subjects to adapt a simple reaching task to 6 

different blocks of environmental loads (each of which differed in mean and/or standard 

deviation of the load). We then identified the adaptation model structure and model 

coefficients for each block for subsequent comparison across training conditions.  The 

model used (8) explained 53.8% ± 4.20% of the data variance in all six experimental 

conditions. 

We found that, while b0 and b1 varied strongly with mean load (MEAN contrast), 

zero location varied with load variability (VAR contrast) rather than mean load.  Specifically, 

‘effective endpoint compliance’ (b0; also the system gain of the transfer function) strongly 

decreased and ‘influence of previous load’ (b1) strongly decreased with increasing mean load, 

but these trends presented to a smaller degree with load variability.  Despite the strong 

trends, the zero location showed no significant relationship to changes in mean load 

stiffness, while it decreased with increasing variability.  Recall that the strong trends in the b0 

and b1 terms are not simply a result of numerically larger load stiffness terms since the mean 

value was removed prior to model fitting.  From a transfer function perspective, the zero 

location controls the model responsiveness at the cost of steady-state error.  The observed 

reduction in the zero location indicates a reduction in model responsiveness to past 

experience in response to increased uncertainty.   
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This trend of decreasing the influence of previous load in response to increasing load 

variability parallels a Bayesian model like the Kalman filter, described previously. Specifically, 

decreasing the influence of previous load on upcoming reaches is similar to changing the 

gain (K ) of the Kalman filter.  From the equation for the Kalman filter gain (4), this 

behavior would indicate an increase in measurement uncertainty ( 2
zσ ) rather than an increase 

in the predicted (prior) uncertainty of the environment (
−2

iσ ).  This would imply that 

subjects are treating the random loads as noise injected into some “true environment” whose 

magnitude they are trying to estimate.  This “true environment” would likely be the mean 

stiffness of the environmental load. If subjects were able to converge on an estimate of the 

mean environmental load and move to minimize end point errors assuming the mean 

environmental load, in our case of unautocorrelated loads, there should be no significant 

autocorrelation to the end point errors made.  That assumes that the adapting individual 

maintains a long enough memory to determine the true mean and variance of the load for 

the entire block of trials, which is unlikely in our case of 100 trials.  This would mean that a 

short term estimate must be used and the evolution of this estimate will have significant 

autocorrelation and will likely be similar to a random walk under our conditions.  

Movements made under the guidance of an estimate following this description could very 

well have given rise to end point error that are autocorrelated despite a lack of significant 

autocorrelation in the perturbing environment. 

With this work, we have examined the response of motor adaptation to a range of 

load magnitude and variability combinations, we have demonstrated that the human motor 

adaptation is capable of tuning itself as appropriate for the level of noise it must contend 

with, and it does so in a manner that would be well described by Bayesian models.  
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Zero Location Changes with the Variability of the Load 

There exists a strong relationship between changes in load variability and the relative 

influence of previous load. As environmental variability increases, there is rarely a period of 

steady-state input, and thus it seems appropriate for steady-state accuracy to decrease in 

behavioral importance.  By sacrificing steady-state accuracy in favor of transient response 

fidelity, reaching end point error can be reduced.  Conversely, when load variability is small 

and loads are consistent from trial-to-trial, end point error would be minimized by a strategy 

that emphasizes steady-state performance over transient behavior.  Thus, the motor adaption 

appears to be able to minimize reaching extent errors within a given environmental context, 

wherein the statistical properties of the load play a principal role in defining that context.  

Specifically, end point error is minimized by adjusting the balance between transient 

response fidelity and steady state accuracy on a trial-by-trial basis. 

To clarify the tradeoff between steady-state and transient responses with changes in 

filter zero location, we have calculated the step and impulse response for a set of filters with 

evenly spaced zero locations (Figure 11).  These filters had the same form as the motor 

adaptation model we used and were specified with unity (1) gain and a pole location at the 

origin (0) to focus on the effect of changing zero location. In our context, the input is load 

stiffness and the output of these filters is reaching error so an output value that approaches 

zero is ideal.  As zero location approaches a value of 1.00, the output goes to zero after the 

initial change in the step load stiffness input (Figure 11A and 11C).  However, a zero 

location of 1.00 will lead to an equal and oppositely directed error (i.e. transient error or 

aftereffect) on the trial following a single trial with a load (impulse), while smaller values for 

zero location will reduce this error in the transient response (Figure 11B and 11D).  In this 
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way, a particular value of zero location will not be sufficient to reduce the reaching error for 

both a step and impulse inputs and the best choice will depend on the nature of the input. 
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Figure 13: Step and impulse response plots for a selection of zero location values. These filter 
responses were calculated for filters with the same form used to model motor adaptation in this 
work. Unity gain and a pole located at the origin were used for each filter to isolate the effect of 
changing the zero location.  (A) The step input to the filters.  (B) The impulse input to the filters.  (C) 
Step response for filters with evenly spaced zero locations demonstrating the change in steady-state 
error with increasing zero location.  D. Impulse response for the same filters as in C demonstrating 
the change in transient response with increasing zero location.  Recall that the output is reaching 
error so 0 is the desired output. 

