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ABSTRACT
COMPUTATIONAL APPROACHES FOR

MONITORING OF HEALTH PARAMETERS
AND

THEIR EVALUATION FOR
APPLICATION IN CLINICAL SETTING

Mohammad Adibuzzaman, B.S., M.S.

Marquette University, 2015

The algorithms and mathematical methods developed in this work focus on using com-
putational approaches for low cost solution of health care problems for better patient
outcome. Furthermore, evaluation of those approaches for clinical application con-
sidering the risk and benefit in a clinical setting is studied. Those risks and benefits
are discussed in terms of sensitivity, specificity and area under the receiver operating
characteristics curve. With a rising cost of health care and increasing number of ag-
ing population, there is a need for innovative and low cost solutions for health care
problems. In this work, algorithms, mathematical techniques for the solutions of the
problems related to physiological parameter monitoring have been explored and their
evaluation approaches for application in a clinical setting have been studied. The phys-
iological parameters include affective state, pain level, heart rate, oxygen saturation,
hemoglobin level and blood pressure. For the mathematical basis development for dif-
ferent data intensive problems, eigenvalue based methods along with others have been
used in designing innovative solutions for health care problems, developing new algo-
rithms for smart monitoring of patients; from home monitoring to combat casualty situ-
ations. Eigenvalue based methods already have wide applications in many areas such as
analysis of stability in control systems, search algorithms (Google Page Rank), Eigen-
face methods for face recognition, principal component analysis for data compression
and pattern recognition. Here, the research work in 1) multi-parameter monitoring of
affective state, 2) creating a smart phone based pain detection tool from facial images,
3) early detection of hemorrhage from arterial blood pressure data, 4) noninvasive mea-
surement of physiological signals including hemoglobin level and 5) evaluation of the
results for clinical application are presented.
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Chapter 1

Introduction

Assessment of different health parameters including pain level, physiological

parameters such as blood pressure, heart rate, and hemoglobin level is important for

multiple medical conditions. Traditional monitoring systems, if they exist, for these

health parameters require sophisticated devices and complex systems which makes the

application of these systems difficult for many situations such as remote monitoring.

The application of these systems is also difficult in developing countries where there is

significant lack of laboratory and transportation facilities. This situation also persists

in developed countries where the rising health care cost and increasing number of

aging population demands affordable solutions for monitoring patients with a constant

feedback loop involving doctors and patients[43]. The widespread availability of

mobile phones both in developed and developing countries makes the computational

power and communication facilities available for such systems. However, there is

significant lack of research for bridging the gap between the demand for systems that

would address this problem. This dissertation attempts to bridge the gap by building

such systems by analyzing the different issues related to deploying such systems and

developing algorithms for accurate detection and prediction of the health parameters.

This dissertation focuses on eigenvalue based methods for algorithm development and

performance evaluation in three different applications. These applications address the

challenges related to 1) algorithm and system development for monitoring health

parameters including affective states, pain level and vital signs, 2) finding effective

ways to interpret the health parameters in clinical setting for intervention by the

clinicians 3) creating a closed loop feedback system involving the patients,clinicians

and health care personnel and 4) evaluating such systems to be applicable in a clinical
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setting.

1.1 Dissertation focus

This study focused on the application of low cost solutions for health

parameter monitoring systems. Among these solutions are developing an eigenvalue

based method for smart phone based pain monitoring system from facial expression, a

new vital sign development for detection of hemorrhage from blood pressure

waveform, detecting hemoglobin level from the video image of the camera of a smart

phone and evaluating algorithms for application in a clinical setting.

1.2 Dissertation organization

Chapter 2 of this dissertation describes the different mathematical tools and the

foundation of the algorithm development. This chapter lays a common mathematical

framework based on eigenvalues including the geometric interpretation of the

eigenvalues, their role in principal component analysis, and mixing rate of the Markov

chain. It also focuses on the health parameters: emotion, pain level, blood pressure,

heart rate and hemoglobin level and the difficulties in assessing those parameters in

terms of application and algorithm. Chapter 3 and 4 presents the eigenvalue based

eigenface method for multimodal affect detection and pain level detection. Chapter 3

describes how the eigenvalue based method is used for multimodal affect detection

from facial image and energy expenditure with Naı̈ive Bayes method for the fusion.

