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Readout of the final states of qubits is a crucial step towards implementing quantum computation
in experiment. Although not scalable to large numbers of qubits per molecule, computational stud-
ies show that molecular vibrations could provide a significant (factor 2–5 in the literature) increase
in the number of qubits compared to two-level systems. In this theoretical work, we explore the
process of readout from vibrational qubits in thiophosgene molecule, SCCl2, using quantum beat os-
cillations. The quantum beats are measured by first exciting the superposition of the qubit-encoding
vibrational states to the electronically excited readout state with variable time-delay pulses. The re-
sulting oscillation of population of the readout state is then detected as a function of time delay.
In principle, fitting the quantum beat signal by an analytical expression should allow extracting the
values of probability amplitudes and the relative phases of the vibrational qubit states. However,
we found that if this procedure is implemented using the standard analytic expression for quantum
beats, a non-negligible phase error is obtained. We discuss the origin and properties of this phase
error, and propose a new analytical expression to correct the phase error. The corrected expression
fits the quantum beat signal very accurately, which may permit reading out the final state of vibra-
tional qubits in experiments by combining the analytic fitting expression with numerical modelling
of the readout process. The new expression is also useful as a simple model for fitting any quantum
beat experiments where more accurate phase information is desired. © 2014 AIP Publishing LLC.
[http://dx.doi.org/10.1063/1.4903055]

I. INTRODUCTION

Quantum computation can be implemented by using
shaped ultrafast laser pulses to control population transfer be-
tween molecular vibrational states.1–46 In one type of imple-
mentation, a set of 2n vibrational eigenstates in a molecule
can represent n qubits that are inherently entangled,4 encod-
ing several qubits on a single molecule, as shown in Fig. 1.
High-fidelity quantum gates2, 3, 9, 16, 17, 40 and simple quantum
algorithms8, 13, 20, 30, 41 have been investigated computationally
for 2–5 vibrational qubits per molecule, scaling up by a use-
ful amount the number of qubits per information carrier over
atomic two-level systems.20

The result of a quantum computation leaves n qubits en-
coded in the superposition of 2n computational states. But
how do we read out the state of vibrational qubits to com-
plete the computation carried out in a molecule? The goal of
the readout step is to obtain information about populations
and phases of the computational states. It can be achieved by
employing quantum beat spectroscopy as follows. The super-
position of the computational qubit states is pumped to a sin-
gle readout state by a time-delayed laser pulse. Fluorescence
from the readout state is then detected. Repeating this for dif-
ferent time delays one obtains a periodic quantum beat sig-
nal (see insert in Fig. 1) from which populations and relative
phases of the computational states can be extracted by fitting
this signal with analytic expression.

a)Author to whom correspondence should be addressed. Electronic mail:
Dmitri.Babikov@mu.edu.

This readout scheme is destructive, meaning that
molecules in a beam, once excited to the readout state, lose
their qubit information and cannot be excited again with a
different time delay. We see two ways of circumventing this
problem. One is to repeat preparation of the qubit system,
which can be done reliably with modern pulsed lasers and
beam-cooled molecules. The overhead (number of readouts)
will depend on the total frequency bandwidth �E and on
the smallest difference δE among pairwise vibrational state
energy differences roughly as �E/δE · ln(�E/δE) if a fast
Fourier transform algorithm is used to extract frequency com-
ponents. This overhead is fixed and is not very large for 2–5
vibrational qubits. Alternatively, it is possible to reduce the
pulse power in order to excite only a small fraction of the
molecules from the beam, which will permit reading out from
the same ensemble of molecules several times, with differ-
ent time delays. Moreover, other approaches to the readout
of vibrational qubits, such as non-destructive wave packet
interferometry,47 can also be considered in the future.

