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ABSTRACT
DYNAMIC MODELING OF HUMAN GAIT USING A MODEL PREDICTIVE

CONTROL APPROACH

Jinming Sun, B.S., M.S.

Marquette University, 2015

This dissertation aims to develop a dynamic model of human gait, especially
the working principle of the central nervous system (CNS), using a novel predictive
approach. Based on daily experience, it should be straightforward to understand the
CNS controls human gait based on predictive control. However, a thorough human
gait model using the predictive approach have not yet been explored. This
dissertation aims to fill this gap. The development of such a predictive model can
assist the developing of lower limb prostheses and orthoses which typically follows a
trial and error approach. With the development of the predictive model, lower limb
prostheses might be virtually tested so that their performance can be predicted
qualitatively, future cost can be reduced, and the risks can be minimized.

The model developed in this dissertation includes two parts: a plant model
which represents the forward dynamics of human gait and a controller which
represents the CNS. The plant model is a seven-segment six-joint model which has
nine degrees of freedom. The plant model is validated using data collected from
able-bodied human subjects. The experimental moment profile of each joint is input
to the model; the kinematic output of the model is consistent with the experimental
kinematics which verifies the fidelity of the plant model.

The developed predictive human gait model is first validated by simulating
able-bodied human gait. The simulation results show that the controller is able to
simulate the kinematic output close to experimental data. The developed model was
then validated by simulating variable speed able-bodied human gait. The simulation
results showed the dynamic characteristics of variable speed gait could be
qualitatively predicted by the developed model. Finally the gait of a unilateral
transtibial amputee wearing passive prosthetic ankle joint is simulated to verify its
ability to qualitatively predict the dynamic characteristics of pathological gait. This
dissertation opens the door for modeling human gait from predictive control
perspective. With the development of such a model, future prosthetic and orthotic
designers can greatly reduce cost, avoid risk, and save time by using the virtual
design and testing of prostheses and orthoses.
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CHAPTER 1

Introduction

1.1 Motivation and Problem Statement

Even though walking is one of the most common behaviors which a person

performs thousands of times every day, the understanding of the human gait is still

quite limited. Human gait is a very complex behavior which requires delicate

coordination of the central nervous system (CNS), muscles and the limbs. How the

CNS controls the dynamics of the limbs to generate biped gait is still not

thoroughly understood. A good dynamic model of human gait should represent the

forward dynamics of human gait as well as the neurological control to be robust to

the variation of environments and disturbances. This dynamic model has not been

fully developed yet.

This lack of understanding in human gait may hinder the development of

gait related medical devices and treatments. From the design of medical devices

perspective, for example, the current design of prostheses and orthoses (P&O) is

still largely based on experience intuition followed by experimental verification.

Most P&O have to be fabricated and tested on human subjects before any feedback

can be obtained. This trial-and-error approach is expensive and inefficient. It is

highly desirable to develop a model which represents the essentials of the dynamics

of human gait and the control algorithm used by the CNS. If such a model could be

developed, it can facilitate the design of P&O by helping designers better

understand normal and pathological gait. Furthermore, P&O can be virtually tested

before being prototyped and tested on human subjects, so that their performance

can be predicted, the cost can be reduced, and the risks can be minimized.

Such a biped gait model is also highly desired for medical diagnoses and

treatments. It opens the door for more analysis in the causes for abnormal gait. A

good forward dynamic gait model can aid in diagnosis, pre-operative planning and

treatment. With this model, doctors and therapists will be able to test their
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Figure 1.1: Control-Oriented Gait Dynamic Model

hypothesis without having to experiment on the patient. For example, doctors can

look at how arthritis in joints or limitations in the range of motion affect the

resulting gait, and then make the appropriate intervention whether it should be

surgery or therapy.

As the development of an appropriate human gait model is highly desired in

the design of medical devices and medical treatments, this dissertation seeks to

develop a better human gait model from two perspectives: The first objective is

to build a control-oriented plant model with appropriate fidelity which

represents the forward dynamics of human gait. The complexity of this plant

model should be between a high fidelity biomechanics model and a low fidelity

inverted pendulum model, i.e., it should not be too complicated but still contain the

essential principles of human gait (Fig. 1.1). From a simulation perspective, the

plant model should also be able to be simulated in a reasonable time which should

be less than one minute.

Even when a plant model is built, generation of human gait is still not

guaranteed if an experimentally measured moment trajectory at each joint is input

into the model. Human walking is an unstable process which is highly sensitive to

input variation. Slight disturbances or variations in the input will cause the

simulated human to fall. Therefore, a control algorithm is required to make the
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simulation of human gait possible.

Classical proportional-integral-derivative (PID) control is a widely used

method both in industry and academia. This method adjusts the control input

based on the feedback of the past error between the reference and the system

output. However, this approach is not the only control method that will be used in

this dissertation because people do not only make the adjustment based on the

feedback of the past. More importantly, people look forward to predict what will

happen if the current walking pattern is maintained, make the adjustment in

advance so that any failure in walking will be avoided. The principles of model

predictive control (MPC) are very similar to this walking strategy. Therefore, the

second objective of this dissertation is to combine classical feedback

control with MPC and incorporate this control into the model to

simulate the CNS, so that robust and adaptive, normal and pathological

human gait can be generated.

1.2 Literature Review

The current research of human gait can be broken into two areas:

biomechanical gait analysis and biped robotics research (Fig. 1.2). The

biomechanical gait analysis typically uses a musculoskeletal model which can give

more details on the physiological aspect of human gait. The contribution of

individual muscle, tendon and ligament to the human gait is considered in detail [2 -

7]. This type of musculoskeletal model normally has hundreds of degrees of freedom

(DOF) which is overly sophisticated and distracts from the essential principles of the

dynamics of human gait. In addition, the musculoskeletal model is computationally

intensive and is unable to be simulated and controlled within a several days.

In the biped robotics research field, real-time control of human gait is

normally the main focus and the dynamic models used are simpler than the ones

used in biomechanics research. The research proposed in this dissertation falls into

this category. Therefore, this review focuses on the biped robotics research

literature. This field can be further divided into several subareas, where the

classification chart is shown in Fig. 1.2. Xiang et al. [1] did a thorough explanation

for each of the subareas. While each of these research areas has its own advantages,
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Figure 1.2: Classification Chart of the Directions of Human Gait Research

Figure 1.3: Inverted Pendulum Model

none of them has succeeded in building a human gait model which can both

represent the forward dynamics principles of human walking and have a control

system to make the walking simulation robust to system variation and disturbances.

The following sections will review the current status of each of the subareas.

1.2.1 Inverted Pendulum Model

Walking involves energy transmission between potential energy and kinetic

energy. Based on this concept, the simplest dynamics approximation is an inverted

pendulum to simulate walking motion. This method uses a simple pendulum model

with concentrated body mass at the center of gravity (COG). The COG trajectory

along the walking direction is typically analytically derived by assuming the COG
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height to be fixed during the motion as shown in Fig. 1.3.

Kajita et al. were the first group to use the inverted pendulum to simulate

biped gait. They used a planar inverted pendulum with a concentrated point mass

and a massless leg with variable length which is similar to that illustrated in

Fig. 1.3. They extended the model from the planar case to the 3D case with the

same concepts [2, 3]. Kudoh and Komura [4] expanded this model by considering

angular momentum around the COG. Albert and Gerth [5] further developed this

method by considering the dynamics of the swing leg and proposed a two-mass

inverted pendulum model and multiple-mass inverted pendulum model which

represents both the stance leg and the swing leg. The latest development of this

method is from Ha and Choi [6] where the height of the COG varied based on the

zero-moment-point (ZMP) method. The principle of ZMP method will be explained

in the following section.

The advantages of this method are the simplicity and its representation of

the essential energy exchanging principles of walking. The disadvantage of this

method is that the forward dynamics is over simplified, i.e., no knee joint, ankle

joint and foot are modeled. Therefore, it is difficult to generate natural and realistic

human gait. The passive dynamic walker is an improvement on this method in that

biped gait can be generated without having to provide active power to the model.

1.2.2 Passive Dynamic Walker

The basic idea of passive dynamics walking is that a biped compass-like

model can be purely driven by gravity to walk down a shallow slope without any

actuation and control as shown in Fig. 1.4. The leg swings naturally as a pendulum.

Conservation of angular momentum governs the transition of the swing foot with

the ground and the stance leg. The most significant energy loss for this model is the

impact which occurs when the swing foot contacts the ground. The energy source

that compensates for this impact energy loss is the energy gained by moving down

the slope.

McGeer was the pioneer in the passive dynamic walker approach. He

proposed the concept and derived the governing equations in [7]. In addition, a

prototype passive dynamic walker with knees was successfully built to validate the
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Figure 1.4: A Simple Model of Passive Dynamic Walker [1]

concept. Hurmuzlu [8] further expanded this concept to a five-link model with an

upper body. The effect of the upper body on walking stability was studied. Springs

and dampers were also introduced to generate additional gait patterns. Kuo [9]

extended this concept from the planar case to the 3D case which allowed the model

to tilt from side to side. To overcome this model’s limitation that it can only walk

down a slope, Collins et al. [10] added small actuators to compensate for the loss of

gravity and achieve level walking. The prototype was successfully built and tested

adding small amount of power at the ankle and hip joint.

The gait model proposed in this approach is simple and energy efficient and

can provide some insight into the principles of human walking [11–13]. The

disadvantage for this method is the same as simple inverted pendulum model; it is

too simple as no knee joint, ankle joint and foot are modeled. It is difficult to rely

on this model to generate natural and realistic biped gait. A more sophisticated

model needs to be employed to represent the forward dynamics of human gait.

1.2.3 Zero-Moment-Point Method

The basic idea of the zero-moment-point (ZMP) method is to generate biped

gait by enforcing the balance of the human body by following a set of pre-defined

ZMP positions. The purpose of the control is to ensure the stability of the body

rather than coordination of the entire gait. The ZMP is generally defined as a point
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Figure 1.5: Active Force/Moment Balanced by Inertia Force/Moment at ZMP Point

on the ground where the resultant moments of the active forces should be zero, i.e.,

the body is dynamically balanced in the presence of active forces which include

inertia, gravity and external forces from actuators but does not include the ground

reaction forces. As shown in Fig. 1.5, from a dynamics perspective, all the active

force and moment should be balanced by the inertial force and moment at the ZMP.

The objective is to control the active forces to ensure that the ZMP is within the

range of the predefined position and the center of pressure always falls within the

contact surface region between the foot and the ground.

The first practical application of the ZMP method was made by Takanishi et

al. [14] and Yamaguchi et al. [15], where a biped robot successfully achieved biped

walking. A similar approach was also used by other researchers to develop dynamic

walking robots [16–20]. Huang et al. [21] presented gait synthesis for a biped robot

with 15 DOFs using the ZMP method. Both Shih [22] and Huang et al. [21] used

cubic spline interpolations to generate smoother foot trajectories. Hirai et al. [23]

presented the development of a Honda humanoid robot that had 26 DOFs using

ZMP method to realize real-time control and Shih [24] proposed a ZMP method to

generate and control the motion of a robot with 7 DOFs. Kajita et al. [25] further

expanded the ZMP method by combining the inverted pendulum model with the

ZMP to plan walking motion for a biped robot.

The advantage of the ZMP method is that it is computationally efficient so
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real-time control can be realized for biped robots. In addition, it contributes to the

stability of human gait. The disadvantage of this method is that it is not inherently

how humans walk as, first, the stability criteria is not human and, second, the

predefined ZMP trajectory is believed to not exist in the CNS. A better approach is

desired to better simulate the working principles of the CNS.

1.2.4 Optimization-Based Method

In contract to the inverted pendulum model which focuses on the dynamics

of human gait and ZMP method which focuses on the stability, the

optimization-based method concentrates on finding out which criteria the CNS uses

to generate human gait. In general, an optimization problem is defined as:

Find x (1.1)

To minimize f(x) (1.2)

subject to gi(x) ≤ 0, and hj(x) = 0 (1.3)

where f(x) is the objective function to be minimized, gi(x) are inequality

constraints, and hj(x) are equality constraints. The designed variables x are

typically the net moment at each joint. The objective function f(x) utilized in gait

analysis is normally a gait related performance measure which will be explained in

the following sections. The constraints are gait related constraints such as the

motion limitation and maximum possible moment at each joint. Once the optimal

designed variables are obtained, they are substituted into a dynamic gait model to

generate the resulting gait. The dynamic gait model is often simplified to a rigid-link

model which has five or more DOFs. According to [1], the governing equations of

motion (EOMs) to represent the mechanics of human gait are generally written as:

M(q)q̈(t) + C(q̇,q) +G(q) = τ(t) (1.4)

where q is the joint angle profile, M is the inertia matrix, C is the Coriolis and

centrifugal forces, G is the gravity force and external force, τ is the joint moments,

and t is the time.

Depending on how one approaches Eqn. 1.4, there are two ways for gait



9

simulation: inverse dynamics or forward dynamics. The inverse dynamics approach

calculates the forces and moments from the experimental position, velocity and

acceleration, i.e., the body motion [26]. These forces can then be utilized in an open

loop fashion to drive the model forward. The approach is computationally efficient

because the EOMs are not integrated in the solving process. However, this approach

is not inherently how human walks because no feedback is provided. In reality,

feedback is provided to the CNS. Therefore, people are able to adjust the net forces

and moments at each joint so that specific kinematic objectives such as step length

or walking velocity are achieved.

In contrast, a forward dynamics approach calculates the motion from the

predefined forces and moments by integrating the left side of Eqn. 1.4 with specified

initial conditions, which means this is a computational intensive method. For

forward dynamics optimization, the forces are the design variables. The motion is

obtained by integrating the EOMs with initial conditions. The optimal gait is

determined by minimizing a human performance measure subject to certain

constraints. In contrast to inverse dynamics, the advantage of this approach is that

it inherently simulates how the control of human gait works.

Various performance measures have already been utilized in the

optimization-based method. The most commonly used performance measures that

are minimized as summarized in [1] are:

1. Dynamic effort:

f =

∫ T

0

τ · τdt (1.5)

which means the integration of all joint moments should be minimized over

the total time, T .

2. Mechanical energy:

f =

∫ T

0

τ · q̇dt (1.6)

which means the mechanical energy cost should be minimized.
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3. Metabolic energy:

f =

∫ T

0

Ėdt (1.7)

which means the metabolic energy cost should be minimized. Ė represents the

total energy the human body consumes during a certain distance of walking.

It is different from Eqn. 1.6 that only part of metabolic energy is converted

into mechanical energy.

4. Jerk:

f =

∫ T

0

τ̇ · τ̇ dt (1.8)

which means the rates of change in joint torque should be minimized.

5. Stability:

f =

∫ T

0

Sdt (1.9)

where S represents the stability quantity normally defined by ZMP method.

Another definition can be the deviation of the trunk from vertical position.

The dynamic effort and mechanical energy measures are most frequently

used in robotic field gait simulation [27–29]. The metabolic performance measure is

normally used in biomechanical gait analysis [30,31]. In reality, human gait may be

governed by multiple performance measures functioning together. Some researchers

conducted studies into the optimal combination of objective functions which are

reviewed thoroughly in [32].

The advantage of the optimization-based method is that it can reveal some

insight of the principles of human gait by using different performance measures. In

addition, this method is able to handle large DOF models, which means it can be

utilized on sophisticated human gait dynamic models. The disadvantage of this

method is that it is computationally intensive. Therefore, it is not suitable for cases

in which the simulation has to be completed in a reasonable timeframe. In addition,
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the optimization-based method requires experimental data are known as a priori.

Therefore the optimization-based method is not predictive and cannot simulate

pathological gait when the experimental data are difficult to be obtain.

1.2.5 Control Based Methods

Control based methods are one step further than the methods illustrated

above in simulating the human CNS. In the biped robotics research, control-based

methods are used to generate biped walking for humanoid robots, in which a robot

can interact with its environment, react to external disturbances and execute a task

in real-time. The traditional PID control widely used in industry cannot be applied

to human gait analysis because of the reason already discussed; the PID method is

based on the past error between the reference and the actual feedback. During

human walking, people predict what will happen in the future and make

adjustments in advance [33].

Compared to the other methods, the control-based method simulates the

essential principles of the CNS. It is robust and flexible, can interact with

environment and handle disturbances, and can be simulated in a reasonable time

frame. The disadvantage of the control-based method is that a proper controller

needs to be specified to ensure the stability and robustness of the model. Hurmuzlu

et al. [8] reviewed various control methods for gait simulation. Three issues related

to modeling, stability and control algorithms were discussed. Katic and

Vukobratovic [34] reviewed intelligent control techniques such as neural networks,

fuzzy logic, genetic algorithms, and their hybrid forms of control algorithms.

Westervelt et al. [35] proposed a similar hybrid-zero-dynamics (HZD) feedback

control method to simulate planar biped walking. Azevedo et al. [36] proposed a

nonlinear predictive controller in which the optimal trajectories were obtained for

the prediction horizon by minimizing the objective function. This approach can

adapt to the environment and external disturbances.

Besides the above mentioned methods, the control methods currently used

for gait simulation are previously optimal control approaches. The difference

between the optimization-based method and the optimal control method is that: for

the optimization-based method, the cost function is minimized once and the
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Figure 1.6: General Block Diagram of MPC Applied to Human Gait Analysis

optimized trajectory is input to the model to get the gait. However in optimal

control method, the input joint moments are unknowns in the EOMs and are

continuously optimized for the next time step with the kinematic feedback provided.

One sub-area of the optimal control is called model predictive control

(MPC). MPC is based on an iterative, finite horizon optimization of the motion. In

this approach, the current state of the gait is discretized at time t to minimize a

cost function for the optimal trajectory over a relatively short period of time in the

future: [t, t+ tN ], where tN represents the final time. Specifically, state trajectories

are explored which emanate from the current state and find a control solution which

can minimize a cost function up to time [t+ tN ]. This optimization problem is

repeated starting from the current state, yielding a new control and a new predicted

state path. The futures states which are predicted keep shifting for the next time

step. The general block diagram of MPC applied to human gait analysis is shown in

Fig. 1.6.

Several researchers applied MPC method to simulate the CNS in human gait

research. Kooij et al. [33] proposed a predictive control algorithm in which only

three gait descriptors determine the nature of the gait are selected as the references:

step time, step length and the velocity of the center of mass at push off. By using a

seven-link eight DOF dynamics model and re-linearizing this model at each time

interval, repetitive gait was reportedly generated. Ren et al. [29] utilized a similar

seven-segment model as the plant with MPC as the control algorithm to simulate
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level walking. Different from Kooij et al. [33], the minimization of mechanical

energy expenditure was employed as the major cost function. The references for the

predictive control are also different, namely walking velocity, cycle period and

double stance phase duration. Although repetitive walking was not generated, a

complete cycle of human gait was successfully simulated. Their conclusion shows

that minimizing energy expenditure should be the primary control object.

Other performance objectives have also been incorporated to improve

simulation results. Gawthrop et al. [37] compared the predictive control method and

the non-predictive control method, i.e., typical feedback PID control, to control a

inverted pendulum. Results showed that the predictive control provides a better

simulation than the traditional feedback control in that the time-delay is smaller.

However, this work was not extended to full dynamic human gait model and its

main concentration was on the balancing of the inverted pendulum. Karimian et

al. [38] used MPC to control joint impedances of a 3D five-segment gait model. The

cost function of the controller was energy consumption, vertical orientation of the

body, and forward velocity of the center of mass. Results showed that the model

was able to achieve level walking, stairs ascent and descent.

This literature shows that MPC should be a potential control algorithm for a

human gait model. The advantage of this method is its flexibility and its simulation

of the CNS. Different control objectives can be utilized and different gait dynamics

can be employed to simulate the forward dynamics. Therefore, MPC will be used as

the primary control algorithm of the model developed in this dissertation. However,

challenges still exist in that proper control objectives need to be specified so that

stable and repetitive gait can be generated. In addition, the control system must be

robust and have good disturbance rejection. The solution of these challenges will be

addressed in this dissertation.

1.3 Overview of Dissertation

This dissertation will follow the control-based method path and complete

two objectives. First, a forward dynamic human gait model with

reasonable level of fidelity that can represent the essential principles of

human walking will be developed. This model will be used as the plant model
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of human gait in this dissertation. The MPC method will be used as the primary

control method for the model. The hypothesis of this dissertation is that the control

algorithm used in the CNS is similar to the theory of MPC. Therefore, the

second objective of this dissertation is to build a control system primarily

using MPC to simulate the function of CNS, so that robust and

adaptive, normal and pathological gait can be generated. The proposed

model which completes these two objectives will contribute to the understanding of

human gait and aid the design of medical devices and medical treatments.

The rest of this dissertation is organized as follows. Chapter 2 explains the

development of the human gait plant model and completes the first objective.

Chapter 3 introduces the general concept of MPC and how it can be applied to the

simulation of human gait. One important aspect of MPC is to develop an internal

model for prediction purposes. Chapter 4 explains the development of the internal

model. Chapter 5 combines all the elements developed in previous chapters into one

human gait simulation system and explains in detail how this system works.

Chapter 6 presents the simulation results of the able-bodied human gait and

compares them to the experimental data. The results verify that the developed

system is able to simulate human gait with appropriate fidelity within several hours.

Chapter 7 presents the simulation results of the pathological gait with unilateral

passive ankle and verifies that the developed model is able to qualitively predict

pathological gait.
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CHAPTER 2

Plant Model Development

As stated in Chap. 1, there are two major research objectives for this

dissertation. The first objective is to develop a plant model with appropriate fidelity

to represent the forward dynamics of human gait. The second objective is to

develop and implement a control algorithm for the plant to predict able-bodied and

transtibial amputee gait. This chapter will focus on the first objective.

When determining any model, the first step is to determine the level of

fidelity required. In this particular research, the question becomes, how does one to

determine an appropriate open loop model which can be used as a “good enough”

plant to represent the dynamics of human gait. For purposes of this dissertation, it

is assumed the model is sufficient when the experimental moment data of each joint

is input into the plant model, it can respond with kinematic outputs that are similar

to natural gait. From a controls perspective, this means the controller does not have

to generate unrealistic moments to drive the plant model to achieve control

objectives.

Based on this assumption, a plant model with appropriate fidelity was built

and parameterized. This model is the first open loop seven link nine DOF human

gait model that, given experimental moment reference input, can generate similar

kinematics output as experimental results. In other words, no open loop human gait

model exists in the current literature that can walk as naturally as the model

developed in this work using such a simple structure.

The resulting open loop plant model will be explained in detail in the

following section. First, the structure of the model will be explained. Second, the

parameterization of the model is described. Finally, the model is simulated in open

loop, and the outputs of the simulation are demonstrated and discussed.
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Figure 2.1: Seven-Link and Six-Joint Gait Model

2.1 Structure of the Plant Model

As shown in Fig. 2.1, the plant model developed has seven segments and nine

degrees of freedom (DOF). The seven segments are feet, shanks and thighs on both

sides and a single rigid body representing the head-arm-torso (HAT). The model

was restricted to move only in the sagittal plane because the dynamic effects in the

coronal and transverse planes are small compared with that in the sagittal plane for

able-bodied gait [7]. The dynamic effect of the movement of the arms is also

ignored [7].