Chapter 4 describes the eigenvalue based method used for pain assessment and then

we described the techniques and hypothesis for improving the model accuracy. In

chapter 5, a mathematical method development is presented for eigenvalues of the

transition probability of a Markov chain created using time series data of arterial blood

pressure and found important relationship between second largest eigenvalue and

blood loss or hemorrhage. Chapter 6 and 7 are dedicated for model development for

vital sign monitoring using finger tip video images. In these chapters we also describe
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the different mathematical models and initial results for detecting heart rate, perfusion

index, oxygen saturation and hemoglobin level. Chapter 8 identifies the issues related

to algorithm evaluation for clinical use. For each of this chapter, we describe the

motivation and importance of the problem, mathematical methods, results and

evaluation.

1.3 Publications

• Mohammad Adibuzzaman, Colin Ostberg et al. Assessment of Pain Using a

Smart Phone in Proceedings of COMPSAC 2015.

• Mohammad Adibuzzaman, George C. Kramer, Loriano Galeotti et al. The

Mixing Rate of the Arterial Blood Pressure Waveform Markov Chain is

Correlated with Shock Index During Hemorrhage in Anesthetized Swine in

Proceedings of EMBC 2014, Chicago, USA

• Mohammad Adibuzzaman, Loriano Galeotti et al. A Novel Index to Monitor

Physiological Systems from the Arterial Blood Pressure Waveform during

Hemorrhage in MCMi Regulatory Science Symposium, 2014, Maryland, USA

• Mohammad Adibuzzaman, Sheikh Ahamed et al. A Personalized Model for

Monitoring Vital Signs using Camera of the Smart Phones in Proceedings of

SAC 2014, Seoul, Korea

• Mohammad Adibuzzaman, Niharika Jain,Nicholas Steinhafel, Munir Haque,

Ferdaus Kawsar, Richard Love, Sheikh Iqbal Ahamed. Towards In Situ Affect

Detection in Mobile Devices: A multimodal Approach in proceedings of

Research in Adaptive and Convergent Systems(RACS’13) (Best Paper Award)

• Md. Munirul Haque, Md Adibuzzaman et al. IRENE: Context Aware Mood

Sharing for Social Network in KASTLES 2011 Workshop.
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• Mohammad Adibuzzaman, Loriano Galeotti, Richard A. Gray, George

Kramer, David G. Strauss, Stephen Merrill. Markov chain methods in

identifying early acute hypotensive episodes in MCMi Regulatory Science

Symposium, 2013

• Mohammad Adibuzzaman, Loriano Galeotti, Richard A. Gray, George

Kramer, David G. Strauss, Stephen Merrill. Novel physiological monitoring

strategies for early detection of hemorrhage in Student Poster Session 2013 at

the U.S. Food and Drug Administration.

• Mohammad Adibuzzaman, Christopher Scully, Loriano Galeotti, David

Strauss, Stephen Merrill. Evaluation of Machine Learning Algorithms for

Multi-Parameter Patient Monitoring in Student Poster Session 2014 at the

U.S. Food and Drug Administration.

• Under review

– Mohammad Adibuzzaman, Sheikh Iqbal Ahamed, Richard Love.

Assessment of Hemoglobin Level using Mini-video image in preparation.
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Chapter 2

Background

This chapter lays the outline for the background on the mathematics of the

algorithms that has been used in the application areas for the remaining chapters. Here

the basics of eigenvalues are described, which has applications in chapter 3, 4 and 5. It

has been used for extracting features from face images using eigenfaces in chapter 3

and chapter 4; and in using the second largest eigenvalue(mixing rate) of the transition

probability matrix of Markov chain in chapter 5.

2.1 Eigenvalues

Definition

If a nonzero vector (eigenvector of a matrix) is multiplied by a matrix, the

eigenvalue of a matrix is the constant by which amount the vector is scaled up or

scaled down. Eigenvalue is defined as

B × v = λ× v

where v is the right eigenvector of the matrix B and λ is the eigenvalue.