Another often discussed requirement to practical quan-
tum computation is scaling – opportunity to increase the num-
ber of qubits to hundreds or even thousands.48, 49 The pro-
totypes of quantum computers created so far are still rather
small. Latest achievements include 14 entangled qubits in the
ion trap,50 five superconducting qubits,51 and only two atomic
qubits in an optical lattice.52 Our goal with molecular qubits
is not to replace methods such as atomic or ion trapping, but
to enhance them by allowing 2–5 qubits per carrier instead
of a single qubit. The possibility of encoding more than one
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FIG. 1. The model of molecular qubits is thiophosgene SCCl2. Red lines
show computational qubit states, dashed lines show vibrational eigenstates
closest to the qubit states. Initialization is done by a laser pulse that excites
molecule to the gateway state. The computational step is performed by a
shaped laser pulse that circles population between the qubit states and an
electronically excited gateway state until the final superposition is obtained.
After computational step is finished the superposition of qubit states is ex-
cited to the readout state with time-delayed laser pulse. Fluorescence from
the readout state is analyzed to extract information about populations and rel-
ative phases of qubit states. The inset demonstrates an example of quantum
beat signal from one qubit, where circles indicate results of calculations and
solid line is a numerical fit.

qubit has been demonstrated computationally for molecular
ions.23 It seems quite feasible to create in the experiment a
system of few vibrational qubits, fully entangled and well
separated from the environment.4 Such prototype systems by
themselves also could be used in the fundamental studies of
quantum control, noise effects, decoherence, etc. For these
small-scale (or test-bed) applications, the quantum beat ap-
proach to the readout, discussed in this paper, is also quite
appropriate.

We consider the readout process using thiophosgene
molecule, SCCl2 shown in Fig. 1, as our model for a molec-
ular carrier of several qubits. This molecule has already been
studied extensively as a platform for qubit manipulation, in-
cluding such aspects as effects of rotation and laser power
on population transfer,20 optimal shape of high-fidelity com-
putational pulses42 and their robustness,43 although readout
has not been considered in detail before. Computational states
(qubits, or q-words) are encoded in the vibrationally excited
states in the ground electronic state of thiophosgene. The pro-
cess of quantum computation itself is performed by a shaped
laser pulse that cycles population between the computational
states and the electronically excited “gateway” state (see Fig.
1). The shape of this computational pulse is optimized to im-
plement a particular quantum gate,42 or an algorithm.20 An-
other electronically excited state is used as a readout state.

TABLE I. Energy spectrum and transition dipole moments of the computa-
tional states and the readout state in the model of thiophosgene molecule.

Energy Transition One-qubit Two-qubit
State (cm−1) moment, D assignment assignment

Readout 36 025 . . .

Computational states
1 9197.0 0.174 |0〉 |00〉
2 9230.7 0.176 |1〉 |01〉
3 9247.1 0.185 |10〉
4 9271.1 0.166 |11〉

The difference in energy between the ground state, the readout
state, and the computational states allows convenient UV/vis
laser pulses to be used. Thus, there is no direct population
transfer between the computational states, and only transi-
tions from the computational states and to the readout state
are significant.

As the simplest model system for the readout, we include
two computational states in our calculations to study readout
from one vibrational qubit, and four states for readout from
the vibrational two-qubit system. The energy spectrum and
transition dipole moments of our model are taken from the
experiment53, 54 and are given in Table I. The intensity of flu-
orescence from the readout state is linearly proportional to its
population. Thus, we will analyze theoretically and compu-
tationally the population of the readout state after interaction
with the time-delayed readout pulse.

The amplitudes and relative phases of computational
states can be determined in principle by fitting the quantum
beat signal with an analytical expression. In the simplest case
of readout from one qubit, we would need to determine the
amplitudes of two computational states A1 and A2 and a sin-
gle phase difference �ϕ. To do that we need to fit the quantum
beat signal with the analytical expression, obtained based on
time-dependent perturbation theory55

P (τ ) = K · (
ε1

2μ1
2A1

2 + ε2
2μ2

2A2
2 + 2ε1μ1A1ε2μ2A2

× cos(�Eτ − �ϕ)
)
, (1)

where ε1 and ε2 are laser pulse intensities at frequencies of
transitions from two computational states to the readout state,
μ1 and μ2 are corresponding transition dipole moments, �E
= E2 − E1 is the energy difference between the computational
states in angular frequency units, τ is the variable time delay,
and K is a fitting coefficient. Similar ideas have been imple-
mented in the past for readout of the electron-spin qubits in
the solid-state environments, such as a doped diamond crystal
or a semiconductor quantum dot.56, 57

Variations of expression (1) are featured in a variety of
publications on quantum beat spectroscopy.55, 58–60 Applica-
tions of quantum beat spectroscopy to molecules are usually
focused on determining the energy difference �E55, 58, 59 or on
the extraction of population distribution,60 but rarely on the
phase factor �ϕ.61 Our goal is to extract the values of ampli-
tudes of the computational states, A1 and A2, and of the phase
difference between them, �ϕ (see Eq. (1)). The phase is a
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critical piece of information about the qubit-encoding states,
and thus the state of the qubits they represent.