The six joints of this model are hips, knees and ankles on both sides. All the

joints are assumed to be revolute acting in the sagittal plane. As shown in Fig. 2.2,

there is a rotational spring and a damper across each joint. The values of the spring

stiffness, K, and damping coefficient, B, are conditionally linear with respect to the

angular position of the joint. When the joint is within the range of motion, the

spring stiffness and damping coefficient are constant. When the joint moves beyond

the range of motion, the spring stiffness and damping coefficient increase

exponentially.

The damper is used to model the viscous friction effect that physically exists
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when the joint is moving. While the spring does not physically exist at each joint, a

spring is added to the model to function like a passive feedback system. When the

joint moves beyond the equilibrium position, which is defined as the human body

standing upright, the spring pulls the joint back. Because human gait is an

inherently unstable dynamic process, the existence of the spring is important in

stabilizing the dynamics of human gait. This method is commonly used in modeling

human gait which can be found in literature [33, 39].

There are three internal torque sources acting on each joint as shown in

Fig. 2.2. One torque source is caused by the net effect of the muscles across the

joint, τ . The internal spring and damper also exert internal torque on the joint. The

three torque sources acting together cause the relative movement between two joints.

The model of the ground reaction force (GRF) is critical in the dynamics of

human gait. This force is the only interaction the model has with the environment.

This force also supports the human body and propels it forward. In this research,

the GRF is modeled as two sets of springs and dampers at both heel and forefoot of

each foot. One set acts horizontally and the other set acts vertically. This model is

illustrated in Fig. 2.3. A spring was used because of the stiffness effect between the

foot and the ground. A damper was used because of the shock absorption and

energy dissipation function of the shoe, human tissue and other effects. As the GRF
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only acts when the foot is in contact with the ground, the GRF model must be

conditional and is summarized in Eqn. 2.1 and 2.2.

F heel,toe
y =

{
0, if yheel,toe > 0

Kyy
heel,toe +Byẏ

heel,toe if yheel,toe ≤ 0
(2.1)

F heel,toe
x =

{
0, if yheel,toe > 0

Kx(x
heel,toe − xheel,toe

0 ) +Bxẋ
heel,toe if yheel,toe ≤ 0

(2.2)

where the x axis is defined as a space fixed coordinate system pointing from heel to

toe along the sole surface, y axis is defined as perpendicular to x and pointing

upward, therefore, F heel,toe
y and F heel,toe

x represent the GRF in vertical and

anterior/posterior direction, Ky and Kx represent the spring stiffness in vertical and

anterior/posterior direction, By and Bx represent the damping coefficient in vertical

and anterior/posterior direction, yheel,toe and xheel,toe represent the vertical and

anterior/posterior position of the heel or forefoot, xheel,toe
0 represent the

anterior/posterior position of the heel or toe when the foot has initial contact with

the ground.

After the main structure of the model is determined, the parameters of the

model need to be found. The anthropometry and internal mechanical parameters

such as spring and damping values need to be determined. The next section will

explain how these parameters are calculated or optimized.
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2.2 Parameter Calculation and Optimization

The parameters that need to be determined can be categorized into two

groups. The first is anthropometric parameters and the second is internal

mechanical parameters which are the spring and damping values for each joint and

GRF. The anthropometric parameters can be further divided into segment length,

mass, mass moment of inertia and the position of the center of the mass.

The anthropometric parameter values were either obtained directly from

human subject testing or calculated using the equations from [40]. A total of four

able-bodied human subjects testing were performed in the Gait Lab at Medical

College of Wisconsin. All of the human subjects were male with an average body

mass of 86.8 kilograms and average height of 1.84 m. For each of the subjects, the

data of 10 successful trials were collected. The open-loop plant model shown in this

dissertation is parameterized according to one of the subjects whose body mass is

86.2 kilograms and height is 1.90 m and the data is averaged between the 10

successful trials. The experimental kinematic and kinetic data were obtained and

used as the benchmark data in this dissertation. The segment lengths were directly

measured. The segment mass cannot be measured directly. However, [40] provided

the ratio of segments’ mass to the whole body mass. Therefore, the segments mass

can be calculated using Eqn. 2.3:

Msegment = µsegmentMwhole body (2.3)

where Msegment is the mass of each of the segments, µ is the ratio provided by [40],

and Mwhole body is the total mass of human body. Similarly, [40] provided the ratio of

center of the mass to the segment length, fsegment. Therefore, the center of the mass

can be calculated as:

yc = fsegmentLsegment (2.4)

where f represents the ratio which is provided by [40]. Using the radius of gyration

parameter per length, ℜsegment, provided by [40], the mass moment of inertia of each

segment with respect to the center of the mass on sagittal plane can be calculated

using Eqn. 2.5:
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Figure 2.4: The Optimization Algorithm to Obtain the Internal Mechanical Parameters

Isegment = Msegment(ℜsegmentLsegment)
2 (2.5)

After the anthropometry parameters are obtained or calculated, the internal

mechanical parameters need to be determined. However, there is no equation or

data in the literature can be directly used to obtain the internal mechanical

parameters. Therefore, to obtain valid internal mechanical parameters, an

optimization methods are utilized. The algorithm of the optimization is illustrated

in Fig. 2.4 and the summary of the optimization procedure is listed in Tab. 2.1.

The experimental moment data at each joint are the input into the plant

model. The design variables are the spring stiffness and damping coefficient for each

joint and also the GRF. The cost function is the summation of the squared error

between the experimental kinematic trajectory and the kinematic output of the

model which is shown in Eqn. 2.6.

min e =
6∑

j=1

wj

[
tf∑

k=t0

(θjk − θrjk)
2

]
(2.6)

where j represent each of the joints, wj is a weighting factor, θjk is the kinematic

output of the model at time instant k, and θrjk is the experimental kinematics

trajectory at time instant k. t0 and tf is the starting and stopping time of the

simulation. The objective of this optimization is to obtain the optimal internal
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mechanical parameters so that the error between the kinematic output of the plant

model and the experimental kinematic trajectory are minimal. More weighting was

put on the stance leg because this is the side that bears body weight. When a

control algorithm is augmented with the plant model, it requires more input effort

on the stance side than the swing side to achieve any control objectives. Therefore,

the kinematic output of the stance leg has more priority. This priority is achieved

by giving a larger number in the weighting factor wj. The constraints of the

minimum and maximum allowable spring and damping parameters are listed in

Tab. 2.2. The values of these constraints are determined to ensure the optimized

parameters are inside a physically realistic range.

Table 2.1: Optimization Algorithm

Optimization Algorithm
Model: Seven segments six joints, and nine DOFs human gait model
Input: Mj

Output: θj
Design variables: Kj, Dj, KGRF,V , DGRF,v, KGRF,H , DGRF,V

Cost function: minE =
∑6

j=1wj[
∑k=tf

k=t0
(θj − θrj)

2]

Constraints: Kmin
j < Kj < Kmax

j

Dmin
j < Dj < Dmax

j

Kmin
GRF,V < Kj < Kmax

GRF,V

Kmin
GRF,H < Kj < Kmax

GRF,H

Dmin
GRF,V < Dj < Dmax

GRF,V

Dmin
GRF,H < Dj < Dmax

GRF,H

Table 2.2: Minimum and Maximum Allowable Internal Spring and Damping Parameters

Component Minimum Maximum
Ankle Spring (Nm/deg) 0 3

Damper (Nm(deg/s)) 0 3
Knee Spring (Nm/deg) 0 3

Damper (Nm/(deg/s)) 0 3
Hip Spring (Nm/deg) 0 5

Damper (Nm/(deg/s)) 0 5
GRF - Horizontal Spring (N/m) 0 130000

Damper (N/(m/s)) 0 50000
GRF - Vertical Spring (N/m) 0 130000

Damper (N/(m/s)) 0 50000

The optimal internal mechanical parameters were obtained and listed in

Tab. 2.3. With the calculated anthropometric and internal mechanical parameters,
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Table 2.3: Optimized Internal Mechanical Parameters

Component Single Support Double Support
Stance Ankle Spring (Nm/deg) 0.3903 0.1054

Damper (Nm(deg/s)) 2.205 0.0988
Swing Ankle Spring (Nm/deg) 0.7055 0.136

Damper (Nm/(deg/s)) 0.0643 0.1403
Stance Knee Spring (Nm/deg) 0.1669 0.0278

Damper (Nm/(deg/s)) 0.8772 0.0595
Swing Knee Spring (Nm/deg) 0.3002 0.0549

Damper (Nm/(deg/s)) 0.0832 0.052
Stance Hip Spring (Nm/deg) 2.0244 0.0607

Damper (Nm/(deg/s)) 0.0242 0.0439
Swing Hip Spring (Nm/deg) 0.741 0.0502

Damper (Nm/(deg/s)) 0.0012 0.0000049
GRF - Horizontal Spring (N/m) 117650 10182

Damper (N/(m/s)) 197.8251 1720.1
GRF - Vertical Spring (N/m) 129480 31795

Damper (N/(m/s)) 16587 7619.4

an open loop simulation can be performed to verify the fidelity of the plant model.

2.3 Open Loop Simulation

A forward dynamics open loop simulation was performed using the plant

model and the parameters described in previous sections. The results are

encouraging in that, by inputting the experimental moment data into the model, it

can respond very closely to the experimental kinematics reference, i.e., the plant

model can “walk” for one cycle open loop. The figures in Appendix A show the

kinematics output of the model compared with the experimental reference for each

joint during single support phase and double support phase. The root mean square

error (RMSE) is listed in Tab. 2.4. Comparing with the range of motion of each

joint, it can be seen that the RMSE is very small.

Several things are worth noticing in the simulation results. Figs. A.1, A.2

and A.12 show that even though the kinematic outputs of the plant model follow

the experimental reference closely at the beginning of the simulation, the slope, i.e.,

the angular speed, deviates from the experimental reference at the end. This

discrepancy may be because the spring and damping values are assumed to be

constant inside the range of motion of the joints during the simulation, while in
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human body, the impedance of the joint is nonlinear with respect to angular

position and tends to change at the transition from the single support to the double

support or vice versa. Adding the angular speed error of these joints at the end of

the simulation into the cost function may achieve better results and will be

investigated in the future.

Table 2.4: Percentage Error Between the Open Loop Simulation and Experimental Kine-
matic Data

Single Sup-
port Phase
(deg)

SSP
RMSE
(deg)

Double
Support
Phase
(deg)

DSP
RMSE
(deg)

Range of
Motion
(deg)

Stance Ankle 1.67
(2.6%)

0.944 0.17
(0.26%)

0.674 65

Swing Ankle 2.64
(4.1%)

2.273 1.75
(2.7%)

1.688 65

Stance Knee 1.95
(1.4%)

1.829 0.13
(0.093%)

1.007 140

Swing Knee 0.19
(0.13%)

11.877 0.84
(0.60%)

0.887 140

Stance Hip 0.82
(0.51%)

1.184 0.51
(0.32%)

0.236 160

Swing Hip 1.07
(0.67%)

4.289 1.72
(1.1%)

0.638 160

In Fig. A.5, because the knee joint has limitation in the range of motion in

the model, the kinematic output of the swing knee during single support phase

cannot follow the experimental reference. The lower limit of the knee joint is

assumed to be 0◦; the knee can only flex in one direction but cannot extend in the

other way. However, the experimental data showed the knee joint goes below 0◦

which is unrealistic. The reason is unclear. Therefore, it is understandable that the

kinematics output of the swing knee does not follow the experimental reference at

the end of the single support phase.

Figs A.10, A.11 and A.12 show there are two sudden changes in the

angular velocity in plant model output. One is at 0.06 sec and the other at 0.15 sec.

Such sudden changes do not exist in the experimental reference. This sudden

change is due to the fact that at those two time points, the heel and forefoot of the

swing leg have initial contact with the ground. The same GRF spring and damping
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values are used at the heel and forefoot. From the biomechanics point of view, those

values at the forefoot should be much smaller than the heel. Different values could

be used at the heel and forefoot to obtain better results.

Given experimental moment inputs, the kinematics output of the plant model

is within 4% percent difference to the experimental reference. The RMSE shown in

Tab. 2.4 are very small compared with the range of motion. This plant model can

perform similarly as experimental results with a seven segment nine DOF structure.

The simulation results showed that this plant model has appropriate fidelity to

represent the forward dynamics of the human gait. The MPC control system

developed in the rest of this dissertation will be built to control this plant model.

2.4 Generality of the Open Loop Model

Table 2.5: Kinematics RMSE Between the Open Loop Simulation and Experimental Data
for Three Other Subjects

Subject 2(deg) Subject 3(deg) Subject 4(deg)
SSP DSP SSP DSP SSP DSP

Stance Ankle 2.178 2.897 2.217 2.347 2.007 13.139
Swing Ankle 3.484 6.982 5.146 3.962 5.200 3.834
Stance Knee 8.985 7.570 8.799 2.367 2.209 5.685
Swing Knee 7.696 9.122 13.324 1.719 2.825 9.616
Stance Hip 12.447 7.210 3.079 9.800 2.825 9.616
Swing Hip 8.774 0.797 2.135 7.444 11.330 2.604

To show the generality of the developed open loop plant model, the same

modeling methodology is applied to three other able-bodied subjects where the

experimental data was collected under the same configuration in the Gait Lab at

Medical College of Wisconsin. By maintaining the same plant model structure as

explained in Sec. 2.1, the anthropometric data is customized to each of the subjects.

However the internal mechanical parameters utilized are the same as the ones in

Sec. 2.2 so that the generality of the open-loop model can be tested.

The kinematic simulation results are compared to the experimental data in

Appendix B. It can be seen that without optimizing internal mechanical parameters

according to each of the subject, the simulation results are not as close to the

experimental data as shown in Sec. 2.3. To quantify the difference, the RMSE

values between the model output and experimental data for each subject are listed
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in Tab. 2.5. Therefore it can be concluded that the developed open-loop plant

model cannot be universally applied to different subjects. The anthropometric

parameters and especially the internal mechanical parameters must be customarily

optimized for each individual subjects, which reduces the general applicability of the

open-loop plant model. The possibility of developing a general open-loop plant

model can be considered as future work.
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CHAPTER 3

Model Predictive Control Approach to Human Gait Modeling

The model described in Chap. 2 functions as the plant for the developed

model. To complete the MPC control system, a control algorithm needs to be

developed to function as the CNS. Unlike classical feedback control which adjusts

control inputs based on past error, MPC is a branch of modern control theory which

predicts the output of the plant and adjusts control input in advance. Like many

other control methods, MPC has many branches. This chapter discusses how the

critical aspects of MPC associated with human gait and which branch of MPC was

implemented. First, the fundamental principle of MPC is described and the

rationale for the MPC is justified; Second, the critical aspects of MPC are

investigated and associated to human gait and the rationale for nonlinear end-point

MPC control is explained. Third, after investigating the dynamics of human gait, a

hybrid control approach which contains end-point MPC control and continuous PID

control is selected and the reason is justified.

3.1 General Concept of MPC

All control algorithms can be broadly categorized into two categories: control

based on past error or control based on prediction. Most control methods fall into

the first category where the control input is generated based on the past difference

between reference signals and outputs of the plant. The block diagram of this type

Controller Amplifier Plant

Sensor

Plant Output

Feedback of 

Past Output

Reference Signal Past Error

Figure 3.1: Typical Block Diagram of Control Method Based on Past Error
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Figure 3.3: Block Diagram of Model Predictive Control

of control algorithm is shown in Fig. 3.1. PID control is the most common method

in this type of control algorithm. It is widely used in industry because it is easy to

understand, implement and adjust.

However, the essential principle of the CNS for human walking is different.

Instead of controlling based on past error, the CNS uses feedback to predict what

will happen in the future if the current walking pattern is maintained and make

adjustments in the control inputs in advance to avoid any possible failure. For

example, as shown in Fig. 3.2, the CNS makes the prediction that if the current

walking pattern is maintained, an obstacle in the walking path will cause potential

failure. Therefore, the CNS adjusts the joints moments so that the person can walk

around or over the obstacle. If a PID control algorithm is employed in the CNS, the

person would run into the obstacle first and then try to make adjustment; failure in

walking will occur.

Therefore, it is hypothesized that the CNS employs a predictive control

strategy during walking. Model Predictive Control is employed to simulate the CNS
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in this dissertation. MPC is a typical type of predictive control whose block diagram

is shown in Fig. 3.3. The control strategy of MPC can be summarized as follows:

1. The future predicted outputs for a finite time horizon, P , called prediction

horizon, are calculated at each time instant using an internal model. The

internal model differs from the plant model developed in Chap. 2. The

internal model is used by the MPC controller to predict future outputs while

the plant model is used to represent the forward dynamics of the plant, which

in this dissertation is the forward dynamics of the human gait. The predicted

outputs, which can be expressed as y(t+ k | t), depend on the current states of

the system and the future control inputs used. This process corresponds to

the “Predictive Estimator” block in Fig. 3.3.

2. The future control signals for a finite time horizon, C, called control horizon,

are calculated by optimizing a objective function to keep the plant as close as

possible to the control reference. The objective function usually has the form

of a quadratic function of the errors between the predicted outputs and the

control reference. An explicit solution can be obtained if the objective

function is quadratic, the internal model of MPC is linear, and there are no

constraints. Otherwise an iterative method needs to be used. The control

horizon is usually less than or equal to the prediction horizon (C < P ). This

process corresponds to the “Regulator” block in Fig. 3.3.

3. Once the control inputs are optimized, only the first time instant of the

optimized control inputs is sent to actuators while the following ones are

discarded. The control inputs of the second and subsequent time instants will

be re-optimized for the following time steps because of the mismatch between

the internal model used by MPC and the plant. If the MPC and plant are

perfectly consistent and there is no noise, the control inputs need only

optimized once and sent to the actuators. However, in real world applications

the control inputs need to be re-calculated for every time step. The optimized

control inputs, i.e., the joint moments, are generated by muscles which

corresponds to the “Amplifier” in Fig. 3.3. The generated joint moments drive

the plant, i.e., the human body, to move to the states of the next time step.
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This process corresponds to the “Amplifier” and “Plant” blocks and their

associated arrows in Fig. 3.3.

4. The optimized control inputs drive the plant to the next time step. The

measured outputs of the plant are then fed back to the Predictive Estimator

and the entire process is reiterated again from step 1.

3.2 Critical Aspects of MPC

Several aspects of the MPC control system are of critical importance.

Therefore they need to be emphasized and discussed here as the choice of those

critical aspects directly affect the performance of the system in this dissertation.

3.2.1 Internal Model of MPC

To implement MPC control, an internal model is used to predict the future

plant outputs based on current plant states and future control inputs. The internal

model plays a critical role in the control system. The developed internal model must

be able to capture the dynamics of the plant to adequately predict the future

outputs, and at the same time, be sufficiently simple to be simulated whithin several

minutes for one iteration of simulation. In this research, this means the internal

model needs to capture the essential forward dynamics of human gait and at the

same time be simulated in a reasonable time frame.

In the chemical engineering industry, where MPC was originally developed,

the most popular type of internal model is the an empirical model which is very

simple to obtain as it only requires the measurement of the output when the plant is

driven by a step or impulse input [41]. This type of model is widely accepted in

industry because it is very intuitive and can be used for highly nonlinear processes.

The drawbacks of empirical models are the large number of parameters needed and

applicable to only open-loop stable processes. In addition, the most critical

drawback of using an empirical model for this research is that it does not offer any

insight into either the dynamics of human gait or the principles of the CNS.

Another possible type of internal MPC model is a State Space (SS) model

which is widely used both in industry and academia. The SS model describes the



30

plant process mathematically in the time domain. The general expression of a SS

model is:

ẋ(t) = f(t, x(t), u(t))

y(t) = h(t, x(t), u(t)) (3.1)

x(t0) = x0

where the first equation is called the state equation and second equation is called

the output equation. x(t) represents the states, u(t) represents the inputs, y(t)

represents the outputs, and x0 represents the initial states. Since MPC is a discrete

time based control strategy, Eqn. 3.1 must be converted into a discrete form, which

is expressed as:

x(k + 1) = f(k, x(k), u(k))

y(k) = h(k, x(k), u(k)) (3.2)

x(k0) = x0

where k is discrete time sample. Even highly nonlinear and multivariable processes

can be represented by a SS model, which also has well developed stability and

robustness criteria. More importantly, the SS model offers insight into the dynamic

process of the plant. Therefore, the SS approach will be utilized to build

the internal MPC model in this dissertation.

3.2.2 Objective Function

Once the internal model of MPC is developed, an objective function must be

established to determine the optimal future inputs. The general aim for an objective

function, J , is that the predicted future output along the prediction horizon P

should be as close as possible to the reference, while the control inputs employed

should be kept minimum. This philosophy can be expressed as [42]:

J(x(0), u) =
1

2

N−1∑
k=N0

[x(k)TQx(k) + u(k)TRu(k)] +
1

2
x(N)TQfx(N) (3.3)

where N0 is normally the current time, which is normally 0, N is the final time step,
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Q is the weighting matrix for the predicted states along the prediction horizon, R is

the weighting matrix for the control inputs, and Qf is the weighting matrix for the

final predicted states at the final time step.

There are three terms in Eqn. 3.3. The first term related to x(k) is called the

Stage Cost, the second term related to u(k) is called the Control Input Cost, and

the last term related to x(N) is called the Terminal Cost. By tuning the relative

ratios between the weighting matrices Q, R, and Qf , the relative importance

between the three different costs can be adjusted. For example, if Qf is greater than

Q, the objective function tightly enforces the final state of the plant to move to the

reference value while stage cost during the process is ignored, and vice versa. This

feature of MPC proves powerful in the development of the human gait model in this

dissertation, and provides a significant advantage over traditional PID control.

3.2.3 Constraints

Another advantage of MPC over traditional PID control is that MPC is able

to explicitly incorporate constraints into the controller. The control inputs for every

physical system have limitations. In this dissertation, for example, the maximum

moment inputs generated from the human joints such as ankle, knee, and hip are

bounded. These constraints can be expressed as:

umin
j ≤ uj(k) ≤ umax

j (3.4)

If Eqn. 3.4 can be converted into linear inequality form which is expressed as:

Gu(k) ≤ g

(3.5)

in which:

G =

[
I
−I

]
g =

[
umax

umin

]
umax =


umax
1

umax
2

:
umax
6

 umin =


umin
1

umin
2

:
umin
6
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where I is the identity matrix.

Similar to constraints on the control input, it is also desirable to impose

constraints on the states of the plant for safety and feasibility. In human gait, for

example, there are limitations on the range of motion for each of the joints. This

can be expressed as:

xmin
j ≤ xj(k) ≤ xmax

j (3.6)

Or in matrix form:

Hx(k) ≤ f

(3.7)

where:

H =

[
I
−I

]
f =

[
xmax

xmin

]
xmax =


xmax
1

xmax
2

:
xmax
6

 xmin =


xmin
1

xmin
2

:
xmin
6


One distinction between control input constraints and state constraints is

that control input constraints represent physical limitations, where the actuators are

unable to generate control inputs beyond limitations. However, state constraints are

desirable constraints that often can be relaxed for a certain range. For human gait,

for example, some joints do not have a definite hard-stop constraint in their range of

motion such as the hip. The developed MPC control system in this dissertation

therefore must have hard constraints for the control input constraints and flexible

constraints with modest of flexibility for the state constraints.