Eigenvalues have an interesting property: when multiplied by the eigenvalue, if

there is an eigenvector, the result is not rotated. They are just scaled up or scaled down

if multiplied by an eigenvalue which is a real number.

This idea can be extended for any vector since any vector can be represented by

a basis whose reference vectors are eigenvectors of the transition matrix in the case

there is a complete set of eigenvectors and the eigenvalues are distinct.

Bi × v = Bi × v1 +Bi × v2 = λ1
i × v1 + λ2

i × v2
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Figure 2.1: Repeated multiplication of the eigenvector v with the matrix B scales up
the eigenvector. Here the eigenvalue λ is assumed to be greater than 1.

Figure 2.2: Repeated multiplication of the eigenvector v with the matrix B with more
than one eigenvalue. Here the eigenvalue λ2 > λ1, and as a result, the resultant vector
aligns with the eigenvector v2, corresponding to eigenvalue λ2.

As a result, for any iterative methods which involve multiplication of a vector

by a matrix in a repetitive form, the component related to the maximum eigenvalue, if

there is one, dominates in the long run.

• This is the basis for the algorithms used for smart monitoring of health

parameters.

• Principal component analysis and mixing rate of Markov chain both are based

on this interesting property.

2.2 Principal Component Analysis (PCA)

Principal Component Analysis (PCA) highlights the similarities and

dissimilarities in a multidimensional data set. It is used to find the patterns in data
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using the concept described earlier. This method is widely used for data compression

without much loss of information by finding the vectors corresponding to the

maximum eigenvalue. Figure 2.3 shows the eigenvectors of the covariance matrix of a

two dimensional data set. The red dashed lines are the eigenvectors. The data are more

distributed along with the eigenvector labeled as v1 for which we have the maximum

eigenvalue. As a result, reducing the dimension corresponding to v2 would not loose

much information.
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Figure 2.3: The red dashed lines represent the eigenvectors of the covariance matrix.
The data points can be represented as a linear combination of the eigenvectors. v1 is the
Principal Component here.

2.3 Eigenvalues and Markov Chain

2.3.1 Markov Process

A discrete Markov chain is a mathematical process that transits from one state

to the other and is considered memory less.
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Figure 2.4: A simple Markov chain with three states and their transition probabilities.

Figure 2.5: The transition probability matrix of the Markov Chain. The row and
columns of the matrix represent the transition probability from the state correspond-
ing to the row to the state corresponding to the column. For example, the value of 0.28
at row 1 column 2 indicates that the transition probability of the system from state 1 to
state two is 0.28.

2.3.2 Eigenvalues of Markov Chain

Eigenvectors of a Markov chain describes in the long run what would be the

probability distribution of the system for being in different states. This uses the same

concept as described earlier. If we multiply the transition probability matrix many

times with some initial state probabilities, this is the same as multiplying the state

probabilities many times with the the eigenvalues. As a result, the eigenvalues that are

less than 1 in magnitude, soon make the system converge to the limit distribution. The

limit distribution is thus just the left eigenvector corresponding to 1.
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• For any transition probability matrix of a Markov chain, there exists an unique

eigenvector, π for which the eigenvalue is 1.

• Because all the other eigenvalues are less than one in modulus, after n steps,

where n is sufficiently large, the stationary distribution contains only the

eigenvector corresponding to the eigenvalue 1.

π × P = π

• For a 2× 2 matrix,

v × P i = v1 × P i + v2 × P i = λ1
i × v1 +

0(λ2<1)︷ ︸︸ ︷
λ2

i × v2

= 1i × v1

= v1

For the previous transition matrix, the normalized eigenvector corresponding to 1 is,

π =

[
0.7014 0.2899 0.0087

]

In our case

P 100 =


0.7014 0.7014 0.7014

0.2899 0.2899 0.2899

0.0087 0.0087 0.0087


Each column of the probability distribution becomes the eigenvector normalized.