The goal of this paper is twofold. One is to investigate the
possibility of accurate determination of amplitudes and phase
difference from Eq. (1) for quantum beat signals obtained
from superpositions of vibrational states. Determining and,
if possible, expanding the range of applicability of this sim-
ple formula also is important for many other applications of
the quantum beat spectroscopy:55, 58–60 while exact numerical
simulations are quite possible on modern computers in many
cases, simple analytical models can provide additional in-
sight. The second goal is to test Eq. (1) computationally in the
application to a qubit readout, using parameters of a suitable
real molecule (thiophosgene) and realistic parameters of the
readout pulse. In this paper, we use numerical simulation in
order to mimic the process of experimental readout. Namely,
we first produce the quantum beat signal numerically, using
wavepacket propagation techniques, for some (known) final
state of the vibrational qubit, or qubits. Then, we try to fit this
signal with the expression (1) above in order to extract the
values of A1, A2, and �ϕ, now assumed to be unknown (the
values of energies are assumed to be known, e.g., from an-
other experiment). Repeating this procedure for various final
qubit states, various pulse parameters, and even for various vi-
brational states used to represent qubits, we can determine the
accuracy of this readout procedure. Our important finding is
that using the known formula (1) for the fit does not allow de-
termining the phase accurately. We analyze the origin of this
phase error and propose a simple fix to the problem.

II. NUMERICAL PROPAGATION

To determine the result of interaction of the molecu-
lar system with a laser pulse, we propagate the Schrödinger
equation

i¯
∂

∂t
�(t) = [Ĥ0 − με(t)]�(t), (2)

in the quantum representation for the molecule and the classi-
cal representation for the field. The initial condition of these
equations is given by the state of the qubit we want to read
out. To expand the time-dependent wave function, we use the
vibrational eigenfunctions of the system ψn(x) with the cor-
responding energy eigenvalues En and time-dependent coeffi-
cients cn(t)

�(x, t) =
N∑

n=1

cn(t) · ψn(x) · e−iE
n
t . (3)

Substitution Eq. (3) into Eq. (2) leads to the equations for
the coefficients cn(t)

ċR
n (t) = ε(t)

∑
m

(
cR
m(t) sin θm,n − cI

m(t) cos θm,n

) · Mm,n,

(4a)

ċI
n(t) = ε(t)

∑
m

(
cR
m(t) cos θm,n − cI

m(t) sin θm,n

) · Mm,n,

(4b)

where θm, n = (Em − En)t are phase shifts, Mm, n = 〈ψm|μ|ψn〉
are the elements of the dipole moment matrix, and cR

m and cI
m

are the real and imaginary parts of the complex coefficient cm.
At the end of the quantum computation, and just before inter-
action with the readout pulse, they represent the final state of
vibrational qubit.22

Population transfer from the qubit states to the readout
state depends on the choice of the laser pulse ε(t). We consider
the readout pulse to be a transform-limited Gaussian pulse,
created in the frequency domain

ε (ω) = εω exp

(
− (|ω| − �)2

2σ 2

)
, (5)

where � is the center frequency, εω is the amplitude, and σ

is the width of the pulse in the frequency domain. The center
frequency of the readout pulse � was set in the middle of two
transition frequencies because for such a pulse the field inten-
sities on both transition frequencies are equal. To obtain the
time profile of the pulse ε(t), we need to Fourier transform
Eq. (5). Since the pulse must be purely real in the time do-
main, we need to prepare symmetrical pulse profile in the fre-
quency domain. Therefore, we include negative frequencies
in Eq. (5) and after Fourier transform we obtain a pulse that is
real in the time domain

ε(t) = εω

σ√
2π

exp

(
−σ 2t2

2

)
cos �t. (6)

We can rewrite Eq. (6) for simplicity as

ε(t) = ε0f (t) cos �t, (7)

where we introduced

ε0 = εω

σ√
2π

(8)

and

f (t) = exp

(
−σ 2t2

2

)
. (9)

Here, ε0 is the pulse amplitude in the time domain, � is a
carrier frequency, and f(t) is the pulse envelope in the time
domain, also a Gaussian.