3.3 MPC Strategy in Human Gait Study

Before building the MPC control system, the structure of the MPC must be

considered. The decisions must be made include whether to use linear or nonlinear

state space representation for the internal MPC model, end-point or continuous

MPC control, and traditional PID or MPC to control the orientation of HAT. These
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decisions directly affect the performance of the human gait model.

3.3.1 Linear or Nonlinear Internal State Space Model

There are two potential types of SS models to describe the target dynamic

process: linear or nonlinear SS model. As previously described in Sec. 3.1, the

discrete form of a nonlinear SS model can be expressed as:

x(k + 1) = f(k, x(k), u(k))

y(k) = h(k, x(k), u(k)) (3.8)

x(k0) = x0

The discrete form of linear SS model can be expressed as:

x(k + 1) = Ax(k) +Bu(k)

y(k) = Cx(k) +Du(k) (3.9)

x(0) = x0

Every dynamic process is in fact a nonlinear process. Therefore, an inherent

advantage of the nonlinear SS model is that it can describe the dynamic processes

more accurately. However, for some simple engineering applications a linear SS

model can describe the dynamic process very well because the nonlinear dynamics

are subtle or outside the range of operation; such nonlinearities can be ignored

without any obvious performance deterioration. For other situations, even though

the dynamic process of the plant may be highly nonlinear, the plant performs

around one operating point; therefore the nonlinear SS model can be linearized

around that operating point and converted to linear model. In these cases, linear SS

models are preferred because they can be easily integrated and can be implemented

in real-time. This trade-off between the nonlinear and linear SS models is shown in

Fig. 3.4.

For the internal SS model in this dissertation, an engineering decision needs

to be made regarding whether a nonlinear or linear SS model will be utilized. As no

plant processes need to be controlled in real-time, time is not a critical. Human gait

is an highly nonlinear process that is inherently unstable; there are no steady state
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Figure 3.4: Trade-Off Between Linear and Nonlinear Internal Model

operating points about which linearization can be performed. A simple linear SS

model is therefore not sufficient to represent the dynamics of human gait.

Therefore, a nonlinear SS model approach will be used to develop the

internal MPC model of human gait.

3.3.2 End-Point OR Continuous MPC Control

As previously described in Sec. 3.2, the objective function of MPC control

takes the general form:

J(x(0), u) =
1

2

N−1∑
k=N0

[x(k)TQx(k) + u(k)TRu(k)] +
1

2
x(N)TQfx(N) (3.10)

where Q is the weighting factor for the states, R is the weighting factor for the

control inputs, and Qf is the weighting factor for the final states at the end of the

process. The first term is called Stage Cost which penalizes the error between the

output and the reference during the process. The third term is called Terminal Cost

which penalizes the error between the output and the reference at the end of the

process. If the weighting matrix Qf is made to be 0, the objective function becomes:

J(x(0), u) =
1

2

N−1∑
k=N0

[x(k)TQx(k) + u(k)TRu(k)] (3.11)

In this way, the terminal cost is ignored and the controller focuses on the outputs

during the process. This control strategy is called Continuous MPC Control. By

contrast, if the weighting matrix Q is made to be 0, the objective function becomes:
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J(x(0), u) =
1

2

N−1∑
k=N0

u(k)TRu(k) +
1

2
x(N)TQfx(N) (3.12)

In this case, the outputs during the process are completely ignored and the

controller focuses to bring the output of the reference at the end of the process.

This control strategy is called End-Point MPC Control. MPC therefore can

emphasize either the process or the final results.

Engineering judgment is needed to determine whether to emphasize on the

end-point or continuous control. As the MPC is to approximate the CNS, the

control objectives of the CNS need to be reviewed. Based on daily life experiences,

the CNS does not appear to consciously control legs to follow a reference trajectory

for the entire gait cycle. People walk naturally and subconsciously. It is proposed in

this dissertation that the CNS only controls several critical gait related descriptors

at the transitions between single and double support, while continuously keeping

the HAT upright. This proposition is supported by the literature [33,43]. During

single support, the stance leg functions as an inverted pendulum without much

control regulation so that the center of mass (COM) progresses forward with a

consistent speed; the joint moments in the swing leg are controlled such that a

target step length is achieved at the end of the phase. During double support, the

joint moments are controlled such that the velocity of the COM achieves a certain

value in preparation of the subsequent single support period. These two control
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objectives of the CNS are consistent with the philosophy of MPC end-point control.

The CNS also maintains the HAT in an upright position during the entire gait

cycle. This proposed control strategy of the CNS is shown in Fig. 3.5.

Therefore, based on the philosophy of MPC and the essential principle of the

CNS, by utilizing Eqn. 3.12, end-point MPC control is used to control the

step length for Single Support Phase and the final velocity of the COM

for Double Support Phase in order to simulate the function of the CNS.

The next question that needs to be answered is what control method should be used

for continuous HAT orientation control during the entire gait cycle.

3.3.3 PID or MPC for HAT Orientation Control and Stance Knee
Orientation Control During Single Support Phase

As stated in Winter [40], during able-bodied human walking, the HAT is

continuously maintained upright. In addition, during single support, the stance

knee is maintained straight such that the stance leg functions as an inverted

pendulum to progress the body forward. There are two possible methods to control

the HAT orientation and stance knee orientation. One possible solution is to use the

MPC continuous control. As shown in Eqn. 3.11, this can be realized by setting the

weighting matrix Q uniformly along the prediction horizon. The MPC controller

predicts the orientation of the HAT or the stance knee along the prediction horizon

and adjusts the control inputs such that the predicted orientation of the HAT and

stance knee can be maintained vertical and extended. Another possible solution is

to use traditional PID control algorithm to control the HAT and stance knee

orientation by giving a constant upright and straight position reference to the

controller. Although the two control methods may have similar performance, the

control philosophies differ. In addition, if continuous MPC control is used, the

determination of the weighting factors in Eqn. 3.12 is fairly complicated. As

mentioned in Sec. 3.1, the continuous MPC controls the plant based on prediction of

what will happen in the future, while PID controls the plant based on the past error

between the plant output and reference.

Engineering judgment is therefore required to determine which method

better approximates the CNS. In this dissertation, the author proposes that the
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continuous control of the HAT and stance knee orientation will be based on

feedback of the HAT or stance knee’s past deviation from upright or straight

position but not from prediction. In another words, the deviation of the HAT from

upright position or the deviation of the stance knee from being straight is fed back

to the model and control inputs are generated based on this deviation, which is

consistent with PID control philosophy. Therefore, PID control is used to

control the orientation of HAT and stance knee during single support.

3.4 Summary

In this chapter, several critical aspects related to the proposed human gait

model are discussed and the modeling methods are determined and justified. First,

MPC will be used as the primary control method because the philosophy of MPC

better approximates the CNS. Nonlinear first principle models will be used as the

internal model of the MPC controller. End-point MPC control will be used to

regulate step length for single support and velocity of the COM for double support

phase. PID control will be used to control the orientation of the HAT and stance

knee during single support, similar to the CNS feedback control regulation.
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CHAPTER 4

Development of the Internal MPC Model

As previously mentioned in Sec. 3.2, the internal MPC model used to predict

the future outputs of the plant plays a key role in the performance of the MPC

system. This chapter is dedicated to the development of this model. First, the

requirements of an appropriate internal MPC model is discussed and will serve as

guidelines for model development. The second section describes the development of

the internal MPC model for the single support phase; the third section discusses the

development of the internal MPC model for the double support phase.

4.1 Guidelines for the Internal MPC Model

Before the internal MPC model can be developed, the measures of an

appropriate model need to be clarified. Based on the philosophy of the MPC

algorithm and the nature of human gait, a good internal MPC model needs to meet

the following requirements: (1) the internal model should be simple, (2) the single

support and double support phases should be simulated separately, and (3) several

joint moments are not required to be modeled in the MPC internal model because

they are controlled by the PID controller.

Single Support Phase Double Support Phase

Figure 4.1: Nonlinear Internal MPC Model for Both Phases
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4.1.1 Simplicity is Critical

One of the questions that may be asked is: “Since a plant model is already

developed, why can’t this model be used as the internal MPC model?” To answer

this question, the differences between the purposes of the two models need to be

clarified. The plant model developed in Chap. 2 represents the dynamic process of

human gait. Ideally the most realistic human gait model should be used in the

developed system. The purpose of the plant model is to simulate the dynamic

process of human gait as closely as possible with potential subsequent refinement.

The purpose of the MPC internal model is to be a control-oriented model which can

represent the essential forward dynamics of human gait and be simple enough to be

implemented within several minutes for one iteration. If the plant model is used as

the internal MPC model, the model run time will be too long; therefore virtual

testing of the P&Os will be unpractical. From another perspective, the use of the

plant model as the internal MPC model is contrary to the assumption that a simple

control-oriented model is used by CNS to control the human gait. Therefore,

“parsimony” serves as the most important requirement for the development of the

internal MPC model that; as few variables and parameters as possible should be

used to sufficiently represent the forward dynamics of human gait. This requirement

is also consistent with daily experience that people can walk without much cognitive

effort.

4.1.2 Single Support and Double Support Phase Should be Simulated
Separately

As previously mentioned in Chap. 2, a gait cycle can be divided into single

support and double support phases. Another question that needs to be addressed is:

“Is it possible to develop one internal MPC model to represent both phases OR are

two models, one for each phase, required?” This question can be answered from

both dynamics’ and controls’ perspectives. As shown in Fig. 4.1, the single support

and double support phases are dynamically two distinct processes; an open

kinematic chain and a closed kinematic chain, respectively. The constraints and

EOMs differ. From a controls perspective, single support and double support phases

have different end-point control objectives, as previously described in Chap. 3.
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Therefore, two different internal MPC models are developed for single support and

double support phases, respectively.

4.1.3 Not Every Joint Moment Is Required

As previously mentioned in Chap. 3, during Single Support Phase, because

HAT and stance knee are controlled continuously by the PID controller and not

controlled by the MPC controller, they are assumed to be straight in the internal

MPC model during the entire phase. Another question that should be raised is:

“Since the orientation of the HAT and stance knee are controlled by the PID

controllers, is it necessary to model all joints in the MPC internal model?” The

HAT orientation is primarily controlled by the stance hip moment; similarly the

stance knee is controlled largely by the stance knee moment. These two moment

sources are not modeled in the internal MPC model. Likewise during double

support phase, the orientation of HAT is controlled continuously by the PID

controller and is again assumed to be upright during the entire phase. The bilateral

hip moments are therefore regulated by the PID controller to control the HAT so

they are not part of the Double Support Phase internal MPC model.

The explanation serve as the guidelines to develop the internal MPC model.

The next two sections describe in detail the structures of the internal MPC model

for single support and double support phases, respectively, as well as the

development of the EOMs in SS form.

4.2 Internal MPC Model for Single Support Phase

The graphical representation of the internal MPC model used for single

support is shown in Fig. 4.2. For convenience, the swing limb is assumed to be the

right limb and stance limb is assumed to be the left limb. The orientation of HAT is

controlled by a PID controller and assumed to remain upright in the internal model;

it can only translate forward or backward and does not rotate. Therefore, the HAT

is modeled as a point mass on top of both thighs. The stance knee is assumed to be

fully extended during the single support. The moments at the stance hip and stance

knee are not part of the internal MPC model since they will be controlled by a

separate PID controller. As the stance foot is in contact with the ground throughout
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HAT

LT

LS

RT

RS

RF

x

y

RT – Swing Thigh

RS – Swing Shank

RF – Swing Foot

LT  – Stance Thigh

LS  – Stance Shank

Figure 4.2: Internal MPC Model for Single Support Phase

single support, the stance foot is not modeled and is combined into the stance leg.

The stance ankle is treated as a revolute joint, connecting the stance limb to the

ground. The reaction force in the revolute joint is simply the GRF, the sole external

force to advance the body forward. Each of the joints are modeled in the same way

as for the forward dynamics plant model developed in Chap. 2. The respective

spring stiffness and damping coefficients are the same as those in the plant model.

As previously discussed in Chap. 3, the stance leg essentially functions as an

inverted pendulum to advance the body forward. The moment at the stance ankle

does not significantly accelerate or decelerate the COM given the less than half

second duration of single support; instead this moment is used to fine-tune and

maintain the momentum of the body. The MPC mainly controls the joint moments

of the swing side limb so that at the end of single support, a specified step length

can be achieved.

EOMs are required to convert the previously described model into SS form to

be used by the MPC controller. Lagrange’s equation is utilized because it is the

easiest method in developing EOMs for multiple DOF systems. Based on the

description of the model, the four generalized coordinates are the angular position of

the stance ankle, swing hip, swing knee, and swing ankle, labeled θ1 to θ4,

respectively in Fig. 4.2. The four generalized “forces” are the moments at the stance

ankle, swing hip, swing knee, and swing ankle, labeled τ1 to τ4 respectively in
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x

y

O

Hip

Figure 4.3: Anthropometric Parameters of the Internal MPC Model for Single Support
Phase

Fig. 4.2. The absolute angular positions with respect to the global reference frame

are used as the generalized coordinates to make the EOMs simpler. The

anthropometric parameters of the model are defined symbolically as shown in

Fig. 4.3, where m represents segment mass, l represents segment length, and I

represents segment moment of inertia with respect to the center of mass; the

subscription LT represents “left thigh”, LS represents “left shank”, L represents the

left limb, RT represents “right thigh”, RS represents “right shank”, RF represents

“right foot”.

The first step in Lagrange’s equation is to find the kinetic energy of the

system. The kinetic energy of the stance thigh and shank can be expressed as:

T1 =
1

2
(I ′LS + I ′LT )θ̇

2
1 (4.1)

where I ′LS and I ′LT represent the calculated moment of inertia of stance shank and

thigh with respect to point O, as shown in Fig. 4.3, using the parallel axis theorem.

The kinetic energy of the swing thigh can be expressed as the combination of its

translational and rotational kinetic energy:

T2 =
1

2
mRTv

2
RT +

1

2
IRTω

2
RT (4.2)

where vRT represents the translational velocity of the swing thigh. The angular
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velocity ω⃗RT can be expressed as:

ωRT = θ̇2 (4.3)

Since the swing thigh is connected to the stance hip, the translational

velocity of the right thigh can be expressed with respect to the hip of the stance leg

as:

v⃗RT = v⃗hip + ω⃗RT × r⃗RT/HAT (4.4)

where r⃗RT/HAT represents the position vector from the HAT to the COM of the

swing thigh. After substituting the parameters into Eqn. 4.4:

v⃗RT = (
1

2
lRT θ̇2 cos θ2 − lLθ̇1 cos θ1)̂i+ (

1

2
lRT θ̇2 sin θ2 − lLθ̇1 sin θ1)ĵ (4.5)

By substituting Eqn. 4.3 and Eqn. 4.5 into Eqn. 4.2, the kinetic energy of the

swing thigh can be described as a function of θ1, θ2, θ̇1, and θ̇2 as:

T2 = f2(θ1, θ2, θ̇1, θ̇2) (4.6)

Similarly, the kinetic energy of the swing shank is:

T3 =
1

2
mRSv

2
RS +

1

2
IRSω

2
RS = f3(θ1, θ2, θ3, θ̇1, θ̇2, θ̇3) (4.7)

and the kinetic energy of the swing foot is:

T4 =
1

2
mRFv

2
RF +

1

2
IRFω

2
RF = f4(θ1, θ2, θ3, θ4, θ̇1, θ̇2, θ̇3, θ̇4) (4.8)

Because the HAT is assumed to be a point mass connected to the hip joint, it only

has translational kinetic energy and can be expressed as:

T5 =
1

2
mHATv

2
HAT =

1

2
mHAT l

2
Lθ̇

2
1 (4.9)

The total kinetic energy of the model is defined as the summation of the kinetic

energy of the five segments as:
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T = T1 + T2 + T3 + T4 + T5 (4.10)

The second step in Lagrange’s equation is to find the potential energy of the

system. The only potential energy in this model is the gravitational potential

energy for each of the segments, V1 through V4. They can be expressed as:

V1 = [mLScLSlLS +mLT (cLT lLT + lLS) +mHAT (lLT + lLS)]g cos θ1

V2 = mRT (lL cos θ1 − cRT lRT cos θ2)g

V3 = mRS(lL cos θ1 − lRT cos θ2 − cRSlRS cos θ3)g (4.11)

V4 = mRF (lL cos θ1 − lRT cos θ2 − lRS cos θ3 − cRF lRF cos θ4)g

where cLS, cLT , cRT , cRS, and cRF represent the position of the COM relative to the

segment length. Therefore, the total potential energy of the model can be expressed

as the summation of the terms in Eqn. 4.12.

V = V1 + V2 + V3 + V4 (4.12)

After the kinetic and potential energy of each of the segments are defined,

Lagrange’s equation can be applied using matrix form:



d

dt
(
∂

∂θ̇1
)− ∂

∂θ1

d

dt
(
∂

∂θ̇1
)− ∂

∂θ1
· · · d

dt
(
∂

∂θ̇1
)− ∂

∂θ1
d

dt
(
∂

∂θ̇2
)− ∂

∂θ2

d

dt
(
∂

∂θ̇2
)− ∂

∂θ2
· · · d

dt
(
∂

∂θ̇2
)− ∂

∂θ2

:
. . . :

d

dt
(
∂

∂θ̇4
)− ∂

∂θ4

d

dt
(
∂

∂θ̇4
)− ∂

∂θ4
· · · d

dt
(
∂

∂θ̇4
)− ∂

∂θ4




T1

T2

T3

T4



+



∂

∂θ1

∂

∂θ1
· · · ∂

∂θ1
∂

∂θ2

∂

∂θ2
· · · ∂

∂θ2

:
. . . :

∂

∂θ4

∂

∂θ4
· · · ∂

∂θ4




V1

V2

V3

V4

 =


τ1
τ2
τ3
τ4

 (4.13)

To convert Eqn. 4.13 to SS form, the state vector is defined as:
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Figure 4.4: Internal MPC Model for Double Support Phase

x⃗ =



x1

x2

x3

x4

:
x7

x8


=



θ1
θ̇1
θ2
θ̇2
:
θ4
θ̇4


(4.14)

Eqn. 4.13 can then be converted to the SS form as:

⃗̇x(t) = h⃗(x⃗(t), τ⃗(t)) (4.15)

Eqn. 4.15 has the proper form to be used by the MPC controller.

Although the proposed internal MPC model for single support is significantly

simplified compared to the plant model, the EOMs are still highly nonlinear; it is

not practical, or even possible, to solve them analytically. These equations can be

solved numerically in a reasonable amount of time.

4.3 Internal MPC Model for Double Support Phase

For the double support phase, a similar procedure is utilized. However, both

feet are in contact with the ground during double support, forming a closed
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x

y

Figure 4.5: Anthropometric Parameters of the Internal MPC Model for Double Support
Phase

kinematic chain as shown in Fig. 4.1. Because both feet have small displacement

when in contact with the ground, they can be modeled as fixed and the ankles

modeled as two revolute joints connected to the ground. The graphical

representation of the corresponding internal model is shown in Fig. 4.4. The leading

limb is assumed to be the right side limb and the trailing limb is assumed to be the

left limb, which is the subsequent double support following the single support

described in Sec. 4.2. The HAT is assumed to be upright during the entire double

support phase; since it is controlled by a separate PID controller, it is modeled as a

point mass in the internal MPC model. The configuration of the double support

phase shown in Fig. 4.4 can be considered a classic five bar linkage with two DOFs.

Constraints exist between the four angular positions, θ1 to θ4, and only two of them

are independent variables.

There are two possible methods to build the EOMs with Lagrange’s

equation. The first method is to build the constraint equations and substitute them

into the kinetic and potential energy terms to eliminate the dependent variables and

only leave the unconstrained generalized coordinates. However, because of the

complicated constraint equations, using unconstrained generalized coordinates is

difficult.
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An alternative method is to keep all the constrained generalized coordinates

(θ1 to θ4) and introduce Lagrange multipliers to add the constraints into the EOMs.

This method makes the EOMs concise and easily derived. The trade-off is that the

burden on deriving the EOMs will be shifted to solving them. However, advances in

computational power make solving the constrained equations feasible. Therefore,

Lagrange multipliers are introduced into the EOMs and the four constrained

generalized coordinates are utilized.

The anthropometric parameters of the model are defined symbolically as

shown in Fig. 4.5. The closed kinematic chain generates two constraint equations in

the x and y directions, respectively. Those constraint equations can be expressed as:{
lRS sin θ4 + lRT sin θ3 + lLT sin θ2 − lLS sin θ1 = l0

lRS cos θ4 + lRT cos θ3 − lLT cos θ2 − lLS cos θ1 = 0
(4.16)

Differentiating Eqn. 4.16 with respect to time yields the velocity constraint

equations:{
lRS cos(θ4)θ̇4 + lRT cos(θ3)θ̇3 + lLT cos(θ2)θ̇2 − lLS cos(θ1)θ̇1 = 0

−lRS sin(θ4)θ̇4 − lRT sin(θ3)θ̇3 + lLT sin(θ2)θ̇2 + lLS sin(θ1)θ̇1 = 0
(4.17)

Following similar procedure as in Sec. 4.2, the kinetic energy of the each

segment is: 

T1 =
1
2
ILS θ̇1

2
+ 1

2
mLSv

2
LS2

T2 =
1
2
ILT θ̇2

2
+ 1

2
mLTv

2
LT

T3 =
1
2
IRT θ̇3

2
+ 1

2
mRTv

2
RT

T4 =
1
2
IRS θ̇4

2
+ 1

2
mRSv

2
RS

THAT = 1
2
mHATv

2
HAT

(4.18)

where the translational velocity terms are obtained as:
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v⃗LS = 1
2
lLS θ̇1 cos θ1î− 1

2
lLS θ̇1 sin θ1ĵ

v⃗LT = (lLS θ̇1 cos θ1 − 1
2
lLT θ̇2 cos θ2)̂i− (lLS θ̇1 sin θ1 +

1
2
lLT θ̇2 sin θ2)ĵ

v⃗RT = (lLS θ̇1 cos θ1 − lLT θ̇2 cos θ2 − 1
2
lRT θ̇3 cos θ3)̂i

(−lLS θ̇1 sin θ1 − lLT θ̇2 sin θ2 +
1
2
lRT θ̇3 sin θ3)ĵ

v⃗RS = (lLS θ̇1 cos θ1 − lLT θ̇2 cos θ2 − lRT θ̇3 cos θ3 − 1
2
lRS θ̇4 cos θ4)̂i

+(−lLS θ̇1 sin θ1 − lLT θ̇2 sin θ2 + lRT θ̇3 sin θ3 +
1
2
lRS θ̇4 sin θ4)ĵ

v⃗HAT = (lLS θ̇1 cos θ1 − lLT θ̇2 cos θ2)̂i− (lLS θ̇1 sin θ1 + lLT θ̇2 sin θ2)ĵ

The only potential energy of each segment is gravitational energy which can

be calculated as:



V1 =
1
2
mLSlLSg cos θ1

V2 = mLT (lLS cos θ1 +
1
2
lLT cos θ2)g

V3 = mRT (lRS cos θ4 +
1
2
lRT cos θ3)g

V4 =
1
2
mRSlRSg cos θ4

VHAT = mHAT (lLS cos θ1 + lLT cos θ2)g

(4.19)

After the kinetic and potential energy of each segment is calculated,

Lagrange’s equation can be applied using a matrix formulation. Because two

velocity constraint equations exist, two Lagrange multipliers λ1 and λ2 are

introduced into the EOMs. The final EOMs are:



d

dt
(
∂

∂θ̇1
)− ∂

∂θ1

d

dt
(
∂

∂θ̇1
)− ∂

∂θ1
· · · d

dt
(
∂

∂θ̇1
)− ∂

∂θ1
d

dt
(
∂

∂θ̇2
)− ∂

∂θ2

d

dt
(
∂

∂θ̇2
)− ∂

∂θ2
· · · d

dt
(
∂

∂θ̇2
)− ∂

∂θ2

:
. . . :

d

dt
(
∂

∂θ̇4
)− ∂

∂θ4

d

dt
(
∂

∂θ̇4
)− ∂

∂θ4
· · · d

dt
(
∂

∂θ̇4
)− ∂

∂θ4




T1

T2

T3

T4

THAT



+



∂

∂θ1

∂

∂θ1
· · · ∂

∂θ1
∂

∂θ2

∂

∂θ2
· · · ∂

∂θ2

:
. . . :

∂

∂θ4

∂

∂θ4
· · · ∂

∂θ4




V1

V2

V3

V4

VHAT

 =


τ1 + (−lLS cos θ1)λ1 + lLS sin θ1λ2

τ2 + lLT cos θ2λ1 + lLT sin θ2λ2

τ3 + lRT cos θ3λ1 + (−lRT sin θ3)λ2

τ4 + lRS cos θ4λ1 + (−lRS sin θ4)λ2

 (4.20)

Eqn. 4.20 together with the constraint of Eqn. 4.16 can be solved numerically
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making the prediction of the future outputs possible. The form of Eqn. 4.20 is still

concise with constraints incorporated. As previously mentioned, the trade-off is

more computational power is required to integrate Eqn. 4.20 than to substitute the

constraints into the EOMs and eliminate the dependent variables. However, since

real-time control is not a concern in this dissertation, additional computational time

is not a problem.