2.3.3 Mixing Rate of Markov Chain

Mixing Rate or Second Largest Value of Markov Chain

• The largest eigenvalue of a Markov transition matrix is 1.
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• The second largest eigenvalue of the matrix determines how fast the chain would

converge to the limit distribution.

• The second largest eigenvalue is called the mixing rate of the Markov chain.
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Chapter 3

Affect: Smart Phone Based Affect Detection

3.1 Introduction

Affect sensitive applications are being developed in a number of domains

which include learning technologies, autism spectrum, gaming, robotics and Human

Computer Interaction [48]. Though there has been significant research in the field of

affective computing, most of the research is done for unimodal affect detection.

Interestingly, human affective state is never a unimodal expression. Any

affective state such as happiness, sorrow, anger etc. almost always involves two or

more of the modalities such as facial expression, body movement, speech data and

other emotional cues. Thus a multimodal affect detection system may have better

accuracy and reliability that has largely been ignored in the literature.

In the field of affective computing, multimodal real time implementation is

widely advocated but rarely implemented [48]. Research has been done for affect

detection from facial expression, speech data, body gesture, heart rate, skin

conductance, pressure sensor and other inputs. Research has been conducted for affect

detection using all of these communication channels in a laboratory environment.

In addition to facial expression research work inspired by Ekman [90], there

are other approaches such as region based or holistic approach. Instead of different

Action Units (AU) proposed by Ekman, region based approach uses certain regions of

the face such as eye, eyebrow and mouth. Some of the expression recognition system

uses various pattern recognition techniques [72] and geometric and appearance

feature-based methods [95].

Beyond facial expression, several affective computing applications focus on

detecting affect by using machine learning techniques to identify patterns in

physiological activity [96]. These patterns in physiological activity correspond to
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different emotions. Previous research was done using facial expression and speech

data fusion. In the literature we have found only one work with the fusion of multiple

modalities which includes physiological activity [53]. A correlation between

automated assessment of mental (or physical health) and the result of the

gold-standard surveys with sensor based measurements were found in [81].

There has been much research for multi-modal affect detection in the past

decade [96]; but few research studies consider hand-held devices which are equipped

with sensors that can be used for affect detection. The affect detection technique for

hand-held devices will not require a multitude of the complicated sensors the user has

to wear in laboratory environments. Rather, we need a solution that uses the existing

sensors of the hand-held devices.

Fortunately, smart phones are equipped with many sensors such as camera,

microphone, accelerometer and GPS. Each of these sensors can be used for capturing

affective state in different channels like facial expression, speech, activity and context.

Furthermore, the power of hand-held and mobile devices is increasing at a tremendous

speed. With the advent of mobile technology, many smart phones now have an

accelerometer along with a built-in camera. These two sensor devices are critical for

automatic affect detection. Accelerometer data could be used for estimation of how

much energy a person has exerted over a period of time. Physiopsychology research

shows that there is a considerable correlation between energy expenditure and affective

states.

Therefore, we choose to use facial expression and physiological activity for

multimodal affect detection in natural environment using camera and accelerometer of

smart phones using Naı̈ve Bayes fusion. We evaluated the system performance and

found significant improvement of our system, which also include energy expenditure,

over unimodal system which uses only facial expression.
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3.1.1 Contributions

The ability to detect and understand human affective state is at the core of

human intelligence which is indispensable from human behaviour. This is also true to

understand human decision making process as well as consumer behaviour [42]. In

this paper, we present an automated system that can detect affective state in natural

everyday setting using sensors available in smart phones. The contribution of this

work includes:

• An automated system that can be used in day to day life without any interference

to the user.

• This work shows that the system performs better when we do the fusion of facial

expression and energy than only from facial expression.

3.2 Related Work

One of the major problems experienced while doing study on affective

computing was to correctly identify the human emotions in a laboratory setting [73].

This is because, in contrary to the natural world scenarios, the controlled environment

does not offer the natural occurrence of actions and corresponding reactions.

Moreover, the laboratory proceedings do not take into account the results of other

concurrent activities happening in day-to-day life. In addition to this, the identification

of emotions is sometimes based on the reports created by self-analysis and hence

suffers from its own set of limitations.