The frequency resolution of the readout pulse is fixed
at 2 cm−1 (a typical value for the experimental setup and
ro-vibrational profiles of SCCl2). Frequency resolution de-
termines pulse duration T = 16.68 ps, however duration of
the highest intensity part of the pulse is significantly shorter
(∼100 fs). The time grid for propagation was set in the range
(−T/2, T /2), while the pulse reaches its peak at t = 0. The
time delay between the shaped computation pulse (whose
optimal shape was derived previously42, 43) and the readout
pulse is simply taken into account by the phases of the qubit-
encoding vibrational eigenstates (their phases evolve freely
after the computation pulse is over while the population in
each qubit encoding state remains constant).

Equations (4a) and (4b) are propagated using the Runge-
Kutta method of 4th order. To study the readout from one
qubit, we included N = 3 basis functions in Eq. (3), to ac-
count for two computational states and the readout state. This
is the minimal number of states required for numerical test of
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Eq. (1). For readout from a two-qubit system, we included all
five states given in Table I. In principle, one could study the
influence of the interfering vibrational states of the molecule
onto the readout process, by including more states into the
basis set expansion, but this was not our goal here.

We tried two fitting methods. In one of them, we used
four independent tuning parameters in Eq. (1): K, A1, A2, and
�ϕ, to fit the quantum beat signal one qubit, and normalized
A1 and A2 after the fitting. In the second method, we had only
three independent fitting parameters: K, A1, and �ϕ, while

A2 was computed from normalization as A2 =
√

1 − A2
1. We

found that both methods produced identical results and, fi-
nally, adopted the second one, with smaller number of inde-
pendent fitting parameters.

III. RESULTS AND ANALYSIS

For calculations with one qubit, the central frequency
of the readout pulse was chosen at � = 26 811.15 cm−1,
which is the middle between two frequencies for transitions
from computational states 1 and 2 to the readout state (see
Table I). Other parameters of the readout pulse were: the am-
plitude εω = 32 a.u. and the width σ = 200 cm−1 in the fre-
quency domain, which corresponds to the experimentally fea-
sible pulse amplitude in the time domain 6 × 109 V/m, low
enough to avoid ionization or excessive excited state absorp-
tion. The first set of numerical experiments was carried out
for a model system (not a thiophosgene molecule), where we
could vary energies of the computational states E1 and E2 in
order to check how the energy difference �E affects the fitting
of the quantum beat signal. Calculations with �E varying in
the range from 15 cm−1 to 135 cm−1 are presented here. Note
that for four states of thiophosgene in Table I the value of
�E varies in the range from 16.4 cm−1 to 74.1 cm−1, with
�E = 33.7 cm−1 for states 1 and 2 chosen here to repre-
sent one qubit. So, the results of such model calculations are
very relevant to the molecule we are studying. The energy
of the readout state was fixed and equal to that of thiophos-
gene (see Table I). For simplicity, the state of the qubit was
an equally weighted superposition of computational states,
A1 = A2 = 1√

2
, with no phase difference, �ϕ = 0.

Once the simulation was run and the fit to Eq. (1) per-

formed, we calculated the amplitude error as δA = |A1f
−A1|

1.00× 100 %, where A1 is the exact (known) amplitude, and A1f
is an amplitude obtained by fitting. The phase error was cal-

culated as δϕ = �ϕ
f
−�ϕ

360◦ × 100 %, where �ϕ is the exact
(known) phase difference, and �ϕf is a phase difference ob-
tained by fitting. Our results are presented in Figs. 2 and 3.
We found that the amplitude error δA of the fitting increases
roughly exponentially with energy difference �E (see Fig. 2),
but the value of δA remains relatively small even for large �E
and does not exceed 10−2% in our tests. For energy differ-
ence between computational states 1 and 2 in thiophosgene,
�E = 33.7 cm−1 (see Table I), the amplitude error would
be ∼5 × 10−3%. Thus, we can confidently conclude that it
should be possible to determine the values of amplitudes of
the qubit states with high precision.