 

Pole Location (a1) Does Not Vary With Load 

We did not find that subjects changed the relative contribution of prior kinematic 

errors on subsequent motor commands in response to systematic changes in the statistical 

properties of the environmental load.  Muscle spindle sensitivity is known to depend on γ-

fusimotor drive (Granit, 1970; Rothwell, 1994), which we expected to increase with 
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increasing average load magnitude.  This led us to expect that system pole location a1 would 

have covaried with mean load strength.  A strong effect confirming this prediction was not 

observed.  Burge et al (2008) also observed invariance in the weighting of previous error in 

subjects reaching with random perturbations, while observing changes in response to 

random walks of varying standard deviations.  The invariability we observed in weighting of 

previous error may be due to the lack of significant autocorrelation in our load sequences.  

When dealing with a load lacking significant auto-correlation, there would be little value in 

varying the weighting of previous error to the statistics of the load.  While the weighting of 

previous error did not vary with the statistics of the perturbing loads, it was significantly 

different from zero.  Since the value of a1 was positive in all cases and there was no 

significant autocorrelation in the load sequences, subjects made reaching errors that were 

correlated to the previous error (autocorrelated).  If this parameter had been negative, 

subjects would alternate between ‘undershooting’ and ‘overshooting’ in the first few trials 

until they converged on an accurate motor plan (as was demonstrated previously in a 

simulation (Scheidt et al. 2001)). This oscillatory trend was not observed in much of the 

motor adaptation literature (Conditt et al. 1997; Kirsch and Rymer 1992; Scheidt et al. 2001; 

Scheidt and Stoeckmann 2007; Takahashi et al. 2006).  Taken together, these observations 

may indicate that subjects cannot completely ignore reaching errors even when they are 

made against an uncorrelated trial-by-trial variation in load and would, consequently, provide 

less useful information for reducing reach end point error.  
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The Role of Limb Compliance in Reach Accuracy 

Previous work has demonstrated that endpoint (or hand) compliance decreases in 

direct proportion to the kinetic demand required in overcoming a perturbing load during 

movement (Franklin et al. 2003) as well as posture maintenance (Franklin and Milner 2003; 

Gomi and Osu 1998; Perreault et al. 2004).  We observed significant increases in agonist 

muscle activity with increasing mean load (kinetic demand) across the MEAN and WEBER 

contrasts, but not with increasing load variability in the VAR contrast (Figure 11C). Similarly, 

we observed that the transfer function gain (b0, ‘effective endpoint compliance’) changed to 

maintain reach accuracy when the mean load changed in this study.  A change in the gain will 

also effect the zero location (i.e. the impulse response) of the adaptation model.  However, 

we observed very little change in the zero location with increasing mean load (MEAN). This 

was because the influence of previous load (b1) was reduced to balance the gain change. In 

other words, the relative influence of previous load was found to be invariant with respect to 

increasing mean load when normalized by the effective limb compliance.   

When variability increased (VAR and WEBER), the impulse response of the adaptive 

process was tuned to reduce transient error through a reduction in zero location.  Since 

changes in effective limb compliance (b0) parallel biomechanical observations, this must be 

primarily by adjusting the influence of previous load (b1).  This demonstrates that subjects 

adjust the way they integrate information about prior loads into upcoming motor commands 

to compensate for changes in the overall level of limb impedance required to match changes 

in the mean stiffness of the environmental load. This suggests that the brain accounts for 

variations in effective limb compliance in the updating of feedforward motor commands 

when limb compliance must change to accommodate the load.  This suggests that the brain 

adjusts its information filter properties when adapting to a variable environment. 



 53 

Reject Weber Equivalency 

The concept of a Weber equivalent contrast arose from the belief that higher order 

brain regions participate in motor adaptation. To the extent that sensory information 

processing mechanisms contributing to perception also contribute to motor adaptation and 

learning, the sensory feedback used to update the next motor command might follow 

established sensory-perception paradigms demonstrated in the psychophysical literature. 