To overcome these factors, a 7-day study was conducted in [44], where data

related to the affective states were collected through several means. First source being

the ‘in situ’ analysis taking into affect the elimination of bias and independence of

axes. Second source of data was the overall ‘end-of-day’ rating and third source

accounted the scores given by the third-party raters. The data collected from these
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different sources was then triangulated so as to achieve a data set containing mutually

agreeing information. This information when fed to a J48 decision tree returned highly

accurate results (100% accuracy) in terms of high or low activation states.

For modeling of affective data in natural environment, a study was conducted

by [45] so as to collect the sensor data corresponding to physical activity, heart rate

and galvanic skin response. The data so obtained was then aggregated and stored in a

mobile device which was also used as a user interface. This mobile device was also

used to capture audio data related to the subjects involved. The study concluded that

the selection of correct time window and having a customized window around

annotated events played key roles in obtaining the correct emotion analysis.

The power of mobile devices has been further explored for affect annotation by

incorporating the multi-modal technique for assessing physical as well as mental

well-being [81]. A study was conducted wherein the subjects were given a device

consisting of various sensors which could help collecting data required for the above

mentioned assessment. The classification of collected data as speech and activity was

done using two-state hidden Markov Models (HMM) and decision-stump classifiers

respectively. A correlation between automated assessment of mental, and/or physical

health and the result of gold-standard surveys was found so as to stress upon the

accuracy of sensor-based measurements.

Healey et al. tries to standardize the affective data annotation in [44] and [45].

But their approach used sensors not only that are available in mobile devices, but also

external sensors. Again, a comprehensive study about the classification algorithm was

not present. [81] shows the correlation of gold standard surveys with sensor data

capture, but that does not provide a study only for mobile device. The participants had

to wear other sensor devices for affective data annotation. In our study we overcome

both of these problem by using only one smart phone for the user as well as a

comparative study of the result about multimodal versus unimodal system. All of these
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works provide the techniques and results of using different modalities. But none of the

research study uses only smart phones for collecting data. Also, a comparative study

between unimodal system versus multimodal system was not present.

3.3 Our Approach

To capture the arousal and valence space, facial expression and energy exertion

of a person were used. It is shown in psychology that arousal space can be captured by

heart rate, pupil size or energy expenditure; all of them can be captured from the

sensors available in smart phones. Here, facial expression was used for valence and

energy expenditure was used for the arousal space. Eigenface algorithm was used for

detecting facial expression and mean accelerometer data were used for different

affective states as the second feature for multi-modal affect detection using Naı̈ve

Bayes fusion. In this section, the methods that has been used for the annotation of

in-situ affective data and the rationale for using facial expression and energy

expenditure are described. In the next section, the details of the classifier are described.

3.3.1 Selecting Modalities

Emotion labeling is moderately less work in laboratory environment where the

researcher can control the environment, recreate the situation, recording can be done

accurately and the person can be interviewed for his/her annotations. However, the

emotion labeling can still be flawed since in controlled environment people might act

differently, both physiologically and cognitively. In-situ capturing of affective state

captures the natural data, but it needs more methodical approach for emotion

journaling. The participants need to be trained well and the data labeled needs to be

verified later. The goal is to minimize the error for establishing the ’ground truth’,

which defines true affective state for the given data in machine learning algorithm for

classification.

According to the Russell’s circumplex model of emotion, each affective state can be
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Figure 3.1: Russell’s circumplex model of emotion [86].

represented in 2D space [86]. The horizontal axis represents the valence and the

vertical axis represents the arousal space. Valence represents how good or bad a person

is feeling, and arousal represents how much a person is aroused. Therefore, the

hypothesis is that if arousal space data could be captured from accelerometer, the

affective states could be classified with better accuracy. For example, for the happy

state, this is a positive feeling and a person might have some kind of excitement. On

the other hand, for sad feeling, it is a negative feeling and the person may have less

movement, which corresponds to less energy expenditure.