FIG. 2. Amplitude error as a function of energy difference between compu-
tational states in a model system. Pulse amplitude is at ε

ω
= 32 a.u. Pulse

width is σ = 200 cm−1.

However, we found that the value of phase error δϕ

is significantly higher than that of the amplitude error.
Figure 3 shows that δϕ increases roughly linearly with energy
difference �E and reaches almost 5 % at �E = 135 cm−1. For
thiophosgene with �E = 33.7 cm−1, the phase error would be
∼1.2 %. We also performed a series of fitting tests for non-
zero values of the phase difference �ϕ between the qubit
states, increasing it gradually up to 180◦ (all with A1 = A2
= 1√

2
). In all those tests, we found that phase error δϕ does

not depend on the value of phase difference �ϕ itself, but de-
pends on energy difference �E, and the dependence δϕ(�E)
is nearly identical to that in Fig. 3 (i.e., close to linear).

In order to check whether this non-negligible phase er-
ror δϕ depends on pulse parameters, we then performed a
series of fitting tests for a system with constant energy dif-
ference �E = 30 cm−1 by varying parameters of the readout
pulse, such as width in the frequency domain σ and ampli-
tude εω. The quantum beat signals obtained in those calcula-
tions again were fitted using expression (1). The dependence
of phase error on the pulse width σ is shown in Fig. 4(a)
(for pulse amplitude fixed at εω = 32 a.u.) and one can see
that pulses with larger σ give lower phase error in the fitting.

FIG. 3. Phase error as a function of energy difference between computational
states in a model system. Pulse amplitude is at ε

ω
= 32 a.u. Pulse width is

σ = 200 cm−1.
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(a)

(b)

FIG. 4. Phase errors obtained for different values of the width of the readout
pulse (in the frequency domain). Frame (a) shows dependence of phase error
on pulse width, while frame (b) shows dependence on the inversed width
as a parameter of pulse duration (in time domain). Energy difference be-
tween the computational states is �E = 30 cm−1. Pulse amplitude is fixed at
ε
ω

= 32 a.u.

According to Eqs. (5) and (6), the pulse width in the frequency
domain σ corresponds to the pulse width in the time domain
1/σ . Therefore, the value of inversed pulse width 1/σ is a pa-
rameter that describes duration of the pulse. The dependence
of phase error δϕ on the inverse pulse width 1/σ is shown on
Fig. 4(b). The dependence is nearly linear and we can con-
clude that longer readout pulses with a narrower frequency
profile result in a larger phase error.

In order to study dependence of the phase error δϕ on the
pulse amplitude εω, we fixed the pulse width at σ = 200 cm−1,
and varied the value of pulse amplitude εω in Eq. (8) through
the range shown in Fig. 5. For each case, we carried out
an independent calculation and determined the value of δϕ.
We found that pulses with larger amplitudes results in larger
phase errors and, through the studied range of values, the de-
pendence is close to exponential. The phase error is on the or-
der of δϕ ≈ 2 % for εω < 40 a.u., but it drastically increases
for larger values of pulse amplitudes, and, reaches δϕ ≈ 50 %
for εω = 65 a.u. This illustrates that the phase error we ob-
served and studied may be significant even for pulse energies
relevant to experiment.

We conclude from these results that the origin of the
phase error is in the fact that the readout pulse has non-
zero duration and fluence, violating the assumptions of time-
dependent perturbation theory used in Ref. 55. According to
Eq. (3) a phase shift should occur between states 1 and 2, and

FIG. 5. Phase errors obtained for different values of the amplitude of the
readout pulse (in the frequency domain). Energy difference between the com-
putational states is �E = 30 cm−1. Pulse width is fixed at σ = 200 cm−1.