4.4 Conclusion

In this chapter, the internal models used by MPC are developed. After

investigating the philosophy of MPC and the nature of human gait, separate

internal models are developed for single support and double support phases. The

internal models for both phases are presented and EOMs are developed based on

the proposed physical model. The derived equations facilitate the prediction of

future outputs for the MPC controller.



50

CHAPTER 5

MPC Control System

The previous chapters developed a forward dynamics plant model of human

gait that is used as the control target, established Model Predictive Control as the

primary control algorithm, specified the controller configuration, and defined

internal MPC models to be used for prediction purposes. With the elements of the

system developed, this chapter describes the proposed human gait simulation in

detail from a system level. First, the overall block diagram of the entire system is

described. Second, MPC related parameters such as prediction horizon, control

horizon, and constraints are discussed. Third, the objective functions of MPC are

developed. A special mathematical function, Laguerre functions, is introduced as

the form of optimized MPC control input to reduce the computation load. Lastly,

the PID control used to maintain the orientation of HAT and stance knee during

single support is explained.

5.1 Overall Control Algorithms

The control algorithms of the entire system were developed based on MPC,

the essential principles of the CNS, and human gait dynamics as shown in Fig. 5.1.

The system is divided into single support and double support phase control blocks.

For single support control, two controllers are combined to regulate the

moment at each joint. The MPC functions as the main controller to regulate the

stance ankle and swing leg moments to achieve a specified step length. The PID

controllers function as the auxiliary controllers to regulate the stance hip and stance

knee moments to maintain the upright orientation of the HAT and full extension of

the stance knee. The single support phase model developed in Chap. 4 is used as

the MPC internal model. The forward dynamics plant model developed in Chap. 2

is employed as the control target (i.e., the plant) and its kinematic output provides

feedback to the MPC and PID controllers.
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Figure 5.1: Control Algorithm of the Entire System

Similarly for double support phase control, a MPC and PID controllers are

combined together to regulate the moment at each joint. The MPC functions as the

main controller to regulate the ankle and knee moments of both limbs to achieve

specified velocity of the COM at the end of double support. The PID controllers

function as auxiliary controllers to regulate the hip moments of both limbs to

maintain the orientation of HAT. The double support phase model developed in

Chap. 4 is used as the MPC internal model. The same forward dynamics plant

model developed in Chap. 2 is again employed as the control target (i.e., the plant)

and its kinematic output provides feedback to double support phase controllers.

The control structure for single support and double support is a similar.

Differences firstly exist in the control reference. For single support, the control

reference is step length while the control reference for double support is the terminal

velocity of the COM. Difference also lies in the different internal models they use

which are based on the distinct difference in dynamics between the two phases. The

third difference lies in the different joint moments controlled by the MPC. For single
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support, the MPC does not control the stance knee moment; for double support, the

MPC controls the moments at both knees. This approach is used because during

single support the stance limb functions as an inverted pendulum and the stance

knee remains fully extended.

The strategy of the fully extended stance knee is closer to feedback control

rather than predictive control. Therefore, PID control is used to control the

moment at stance knee. However, for double support, the moments for both knees

need to be regulated to adjust the velocity of COM to the specified value; this

strategy approximates predictive control.

With the overall control algorithm of the system determined, some of the

critical parameters related to MPC controller still need to be developed. The next

section discusses the determination of the prediction horizon, control horizon, and

constraints.

5.2 MPC Related Parameters - Prediction Horizon, Control Horizon,
and Constraints

Two of the important parameters that need to be determined in any MPC

system are Prediction Horizon, P , and Control Horizon, C. Prediction Horizon

determines how many future time steps the MPC predicts the plant states by

applying candidate future control inputs into the internal MPC model. Control

Horizon determines how many time steps the optimized future control inputs are

generated. Normally longer Prediction Horizon and Control Horizon produce more

accurate MPC performance but require more computational power. Therefore, there

exists a trade-off between performance and control speed in MPC which is critical

for the situations where real-time control is required.

Since end-point MPC is used for both Single Support and Double Support

Phase simulation, the Prediction and Control Horizon are from the current time

step to the end time step of the respective phases. Therefore the Prediction and

Control Horizon are not constant and decrease as time progresses. They can be

expressed in mathematical form as:
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xp = {xt+1, xt+2, · · · , xN}︸ ︷︷ ︸
P

(5.1)

uC = {ut, ut+1, · · · , uN−1}︸ ︷︷ ︸
C

(5.2)

where t represents the current time step, N represents the final time step in the

respective single support or double support phase, xP is the predicted state, uC is

the optimized future control input, P represents the Prediction Horizon, and C

represents the Control Horizon. To give an example how P and C changes as time

proceeds, assume t = 1 and the final time step N = 50, the MPC controller predicts

the future states and optimizes future control inputs from the first time step until

the final 50th time step; therefore P = C = 49. When the current time proceeds to

the next time step, t = 2, the MPC controller predicts the states and optimizes

future control inputs from the second time step until the final 50th time step which

makes P = C = 48. Therefore the Prediction Horizon and Control Horizon decrease

as time proceeds.

After the Prediction Horizon and Control Horizon are determined, the

remaining parameters that need to be determined are the constraints related to

optimized control inputs. Like any other control algorithm, MPC should not

generate control inputs beyond the capability of actuators which, in this

dissertation, are maximum moments a specific joint is able to generate. This

constraint can be expressed as:

umin
j ≤ uj(k) ≤ umax

j , k ∈ (0, N) (5.3)

where uj represents optimized joint moment control input at an individual joint, j,

and time step, k. In addition, because muscles can only generate continuous joint

moments, limitations on the incremental change in the optimized control inputs

between each time step also exist. This can be expressed as:

∆umin
j ≤ ∆uj(k) ≤ ∆umax

j , k ∈ (0, N) (5.4)

where ∆uj represents the incremental change in the optimized control input between
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two adjacent time steps at an individual joint. The limitation in optimized control

inputs ensures that unrealistic control inputs cannot be generated from MPC.

5.3 Objective Function

The objective function is an essential part of the MPC algorithm. Its

function is similar to that of the brain in the CNS; it determines what control inputs

should be employed to generate the optimal gait. In this dissertation, the proposed

objective for the single support phase is to achieve a specific step length; the

objective for the double support phase is to achieve a specific velocity of the COM

at the end of the phase. These two objectives serve as the primary propositions for

the dissertation for consistency with the principles of the CNS. These objectives can

be realized in the objective function in MPC with additional auxiliary constraints.

The objective function for the single support phase, JSSP , is end-point

control which follows the form of Eqn. 3.12 and can be expressed mathematically as:

JSSP (x(k)) = (fsl(θ1...6,N)−Rsl)
2

subject to


fV P (θ1...6,k) > 0
fV P (θ1...6,k+1) > 0

:
fV P (θ1...6,N−1) > 0
fV P (θ1...6,N) = 0

 (5.5)

where θ1...6,k represents the angular position of each of the joints (including ankle,

knee, and hip) for both limbs at time step, k; fsl represents the function which

calculates the step length based on the angular position of each joint using the

internal MPC model developed in Sec. 4.2; fV P represents the function which

calculates the vertical position of the swing foot based on the angular position of

each joint; and Rsl represents the reference step length. The constraints, as shown in

Eqn. 5.5, ensure the swing foot clears the ground during single support and contacts

the ground at the end of single support. The purpose of this objective function is to

minimize the error in step length between MPC prediction and the reference while

ensuring that the swing foot contacts the ground only at the end of the phase. The

control input constraints, as described in Sec. 5.2, also must be satisfied.

The objective function for the double support phase can be expressed as:
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JDSP (x(k)) = (fvCOM
(θ̇1...6,N)−RvCOM

)2 (5.6)

where θ̇1...6,N represents the angular velocity of each joint (including ankle, knee,

and hip) for both limbs at the final time step N ; fVCOM
represents the function

which calculates the velocity of the COM at the end of the double support based on

the angular velocity of each joint using the internal model developed in Sec. 4.3;

RvCOM
represents the reference velocity of the COM. As previously discussed in

Sec. 4.3, both feet in the internal MPC model are hinged to the ground; therefore

constraints similar to Eqn. 5.5 are not required.

Eqn. 5.5 and 5.6 are the objective functions of the developed model and

function similarly to the “brain” in the CNS. By minimizing these two functions,

the joint moment control inputs can be generated and human gait can be simulated.

Although the dynamics involved in the entire system are complicated, the core

“brain”, i.e., the objective functions, is surprisingly simple. Two simple criteria

governing the operation of the entire system are also consistent with the assumption

that the CNS utilizes simple criteria to control walking. Another advantage of this

system is that future work can investigate alternative CNS principles by only

changing the objective functions while leaving the remaining system unchanged.

5.4 Laguerre Functions as Control Inputs

With the objective functions determined, the control inputs can be generated.

However, there is one potential problem with this system. Because MPC is a type of

discrete control theory, the entire simulation needs to be divided into a finite

number of time steps and MPC proceeds with each time step. If the moment at

each joint at every time step is an individual design variable, the number of design

variables for optimization is very large and impossible to manage in an optimization

routine. For example, in the case where there are 47 time steps for single support

simulation and 4 joint moments need to be optimized, the total number of design

variables for the initial step of MPC optimization is 47× 4 = 188. For the following

kth time step, the total number of design variables to be optimized is

(47− k+ 1)× 4 = 192− 4k which is still a large number. To significantly reduce the
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number of design variables for the optimization, thereby reducing the computational

burden and simulation run-time, Laguerre functions are used to parameterize the

moment functions. Another advantage of using Laguerre Functions is that smoother

moment function profiles can be generated, while if the control inputs are optimized

for each time step there may be discontinuity in the generated control inputs.

5.4.1 Laguerre Functions

Laguerre functions are a group of time-domain functions which are solutions

of Laguerre’s Equation and mutually orthonormal. This dissertation uses Laguerre

functions as a tool to parameterize the control inputs (i.e., the joint moments). The

details of their derivation are beyond the scope of this dissertation. One can

reference [42] for more details of the derivation.

The set of discrete-time Laguerre functions from initial time, 0, to final time

step, N , can be expressed in a vector form as:

L =
[
L(0) L(1) · · · L(k) · · · L(N)

]
=


l1(0) l1(1) · · · l1(k) · · · l1(N)
l2(0) l2(1) · · · l2(k) · · · l2(N)

: :
. . . :

lM(0) lM(1) · · · lM(k) · · · lM(N)


(5.7)

where M represents the number of Laguerre basis functions utilized; li(k) represents

the ith Laguerre function at the kth time step; L(k) represents the vector form of

values of all Laguerre functions at the kth time step; li represents the ith Laguerre

basis function. All the Laguerre basis functions are functions which starts from the

0th to Nth time step. For each time step, the set of L(k) satisfies the following

difference equation:

L(k + 1) = AlL(k) (5.8)

where matrix Al is a M ×M matrix and is a function of parameters a and

β = (1− a2):
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Al =



a 0 0 · · · 0 0
β a 0 0 0

−aβ β a 0 0

a2β −aβ β
. . . 0 0

−a3β a2β −aβ
. . . 0 0

: : : : :
(−1)MaM−2β (−1)M−1aM−3β (−1)M−2aM−4β · · · β a


(5.9)

The initial condition, i.e., L(0) is given by:

L(0) =
√
β
[
1 −a a2 −a3 · · · (−1)M−1aM−1

]
(5.10)

where a is an independent variable that is selected manually and has a direct

impact on the shape of each individual Laguerre function. As an illustration of the

impact of a, Fig. 5.2 (a = 0.5) and Fig. 5.3 (a = 0.8) show two groups of Laguerre

functions which vary only in the values of a.

One critical feature of Laguerre functions is that they are mutually

orthonormal. This orthonormality can be expressed as:

N∑
k=0

li(k)lj(k) = 0 for i ̸= j (5.11)

N∑
k=0

li(k)lj(k) = 1 for i = j (5.12)

This orthonormality feature can be also explained as each Laguerre function, li,

peaks at a different time step. For example, as shown in Fig. 5.2, l1 peaks at the

first time step, l2 peaks from time steps 1 to 3, and l3 peaks even later at time steps

4 to 6. This orthonormality feature allows Laguerre Functions to be used intensively

in the area of system identification, where the discrete-time response of a dynamic

system is represented by the combination of a group of Laguerre functions [42,44].

The use of Laguerre Functions can greatly reduce the number of design

variables, therefore saving computational power and reducing simulation time. To

illustrate this reduction of design variables, consider an example with an optimal

MPC control input profile (the solid line in Fig. 5.4) that needs to be generated. If
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Figure 5.2: Laguerre Functions With a = 0.5
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Figure 5.3: Laguerre Functions With a = 0.8

the original method is used, ∆u(k), for every time step needs to be optimized; the

total number of design variables are 60. Even if the optimization sampling rate is

changed so that a control input only needs to be optimized once every four time

steps, the number of design variables are still 15. In contrast, if four Laguerre

functions are used and the independent variable a is chosen to be 0.8, the optimized

control input profile at time step k can be expressed as:

u(k) = c1l1(k) + c2l2(k) + c3l3(k) + c4l4(k) (5.13)
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Figure 5.4: Laguerre Functions Approximation With M = 4 and a = 0.8

where only 4 coefficient parameters c1, c2, c3, and c4 need to be optimized. The

optimization results using Laguerre function approximation is also shown in Fig. 5.4

(dashed line), nearly identical to the desired optimal control input. Therefore, the

use of Laguerre functions to approximate the control input profile and the use of

Laguerre function coefficient parameters as design variables significantly reduces the

number of design variables while sacrificing performance only slightly. Note that

each of the Laguerre coefficients, c1 to c4, still need to be optimized for every time

step because the optimal control input may change due to discrepancies between the

plant model and the internal MPC model and disturbances introduced during

simulation.

5.4.2 Application to Joint Moments

To apply Laguerre functions to the simulation of human gait, each of the

joint moment control inputs is decomposed into a combination of a group of

Laguerre functions for both single support and double support phases. The values

of M and a are determined by choosing the values that best approximate the

experimental data of joint moments. The reason of doing this is the experimental

joint moment data are known a priori. Therefore, if the Laguerre functions with a

specific value of M and a are able to approximate the experimental data, the MPC

controller should have the capability to generate able-bodied gait. After
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trial-and-error testing, it was decided that M = 6 and a = 0.5 reach the best

balance that the specified Laguerre functions are able to generate various control

input profiles while maintaining the simulation time within several hours. The

number of design variables for the single support phase is 24: 6 Laguerre function

coefficients for the stance ankle, swing ankle, knee, and hip, respectively. The

number of design variables for the double support phase is also 24: 6 Laguerre

function coefficients for both stance ankles and knees. Therefore, the task of MPC

controller optimizing each joint moment control input for every time step is

implemented by optimizing the Laguerre function coefficients for each time step.

With the form of control inputs determined, the structure of the MPC

system is complete. However, MPC is not the only control algorithm used for the

human gait simulation. The next section discusses the auxiliary PID controller

which controls the HAT during the entire gait cycle as well as the stance knee

during single support.

5.5 Auxiliary PID Control

In this dissertation, the main control algorithm approximating the CNS is

MPC to achieve a certain step length for single support and a certain velocity of the

COM for double support. In addition to MPC, the HAT is required to remain

upright throughout the entire gait cycle and the stance knee remains extended

during single support phase. The control philosophy on the HAT and stance knee

differ in that no prediction needs to be made on future states and the only objective

is to maintain the HAT and stance knee orientation at a constant reference value.

The adjustment of the control input is based on the error between the current

orientation and the reference, approximating feedback control instead of predictive

control. PID control is a classic type of feedback control which determines control

inputs based on past error from a constant reference. Therefore, PID control is

selected as the auxiliary control algorithm as shown in the block diagram of the

entire system in Fig. 5.1.

The detailed block diagrams of PID control on the HAT during the entire

gait cycle and stance knee during single support are shown in Fig. 5.5 and . 5.6,

respectively. The two PID controllers share the same structure, but different control



61

HAT Orientation 

Reference

+
-

+

+

Hip Moments Plant 

Model

Kinematic Output

HAT Orientation Feedback

Figure 5.5: HAT PID Control Block Diagram

Stance Knee 

Orientation Reference

+
-

+

+

Stance Knee 

Moment

Plant 

Model

Kinematic Output

Stance Knee Orientation 

Feedback

Figure 5.6: Stance Knee PID Control for Single Support Phase Block Diagram

references and PID gains. The control inputs are based on the error between the

reference and feedback. Only proportional and derivative gains are used; the

integral gain is 0. Human gait is an inherently dynamic process where no steady

state exists, therefore integral gain is not necessary. The proportional and derivative

gains are tuned by a trial and error, until their deviation from the references are less

than 3 degree. The values of the proportional and derivative gains for both single

support and double support simulations are shown in Tab. 6.2.

Table 5.1: The Value of the Proportional and Derivative Gains

P Gain (Nm/rad) D Gain (Nm/rad/s)
Single Support Stance Hip 2 0.2
Phase Stance Knee 1 0.1
Double Support Stance Hip 1 0.1
Phase Swing Hip 1 0.1

5.6 Platform to Realize the MPC Control System

As mentioned in Chap. 2, the human gait plant model is developed in the

MATLAB/Simulink environment, specifically using the SimMechanics toolbox. It is

beneficial to keep the MPC control system and the plant model to be on the same

platform to make the two components combine seamlessly. In addition, MATLAB is

a powerful computational platform. The MPC control system is also developed on
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the MATLAB/Simulink platform, as illustrated in Appendix. C.

5.7 Summary

In this chapter, the overall control algorithm of the human gait simulation

system is explained; the critical MPC related parameters are determined; the

objective function is developed with a Laguerre functions to reduce the number of

design variables; PID control is selected as the auxiliary controller. With all the

elements (Fig. 5.1) in this human gait simulation system developed and explained,

the simulation can be performed. To verify the fidelity of the developed system,

able-bodied human gait is simulated and the results are described in Chap. 6.
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CHAPTER 6

Simulation of Able-Bodied Human Gait

The fidelity of the human gait model developed in first five chapters needs to

be verified. In this chapter, the model is verified first by simulating gait at an

able-bodied person’s self selected walking speed (SSWS). The experimental data

was acquired using a Vicon motion capture system at the Medical College of

Wisconsin Department of Orthopaedic Surgery’s Center for Motion Analysis. The

fidelity of the model is addressed by comparing the kinematic and kinetic output

from the simulation to the benchmark experimental data. The errors are quantified.

These baseline results will then be expanded in Chap. 7 to verify the prediction

capability of the model.

6.1 Method of Able-Bodied Human Gait Simulation at SSWS

To perform the simulation, some model parameters and MPC control

references are required. The parameters include anthropometric, internal

mechanical, and MPC control reference parameters, as summarized in Tab. 6.1

Table 6.1: Required Model Parameters and MPC Control References

Anthropometric Parameters Segmental lengths, masses, moment of iner-
tia with respect to segment COM, location of
COM for each of segment (feet, shanks, and
thighs for both legs, and HAT)

Internal Mechanical Parameters
of the Plant

Internal spring stiffness and damping coeffi-
cient for each joint (ankles, knees, and hips)
Internal spring stiffness and damping coeffi-
cient (horizontal and vertical) for both feet

MPC Control References Step length and velocity of the COM

For the anthropometric parameters, the segment lengths were directly

recorded on the human subjects. The segmental mass, mass moment of inertia, and

location of COM are calculated using empirical anthropometric equations

(Winter [40]). The internal mechanical parameters are obtained by optimizing
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(Chap. 2). The same internal mechanical parameters are used for the internal MPC

models for consistency between the plant model and internal MPC models. During

the human subject testing, reflective markers are placed on the subject via a

modified Helen-Hayes marker set to obtain kinematic testing data with Vicon MX

cameras capturing the movement of the markers. The experimental step length and

velocity of COM are calculated based on the captured kinematic data. Therefore,

the calculated experimental step length and velocity of COM provide the MPC

control references.

Force plates are embedded along the walkway to measure the GRF. The

kinetic data including moments at each joint, power consumption, and other data

are calculated using the standard inverse dynamic model (Vicon Plug-In Gait

Model) [45]. These kinetic data serves as another benchmark data to evaluate the

fidelity of the developed model.

6.2 Simulation Results of SSWS Gait

With values of the required parameters in Tab. 6.1 specified, the simulation

of gait for an able-bodied subject at SSWS is performed. The performance of the

model is assessed at three levels: (1) ability of the model to achieve the control

references; (2) ability of the model to achieve kinematic experimental data; (3)

ability of the model to achieve kinetic experimental data.