Weber’s Law states that there is a minimum change is stimulus below which one does not 

perceive any change. This minimum (called a just noticeable difference or ‘jnd’) was found to 

be a constant proportion of the first stimulus intensity. The concept of jnd’s was extended 

by Fechner, who postulated that the jnd was the resolution of sensory-perceptive processes 

making the relationship between sensation and perception logarithmic (called the Weber-

Fechner Principle). By scaling the mean and variability of the load for each block of the 

WEBER contrast, we intended to compare experimental conditions that were equivalent 

when interpreted from this logarithmic ‘sensory-perception-space’. 

Contrary to our original hypothesis, the behavioral results from the WEBER 

contrast do not support the hypothesis that Weber’s Law applies to the sensory information 

processing underlying motor adaptation. In the WEBER contrast, the mean and variability 

of the trial-by-trial variation in load were scaled together, which by Weber’s Law should 

result in the perception of similar variability across the blocks of the WEBER contrast.  

However, we observed changes in subject behavior across the WEBER contrast that 

paralleled those of the VAR contrast, namely a decrease in the zero location of the motor 

adaptation model.  This finding indicates that we must reject our null hypothesis that motor 

adaptation adheres to Weber's Law.  Liu and Reinkensmeyer (2007) found that subjects will 

adapt to a viscous curl-field when it is superimposed on a large lateral load that obscured 
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their ability to perceive the presence and directionality of the viscous curl-field.  The loads 

used in this study were below the jnd threshold since it was demonstrated that subjects could 

not reliably determine whether the load was half- or full-magnitude or whether it was left- or 

right-ward in a separate test in the same body of work (Liu and Reinkensmeyer 2007).  

Taken together, these finding and our current results suggest that perception and motor 

control integrate sensory information differently and, thus, Weber’s Law is not likely a factor 

in motor adaptation.  

This interpretation may appear to conflict with recent findings that suggest attention 

plays a role in the processing of sensorimotor memories for motor adaptation (Taylor and 

Thoroughman 2007).  Taylor and Thoroughman (2007) observed unimpaired feedback 

control within each trial despite the presence of a competing mental task, but noted a 

reduction in adaptation rate with divided attention.  The first finding concurs with previous 

studies (Allum 1975; Dewhurst 1967; Henry 1953).  Dewhurst (1967) demonstrated that 

subjects exhibited corrective responses in their muscle activity 30 ms after and 50 to 100 ms 

after the onset of changes in held mass. These response times correspond to monosynaptic 

and short-loop reflex pathway delays and are much shorter than those of cortical feedback 

processes, which typically occur around 140 ms (Allum 1975; Dewhurst 1967).  Additionally, 

Henry (1953) demonstrated that subjects made corrections to perturbing forces below their 

threshold of perceptual detection.  However, with regard to the change in adaptation rate, 

the presence of the competing mental task may have been more than an attention divider, 

but rather a source for destructive interference in the formation of the internal model 

necessary for trial-by-trial adaptation (Krakauer et al. 1999; Tong et al. 2002). 
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Effects of Variability in Other Load Properties 

Fine and Thoroughman (2006 and 2007) have observed that subjects adapt in a 

manner that is not dependant on perturbation magnitude (i.e. 'categorical adaptation') when 

perturbations are unpredictable and infrequent.  However, their interpretation of load 

probability differs from that presented here.  In their studies, subjects experienced 

perturbations infrequently (in 20% of trials) and those perturbations varied in magnitude and 

direction (directed laterally to the left or right), the remaining trials were unperturbed.  The 

infrequency of perturbations creates another source of response variability, specifically, one 

related to how 'surprising' the perturbation was.  There is also a potential for interference 

due to switching between the two markedly different motor plans required to counter the 

oppositely directed perturbations (Krakauer et al. 1999; Tong et al. 2002).  The infrequent 

practice and interference would certainly prevent the formation of any relevant internal 

model, making a proportional adaptation difficult.  In fact, Fine and Thoroughman cite the 

prevention of model formation as the driving design consideration for these types of loads.  