it would be more pronounced for longer pulses and larger en-
ergy differences �E, consistent with our observations. There-
fore, the quantum beat signal obtained with a readout pulse
of finite duration (rather than sudden pulse) in a system with
non-degenerate levels (�E �= 0) includes an additional phase
shift. There is no such a phase shift in Eq. (1), which results in
a phase error during fitting. In order to decrease this error one
may want to use shorter readout pulses, which corresponds
to increasing pulse width σ in the frequency domain, as well
as using pulses with lower amplitude or choosing states with
smaller energy difference �E to represent qubits. However,
the ideal case of an arbitrarily low pulse power and an arbi-
trarily short pulse duration cannot be achieved in real exper-
iments. Typical to our experimental setup, and to gas-phase
molecule fluorescence detection in general, are 10–100 μJ
pulses of duration ∼100 fs focused to a Gaussian waist of
w ∼ 10 μm. The peak electric field they produce is Epeak

∼ 1010 V/m, which corresponds to εω ∼ 150−450 a.u. in
Eqs. (5) and (6). From Fig. 5 we see that at such conditions
the phase error is significant, unfortunately.

On a practical note, the readout scheme considered here
has the advantage that background effects in the readout can
be eliminated. The readout is a single photon, relatively low-
field measurement, whose lowest power is determined by the
signal-to-noise ratio required to detect fluorescence and fit the
quantum beats. Our measurements of jet-cooled thiophosgene
X̃ → B̃ excitation in a time-of-flight mass spectrometer show
negligible ionization for 285 nm (tripled output of a regen-
erative amplifier) as well as for the visible pulses ∼400 nm
that have been proposed for readout of excited vibrational
states in the X̃ electronic state to the B̃ electronic state.20 The
main practical problem for both ns and fs excitation pulses
is the excited state absorption from the readout state in the
B̃ electronic state. This reduces the population in the read-
out state that can be monitored by fluorescence or stimulated
emission pumping.62 It does not produce a fluorescence sig-
nal that interferes with readout because the highly excited
states decay non-radiatively. For this reason, the calculations
proposed here correspond to maximum E-fields in the time
domain of 109−1010 V/m, close to experimental fields
that produce strong fluorescence signals but not excessive
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ionization or excited state absorption. As discussed above, the
low peak intensities are advantageous because they minimize
the exponential growth of phase error with probe-pulse en-
ergy, but in practice they need to be high enough to allow
fluorescence detection of quantum beats.

So, instead of reducing the pulse power, we propose to
compensate for phase error by calculating it numerically for
a given system (�E) and pulse parameters (εω, σ ) and intro-
ducing it explicitly into the fitting expression (1) as a constant
phase correction term ϕcorr

P (τ ) = K · (
ε1

2μ1
2A1

2 + ε2
2μ2

2A2
2 + 2ε1μ1A1ε2μ2A2

× cos(�Eτ − �ϕ + ϕcorr )
)
. (10)

Using the fitting expression (10) with phase correction
ϕcorr allows us to fit the phase �ϕ between the computa-
tional states with high precision. In order to do that we would
need, first, to fit one quantum beats signal produced numer-
ically for one arbitrary set of initial conditions (A1, A2, and
�ϕ) using expression (1) in order to determine the phase er-
ror ϕcorr specific to energy difference of computational states
�E and parameters of the readout pulse εω and σ . This phase
error does not depend on state populations (A1, A2) or on their
phase difference �ϕ and can be used in expression (10) to fit
all the quantum beats signals produced from the given sys-
tem with the given readout pulse. In particular, this procedure
can be used to analyze the experimental quantum beats signal
to derive A1, A2, and �ϕ in the experimentally implemented
quantum computation, based on theoretically (numerically)
derived value of ϕcorr.

We tested the fitting approach proposed above using
states 1 and 2 of thiophosgene, �E = 33.7 cm−1 (see
Table I) and the pulse with � = 26 811.15 cm−1, εω = 32 a.u.,
and σ = 200 cm−1. First, using the amplitudes A1 = A2 = 1√

2
and the phase difference �ϕ = 0 we produced one quantum
beat signal and fitted it by Eq. (1) to determine the value of
ϕcorr = 4.42◦. Next, we produced a number of different quan-
tum beat signals for the same qubit and pulse, but with vari-
ous populations of qubit states and various phase differences.
Many combinations of A1 = √

0.9,
√

0.8,
√

0.7, . . . ,
√

0.1
(and A2 = √

0.1,
√

0.2,
√

0.3, . . . ,
√

0.9, respectively) with
phase differences �ϕ = 0◦, 22.5◦, 45◦, . . . , 180◦ were tried,
which covers the surface of Bloch sphere with 81 sample
points (by a 9 × 9 grid). All these quantum beat signals were
fitted using the expression (10) with ϕcorr = 4.42◦. These tests
confirmed that using the fitting expression (10), with prop-
erly determined phase correction, reduces phase error below
10−9% for any arbitrary state of vibrational qubit. Thus, our
correction method is universally applicable to any output of
the quantum computation procedure.