Note the accuracy of experimental kinematic and kinetic data differ. The

kinematic data, i.e., the saggital plane angular position of each joint during one gait

cycle, was directly captured using the Vicon cameras. In contrast the kinetic joint

moment data are indirectly calculated using the Vicon Plug-In inverse dynamic gait

model [45] based on the measured GRF from the foot plates. Therefore the

kinematic experimental data have relatively high accuracy and is used as the

primary benchmark data. Whereas the kinetic joint moment experimental data has

lower accuracy and used as secondary benchmark data.

The MPC control reference for SSWS and the actual output of the model are

shown in Tab. 6.2. The MPC controller achieved the control reference very

accurately, with error smaller than 0.5% for step length during single support and

velocity of COM for double support.
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Table 6.2: Comparison of Model Output and Control Reference for SSWS

MPC Con-
trol Refer-
ence

Actual
Model
Output

Percentage
Error

Step Length (m) for Single
Support Phase

0.7345 0.7372 0.37%

Velocity at COM (m/s) for
Double Support Phase

1.3854 1.3788 0.48%

0 0.1 0.2 0.3 0.4 0.5
−15

−10

−5

0

5

10

15

20

Time (sec)

A
n
k
le

 A
n
g
le

 (
d
e
g
re

e
)

Model Simulation

Experimental Data

Single Support 
Phase

Double Support 
Phase

Plantar
Flexion

Dorsiflexion

Figure 6.1: Sagittal Plane Ankle Angle of Stance Leg - Simulation vs Experimental Data

The simulation for one full step is performed in the sequence of single

support and then double support. The state at the end of the single support phase
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Figure 6.2: Sagittal Plane Knee Angle of Stance Leg - Simulation vs Experimental Data
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Figure 6.3: Sagittal Plane Hip Angle of Stance Leg - Simulation vs Experimental Data
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Figure 6.4: Sagittal Plane Ankle Angle of Swing Leg - Simulation vs Experimental Data

is used as the initial state for the double support phase, therefore the two phases are

combined seamlessly. The kinematic simulation results for one full step, single

support followed by double support, are shown from Fig. 6.1 to . 6.6. The

experimental kinematic data are plotted as dashed line for comparison purposes.

Each figure illustrates the sagittal plane angular position of the ankles, knees, and

hips for both sides. To quantify errors between the simulation results and

experimental data, the root mean square error (RMSE) for the full gait step is

calculated and listed in Tab. 6.3.

Similarly, the kinetic joint moment simulation results for one step are



67

0 0.1 0.2 0.3 0.4 0.5
−60

−50

−40

−30

−20

−10

0

10

Time (sec)

K
n
e
e
 A

n
g
le

 (
d
e
g
re

e
)

Model Simulation

Experimental Data

Single Support 
Phase

Double Support 
Phase

Flexion

Extension

Figure 6.5: Sagittal Plane Knee Angle of Swing Leg - Simulation vs Experimental Data
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Figure 6.6: Sagittal Plane Hip Angle of Swing Leg - Simulation vs Experimental Data

illustrated as shown from Fig. 6.7 to . 6.12. The experimental data are plotted as

dashed line for comparison purposes. To quantify the errors between the simulation

results and experimental data, the RMSE for the step, single support, and double

support phases is calculated and listed in Tab. 6.4.

6.3 Discussion of Simulation Results of SSWS Gait

Based on the model simulation results and experimental data, the MPC

control references are achieved very accurately (smaller than 0.5% error). The

angular position of each joint is consistent with the experimental data, with the
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Table 6.3: RMSD of Angular Position of Each Joint Between Simulation and Experimental
Data

RMSE Full Step (◦) Single Support (◦) Double Support (◦)
Stance Ankle 2.30 1.35 3.89
Stance Knee 8.94 2.24 17.07
Stance Hip 3.014 0.82 5.73
Swing Ankle 4.214 3.99 4.79
Swing Knee 6.063 3.93 9.84
Swing Hip 3.820 2.77 5.84
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Figure 6.7: Moment of Stance Ankle - Simulation vs Experimental Data

largest errors less than 5◦ except the stance and swing knee during double support

(Tab. 6.3). The joint moment model outputs, however, are less consistent with

errors between 28% and 110%.

The developed model is first and foremost a predictive model. The purpose

of the control system is to drive the plant model to achieve the control references

Table 6.4: RMSE of Moment of Each Joint Between Simulation and Experimental Data

Full Step
(Nm)

Single Sup-
port (Nm)

Double Sup-
port (Nm)

Average Per-
centage Error
(%)

Stance Ankle 34.74 12.89 64.40 27.81
Stance Knee 21.49 8.47 39.55 65.11
Stance Hip 18.83 11.12 31.73 48.69
Swing Ankle 3.56 2.92 4.95 83.24
Swing Knee 25.11 13.37 43.66 109.93
Swing Hip 20.41 2.86 39.63 38.86
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Figure 6.8: Moment of Stance Knee - Simulation vs Experimental Data
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Figure 6.9: Moment of Stance Hip - Simulation vs Experimental Data

regardless of the kinematic trajectories or the kinetic moments. Therefore it is

expected that the model will achieve the control reference accurately while the

kinematic and kinetic output can deviate from the experimental data. However, the

model still predicted the sagittal plane kinematics fairly well with typical joint angle

errors less than 5%.

In the author’s opinion, the kinetic joint moment output of the model

deviates from the experimental data because of three reasons. The first reason lies

in the difference between the dynamics of the gait plant model utilized in this

dissertation and the dynamics of real human gait. The second reason lies in that the



70

0 0.1 0.2 0.3 0.4 0.5
−20

−15

−10

−5

0

5

Time (sec)

M
o
m

e
n
t 

(N
m

)

Model Simulation

Experimental Data

Double Support 
Phase

Dorsiflexion

Plantar
Flexion

Single Support 
Phase

Figure 6.10: Moment of Swing Ankle - Simulation vs Experimental Data

0 0.1 0.2 0.3 0.4 0.5
−60

−40

−20

0

20

40

60

Time (sec)

M
o
m

e
n
t 

(N
m

)

Model Simulation

Experimental Data

Double Support 
Phase

Single Support 
Phase

Extension

Flexion

Figure 6.11: Moment of Swing Knee - Simulation vs Experimental Data

experimental kinetic data (i.e., the joint moments) is indirect data calculated based

on Plug-In Gait Model. Therefore, the experimental data does not have high

fidelity. The third reason is that the objective function utilized by the model could

be off from the the realistic objective function used by the CNS. These three reasons

combined together cause the kinetic model output to deviate from the experimental

data.

As shown in Fig. 6.2, the model kinematic output of the stance knee greatly

deviates from experimental data during the double stance phase where the stance

knee remains extended and does not flex in preparation for swing. During double
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Figure 6.12: Moment of Swing Hip - Simulation vs Experimental Data

support, extension of trailing knee increases the speed of the COM while knee flexion

decreases speed [46]. Therefore in contrast to the experimental data, the stance

knee in the model extends to control the reference speed of the COM. Stance knee

flexion would be unable to achieve the 1.3854 m/s reference speed. This deviation of

the stance knee leads to the argument again that the developed model is first and

foremost a predictive model which does not know the kinematic trajectory a priori.

As shown in Fig. 6.5, the kinematic output of the swing knee is consistent

with the experimental data until approximately 0.3 sec when the modeled swing

knee fails to further extend. This deviation is attributed to the range of motion

(ROM) limit in the plant model as described in Chap. 2. When the stance knee

joint approaches the ROM limits the stiffness and damping coefficient of the

internal spring and damper greatly increase to enforce the ROM constraints.

However, it is interesting to notice that the experimental data does move beyond 0◦.

As illustrated in Fig. 6.7 to . 6.12, at the heel contact (i.e., transition from

single support to double support), the model output moment suddenly changes,

contrary to the experimental data. This deviation is because the momentum of each

segment suddenly changes due to heel strike. Therefore the control inputs generated

by the model must change dramatically to achieve the control reference. This

sudden change is again contrary to the experimental data. Regardless of these phase

transition errors, the overall joint moment outputs still demonstrate the similar
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trends as the experimental data.

6.4 Summary

In this chapter, the fidelity of the model is tested for gait at comfortable

speed. It is shown that the model is able to achieve the control reference accurately,

the kinematic output of the model is consistent with the experimental data, and the

kinetic output of the model is able to follow the same trend as the experimental

data. In the next chapter, the predict capability of the model is tested first by

predicting human gait at variable speed. Then, the model is further tested by

predicting pathological gait with unilateral passive ankle joint.
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CHAPTER 7

Simulation of Variable Speed and Pathological Gait

As stated in Chap. 1, the ultimate purpose of this dissertation is not only to

simulate able-bodied gait but to also build a human gait model with prediction

capability. Therefore human gait related virtual testing can be performed to

expedite P&O equipment design and development, reduce cost, and minimize the

risks involved with human subject testing.

To show that developed model is able to qualitatively predict various types

of human gait, the model is tested under three different conditions. For the first two

conditions, the model is used to predict fast and slow walking over level ground.

Kinematic and kinetic data details in the literature [47–49] show that fast and slow

walking vary with respect to SSWS. These simulation results show that the

developed model is able to qualitatively predict these patterns without a priori

experimental kinematics and kinetics knowledge.

In addition to the simulation of various walking speed for able-bodied

individuals, amputee gait with a unilateral passive prosthetic ankle joint is also

simulated. Unilateral transtibial amputation is one of the most common

amputations performed in the U.S. Various literature [50–52] study the difference in

gait patterns between amputated gait using passive transtibial prostheses and

able-bodied gait. Model simulation results are compared to the literature. The

results show that the model is able to predict the walking patterns of a unilateral

trantibial amputee with a passive prosthesis.

7.1 Simulation of Fast and Slow Walking for Able-Bodied Individuals

7.1.1 Method

To perform fast and slow speed walking simulations for an able-bodied

subject, model parameters and MPC control references need to be determined. The

purpose of the simulations of fast and slow walking is to further verify the capability
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of the model to qualitatively predict kinematic and kinetic performance; the same

model parameters from Chap. 6 are used to contrast these results with the

subject-specific SSWS simulation. The only model inputs that need to be revised

are the MPC control references, step length and velocity of the COM. The fact that

very few parameters are required in order to modify the simulation for different

gaits implies an advantage of the developed model than biomechanics gait model

described in Chap. 2 where usually hundreds of parameters need to be determined.

Fast and slow speed walking trials were not conducted for the able-bodied

subject test in Chap. 6. However, a linear relationship has been identified between

step length and walking speed [53]. The MPC control references are based on this

linear relationship as described in Tab. 7.1.

Table 7.1: MPC Control Reference for Fast and Slow Speed Simulation References

Step Length (m) Velocity at COM (m/s)
Fast Speed Walking 0.813 1.6
Slow Speed Walking 0.666 1.2
SSWS 0.7345 1.3854

The model is verified for these parameters from three perspectives. First, the

simulated step length and velocity of the COM output from the simulation are

contrasted with the desired control references. The kinematic outputs from the

simulation of the fast and slow trials are compared to the SSWS simulation in

Chap. 6. Finally the kinetic outputs from the simulation are compared to the SSWS

simulation.

7.1.2 Literature

Kinematic and kinetic data for self-selected, fast, and slow walking trials

reported in the literature are reviewed. These reported trends are then used to

qualitatively verify the model. The effects of walking speed in joints kinematics and

kinetics for able-bodied individuals in [47,54] indicate that:

1. The kinematic trajectories of the hip, knee, and ankle do not vary with

walking speed. Only minor increases in peak knee flexion during loading

response are observed as the gait speed increases.
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2. The peak kinetic joint moments of the hip, knee, and ankle are dependent on

gait speed [47]. Both the peak extension and flexion moment of the hip during

single and double support increases with gait speed.

3. The peak knee flexion moment during loading response (early double support)

and pre-swing (late double support) increases as gait speed increases [47].

During swing, the peak knee extension moment increases with gait speed.

4. Minor increases in peak ankle dorsiflexion moment with gait speed are

observed [47].

The results of the slow and fast walking simulations are compared to the

SSWS simulation in the next section to verify the ability of the developed model to

capture these kinematic and kinetic dependencies on gait speed.

7.1.3 Simulation Results

The results of the simulation of fast and slow walking are again evaluated

from three perspectives. First, the ability of the model to achieve the control

reference is evaluated. The kinematic and kinetic model output of the fast and slow

gait simulations are contrasted with the SSWS simulation results to assess the

ability of the model to qualitatively predict the variations in kinematic and kinetic

trajectories with speed, as reported in the literature.

Table 7.2: Model Output Compared to Control Reference for Fast Speed Gait

MPC Con-
trol Refer-
ence

Actual
Model
Output

Percentage
Error

Step Length (m) 0.8134 0.8135 0.012%
Velocity at COM (m/s) 1.6000 1.6026 0.16%

Table 7.3: Actual Model Output Compared to Control Reference for Slow Speed Gait

MPC Con-
trol Refer-
ence

Actual
Model
Output

Percentage
Error

Step Length (m) 0.6664 0.6663 0.015%
Velocity at COM (m/s) 1.2000 1.1986 0.12%

The comparison of the MPC control reference and the model output for fast

and slow gait simulations are shown in Tab. 7.2 and . 7.3 respectively. The model



76

0 0.1 0.2 0.3 0.4 0.5
−20

−15

−10

−5

0

5

10

15

20

Time (sec)

A
n
g
u
la

r 
P

o
s
it
io

n
 (

d
e
g
re

e
)

Self−selected

Fast

Slow

Dorsiflexion

Plantar
Flexion

Single Support 
Phase

Double Support 
Phase

Figure 7.1: Angular Position of Stance Ankle - Fast, Slow, and Self-Selected Speed Sim-
ulation

achieved the control reference for both speed and COM velocity with errors smaller

than 0.2%. This indicates the developed controller is able to generate appropriate

joint moment inputs to drive the plant model to achieve the control references.

The kinematic simulation results for one step from single support to double

support, for fast, slow, and SSWS are shown from Fig. 7.1 to . 7.6. In each figure,

the self-selected speed simulation results are plotted as solid lines. The fast speed

simulation results are plotted as dashed lines and the slow speed simulation results

are plotted as a combination of dashed and dotted lines. The differences in

kinematic and kinematic simulation output between speed are not quantified, as

experimental data are only available for the specific subject.

Similarly, the kinetic joint moment simulation results for one step are shown

in Fig. 7.7 to . 7.12. In each of the figure, the SSWS simulation results are plotted

as solid lines. The fast speed simulation results are plotted as dashed lines and the

slow speed simulation results are plotted as a combination of dashed and dotted

lines. The differences in gait moments with the gait speed are not quantified

because of the same reason.

7.1.4 Discussion

Based on the simulation results illustrated in the previous section, the

following points can be summarized:
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Figure 7.2: Angular Position of Stance Knee - Fast, Slow, and Self-Selected Speed Simu-
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Figure 7.3: Angular Position of Stance Hip - Fast, Slow, and Self-Selected Speed Simula-
tion

1. From control system performance perspective the developed model achieved

the MPC control reference very well, with the errors in step length and the

COM velocity smaller than 0.2%. Therefore it can be concluded the controller

made the appropriate adjustment on joint moments control input to achieve

difference control reference.

2. From kinematics perspective, it can be seen from Fig. 7.1, Fig. 7.3, Fig. 7.4,

and Fig. 7.6 that, in the simulation, the ankle and hip kinematic output show
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Figure 7.5: Angular Position of Swing Knee - Fast, Slow, and Self-Selected Speed Simu-
lation

no significant difference between the three various gait speed. This is

consistent with the literature where both [47] and [54] stated the there exists

extremely similar experimental kinematic trajectory at hip and ankle between

various gait speeds.

3. However, for the kinematic simulation output at the knee joint, it can be seen

from Fig. 7.2 that the stance knee has more flexion for fast and slow speed

than self-selected speed. From Fig. 7.5, it can be seen that as the gait speed
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Figure 7.7: Moment of Stance Ankle - Fast, Slow, and Self-Selected Speed Simulation

increases, the knee flexion during initial swing and loading response increases

correspondingly. This swing knee kinematic variation was reported by

Winter [54]. This means the developed model successfully predicts that the

swing knee flexion will increase as the gait speed increases.

4. From kinetics perspective, Lelas et al. [47] reported a rule of thumb that the

peak joint moments in knee and hip in both extension and flexion direction

increase with the increase in gait speed. This characteristics is reflected from

Fig. 7.8, Fig. 7.9, Fig. 7.11, and Fig. 7.12 that the slow gait speed knee and

hip joint moments for both extension and flexion direction in simulation are
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Figure 7.8: Moment of Stance Knee - Fast, Slow, and Self-Selected Speed Simulation
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Figure 7.9: Moment of Stance Hip - Fast, Slow, and Self-Selected Speed Simulation

generally smaller than self-selected and fast gait speed.

In conclusion, the developed model successfully achieve the various speed

simulation by hitting the control reference very accurately without a priori

knowledge of the joint moments. The kinematic output of the model successfully

predicted the general similarity in joint trajectories between fast, slow, and

self-selected gait speed. The model also successfully predicted the increase in knee

joint flexion as the gait speed increases. The differences in kinetic joint moment

outputs are not as clear as the kinematic outputs but the model is still able to

predict the general trend of increase in knee and hip joint moments as the gait
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Figure 7.11: Moment of Swing Knee - Fast, Slow, and Self-Selected Speed Simulation

speed increases. Therefore, the simulation results shown in this section show that

the developed model has prediction capability to predict the kinematic and kinetic

characteristics of various gait speeds.

7.2 Simulation of Amputee Gait

7.2.1 Method and Literature

The simulation of amputee gait differs from the simulation of gait for an

able-bodied subject in Chap. 6. The amputee subject’s prosthesis incorporates a

passive prosthetic ankle joint that cannot generate power. This section uses the
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Figure 7.12: Moment of Swing Hip - Fast, Slow, and Self-Selected Speed Simulation

developed model to simulate this prosthesis and predict these gait.

A unilateral passive prosthetic ankle is simulated by setting the moment

control input for the prosthetic ankle to zero. This means no active moment can be

generated at the ankle; the only moment source in the ankle is from the internal

elastic spring and damping due to the angular motion of the ankle. For the MPC

control reference, no literature is available establishing the possible step length and

velocity walking target for the MPC controller for a transtibial amputee.

Literature [46] shows that the CNS works differently from able-bodied gait. How

the control reference for step length and velocity changed for amputee gait needs to

be investigated. However in this dissertation there will be no change in the target

step length and walking velocity for a transtibial amputee. Therefore only the

performance of the control system, i.e. how well the model achieves the control

reference, is shown in this dissertation.

The performance of two types of unilateral prosthetic ankles are simulated.

First, the prosthetic ankle is simulated as a pure passive revolute joint. Then the

prosthetic ankle is simulated as a passive revolute joint with a torsional spring on

the joint which is consistent with most of the designed passive prostheses. The value

of the spring stiffness is obtained from a prototype prosthesis designed by Bergelin

et al. [55]. The model is expected to predict the prosthetic ankle with torsional

spring achieve control reference better than pure passive revolute joint prosthesis.
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7.2.2 Simulation Results

The MPC control reference compared to the actual model output with the

pure passive ankle on the stance and swing side respectively for one full stride is

shown in Tab. 7.4 and 7.5. It can be noticed that each of the model output achieves

the MPC control reference accurately except for one: The target velocity of the

COM with the passive ankle on the stance side. With the target velocity being

1.3854m/s, the model only achieves 0.8987m/s which is 42.62% less. The reason of

this discrepancy is analyzed in the Discussion subsection.

Table 7.4: Actual Model Output Compared to Control Reference of the Prosthetic Limb
for Pure Passive Prosthesis

MPC Con-
trol Refer-
ence

Actual
Model
Output

Percentage
Error

Step Length (m) 0.7345 0.7373 0.38%
Velocity of the COM (m/s) 1.3854 0.8987 -42.62%

Table 7.5: Actual Model Output Compared to Control Reference of the Intact Limb for
Pure Passive Prosthesis

MPC Con-
trol Refer-
ence

Actual
Model
Output

Percentage
Error

Step Length (m) 0.7345 0.7344 -0.014%
Velocity of the COM (m/s) 1.3854 1.4025 1.23%

Table 7.6: Actual Model Output Compared to Control Reference of the Passive Prosthetic
Limb for Prosthesis with Torsional Spring

MPC Con-
trol Refer-
ence

Actual
Model
Output

Percentage
Error

Step Length (m) 0.7345 0.7344 -0.014%
Velocity of the COM (m/s) 1.3854 1.0955 -23.37%

The MPC control reference compared to the actual model output with the

prosthesis with a torsional spring is shown in Tab. 7.6 and 7.7. While other control

references were achieved, the velocity at COM achieved when the prosthesis is on

the stance side is 1.0955m/s, which is -23.37% less than the control reference.
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Table 7.7: Actual Model Output Compared to Control Reference of the Intact Limb for
Prosthesis with Torsional Spring

MPC Con-
trol Refer-
ence

Actual
Model
Output

Percentage
Error

Step Length (m) 0.7345 0.7357 0.16%
Velocity of the COM (m/s) 1.3854 1.3394 -3.38%

7.2.3 Discussion

An important function of the ankle joint is to propel the COM of the body

and swing leg to a certain velocity during late stance and pre-swing phase in order

to get ready for the swing. Because of this demand to propel the whole body, for

able-bodied person’s gait, the moment the ankle joint normally achieves is more

than 150Nm. Therefore, one can assume with the transtibial amputee’s ankle joint

being passive, the moment cannot achieve the able-bodied level and provide enough

propulsion to make the body achieve the required speed before swing phase. This

trend is successfully predicted by the developed model as shown in Tab. 7.4 and 7.6

Because the pure passive prosthetic ankle is not able to provide any active

moment during late stance and pre-swing, the simulation predicts that the COM

cannot achieve the target velocity of 1.3854m/s with the actual model output being

only 0.8987m/s as shown in Tab. 7.4. The other MPC control reference is achieved

accurately by the model as shown in Tab. 7.4 and Tab. 7.5 since the moments from

the prosthetic ankle is not of critical importance in achieving that target. With the

prosthesis having a torsional spring on the prosthetic ankle joint, the torsional

spring is able to absorb energy during early and mid stance and release the stored

energy during push-off [55]. As shown in Tab. 7.6, this trend is predicted by the

model that the prosthetic ankle with a torsional spring achieves closer velocity

model output to control reference than the pure passive prosthetic ankle, while the

intact limb is not affected.

The step length and velocity at COM control references used in this chapter

are the same as in Chap. 6 for comparison purpose. However it is known that the

CNS use a different control strategy for pathological gait [46]. How the MPC

control references changes with the CNS using a different control strategy is a

potential direction for research. The MPC control references can be conveniently
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changed in the developed model to test the proposed CNS control strategy.