Without a reliable internal model, subjects would have had to rely primarily on feedback 

control.  We contend that one would see a more robust proportional adaptation in cases 

where subjects are allowed to establish even a rough internal model.  In fact, this was directly 

observed in both of their studies ((Fine and Thoroughman 2006), Experiment 3; (Fine and 

Thoroughman 2007), Strong Bias Condition) when the interfering conditions were removed 

and the practice frequency was increased to 80%. 
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CONCLUSIONS AND FUTURE DIRECTIONS 
 

 

Conclusions 

The primary aim of this study was to test the hypothesis that the sensorimotor 

information processing leading to motor adaptation is sensitive to statistical properties of the 

environmental load.  Our data support this hypothesis. Motor adaptation appears to be 

sensitive to changes in the trial-by-trial variability of the environmental load.  The zero 

location of the transfer function we used to characterize the process decreased with 

increasing load variability indicating a trend toward reducing the transient error (or 

aftereffect) on the following trial(s).  Additionally, the feedforward of history information 

about the load (influence of previous load (b1) in our model) appears to be the driving force 

behind this change in transient error. 

The secondary aim of this work was to test the hypothesis that sensorimotor 

information processing serving motor adaptation adheres to Weber's Law for sensation.  

Our data do not support this hypothesis.  It was our belief that, if Weber’s Law did apply, 

the load variability across the blocks of the WEBER contrast (simultaneous scaling of mean 

and standard deviation) would give rise to similar adaptive behavior.  However, we observed 

changes in the zero location of the transfer function we used to characterize motor 

adaptation similar to those of the increasing variability contrast (VAR).   
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Future Directions 

In this work we found that subjects adapt to increasing trial-by-trial variability 

through a decrease in the influence of previous load that leads to a reduction in the transient 

errors made on future trials.  A reduction in the influence of previous perturbation could 

indicate a shift from predictive control to an adaptive control strategy like muscular co-

contraction.  A new study could expand on our VAR contrast and incorporate ramp-and-

hold perturbations (like those used to estimate limb mechanics in the biomechanics 

literature) on periodic “probe trials” to assess changes in limb stiffness that would arise from 

co-contraction of muscles. 

Subjects were denied visual feedback of their arm while reaching against the loads in 

our experimental condition blocks. However, they were provided with timing feedback after 

each trial.  Motor adaptation has been shown to occur without visual feedback (see 

Background and Significance).  However, subjects may have attended more to the timing of 

their reaches because they received this external feedback and received no external feedback 

regarding reach extent.  In future efforts, we will expand the motor adaptation model to 

include timing feedback as a regressor to investigate its role in the motor adaptive responses 

of subjects performing this task. 

In addition to timing feedback effects on motor adaptation, it may also be insightful 

to include additional regressors that reflect the input signals of other sensory systems that 

could be involved in motor adaptation.  Force and position are highly coupled under our 

experimental conditions due to the use of stiffness loads and a fixed reach distance.  As a 

result, the load stiffness regressors we used will be very similar to the forces measured from 

the interaction between subjects’ hands and our manipulandum.  However, the same 

Principal Component Analysis technique we used to condense the correlated information 
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between previous load stiffness (Ki-1) and previous error (εi-1) regressors and separate out the 

remaining uncorrelated signal could be used to separate previous load stiffness and measured 

force information in a new model.  For high stiffness loads, such those used in this work, 

force may provide a stronger signal to adapt to than proprioception of positional error.  

This experiment did not find significant changes in the use of previous extent error 

in updating future motor commands, although the inter-subject variability of this model 

parameter was relatively large. It might be possible in a future study to reduce this variability, 

thus allowing detection of potential changes in this term by adjusting task demands to each 

subject's strength and range of motion. For example, stiffness loads could be scaled using a 

measure of the subject's peak force output at MVC. The home position and reach length 

could also be adjusted such that each subject would move through a similar joint space. The 

current experimental protocol did not make such accommodations and, in doing so, may 

have presented varying levels of effort and joint-space motion depending on the limb 

lengths of each subject. 

Finally, the mass and viscosity terms of the perturbing mechanical load were held 

constant throughout the experiment. However, given the changing stiffness of this system, 

the damping factor, or general stability, of the mechanical system was not held constant 

throughout the experiment. This term may be of greater importance to the adapting nervous 

system since it is a more direct indication of the oscillatory nature (stability) of the perturbing 

system. Future efforts could revisit this protocol, holding the mass term constant, but tuning 

the viscosity to the prescribed stiffness to maintain a constant damping factor of the overall 

perturbing mechanics. This notion of damping factor could also be taken in a different 

direction. Exposing subjects to several blocks of pseudorandom, trial-by-trial variations in 

stiffness where each block has a different prescribed damping factor might expose a 
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relationship between motor adaptation parameters and the overall stability of the mechanical 

system.
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