In order to test that this correction procedure will be
valid for the pulses of higher intensities too, we have repeated
all the tests described in the previous paragraph with several
higher intensity readout pulses, up to the ionization limit es-
timated as Epeak ∼ 2.3 × 1011 V/m, or εω = 1226 a.u. We
found that the phase correction ϕcorr, determined for a given
pulse and one arbitrarily chosen state of the qubit, remains
universal and works for any other state of the qubit, as long

as the same readout pulse is used, up to ionization limit of
thiophosgene.

The same approach of fitting the quantum beat signal
with phase correction can be used in order to readout a state
of a two-qubit system, implemented using four vibrational
states. To perform readout from four vibrational states, one
would need to determine four amplitudes: A1, A2, A3, and A4,
and six phase differences between each pair of computational
states: �ϕ12, �ϕ13, �ϕ14, �ϕ23, �ϕ24, and �ϕ34. The fitting
expression for two-qubit system is

P (τ ) = K ·
(∑

i=1,4

εi
2μi

2Ai
2

+2
∑
i=1,3

∑
j=i+1,4

εiμiAiεjμjAj

× cos(�Eij τ − �ϕij + ϕcorr
ij

)

)
, (11)

where we introduced four phase corrections. Energies and
transition dipole moments of vibrational states of thiophos-
gene we used in our calculations are given in Table I. Pa-
rameters of the readout pulse were: � = 26 788.53 cm−1

(average of four transition frequencies), εω = 32 a.u., and
σ = 200 cm−1. First, we calculated the quantum beat signal
for equally weighted superposition A1 = A2 = A3 = A4 =

1√
2
, with no phase differences �ϕ12 = �ϕ13 = �ϕ14 = �ϕ23

= �ϕ24 = �ϕ34 = 0. This signal was fitted using Eq. (11)
in order to find the values of phase corrections for each os-
cillating term: ϕcorr12 = 12.59◦, ϕcorr13 = 18.87◦, ϕcorr14 =
27.83◦, ϕcorr23 = 6.28◦, ϕcorr24 = 15.23◦, ϕcorr34 = 8.95◦. Fit-
ting with phase correction was then applied to a number of
quantum beat signals, generated from an arbitrary superpo-
sition of computational states with different amplitudes and
phase differences. Values of the phase error determined by fit-
ting with Eq. (11) and numerically determined phase correc-
tions were always below 10−9%. These results confirm that
accurate fitting of relative phases of computational states is
possible in the case of the readout from a system of more than
one vibrational qubit.

IV. CONCLUSIONS

In this theoretical/computational work, we explored the
process of readout from vibrational qubits in thiophosgene
molecule, SCCl2, using quantum beat oscillations. It is as-
sumed that the quantum beats are obtained by excitation of a
superposition of the qubit states with time delayed pulses to
the electronically excited readout state, followed by detecting
oscillations of population of the readout state, through fluo-
rescence, as a function of time delay of the readout pulse. We
found that a significant phase error is obtained if the known
analytic expression for quantum beats from time-dependent
density matrix perturbation theory, Ref. 55, is used for extract-
ing the values of probability amplitudes and relative phases
of the vibrational qubit states. We discussed the source and
the properties of this phase error and proposed an improved
analytical expression, where a universal phase correction is
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introduced. Application of this new expression fixes the phase
problem and allows fitting the quantum beat signal very accu-
rately. It should permit to readout the final states of vibrational
qubits in the experiments using an approach in which the an-
alytic expression for fitting is combined with numerical mod-
elling of the readout process, for computing the phase correc-
tion. Thus, real laser pulses of finite duration and fluence can,
in principle, be used to readout vibrational qubits.
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