In conclusion, the developed model successfully predicts that without active

power from the ankle, the amputee human gait is not able to achieve the same level

of velocity at push-off as able-bodied gait. The model also successfully predicts that

with help of a designed torsional spring, the amputee gait achieved a closer

performance to able-bodied gait though still not the same.
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CHAPTER 8

Conclusion and Future Work

In this dissertation, a human gait model with prediction capability is

developed. The developed model includes a human gait plant model to function as

the control target and a control system, a combination of classical PID control and

MPC control, to simulate the CNS. The performance of the developed model is

verified by performing simulation under three conditions: Self-selected speed

able-bodied gait, various speed able-bodied gait, and amputee gait with a passive

prosthesis. The simulation results showed that the self-selected speed able-bodied

gait simulation output is close to the experimental data and the developed model

has the ability to qualitatively predict the characteristics of kinematics and kinetics

for various cadences.

8.1 Contributions

The major contributions of this dissertation are:

1. A human gait plant model is developed which has only seven segments and

nine DOFs but is able to represent the forward dynamics of human gait.

Therefore the developed plant model can be used as the control target for the

system.

2. The CNS controls human gait based on a combination of prediction and

feedback. A novel control system is developed that combines MPC and

classical PID control algorithms to simulate the CNS of the able-bodied

people.

3. By controlling only two critical gait related parameters, step length and

velocity of the COM at push-off, the able-bodied gait can be simulated.

4. A simple internal MPC model is used for prediction and can be represented by

a simple pendulum model.
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5. The human gait model successfully simulated able-bodied gait with the

kinematics percentage error less than 5% from experimental data. The model

was also able to predict the characteristics of various speeds without those

characteristics known a priori.

8.2 Model Limitations

The simulation results are evaluated from three perspectives for all

conditions - the capability of the model to achieve the MPC control references, the

kinematic results, and the kinetic results either compared to the experimental data

or between the simulations under different conditions. In Chap. 6 and Chap. 7, from

MPC control references and kinematics perspectives the model achieved good

results. The MPC control references are achieved accurately and the kinematics

results either follow the experimental data closely or predict the characteristics

clearly. However, the kinetics results are not fully consistent with the experimental

data or not very illuminating.

The discrepancies in the kinetic results can be from three reasons: The first

reason is because of the discrepancies between the real human gait dynamics and

the developed plant model. As one widespread motto in engineering field said, “No

model is real, every model is wrong”. One can never build a model that is

completely the same as the target plant. The same problem exists in this

dissertation in that a plant model has to be used to represent human gait because of

the nature of the project. Even though the plant model is verified in Chap. 2 that it

can closely represent the forward dynamics of human gait, there still exists some

discrepancies. These discrepancies cause the joint moments to drive the plant model

to be different from those to drive the real gait dynamics.

The second reason is that different motor behavior can be employed to

achieve similar kinematics output. Bateni and Olney [51] reported that even within

the amputee subjects the motor control strategy employed varies between

individuals. For example, in the pathological gait simulation in Chap. 7, the

developed MPC controller uses more extension moment in the prosthetic knee to

prevent the body collapse because of a lack of support from prosthetic passive ankle.

Instead, the experimental data [51,56] shows that the amputees more often choose
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to use more extension moment in the intact knee to achieve the same function.

Because there is no prescribed kinetic pattern for the developed model to follow, the

resultant kinetic simulation results can be different from experimental data even

though the same behavior is achieved.

The third reason lies in the discrepancies in the objective function utilized

between the developed model and the CNS. The objective functions in the

developed MPC control system only regulates the step length and velocity of the

COM. This objective function is surprisingly simple nevertheless is able to generate

gaits under various condition. However, this simple objective function may not fully

represent the control target of the CNS. For example, the CNS may consider some

other gait related factor such as dynamic effort or metabolic energy consumption as

part of the objective function which is not captured in the developed model. The

differences in the objective function can cause the deviation in the kinetic results.

Therefore, the author suggests the achievement of MPC control reference and

kinematics results should be emphasized more than the kinetic results.

8.3 Future Work

This dissertation is far from concluding a research topic. Instead, the

purpose of this dissertation is to open the door of a whole new world of using a

predictive control method to predict able-bodied and pathological gait in order to

reduce cost, minimize risk, and facilitate the development of P&O. The core part of

this dissertation is to use a predictive control method to simulate human gait. As

explained in Chap. 1, the author believes that the CNS employs the same predictive

control philosophy when regulating human gait instead of using widespread and

classical feedback control. This predictive control philosophy should be maintained

as the baseline principle for future work. In addition, this predictive control

philosophy not only can be employed for human gait simulation research but also

can be employed to P&O development. As the powered P&Os are developing

rapidly in the U.S and the microprocessors are becoming more powerful and

cheaper, the predictive control method should be considered to be the potential

control strategy for future powered P&Os.

While the core part of predictive control should be maintained for future
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research, the other parts of the developed model in this dissertation have room for

improvement. First, the plant model can be improved to more closely represent the

forward dynamics of human gait. As explained in Chap. 1, the current research of

human gait model can be broken into two categories: Biomechanics gait models and

biped robotics gait models. The author does not believe there is a need to adopt

biomechanics model for future research because this type of model usually has

hundreds of DOFs and requires weeks to perform simulation which deviates from

the essential purpose of this dissertation. However, numerous methods can be

adopted from the biped robotics gait model to make the plant model better

represent the real human gait. For example, numerous literature suggests arms have

important dynamic effect in human walking which helps human gait maintain

balance. The future work should considering including the swing of arms into the

plant model. The other possible direction is to build a more advanced GRF model

where currently the GRF is modeled as four groups of springs and dampers both

horizontally and vertically at both toe and heel. Various literature suggests their

GRF model achieves good simulation results and may be worth being

considered [57–59]. The author believes with more realistic plant model built, the

developed model should achieve better performance.

The second part the author believes can be improved is the structure of the

internal model. For example, for each segment the mass and moment of inertia can

be lumped to several points or distribute continuously along the segment instead of

the current configuration as a point mass to achieve better prediction for the MPC

controller. However, in developing the internal MPC model, one basic principle is

that the structure of the internal model should be maintained simple. Therefore the

forward dynamics of the internal model is relatively simple to integrate to maintain

the simulation time to be at a reasonable level, which spans from several hours to

several days depending on the computational hardware.

The third part which can be improved is the MPC minimization algorithm

and constraints. The current model uses step length and velocity of the COM at

push-off as the minimization criteria and several other constraints as explained in

Chap. 5. Some other minimization criteria are worth trying in combination with the

existing step length and velocity at COM. For example, the minimization of
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dynamic effort and metabolic energy are two widely utilized criteria in

optimization-based approach in human gait research. It should be noteworthy

adding those minimization criteria to the existing model and verify if better

simulation results are obtained.

8.4 Final Remarks

This dissertation developed a human gait model using a novel approach

which uses a combination of MPC and feedback control to function as the CNS to

control the plant gait model. The developed model is able to simulate able-bodied

human gait at self-selected speed. The kinematic and kinetic results are close to the

experimental data. More importantly, the developed model is able to simulate

able-bodied human gait at various speed and pathological gait with unilateral

passive ankle. The simulation results show that the developed model is able to

qualitatively predict the characteristics of able-bodied gait at various speed and the

transtibial pathological gait with passive prosthesis.
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APPENDIX A

The Kinematic Results of the Open Loop Human Gait Model Simulation
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Figure A.1: Stance Ankle Single Support Phase

0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4
−2

0

2

4

6

8

10

12

14

16

Time(sec)

K
n
e
e
 A

n
g
le

 (
d
e
g
re

e
)

Experimental

Model

Figure A.2: Stance Knee Single Support Phase
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Figure A.3: Stance Hip Single Support Phase
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Figure A.4: Swing Ankle Single Support Phase
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Figure A.5: Swing Knee Single Support Phase
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Figure A.6: Swing Hip Single Support Phase
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Figure A.7: Stance Ankle Double Support Phase
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Figure A.8: Stance Knee Double Support Phase
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Figure A.9: Stance Hip Double Stance Phase
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Figure A.10: Swing Ankle Double Support Phase
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Figure A.11: Swing Knee Double Support Phase
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Figure A.12: Swing Hip Double Support Phase
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APPENDIX B

Kinematic Results of the Open Loop Human Gait Model for Three
Other Subjects

This appendix shows the simulation of the open-loop plant model of three

other able-bodied subjects. The purpose of this appendix is to show the generality

of the developed open-loop plant model explained in Chap. 2. The anthropometric

parameters are customized to each subject while the internal mechanical parameters

are the same as the ones used in Chap. 2.

B.1 Human Subject 2

0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45
2

4

6

8

10

12

14

16

18

Time(sec)

A
n
g
u
la

r 
P

o
s
it
io

n
(d

e
g
)

Experimental

Model

Figure B.1: Stance Ankle Single Support Phase
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Figure B.3: Stance Hip Single Support Phase



106

0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45
−12

−10

−8

−6

−4

−2

0

2

4

6

Time(sec)

A
n
g
u
la

r 
P

o
s
it
io

n
(d

e
g
)

Experimental

Model

Figure B.4: Swing Ankle Single Support Phase
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Figure B.5: Swing Knee Single Support Phase
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Figure B.8: Stance Knee Double Support Phase
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B.2 Human Subject 3
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Figure B.13: Stance Ankle Single Support Phase
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Figure B.14: Stance Knee Single Support Phase
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Figure B.15: Stance Hip Single Support Phase
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Figure B.16: Swing Ankle Single Support Phase
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Figure B.17: Swing Knee Single Support Phase
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Figure B.18: Swing Hip Single Support Phase
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Figure B.19: Stance Ankle Double Support Phase
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Figure B.20: Stance Knee Double Support Phase
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Figure B.21: Stance Hip Double Support Phase
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Figure B.22: Swing Ankle Double Support Phase
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Figure B.23: Swing Knee Double Support Phase
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Figure B.24: Swing Hip Double Support Phase
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Figure B.25: Stance Ankle Single Support Phase
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Figure B.26: Stance Knee Single Support Phase
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Figure B.27: Stance Hip Single Support Phase
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Figure B.28: Swing Ankle Single Support Phase
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Figure B.29: Swing Knee Single Support Phase
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Figure B.30: Swing Hip Single Support Phase
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Figure B.31: Stance Ankle Double Support Phase
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Figure B.32: Stance Knee Double Support Phase
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Figure B.33: Stance Hip Double Stance Phase
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Figure B.34: Swing Ankle Double Support Phase
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Figure B.35: Swing Knee Double Support Phase
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Figure B.36: Swing Hip Double Support Phase
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APPENDIX C

Simulink Forward Dynamics Plant Model

This appendix illustrates the forward dynamic plant model developed using

MATLAB Simulink, as explained in Chap. 2. Fig. C.1 shows the overall structure of

the model and the following figures show the subsystems corresponding to the

labeled numbers in Fig. C.1. The model parameters and their determined values are

not shown in this appendix. Due to the symmetry, the structures of the model for

both left and right sides are similar; only one side is illustrated.



125

1
2

3

4

5

6

7

8

Figure C.1: Overview of the Forward Dynamics Plant Model
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Figure C.2: Subsystem 1 - Planar Joint
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Figure C.3: Subsystem 2 - Stance Foot
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Figure C.4: Subsystem 2.1 - Toe Ground Reaction Force of the Stance Foot
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Figure C.5: Subsystem 2.2 - Heel Ground Reaction Force of the Stance Foot
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Figure C.6: Subsystem 3 - Stance Ankle Model and Its Joint Moment Control
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Figure C.7: Subsystem 4 - Model of the Shank
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Figure C.8: Subsystem 5 - Stance Knee Model and Its Joint Moment Actuation
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Figure C.9: Subsystem 5.1 - Stance Knee Joint Moment PID Control
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Figure C.10: Subsystem 5.2 - Stance Knee Joint Model
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Figure C.11: Subsystem 6 - Model of the Thigh
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Figure C.12: Subsystem 7 - Stance Hip Model and Its Joint Moment Actuation
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Figure C.13: Subsystem 7.1 - Stance Hip Joint Model
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Figure C.14: Subsystem 7.2 - Stance Hip Joint Moment PID Control
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Figure C.15: Subsystem 8 - HAT Model
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APPENDIX D

Control System MATLAB Code

This appendix shows the control program source code developed using

MATLAB. Section. D.1 shows the control program for the Single Support Phase

simulation at SSWS. Section. D.2 shows the optimization source code for the Single

Support Phase simulation at SSWS. Section. D.3 shows the control program for the

Double Support Phase simulation at SSWS. Section. D.4 shows the optimization

algorithm source code for the Double Support Phase simulation at SSWS. The

variable speed and pathological gait simulation source codes are similar to SSWS,

therefore they are not shown in this appendix.

D.1 Control Program for the Single Support Phase Simulation at SSWS

clear a l l
c lc

% Record the h i s t o r y o f the command window
diary on
diary CommandWindowHistory . txt

% Sta r t a t imer to record how long the f i r s t i t e r a t i o n
% of op t im i za t i on ta ke s
t ic

% Sta r t the p a r a l l e l computing
parpool

% Current time i s s e t to be 0
tnow = 0 ;

% Open human g a i t p l an t model and i n t e r n a l MPC model
open system ( ’ Inte rna l MPC mode l 20 or ig ina l ’ ) ;
save system ( ’ Inte rna l MPC mode l 20 or ig ina l ’ ,
’ Internal MPC model 20 ’ ) ;
open system ( ’ Human ga i t p lant mode l 13 or i g ina l ’ ) ;
save system ( ’ Human ga i t p lant mode l 13 or i g ina l ’ ,
’ Human gait plant model 13 ’ ) ;
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sys = ’ Internal MPC model 20 ’ ;
open system ( sys ) ;

% Set the des igned v a r i a b l e s f o r the MPC op t im i za t i on
p = sdo . getParameterFromModel ( sys ,{ ’ lagStanceAnkle ’ ,
’ lagSwingAnkle ’ , ’ lagSwingKnee ’ , ’ lagSwingHip ’ ,
’ w s t an c e ank l e i ’ , ’ w swing knee i ’ , ’ w sw ing h ip i ’ } ) ;
% Set the maximum and minimum a l l owa b l e va l u e s o f the
% des i gn v a r i a b l e s
p ( 1 ) .Minimum = [−100 −300 −100 −30 −10];
p ( 2 ) .Minimum = −20∗ones ( 1 , 1 4 ) ;
p ( 3 ) .Minimum = −40∗ones ( 1 , 1 8 ) ;
p ( 4 ) .Minimum = −55∗ones ( 1 , 1 8 ) ;
p ( 1 ) .Maximum = [100 300 100 30 1 0 ] ;
p ( 2 ) .Maximum = 20∗ ones ( 1 , 1 4 ) ;
p ( 3 ) .Maximum = 40∗ ones ( 1 , 1 8 ) ;
p ( 4 ) .Maximum = 55∗ ones ( 1 , 1 8 ) ;
temp1 = p ( 5 ) . Value ∗0 . 9 5 ;
temp2 = p ( 5 ) . Value ∗1 . 0 5 ;
i f temp1 < temp2
p ( 5 ) .Minimum = temp1 ;
p ( 5 ) .Maximum = temp2 ;
else
p ( 5 ) .Minimum = temp2 ;
p ( 5 ) .Maximum = temp1 ;
end
temp1 = p ( 6 ) . Value ∗ 0 . 8 ;
temp2 = p ( 6 ) . Value ∗ 1 . 2 ;
i f temp1 < temp2
p ( 6 ) .Minimum = temp1 ;
p ( 6 ) .Maximum = temp2 ;
else
p ( 6 ) .Minimum = temp2 ;
p ( 6 ) .Maximum = temp1 ;
end
temp1 = p ( 7 ) . Value ∗ 0 . 8 ;
temp2 = p ( 7 ) . Value ∗ 1 . 2 ;
i f temp1 < temp2
p ( 7 ) .Minimum = temp1 ;
p ( 7 ) .Maximum = temp2 ;
else
p ( 7 ) .Minimum = temp2 ;
p ( 7 ) .Maximum = temp1 ;
end
% Set the s c a l e o f the des i gn v a r i a b l e s
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p ( 1 ) . Sca l e = [100 300 100 30 1 0 ] ;
p ( 2 ) . Sca l e = 20∗ ones ( 1 , 1 4 ) ;
p ( 3 ) . Sca l e = 40∗ ones ( 1 , 1 8 ) ;
p ( 4 ) . Sca l e = 55∗ ones ( 1 , 1 8 ) ;
p ( 5 ) . Sca l e = abs (p ( 5 ) . Value ) ;
p ( 6 ) . Sca l e = abs (p ( 6 ) . Value ) ;
p ( 7 ) . Sca l e = abs (p ( 7 ) . Value ) ;

% Create a s imu la t i on t e s t e r
s imu la to r = sdo . S imulat ionTest ( sys ) ;

% Define the op t im i za t i on a l gor i thm
eva lDes ign = @(p) obj fun8 (p , s imu la tor ) ;

% Se l e c t op t i ons f o r the op t imi ze r
opt = sdo . OptimizeOptions ;
opt . MethodOptions . Algorithm = ’ i n t e r i o r−point ’ ;
opt . MethodOptions . Us ePa ra l l e l = ’ always ’ ;
%opt . MethodOptions . DiffMaxChange = 4;
opt . MethodOptions . TypicalX = [ ] ;
opt . MethodOptions . FinDiffType = ’ c en t r a l ’ ;
opt . MethodOptions . Hess ian = ’ b fg s ’ ;
opt . MethodOptions . TolFun = 0 . 1 ;
opt . MethodOptions . Object iveL imit = 5 ;
opt . MethodOptions . MaxIter = 20 ;
opt . MethodOptions . TolX = 0 . 0 2 ;
opt . Us ePa ra l l e l = ’ always ’ ;
opt . OptimizedModel = sys ;

% Sta r t the op t im i za t i on
[ pOpt , opt In fo ] = sdo . opt imize ( evalDesign , p , opt ) ;

% Save the op t im i za t i on r e s u l t s o f the f i r s t i t e r a t i o n
save ( ’ Inte rna l MPC mode l 20 i t e r 1 ’ ) ;

u1 = pOpt ( 1 ) . Value ;
u2 = pOpt ( 2 ) . Value ;
u3 = pOpt ( 3 ) . Value ;
u4 = pOpt ( 4 ) . Value ;
u5 = pOpt ( 5 ) . Value ;
u6 = pOpt ( 6 ) . Value ;
u7 = pOpt ( 7 ) . Value ;

save ( ’ Opt im i z ed con t r o l i npu t DS i t e r 1 ’ , ’ u1 ’ , ’ u2 ’ , ’ u3 ’ , ’ u4 ’ ,
’ u5 ’ , ’ u6 ’ , ’ u7 ’ ) ;
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clear a l l

% Load the human g a i t anthropometr ic data and the opt imized
% con t r o l input
Plant = ’ Human gait plant model 13 ’ ;
load Opt im i z ed con t r o l i npu t DS i t e r 1

% Send the opt imized va l u e s o f the des i gn v a r i a b l e s to the
% human g a i t p l an t model
sdo . setValueInModel ( Plant , ’ u s t anc e ank l e ’ , u1 ) ;
sdo . setValueInModel ( Plant , ’ u swing ank le ’ , u2 ) ;
sdo . setValueInModel ( Plant , ’ u swing knee ’ , u3 ) ;
sdo . setValueInModel ( Plant , ’ u swing h ip ’ , u4 ) ;
sdo . setValueInModel ( Plant , ’ w s tance ank l e ’ , u5 ) ;
sdo . setValueInModel ( Plant , ’ w swing knee ’ , u6 ) ;
sdo . setValueInModel ( Plant , ’ w swing hip ’ , u7 ) ;

u s t a n c e ank l e d a t a t ime s e r i e s = t ime s e r i e s ;
u s t a n c e ank l e d a t a t ime s e r i e s . Time = 0 ;
u s t a n c e ank l e d a t a t ime s e r i e s . Data = 0 ;
u sw i ng ank l e da t a t ime s e r i e s = t ime s e r i e s ;
u sw i ng ank l e da t a t ime s e r i e s . Time = 0 ;
u sw i ng ank l e da t a t ime s e r i e s . Data = 0 ;
u sw ing kne e da t a t ime s e r i e s = t ime s e r i e s ;
u sw ing kne e da t a t ime s e r i e s . Time = 0 ;
u sw ing kne e da t a t ime s e r i e s . Data = 0 ;
u sw ing h i p da t a t ime s e r i e s = t ime s e r i e s ;
u sw i ng h i p da t a t ime s e r i e s . Time = 0 ;
u sw ing h i p da t a t ime s e r i e s . Data = 0 ;

clear u1 u2 u3 u4 u5 u6 u7 ;

% Simulate p l an t model us ing the op i tmized con t r o l i npu t s
sim ( Plant ) ;
save ( ’ Human ga i t p lant mode l 13 i t e r 1 ’ ) ;

% Save the s t a t e s o f the p l an t model a t the end o f the f i r s t
% time s t ep . They w i l l be used as the i n i t i a l s t a t e o f the
% p lan t model f o r the next time s t ep
s t anc e ank l e p ou t1 = s tanc e ank l e p ou t ( 8 3 1 ) ;
s tance ank l e w out1 = stance ank l e w out ( 8 3 1 ) ;
s t anc e h ip p ou t1 = s tanc e h ip p ou t ( 8 3 1 ) ;
s tance h ip w out1 = stance h ip w out ( 8 3 1 ) ;
s tance knee p out1 = stance knee p out ( 8 3 1 ) ;
s tance knee w out1 = stance knee w out ( 8 3 1 ) ;
sw ing ank l e p out1 = swing ank l e p out ( 8 3 1 ) ;
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swing ankle w out1 = swing ank le w out ( 8 3 1 ) ;
swing knee p out1 = swing knee p out ( 8 3 1 ) ;
swing knee w out1 = swing knee w out ( 8 3 1 ) ;
sw ing h ip p out1 = swing h ip p out ( 8 3 1 ) ;
swing hip w out1 = swing hip w out ( 8 3 1 ) ;
P l ana r j o i n t x p ou t 1 = P l ana r j o i n t x p ou t ( 8 3 1 ) ;
P l ana r j o i n t x v ou t 1 = P l ana r j o i n t x v ou t ( 8 3 1 ) ;
P l ana r j o i n t y p ou t 1 = P l ana r j o i n t y p ou t ( 8 3 1 ) ;
P l ana r j o i n t y v ou t 1 = P l ana r j o i n t y v ou t ( 8 3 1 ) ;
P l ana r j o i n t z p ou t 1 = P l ana r j o i n t z p ou t ( 8 3 1 ) ;
P l ana r j o i n t z w ou t1 = P lana r j o i n t z w ou t ( 8 3 1 ) ;

save ( ’ I C f o r n e x t o p t i t e r 1 ’ , ’ P l ana r j o i n t x p ou t 1 ’ ,
’ P l ana r j o i n t x v ou t 1 ’ , ’ P l ana r j o i n t y p ou t 1 ’ ,
’ P l ana r j o i n t y v ou t 1 ’ , ’ P l an a r j o i n t z p ou t 1 ’ ,
’ P l ana r j o i n t z w ou t1 ’ , ’ s t anc e ank l e p ou t1 ’ ,
’ s t ance ank l e w out1 ’ , ’ s t anc e h ip p ou t1 ’ ,
’ s tance h ip w out1 ’ , ’ s t ance knee p out1 ’ ,
’ s tance knee w out1 ’ , ’ sw ing ank l e p out1 ’ ,
’ swing ank le w out1 ’ , ’ sw ing h ip p out1 ’ ,
’ swing hip w out1 ’ , ’ sw ing knee p out1 ’ , ’ swing knee w out1 ’ ) ;
save ( ’ C on t r o l i n p u t h i s t o r y i t e r 1 ’ , ’ u s t anc e ank l e da ta ’ ,
’ u s tance knee data ’ , ’ u s t anc e h ip da ta ’ ,
’ u sw ing ank l e data ’ , ’ u swing knee data ’ , ’ u sw ing h ip data ’ ) ;

toc

for i = 1 :46
t ic

% Clear a l l the v a r i a b l e s excep t f o r the counter i to perform
% op t im i za t i on f o r i n t e r n a l model again
c l e a r v a r s −except i