3.3.2 Emotion Journaling

Smart phones were used for emotion journaling. Smart phones gives the

opportunity for labeling emotion as soon as it occurs with real time sending and
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storage capability. Eight participants were recruited for the study, aged between 21-33

all of whom were students. Participants were asked to carry the smart phones and

annotate the data for at least 5 times a day for a seven day period. The participants are

referred as ”PA” in this work.

Figure 3.2: Annotation of emotion data: (a) Annotation of affective state using Russells
2D emotional space. (b) Annotation of affective state using radio button.

For the journaling of emotional data, we used camera and accelerometer data

of smart phones for facial expression and activity. Also location data was stored using

GPS of the smart phones that might give us the context information. Three android

phones were used, two Droid X with android operating system of 2.2 and one

Samsung Galaxy Nexus with android operating system of 3. PAs were asked to take a

facial picture with the smart phones and then label the data. The labeling was done

using two sources for capturing the natural feeling. One is using the textitMood-map
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which corresponds to Russell’s circumplex model and the other is radio button from

which the user can pick one from the six basic emotions. Figure 3.2 shows the

interface for mood-map as well as the radio buttons. Continuous and fine grained

accelerometer data for fifteen minutes before taking the picture and location data were

also recorded and then sent to the server using the phones’ internet.

3.3.3 Journaling Training

Each participant was asked to carry the smart phone for one week. Before

handing over the smart phone to the participants, they were trained on how to use the

application for emotional data annotation. During that period, PAs were asked to carry

the smart phones six to eight hours a day and label the data whenever any emotional

event occurred. They were trained to use the touch based application as well as how to

take the picture, use the mood-map and upload the data. Furthermore, there was

constant communication between the PAs and the researcher for any question from the

participant.

3.3.4 Algorithm Design

The algorithm for affect detection from facial expression and accelerometer

data can be discussed in different components; face detection, affective state from

facial image, energy expenditure from body movement and fusion using Naı̈ve Bayes.

Each of the components are discussed here.

3.3.5 Face Detection

Pixels corresponding to skin are different from other pixels in an image. [72]

has shown the clustering of skin pixels in a specific region for skin color modelling in

chromatic color space. Though the skin color of persons vary widely based on

different ethnicity, research [90] shows that they still form a cluster in the chromatic

color space. After taking the image of the subjects, the image was cropped and only

the head portion of the image was selected. Then, skin color modeling was used for
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extracting the required segment for face from the head image.

3.3.6 Affective State from Facial Image

For this part, a combination of Eigenfaces, Eigeneyes, and Eigenlips methods

based on Principal Component Analysis (PCA) [95][96] were used. This analysis

method includes only the characteristic features of the face corresponding to a specific

facial expression and leaves other features. This strategy reduces the amount of

training sample and helps us make our system computationally inexpensive which is

one of our prime goals. These resultant images are used as samples for training

Eigenface method and M Eigenfaces with highest Eigenvalues were created. The

Eigenspace was generated as follows:

• The first step is to obtain a set S with M face images. Each image is transformed

into a vector of size N2 and placed into the set, S = γ1, γ2, γ3, ..., γM

• Second step is to obtain the mean image ψ

ψ =
1

M

M∑
n=1

γn

• The difference ψ between the input image φ and the mean image was

found,φi = γi − ψ

• Next, a set of M orthonormal vectors were sought, µM , which best describes the

distribution of the data. The kth vector, µk, is chosen such that

ψ =
1

M

M∑
n=1

(µTk φn)2
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• λk is a maximum, subject to

µTl µk =


1, if l == k.

0, otherwise.

where µk and λk are the eigenvalues and eigenvectors of the covariance matrix

C.

• The covariance matrix C has been obtained,

ψ =
1

M

M∑
n=1

(φnφ
T
n )2 = AAT

where A = [φ1, φ2, φ3, ..., φm].

• To find eigenvectors from the covariance matrix is a huge computational task.

Since M is far less than N2 by N2, we can construct the M by M matrix,

L = ATA

where Lmn = φTmφn

• We find the M Eigenvectors, vl of L.These vectors (vl) determine linear

combinations of the M training set face images to form the Eigenfaces ul.