% Regress the curren t s imu la t i on time
tnow = .0083∗ i ;

% Open human g a i t p l an t model and i n t e r n a l MPC model
sys = ’ Internal MPC model 20 ’ ;
open system ( sys ) ;

% Set the des igned v a r i a b l e s f o r the MPC op t im i za t i on
f i l ename = [ ’ Opt im i z ed con t r o l i npu t DS i t e r ’ num2str( i ) ] ;
load ( f i l ename ) ;
% Set the maximum, minimum a l l owa b l e va l u e s and the s c a l e s
% of the des i gn v a r i a b l e s
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p = sdo . getParameterFromModel ( sys ,{ ’ lagStanceAnkle ’ ,
’ lagSwingAnkle ’ , ’ lagSwingKnee ’ , ’ lagSwingHip ’ } ) ;
p ( 1 ) .Minimum = [ u1(1)−10 u1(2)−30 u1(3)−10 u1(4)−3 u1 (5)−1 ] ;
p ( 2 ) .Minimum = u2−2∗ones ( 1 , 1 4 ) ;
p ( 3 ) .Minimum = u3−4∗ones ( 1 , 1 8 ) ;
p ( 4 ) .Minimum = u4−5∗ones ( 1 , 1 8 ) ;
p ( 1 ) .Maximum = [ u1(1)+10 u1(2)+30 u1(3)+10 u1(4)+3 u1 (5 )+1 ] ;
p ( 2 ) .Maximum = u2+2∗ones ( 1 , 1 4 ) ;
p ( 3 ) .Maximum = u3+4∗ones ( 1 , 1 8 ) ;
p ( 4 ) .Maximum = u4+5∗ones ( 1 , 1 8 ) ;

p1 Min = [−100 −300 −100 −30 −10];
p1 Max = [100 300 100 30 1 0 ] ;

for kk = 1 :5
i f p ( 1 ) .Minimum(kk ) < p1 Min ( kk )
p ( 1 ) .Minimum(kk ) = p1 Min ( kk ) ;
end
i f p ( 1 ) .Maximum(kk ) > p1 Max( kk )
p ( 1 ) .Maximum(kk ) = p1 Max( kk ) ;
end
i f abs (p ( 1 ) .Maximum(kk ) ) >= abs (p ( 1 ) .Minimum(kk ) )
p ( 1 ) . Sca l e ( kk ) = abs (p ( 1 ) .Maximum(kk ) ) ;
else
p ( 1 ) . Sca l e ( kk ) = abs (p ( 1 ) .Minimum(kk ) ) ;
end
end

for kk = 2 :4
i f kk == 2
l a g u e r r e c o e f f i c i e n t n o c o u n t = 14 ;
p Min = −20;
p Max = 20 ;
e l s e i f kk == 3
l a g u e r r e c o e f f i c i e n t n o c o u n t = 18 ;
p Min = −40;
p Max = 40 ;
else
l a g u e r r e c o e f f i c i e n t n o c o u n t = 18 ;
p Min = −55;
p Max = 55 ;
end
for kkk = 1 : l a g u e r r e c o e f f i c i e n t n o c o u n t
i f p( kk ) .Minimum(kkk ) < p Min
p( kk ) .Minimum(kkk ) = p Min ;
end
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i f p( kk ) .Maximum(kkk ) > p Max
p( kk ) .Maximum(kkk ) = p Max ;
end
i f abs (p( kk ) .Maximum(kkk ) ) >= abs (p( kk ) .Minimum(kkk ) )
p( kk ) . Sca l e ( kkk ) = abs (p( kk ) .Maximum(kkk ) ) ;
else
p( kk ) . Sca l e ( kkk ) = abs (p( kk ) .Minimum(kkk ) ) ;
end
end
end

p ( 1 ) . Value = u1 ;
p ( 2 ) . Value = u2 ;
p ( 3 ) . Value = u3 ;
p ( 4 ) . Value = u4 ;

% Load the saved s t a t e s o f the p l an t model a t the end
% of the prev ious sample time
f i l ename = [ ’ I C f o r n e x t o p t i t e r ’ num2str( i ) ] ;
load ( f i l ename ) ;

% Define the i n i t i a l cond i t i on f o r the i n t e r n a l MPC
% model f o r the next op t im i za t i on s t ep
sdo . setValueInModel ( sys , ’ beginTime ’ , tnow ) ;
sdo . setValueInModel ( sys , ’ p s t a n c e ank l e i ’ ,
s t anc e ank l e p ou t1 ) ;
sdo . setValueInModel ( sys , ’ w s t an c e ank l e i ’ ,
s t ance ank l e w out1 ) ;
sdo . setValueInModel ( sys , ’ p s t an c e kn e e i ’ ,
s t ance knee p out1 ) ;
sdo . setValueInModel ( sys , ’ w s tanc e knee i ’ ,
s tance knee w out1 ) ;
sdo . setValueInModel ( sys , ’ p s t a n c e h i p i ’ ,
s t anc e h ip p ou t1 ) ;
sdo . setValueInModel ( sys , ’ w s t an c e h i p i ’ ,
s tance h ip w out1 ) ;
sdo . setValueInModel ( sys , ’ p sw ing ank l e i ’ ,
sw ing ank l e p out1 ) ;
sdo . setValueInModel ( sys , ’ w sw ing ank l e i ’ ,
swing ankle w out1 ) ;
sdo . setValueInModel ( sys , ’ p sw ing knee i ’ ,
sw ing knee p out1 ) ;
sdo . setValueInModel ( sys , ’ w swing knee i ’ ,
swing knee w out1 ) ;
sdo . setValueInModel ( sys , ’ p sw ing h i p i ’ ,
sw ing h ip p out1 ) ;
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sdo . setValueInModel ( sys , ’ w sw ing h ip i ’ ,
swing hip w out1 ) ;
sdo . setValueInModel ( sys , ’ x p l a n a r p i ’ ,
P l ana r j o i n t x p ou t 1 ) ;
sdo . setValueInModel ( sys , ’ x p l a n a r v i ’ ,
P l ana r j o i n t x v ou t 1 ) ;
sdo . setValueInModel ( sys , ’ y p l a n a r p i ’ ,
P l ana r j o i n t y p ou t 1 ) ;
sdo . setValueInModel ( sys , ’ y p l a n a r v i ’ ,
P l ana r j o i n t y v ou t 1 ) ;
sdo . setValueInModel ( sys , ’ z p l a n a r p i ’ ,
P l ana r j o i n t z p ou t 1 ) ;
sdo . setValueInModel ( sys , ’ z p l a n a r v i ’ ,
P l ana r j o i n t z w ou t1 ) ;
save system ( ’ Internal MPC model 20 ’ ) ;

% Create a s imu la t i on t e s t e r
s imu la to r = sdo . S imulat ionTest ( sys ) ;

% Define the op t im i za t i on a l gor i thm
eva lDes ign = @(p) obj fun8 (p , s imu la tor ) ;

% Se l e c t op t i ons f o r the op t imi ze r
opt = sdo . OptimizeOptions ;
opt . MethodOptions . Algorithm = ’ i n t e r i o r−point ’ ;
opt . MethodOptions . Us ePa ra l l e l = ’ always ’ ;
% opt . MethodOptions . DiffMaxChange = 2;
% opt . MethodOptions . TypicalX = u ;
opt . MethodOptions . FinDiffType = ’ c en t r a l ’ ;
opt . MethodOptions . TolFun = 0 . 1 ;
% opt . MethodOptions . ScaleProblem = ’ obj−and−constr ’ ;
% opt . MethodOptions . AlwaysHonorConstraints = ’none ’ ;
opt . MethodOptions . Object iveL imit = 5 ;
opt . MethodOptions . MaxIter = 20 ;
opt . MethodOptions . TolX = 0 . 0 2 ;
opt . Us ePa ra l l e l = ’ always ’ ;
opt . OptimizedModel = sys ;

clear u1 u2 u3 u4 u5 u6 u7 j
clear s t anc e ank l e p ou t1 s tance ank l e w out1
s t anc e h ip p ou t1 s tance h ip w out1 s tance knee p out1
stance knee w out1 sw ing ank l e p out1 swing ankle w out1
swing h ip p out1 swing hip w out1 swing knee p out1
swing knee w out1 P l ana r j o i n t x p ou t 1 P l ana r j o i n t x v ou t 1
clear P lana r j o i n t y p ou t 1 P l ana r j o i n t y v ou t 1
P l ana r j o i n t z p ou t 1 P l ana r j o i n t z w ou t1
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clear u s tance ank l e da ta end u s tance h ip da ta end
u s tance knee data end u swing ank l e data end
u swing h ip data end u swing knee data end
clear kk kkk l a g u e r r e c o e f f i c i e n t n o c o u n t p1 Max p1 Min
p Max p Min

[ pOpt , opt In fo ] = sdo . opt imize ( evalDesign , p , opt ) ;

f i l ename = [ ’ Inte rna l MPC mode l 20 i t e r ’ num2str( i +1) ] ;
save ( f i l ename )

u1 = pOpt ( 1 ) . Value ;
u2 = pOpt ( 2 ) . Value ;
u3 = pOpt ( 3 ) . Value ;
u4 = pOpt ( 4 ) . Value ;
f i l ename = [ ’ Opt im i z ed con t r o l i npu t DS i t e r ’ num2str( i +1) ] ;
save ( f i l ename , ’ u1 ’ , ’ u2 ’ , ’ u3 ’ , ’ u4 ’ ) ;

% Load the r euq i r ed parameter to be a b l e to run the p l an t
% model s imu la t i on
c l e a r v a r s −except i
% load Doub l e s tance phase p lan t mode l 4 paramete r
Plant = ’ Human gait plant model 13 ’ ;
% load IC f o r n e x t o p t
f i l ename = [ ’ Opt im i z ed con t r o l i npu t DS i t e r ’ num2str( i +1) ] ;
load ( f i l ename ) ;
f i l ename = [ ’ C o n t r o l i n p u t h i s t o r y i t e r ’ num2str( i ) ] ;
load ( f i l ename ) ;

% Simulate model and save the end s t a t e s to be used as the
% i n i t i a l c ond i t i on s f o r the next time s t ep
sdo . setValueInModel ( Plant , ’ BeginTimePlantModel ’ , i ∗ . 0 0 8 3 ) ;
sdo . setValueInModel ( Plant , ’ u s t anc e ank l e ’ , u1 ) ;
sdo . setValueInModel ( Plant , ’ u swing ank le ’ , u2 ) ;
sdo . setValueInModel ( Plant , ’ u swing knee ’ , u3 ) ;
sdo . setValueInModel ( Plant , ’ u swing h ip ’ , u4 ) ;

u s t a n c e ank l e d a t a t ime s e r i e s = t ime s e r i e s ;
u s t a n c e ank l e d a t a t ime s e r i e s . Time = 0 : . 0 0 0 0 1 : i ∗ . 0 0 83 ;
u s t a n c e ank l e d a t a t ime s e r i e s . Data =

u s tanc e ank l e da ta ( 1 : ( i ∗830+1));
u sw i ng ank l e da t a t ime s e r i e s = t ime s e r i e s ;
u sw i ng ank l e da t a t ime s e r i e s . Time = 0 : . 0 0 0 0 1 : i ∗ . 0 0 83 ;
u sw i ng ank l e da t a t ime s e r i e s . Data =

u swing ank l e data ( 1 : ( i ∗830+1));
u sw ing kne e da t a t ime s e r i e s = t ime s e r i e s ;
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u sw ing kne e da t a t ime s e r i e s . Time = 0 : . 0 0 0 0 1 : i ∗ . 0 0 83 ;
u sw ing kne e da t a t ime s e r i e s . Data =

u swing knee data ( 1 : ( i ∗830+1));
u sw ing h i p da t a t ime s e r i e s = t ime s e r i e s ;
u sw i ng h i p da t a t ime s e r i e s . Time = 0 : . 0 0 0 0 1 : i ∗ . 0 0 83 ;
u sw ing h i p da t a t ime s e r i e s . Data =

u swing h ip data ( 1 : ( i ∗830+1));

clear u1 u2 u3 u4
clear u s t anc e ank l e da ta u s tance knee data u s t anc e h ip da ta
u swing ank l e data u swing knee data u swing h ip data

sim ( Plant ) ;

% Save a l l the v a r i a b l e a f t e r one i t e r a t i o n s imu la t i on o f
% p l an t model i n t o a f i l e
f i l ename = [ ’ Human ga i t p lant mode l 13 i t e r ’ num2str( i +1) ] ;
save ( f i l ename ) ;

s t anc e ank l e p ou t1 = s tanc e ank l e p ou t ( ( i +1)∗830+1);
s tance ank l e w out1 = stance ank l e w out ( ( i +1)∗830+1);
s t anc e h ip p ou t1 = s tanc e h ip p ou t ( ( i +1)∗830+1);
s tance h ip w out1 = stance h ip w out ( ( i +1)∗830+1);
s tance knee p out1 = stance knee p out ( ( i +1)∗830+1);
s tance knee w out1 = stance knee w out ( ( i +1)∗830+1);
sw ing ank l e p out1 = swing ank l e p out ( ( i +1)∗830+1);
swing ankle w out1 = swing ank le w out ( ( i +1)∗830+1);
swing knee p out1 = swing knee p out ( ( i +1)∗830+1);
swing knee w out1 = swing knee w out ( ( i +1)∗830+1);
sw ing h ip p out1 = swing h ip p out ( ( i +1)∗830+1);
swing hip w out1 = swing hip w out ( ( i +1)∗830+1);
P l ana r j o i n t x p ou t 1 = P l ana r j o i n t x p ou t ( ( i +1)∗830+1);
P l ana r j o i n t x v ou t 1 = P l ana r j o i n t x v ou t ( ( i +1)∗830+1);
P l ana r j o i n t y p ou t 1 = P l ana r j o i n t y p ou t ( ( i +1)∗830+1);
P l ana r j o i n t y v ou t 1 = P l ana r j o i n t y v ou t ( ( i +1)∗830+1);
P l ana r j o i n t z p ou t 1 = P l ana r j o i n t z p ou t ( ( i +1)∗830+1);
P l ana r j o i n t z w ou t1 = P lana r j o i n t z w ou t ( ( i +1)∗830+1);

f i l ename = [ ’ I C f o r n e x t o p t i t e r ’ num2str( i +1) ] ;
save ( f i l ename , ’ P l ana r j o i n t x p ou t 1 ’ , ’ P l ana r j o i n t x v ou t 1 ’ ,
’ P l ana r j o i n t y p ou t 1 ’ , ’ P l ana r j o i n t y v ou t 1 ’ ,
’ P l ana r j o i n t z p ou t 1 ’ , ’ P l ana r j o i n t z w ou t1 ’ ,
’ s t anc e ank l e p ou t1 ’ , ’ s t ance ank l e w out1 ’ ,
’ s t anc e h ip p ou t1 ’ , ’ s tance h ip w out1 ’ ,
’ s t ance knee p out1 ’ , ’ s tance knee w out1 ’ ,
’ sw ing ank l e p out1 ’ , ’ swing ankle w out1 ’ ,
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’ sw ing h ip p out1 ’ , ’ swing hip w out1 ’ , ’ sw ing knee p out1 ’ ,
’ swing knee w out1 ’ ) ;

f i l ename = [ ’ C o n t r o l i n p u t h i s t o r y i t e r ’ num2str( i +1) ] ;
save ( f i l ename , ’ u s t anc e ank l e da ta ’ , ’ u s tance knee data ’ ,
’ u s t anc e h ip da ta ’ , ’ u sw ing ank l e data ’ , ’ u swing knee data ’ ,
’ u sw ing h ip data ’ ) ;

toc

end

D.2 Optimization Code for the Single Support Phase Simulation at
SSWS

function des ign = obj fun8 (p , s imu la tor )

% Define des i gn v a r i a b l e s
s imu la to r . Parameters = p ;
s imu la to r = sim ( s imu lato r ) ;

% Obtain the op t im i za t i on r e s u l t s
StepLength1 = get ( s imu la to r . LoggedData , ’ StepLength ’ ) ;
Ver t i ca lPos1 = get ( s imu la to r . LoggedData , ’ Ver t i ca lPos ’ ) ;
Vert icalPosEnd1 = get ( s imu la to r . LoggedData , ’ Vert icalPosEnd ’ ) ;

[ p ( 1 ) . Value p ( 2 ) . Value p ( 3 ) . Value p ( 4 ) . Value ]

des ign .F = (0.7345− StepLength1 )ˆ2∗100000
des ign . Cleq = [−Vert i ca lPos1 ; VerticalPosEnd1 −0 . 01 ] ;

end

D.3 Control Program for the Double Support Phase Simulation at
SSWS

clear a l l
c lc

% Record the h i s t o r y o f the command window
diary on
diary CommandWindowHistory . txt
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% Sta r t a t imer to record how long the f i r s t i t e r a t i o n o f
% op t im i za t i on tak e s
t ic

% Sta r t the p a r a l l e l computing
parpool

% Current time i s s e t to be 0
tnow = 0 ;

% Open human g a i t p l an t model and i n t e r n a l MPC model
open system ( ’ Doub l e suppo r t pha s e i n t e rna l mode l 2 2 o r i g i na l ’ )
save system ( ’ Doub l e suppo r t pha s e i n t e rna l mode l 22 o r i g i na ’ ,

’ Doub l e suppor t phase in t e rna l mode l 22 ’ ) ;
open system ( ’ Doub l e s t anc e pha s e p l an t mode l 15 o r i g i na l ’ ) ;
save system ( ’ Doub l e s t anc e pha s e p l an t mode l 15 o r i g i na l ’ ,

’ Doub le s tance phase p lant mode l 15 ’ ) ;

sys = ’ Doub l e suppor t phase in t e rna l mode l 22 ’ ;
open system ( sys ) ;

% Set the des igned v a r i a b l e s f o r the MPC op t im i za t i on
p = sdo . getParameterFromModel ( sys ,{ ’ lagStanceAnkle ’ ,

’ lagStanceKnee ’ , ’ lagSwingAnkle ’ , ’ lagSwingKnee ’ ,
’ w s t an c e ank l e i ’ , ’ w s t ance knee i ’ , ’ w s t an c e h i p i ’ ,
’ w swing knee i ’ , ’ w sw ing h ip i ’ } ) ;

% Set the maximum and minimum a l l owa b l e va l u e s o f the
% des i gn v a r i a b l e s
p ( 1 ) .Minimum = −150∗ones ( 1 , 1 0 ) ;
p ( 2 ) .Minimum = −30∗ones ( 1 , 2 1 ) ;
p ( 3 ) .Minimum = −8∗ones ( 1 , 1 8 ) ;
p ( 4 ) .Minimum = −15∗ones ( 1 , 1 5 ) ;
p ( 1 ) .Maximum = 150∗ ones ( 1 , 1 0 ) ;
p ( 2 ) .Maximum = 30∗ ones ( 1 , 2 1 ) ;
p ( 3 ) .Maximum = 8∗ ones ( 1 , 1 8 ) ;
p ( 4 ) .Maximum = 15∗ ones ( 1 , 1 5 ) ;
temp1 = p ( 5 ) . Value ∗ 0 . 9 ;
temp2 = p ( 5 ) . Value ∗ 1 . 1 ;
i f temp1 < temp2
p ( 5 ) .Minimum = temp1 ;
p ( 5 ) .Maximum = temp2 ;
else
p ( 5 ) .Minimum = temp2 ;
p ( 5 ) .Maximum = temp1 ;
end
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temp1 = p ( 6 ) . Value ∗ 0 . 9 ;
temp2 = p ( 6 ) . Value ∗ 1 . 1 ;
i f temp1 < temp2
p ( 6 ) .Minimum = temp1 ;
p ( 6 ) .Maximum = temp2 ;
else
p ( 6 ) .Minimum = temp2 ;
p ( 6 ) .Maximum = temp1 ;
end
temp1 = p ( 7 ) . Value ∗ 0 . 9 ;
temp2 = p ( 7 ) . Value ∗ 1 . 1 ;
i f temp1 < temp2
p ( 7 ) .Minimum = temp1 ;
p ( 7 ) .Maximum = temp2 ;
else
p ( 7 ) .Minimum = temp2 ;
p ( 7 ) .Maximum = temp1 ;
end
temp1 = p ( 8 ) . Value ∗ 0 . 9 ;
temp2 = p ( 8 ) . Value ∗ 1 . 1 ;
i f temp1 < temp2
p ( 8 ) .Minimum = temp1 ;
p ( 8 ) .Maximum = temp2 ;
else
p ( 8 ) .Minimum = temp2 ;
p ( 8 ) .Maximum = temp1 ;
end
temp1 = p ( 9 ) . Value ∗ 0 . 9 ;
temp2 = p ( 9 ) . Value ∗ 1 . 1 ;
i f temp1 < temp2
p ( 9 ) .Minimum = temp1 ;
p ( 9 ) .Maximum = temp2 ;
else
p ( 9 ) .Minimum = temp2 ;
p ( 9 ) .Maximum = temp1 ;
end
% Set the s c a l e o f the des i gn v a r i a b l e s
p ( 1 ) . Sca l e = 150∗ ones ( 1 , 1 0 ) ;
p ( 2 ) . Sca l e = 30∗ ones ( 1 , 2 1 ) ;
p ( 3 ) . Sca l e = 8∗ ones ( 1 , 1 8 ) ;
p ( 4 ) . Sca l e = 15∗ ones ( 1 , 1 5 ) ;
p ( 5 ) . Sca l e = abs (p ( 5 ) . Value ) ;
p ( 6 ) . Sca l e = abs (p ( 6 ) . Value ) ;
p ( 7 ) . Sca l e = abs (p ( 7 ) . Value ) ;
p ( 8 ) . Sca l e = abs (p ( 8 ) . Value ) ;
p ( 9 ) . Sca l e = abs (p ( 9 ) . Value ) ;
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% Create a s imu la t i on t e s t e r
s imu la to r = sdo . S imulat ionTest ( sys ) ;

% Define the op t im i za t i on a l gor i thm
eva lDes ign = @(p) obj fun4 (p , s imu la tor ) ;