µl =
M∑
k=1

vlkφk

where l = 1, 2, 3, ...,M

• After computing the Eigenvectors and Eigenvalues on the covariance matrix of

the training images

– M eigenvectors are sorted by Eigenvalues
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– Top eigenvectors represent Eigenspace

• Project each of the original images into Eigenspace to find a vector of weights

representing the contribution of each Eigenface to the reconstruction of the given

image.

When detecting a new face, the facial image is projected in the Eigenspace and the

Euclidian distance between the new face and all the faces in the Eigenspace is

measured. The face that represents the closest distance will be considered as a match

for the new image. Similar process is followed for Eigenlips and Eigeneyes methods.

The mathematical steps are as follows:

• Any new image is projected into Eigenspace and we find the face-key by

ωk = µTk and ωT = [ω1, ω2, ω3, ..., ωM ]

where, uk is the kth eigenvector and ωk is the kth weight in the weight vector

ωT = [ω1, ω2, ω3, ..., ωM ]

• The M weights represent the contribution of each respective Eigenfaces. The

vector Ω, is taken as the ‘face-key’ for a face’s image projected into Eigenspace.

• We compare any two ‘face-keys’ by a simple Euclidean distance measure

ε = ||Ωa − Ωb||2

• An acceptance (the two face images match) or rejection (the two images do not

match) is determined by applying a threshold.

3.3.7 Energy Expenditure from Body Movement

There exists a significant correlation between accelerometer data and the work

done by a person. It is found that the energy measured by ADInstrument Exercise
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Phsyiology Kit is highly correlated with accelerometer energy when the phone is

positioned at the waist [33].

Droid X uses the STMicroelectronics LIS331DL accelerometer. In this study, 2

Droid X 3G devices running Android OS 2.2 and one Samsung Galaxy Nexus with

Android OS 3 were used as acceleration measurement platforms.

Since this is a piezo-resistive accelerometer, low pass filtering is required to

acquire the true activity-component. Low-pass filtering was applied on the raw

accelerometer data, as its output includes a DC gravitational contribution. In the

literature, the ideal cut-off frequency or the filter ranges from 0.1 Hz to 0.5 Hz. 0.5 Hz

filter was used in Matlab to exclude the gravitational contribution. After testing the

varying frequency in this range, a good result was found preserving the activity

contribution.

To correlate accelerometer data with energy expenditure of a person, the

accelerometer’s three dimensional vector needs to be summarized as one scalar value

that represents physical activity intensity over small time periods [33]. This scalar

value is considered accelerometer energy spent by the user. To calculate accelerometer

energy, several different methods have been proposed, but the most used one is the

summation of time integrals of accelerometer output over the three spatial axes [33]

that has been used to calculate the accelerometer energy. The accelerometer energy is

calculated according to the following formula:

Accelerometer energy =
∫ t0+T
t0

|ax|+ |ay|+ |az|dt

Here ax, ay and az are low-pass filtered accelerometer data corresponding to

the x, y, and z axes. For calculating the values of this equation, the accelerometer input

data on each of the axes were observed. Then low pass filtering was used on each axis

input. Next, the absolute value of the accelerometer inputs was calculated and the

integration during fifteen minute time before taking the user image was measured.
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3.3.8 Fusion Using Naı̈ve Bayes

The mean of the energy data was found for different affective states and those

means were used as a separate feature for the fusion. Table 3.1 summarizes the mean

of the energy for different affective states. Those means were used as the additional

feature for the fusion algorithm.

Affective State Energy(mean)

Anger 8.56

Disgust 22.4

Fear 41.2

Happy 15.1

Sad 4.28

Surprise 35.6

Table 3.1: Mean of energy for different affective states.

It is argued that human behavior is close to that predicted by Bayesian decision

theory [55]. Different probabilistic graphical model algorithms are used in the

literature like Hidden Markov Model (HMM) and Support Vector Machine(SVM).

Bayesian classifier was used for fusion of the two modalities. Since there are

only two modalities, it is argued that Naı̈ve Bayes algorithm would be a better fit,

which performs better with small number of features and potentially large data for

fusion . Fusing the modalities of facial expression and energy data at decision level

enables to gain the knowledge about the relationship between these two modalities for

a particular affective state [64].