% Se l e c t op t i ons f o r the op t imi ze r
opt = sdo . OptimizeOptions ;
opt . MethodOptions . Algorithm = ’ i n t e r i o r−point ’ ;
opt . MethodOptions . Us ePa ra l l e l = ’ always ’ ;
% opt . MethodOptions . DiffMaxChange = 4;
opt . MethodOptions . TypicalX = [ ] ;
opt . MethodOptions . FinDiffType = ’ c en t r a l ’ ;
opt . MethodOptions . Hess ian = ’ b fg s ’ ;
opt . MethodOptions . TolFun = 0 . 1 ;
opt . MethodOptions . Object iveL imit = 5 ;
opt . MethodOptions . MaxIter = 20 ;
opt . MethodOptions . TolX = 0 . 0 2 ;
opt . Us ePa ra l l e l = ’ always ’ ;
opt . OptimizedModel = sys ;

% Sta r t the op t im i za t i on
[ pOpt , opt In fo ] = sdo . opt imize ( evalDesign , p , opt ) ;

% Save the op t im i za t i on r e s u l t s o f the f i r s t i t e r a t i o n
save ( ’ Doub l e suppo r t pha s e i n t e rna l mode l 2 2 i t e r 1 ’ ) ;

u1 = pOpt ( 1 ) . Value ;
u2 = pOpt ( 2 ) . Value ;
u3 = pOpt ( 3 ) . Value ;
u4 = pOpt ( 4 ) . Value ;
u5 = pOpt ( 5 ) . Value ;
u6 = pOpt ( 6 ) . Value ;
u7 = pOpt ( 7 ) . Value ;
u8 = pOpt ( 8 ) . Value ;
u9 = pOpt ( 9 ) . Value ;
save ( ’ Opt im i z ed con t r o l i npu t DS i t e r 1 ’ , ’ u1 ’ , ’ u2 ’ , ’ u3 ’ ,

’ u4 ’ , ’ u5 ’ , ’ u6 ’ , ’ u7 ’ , ’ u8 ’ , ’ u9 ’ ) ;

clear a l l

% Load the human g a i t anthropometr ic data and the opt imized
% con t r o l input
Plant = ’ Doub le s tance phase p lant mode l 15 ’ ;
load Opt im i z ed con t r o l i npu t DS i t e r 1
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% Send the opt imized va l u e s o f the des i gn v a r i a b l e s to
% the human g a i t p l an t model
sdo . setValueInModel ( Plant , ’ u s t anc e ank l e ’ , u1 ) ;
sdo . setValueInModel ( Plant , ’ u s tance knee ’ , u2 ) ;
sdo . setValueInModel ( Plant , ’ u swing ank le ’ , u3 ) ;
sdo . setValueInModel ( Plant , ’ u swing knee ’ , u4 ) ;
sdo . setValueInModel ( Plant , ’ w s tance ank l e ’ , u5 ) ;
sdo . setValueInModel ( Plant , ’ w stance knee ’ , u6 ) ;
sdo . setValueInModel ( Plant , ’ w stance h ip ’ , u7 ) ;
sdo . setValueInModel ( Plant , ’ w swing knee ’ , u8 ) ;
sdo . setValueInModel ( Plant , ’ w swing hip ’ , u9 ) ;

u s t a n c e ank l e d a t a t ime s e r i e s = t ime s e r i e s ;
u s t a n c e ank l e d a t a t ime s e r i e s . Time = 0 ;
u s t a n c e ank l e d a t a t ime s e r i e s . Data = 0 ;
u s t an c e kn e e da t a t ime s e r i e s = t ime s e r i e s ;
u s t an c e kn e e da t a t ime s e r i e s . Time = 0 ;
u s t an c e kn e e da t a t ime s e r i e s . Data = 0 ;
u sw i ng ank l e da t a t ime s e r i e s = t ime s e r i e s ;
u sw i ng ank l e da t a t ime s e r i e s . Time = 0 ;
u sw i ng ank l e da t a t ime s e r i e s . Data = 0 ;
u sw ing kne e da t a t ime s e r i e s = t ime s e r i e s ;
u sw ing kne e da t a t ime s e r i e s . Time = 0 ;
u sw ing kne e da t a t ime s e r i e s . Data = 0 ;

clear u1 u2 u3 u4 u5 u6 u7 u8 u9

% Simulate p l an t model us ing the op i tmized con t r o l i npu t s
sim ( Plant ) ;
save ( ’ Doub l e s t anc e pha s e p l an t mode l 15 i t e r 1 ’ )

% Save the s t a t e s o f the p l an t model a t the end o f the
% f i r s t time s t ep . They w i l l be used as the i n i t i a l s t a t e
% of the p l an t model f o r the next time s t ep
s t anc e ank l e p ou t1 = s tanc e ank l e p ou t ( 8 3 1 ) ;
s tance ank l e w out1 = stance ank l e w out ( 8 3 1 ) ;
s t anc e h ip p ou t1 = s tanc e h ip p ou t ( 8 3 1 ) ;
s tance h ip w out1 = stance h ip w out ( 8 3 1 ) ;
s tance knee p out1 = stance knee p out ( 8 3 1 ) ;
s tance knee w out1 = stance knee w out ( 8 3 1 ) ;
sw ing ank l e p out1 = swing ank l e p out ( 8 3 1 ) ;
swing ankle w out1 = swing ank le w out ( 8 3 1 ) ;
swing knee p out1 = swing knee p out ( 8 3 1 ) ;
swing knee w out1 = swing knee w out ( 8 3 1 ) ;
sw ing h ip p out1 = swing h ip p out ( 8 3 1 ) ;
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swing hip w out1 = swing hip w out ( 8 3 1 ) ;
P l ana r j o i n t x p ou t 1 = P l ana r j o i n t x p ou t ( 8 3 1 ) ;
P l ana r j o i n t x v ou t 1 = P l ana r j o i n t x v ou t ( 8 3 1 ) ;
P l ana r j o i n t y p ou t 1 = P l ana r j o i n t y p ou t ( 8 3 1 ) ;
P l ana r j o i n t y v ou t 1 = P l ana r j o i n t y v ou t ( 8 3 1 ) ;
P l ana r j o i n t z p ou t 1 = P l ana r j o i n t z p ou t ( 8 3 1 ) ;
P l ana r j o i n t z w ou t1 = P lana r j o i n t z w ou t ( 8 3 1 ) ;

save ( ’ I C f o r n e x t o p t i t e r 1 ’ , ’ P l ana r j o i n t x p ou t 1 ’ ,
’ P l ana r j o i n t x v ou t 1 ’ , ’ P l ana r j o i n t y p ou t 1 ’ ,
’ P l ana r j o i n t y v ou t 1 ’ , ’ P l ana r j o i n t z p ou t 1 ’ ,
’ P l ana r j o i n t z w ou t1 ’ , ’ s t anc e ank l e p ou t1 ’ ,
’ s t ance ank l e w out1 ’ , ’ s t anc e h ip p ou t1 ’ ,
’ s tance h ip w out1 ’ , ’ s t ance knee p out1 ’ ,
’ s tance knee w out1 ’ , ’ sw ing ank l e p out1 ’ ,
’ swing ankle w out1 ’ , ’ sw ing h ip p out1 ’ ,
’ swing hip w out1 ’ , ’ sw ing knee p out1 ’ ,
’ swing knee w out1 ’ ) ;

save ( ’ C on t r o l i n p u t h i s t o r y i t e r 1 ’ ,
’ u s t anc e ank l e da ta ’ , ’ u s tance knee data ’ ,
’ u s t anc e h ip da ta ’ , ’ u sw ing ank l e data ’ ,
’ u swing knee data ’ , ’ u sw ing h ip data ’ ) ;

toc

for i = 1 :19
t ic

% Clear a l l the v a r i a b l e s excep t f o r the counter
% i to perform op t im i za t i on f o r i n t e r n a l model again
c l e a r v a r s −except i

% Regress the curren t s imu la t i on time
tnow = .0083∗ i ;

% Open human g a i t p l an t model and i n t e r n a l MPC model
sys = ’ Doub l e suppor t phase in t e rna l mode l 22 ’ ;
open system ( sys ) ;

% Set the des igned v a r i a b l e s f o r the MPC op t im i za t i on
f i l ename =

[ ’ Opt im i z ed con t r o l i npu t DS i t e r ’ num2str( i ) ] ;
load ( f i l ename ) ;
% Set the maximum, minimum a l l owa b l e va l u e s and the
% s c a l e s o f the des i gn v a r i a b l e s
p = sdo . getParameterFromModel ( sys ,{ ’ lagStanceAnkle ’ ,
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’ lagStanceKnee ’ , ’ lagSwingAnkle ’ , ’ lagSwingKnee ’ } ) ;
p ( 1 ) .Minimum = u1−15∗ones ( 1 , 1 0 ) ;
p ( 2 ) .Minimum = u2−3∗ones ( 1 , 2 1 ) ;
p ( 3 ) .Minimum = u3−1∗ones ( 1 , 1 8 ) ;
p ( 4 ) .Minimum = u4−1.5∗ ones ( 1 , 1 5 ) ;
p ( 1 ) .Maximum = u1+15∗ones ( 1 , 1 0 ) ;
p ( 2 ) .Maximum = u2+3∗ones ( 1 , 2 1 ) ;
p ( 3 ) .Maximum = u3+1∗ones ( 1 , 1 8 ) ;
p ( 4 ) .Maximum = u4+1.5∗ ones ( 1 , 1 5 ) ;

for kk = 1 :4
i f kk == 1
l a g u e r r e c o e f f i c i e n t n o c o u n t = 10 ;
p Min = −150;
p Max = 150 ;
e l s e i f kk == 2
l a g u e r r e c o e f f i c i e n t n o c o u n t = 21 ;
p Min = −30;
p Max = 30 ;
e l s e i f kk == 3
l a g u e r r e c o e f f i c i e n t n o c o u n t = 18 ;
p Min = −8;
p Max = 8 ;
else
l a g u e r r e c o e f f i c i e n t n o c o u n t = 15 ;
p Min = −15;
p Max = 15 ;
end
for kkk = 1 : l a g u e r r e c o e f f i c i e n t n o c o u n t
i f p( kk ) .Minimum(kkk ) < p Min
p( kk ) .Minimum(kkk ) = p Min ;
end
i f p( kk ) .Maximum(kkk ) > p Max
p( kk ) .Maximum(kkk ) = p Max ;
end
i f abs (p( kk ) .Maximum(kkk ) ) >= abs (p( kk ) .Minimum(kkk ) )
p( kk ) . Sca l e ( kkk ) = abs (p( kk ) .Maximum(kkk ) ) ;
else
p( kk ) . Sca l e ( kkk ) = abs (p( kk ) .Minimum(kkk ) ) ;
end
end
end

p ( 1 ) . Value = u1 ;
p ( 2 ) . Value = u2 ;
p ( 3 ) . Value = u3 ;



157

p ( 4 ) . Value = u4 ;

% Load the saved s t a t e s o f the p l an t model a t the
% end o f the prev ious sample time
f i l ename = [ ’ I C f o r n e x t o p t i t e r ’ num2str( i ) ] ;
load ( f i l ename ) ;

% Define the i n i t i a l cond i t i on f o r the i n t e r n a l MPC
% model f o r the next op t im i za t i on s t ep
sdo . setValueInModel ( sys , ’ beginTime ’ , tnow ) ;
sdo . setValueInModel ( sys , ’ p s t a n c e ank l e i ’ ,

s t anc e ank l e p ou t1 ) ;
sdo . setValueInModel ( sys , ’ w s t an c e ank l e i ’ ,

s t ance ank l e w out1 ) ;
sdo . setValueInModel ( sys , ’ p s t an c e kn e e i ’ ,

s t ance knee p out1 ) ;
sdo . setValueInModel ( sys , ’ w s tanc e knee i ’ ,

s tance knee w out1 ) ;
sdo . setValueInModel ( sys , ’ p s t a n c e h i p i ’ ,

s t anc e h ip p ou t1 ) ;
sdo . setValueInModel ( sys , ’ w s t an c e h i p i ’ ,

s tance h ip w out1 ) ;
sdo . setValueInModel ( sys , ’ p sw ing ank l e i ’ ,

sw ing ank l e p out1 ) ;
sdo . setValueInModel ( sys , ’ w sw ing ank l e i ’ ,

swing ank le w out1 ) ;
sdo . setValueInModel ( sys , ’ p sw ing knee i ’ ,

swing knee p out1 ) ;
sdo . setValueInModel ( sys , ’ w swing knee i ’ ,

swing knee w out1 ) ;
sdo . setValueInModel ( sys , ’ p sw ing h i p i ’ ,

sw ing h ip p out1 ) ;
sdo . setValueInModel ( sys , ’ w sw ing h ip i ’ ,

swing hip w out1 ) ;
sdo . setValueInModel ( sys , ’ P l a n a r j o i n t x p i ’ ,

P l ana r j o i n t x p ou t 1 ) ;
sdo . setValueInModel ( sys , ’ P l a n a r j o i n t x v i ’ ,

P l ana r j o i n t x v ou t 1 ) ;
sdo . setValueInModel ( sys , ’ P l a n a r j o i n t y p i ’ ,

P l ana r j o i n t y p ou t 1 ) ;
sdo . setValueInModel ( sys , ’ P l a n a r j o i n t y v i ’ ,

P l ana r j o i n t y v ou t 1 ) ;
sdo . setValueInModel ( sys , ’ P l a n a r j o i n t z p i ’ ,

P l ana r j o i n t z p ou t 1 ) ;
sdo . setValueInModel ( sys , ’ P l a n a r j o i n t z w i ’ ,

P l ana r j o i n t z w ou t1 ) ;
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save system ( ’ Doub l e suppor t phase in t e rna l mode l 22 ’ ) ;

% Create a s imu la t i on t e s t e r
s imu la to r = sdo . S imulat ionTest ( sys ) ;

% Define the op t im i za t i on a l gor i thm
eva lDes ign = @(p) obj fun4 (p , s imu la tor ) ;

% Se l e c t op t i ons f o r the op t imi ze r
opt = sdo . OptimizeOptions ;
opt . MethodOptions . Algorithm = ’ i n t e r i o r−point ’ ;
opt . MethodOptions . Us ePa ra l l e l = ’ always ’ ;
% opt . MethodOptions . DiffMaxChange = 2;
% opt . MethodOptions . TypicalX = u ;
opt . MethodOptions . FinDiffType = ’ c en t r a l ’ ;
% opt . MethodOptions . TolFun = 0 . 1 ;
% opt . MethodOptions . ScaleProblem = ’ obj−and−constr ’ ;
% opt . MethodOptions . AlwaysHonorConstraints = ’none ’ ;
opt . MethodOptions . Object iveL imit = 5 ;
opt . Us ePa ra l l e l = ’ always ’ ;
opt . OptimizedModel = sys ;

clear u1 u2 u3 u4 u5 u6 u7 u8 u9 j
clear s t anc e ank l e p ou t1 s tance ank l e w out1

s t anc e h ip p ou t1 s tance h ip w out1 s tance knee p out1
stance knee w out1 sw ing ank l e p out1 swing ank le w out1
swing h ip p out1 swing hip w out1 swing knee p out1
swing knee w out1 P l ana r j o i n t x p ou t 1
P l ana r j o i n t x v ou t 1

clear P lana r j o i n t y p ou t 1 P l ana r j o i n t y v ou t 1
P l ana r j o i n t z p ou t 1 P l ana r j o i n t z w ou t1

clear u s tance ank l e da ta end u s tance h ip da ta end
u s tance knee data end u swing ank l e data end
u swing h ip data end u swing knee data end

clear kk kkk l a g u e r r e c o e f f i c i e n t n o c o u n t p1 Max
p1 Min p Max p Min

[ pOpt , opt In fo ] = sdo . opt imize ( evalDesign , p , opt ) ;

f i l ename =
[ ’ Doub l e suppo r t pha s e i n t e rna l mode l 2 2 i t e r ’
num2str( i +1) ] ;

save ( f i l ename )

u1 = pOpt ( 1 ) . Value ;
u2 = pOpt ( 2 ) . Value ;
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u3 = pOpt ( 3 ) . Value ;
u4 = pOpt ( 4 ) . Value ;
f i l ename =

[ ’ Opt im i z ed con t r o l i npu t DS i t e r ’ num2str( i +1) ] ;
save ( f i l ename , ’ u1 ’ , ’ u2 ’ , ’ u3 ’ , ’ u4 ’ ) ;

% Load the r euq i r ed parameter to be a b l e to run the
% p lan t model s imu la t i on
c l e a r v a r s −except i
% load Doub l e s tance phase p lan t mode l 4 paramete r
Plant = ’ Doub le s tance phase p lant mode l 15 ’ ;
% load IC f o r n e x t o p t
f i l ename = [ ’ Opt im i z ed con t r o l i npu t DS i t e r ’ num2str( i +1) ] ;
load ( f i l ename ) ;
f i l ename = [ ’ C o n t r o l i n p u t h i s t o r y i t e r ’ num2str( i ) ] ;
load ( f i l ename ) ;

% Simulate model and save the end s t a t e s to be used as
% the i n i t i a l c ond i t i on s f o r the next time s t ep
sdo . setValueInModel ( Plant , ’ BeginTimePlantModel ’ , i ∗ . 0 0 8 3 ) ;
sdo . setValueInModel ( Plant , ’ u s t anc e ank l e ’ , u1 ) ;
sdo . setValueInModel ( Plant , ’ u s tance knee ’ , u2 ) ;
sdo . setValueInModel ( Plant , ’ u swing ank le ’ , u3 ) ;
sdo . setValueInModel ( Plant , ’ u swing knee ’ , u4 ) ;

u s t a n c e ank l e d a t a t ime s e r i e s = t ime s e r i e s ;
u s t a n c e ank l e d a t a t ime s e r i e s . Time = 0 : . 0 0 0 0 1 : i ∗ . 0 0 83 ;
u s t a n c e ank l e d a t a t ime s e r i e s . Data =

u s tanc e ank l e da ta ( 1 : ( i ∗830+1));
u s t an c e kn e e da t a t ime s e r i e s = t ime s e r i e s ;
u s t an c e kn e e da t a t ime s e r i e s . Time = 0 : . 0 0 0 0 1 : i ∗ . 0 0 83 ;
u s t an c e kn e e da t a t ime s e r i e s . Data =

u s tance knee data ( 1 : ( i ∗830+1));
u sw i ng ank l e da t a t ime s e r i e s = t ime s e r i e s ;
u sw i ng ank l e da t a t ime s e r i e s . Time = 0 : . 0 0 0 0 1 : i ∗ . 0 0 83 ;
u sw i ng ank l e da t a t ime s e r i e s . Data =

u swing ank l e data ( 1 : ( i ∗830+1));
u sw ing kne e da t a t ime s e r i e s = t ime s e r i e s ;
u sw ing kne e da t a t ime s e r i e s . Time = 0 : . 0 0 0 0 1 : i ∗ . 0 0 83 ;
u sw ing kne e da t a t ime s e r i e s . Data =

u swing knee data ( 1 : ( i ∗830+1));

clear u1 u2 u3 u4
clear u s t anc e ank l e da ta u s tance knee data

u s t anc e h ip da ta u swing ank l e data
u swing knee data u swing h ip data
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sim ( Plant ) ;

% Save a l l the v a r i a b l e a f t e r one i t e r a t i o n s imu la t i on
% of p l an t model i n t o a f i l e
f i l ename =

[ ’ Doub l e s t anc e pha s e p l an t mode l 1 5 i t e r ’ num2str( i +1) ] ;
save ( f i l ename ) ;

s t anc e ank l e p ou t1 = s tanc e ank l e p ou t ( ( i +1)∗830+1);
s tance ank l e w out1 = stance ank l e w out ( ( i +1)∗830+1);
s t anc e h ip p ou t1 = s tanc e h ip p ou t ( ( i +1)∗830+1);
s tance h ip w out1 = stance h ip w out ( ( i +1)∗830+1);
s tance knee p out1 = stance knee p out ( ( i +1)∗830+1);
s tance knee w out1 = stance knee w out ( ( i +1)∗830+1);
sw ing ank l e p out1 = swing ank l e p out ( ( i +1)∗830+1);
swing ankle w out1 = swing ank le w out ( ( i +1)∗830+1);
swing knee p out1 = swing knee p out ( ( i +1)∗830+1);
swing knee w out1 = swing knee w out ( ( i +1)∗830+1);
sw ing h ip p out1 = swing h ip p out ( ( i +1)∗830+1);
swing hip w out1 = swing hip w out ( ( i +1)∗830+1);
P l ana r j o i n t x p ou t 1 =

P l ana r j o i n t x p ou t ( ( i +1)∗830+1);
P l ana r j o i n t x v ou t 1 =

P l ana r j o i n t x v ou t ( ( i +1)∗830+1);
P l ana r j o i n t y p ou t 1 =

P l ana r j o i n t y p ou t ( ( i +1)∗830+1);
P l ana r j o i n t y v ou t 1 =

P l ana r j o i n t y v ou t ( ( i +1)∗830+1);
P l ana r j o i n t z p ou t 1 =

P l ana r j o i n t z p ou t ( ( i +1)∗830+1);
P l ana r j o i n t z w ou t1 =

P lana r j o i n t z w ou t ( ( i +1)∗830+1);

f i l ename = [ ’ I C f o r n e x t o p t i t e r ’ num2str( i +1) ] ;
save ( f i l ename , ’ P l ana r j o i n t x p ou t 1 ’ ,

’ P l ana r j o i n t x v ou t 1 ’ , ’ P l ana r j o i n t y p ou t 1 ’ ,
’ P l ana r j o i n t y v ou t 1 ’ , ’ P l ana r j o i n t z p ou t 1 ’ ,
’ P l ana r j o i n t z w ou t1 ’ , ’ s t anc e ank l e p ou t1 ’ ,
’ s t ance ank l e w out1 ’ , ’ s t anc e h ip p ou t1 ’ ,
’ s tance h ip w out1 ’ , ’ s t ance knee p out1 ’ ,
’ s tance knee w out1 ’ , ’ sw ing ank l e p out1 ’ ,
’ swing ankle w out1 ’ , ’ sw ing h ip p out1 ’ ,
’ swing hip w out1 ’ , ’ sw ing knee p out1 ’ ,
’ swing knee w out1 ’ ) ;
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f i l ename =
[ ’ C o n t r o l i n p u t h i s t o r y i t e r ’ num2str( i +1) ] ;

save ( f i l ename , ’ u s t anc e ank l e da ta ’ ,
’ u s tance knee data ’ , ’ u s t anc e h ip da ta ’ ,
’ u sw ing ank l e data ’ , ’ u swing knee data ’ ,
’ u sw ing h ip data ’ ) ;

toc

end

D.4 Optimization Code for the Double Support Phase Simulation at
SSWS

function des ign = obj fun4 (p , s imu la tor )

% Define des i gn v a r i a b l e s
s imu la to r . Parameters = p ;
s imu la to r = sim ( s imu lato r ) ;

% Obtain the op t im i za t i on r e s u l t s
StepLength1 = get ( s imu la to r . LoggedData , ’ vel COM ’ ) ;

[ p ( 1 ) . Value p ( 2 ) . Value p ( 3 ) . Value p ( 4 ) . Value ]

des ign .F = (1.3854− StepLength1 )ˆ2∗100000

end
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