The Bayesian fusion framework that is applied is proposed in [91]. It uses the
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conditional error distributions of each classifier to approximate uncertainty about that

classifiers decision. The combined decision is the weighted sum of the individual

decisions. Given a problem with K classes and C different classifiers, λi, i = 1, ..., C

we like to infer the true class label ω, given the observation x. Assuming that for each

classifier λi we have a predicted class label ωk, where k = 1, ..., K then the true class

label can be derived as follows:

P (ω|x) ≈ P (ω|ωk, λi)P (ωk|λi, x)P (λi|x)

Probabilities P (ω|ωk, λi and P (λi|x) are used to weight the combined decision and

can be approximated from the confusion matrix of classifier λi.

The energy expenditure data of the same persons were used from our facial

expression database. When the users simulated affective state, their energy data was

also collected for the last 15 minutes before taking the photograph.

3.4 Results and Evaluation

The system was evaluated in four different ways. Validating the ground truth,

performance of unimodal system with only facial expression, validating energy data,

and performance of the multi-modal system.

3.4.1 Validating The Ground truth

After the data collection, each day the participants were interviewed and asked

about their labeling. It was found that some data were not properly labeled. Due to

ambiguity of the context, some data were also discarded. For example, on one

occasion PA2 said, ‘I was feeling very good with my grade, but did not have much

movement since I was sitting on my desk. So I labeled the emotion as positive in

valence but negative in arousal and did not know which one to pick from radio button.

So I selected sad.’ We only incorporated the data that the researcher and the PA we
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agreed on to be of any particular affective state.

3.4.2 Unimodal System With Facial Expression

The algorithm was trained with the pictures taken by the camera of the smart

phone. For each image in the training database, the classifier for facial expression was

used and 89% accuracy was found. The confusion matrix for facial expression is given

in Table 3.2. It was found that the pictures taken by the camera for which the

environment was dark, the system gave inaccurate results and the image was not

properly classified. One inaccurate results were found for each of the expression anger,

sad, disgust, fear and surprise. From the result, it was concluded that the classifier

works well with the training database as long as the image is taken properly with

proper lighting. It did not depend on any particular expression.

a b c d e f ←Classified as

8 0 0 0 0 0 | a=happy

0 7 0 0 1 0 | b=anger

1 0 7 0 0 0 | c=sad

1 0 0 7 0 0 | d=disgust

1 0 0 0 7 0 | e=fear

1 0 0 0 0 7 | f=surprise

Table 3.2: Confusion matrix for facial expression classifier.

3.4.3 Validating Energy Data

It was observed that the mean of the energy data for different affective states as

the second feature for our Naı̈ve Bayes fusion. Furthermore, an interesting relationship
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was observed between the energy and the different emotional categories. Figure 3.3(a)

shows the energy mean for different annotations by different PAs. Each point

represents a particular annotation by any PA. It was difficult to visually distinguish the

energy for the different categories.
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Figure 3.3: Accelerometer Energy for Different Affective State: (a) Accelerometer en-
ergy for six basic emotions. (b) Mean of energy for different affective state.

However, for the three categories, namely happy, sad and anger; an important

relationship was found. The mean of energy of sad is much lower than the mean of the

energy of happy and that of anger. On the other hand, the mean of energy of anger is

not very high where in Russell’s two dimensional space it is considered higher than the

happy state. It was concluded from the data that happiness usually has a high energy

expenditure relative to sadness, which is in line with Russell’s theory.

This relationship is best shown in Figure 3.3(b), where only the mean for

different affective states are plotted. The horizontal axis represents different emotional

states and the vertical axis represents the energy mean for the corresponding emotion.

It was found that sadness has much lower mean of energy than that of happiness. Also,

fear has high value in arousal space and the mean was found to be much higher than

happy and sad. This is also in line with the Russell’s circumplex model where fear is

phrased as afraid [Figure 3.1].
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a b c d e f ←Classified as

8 0 0 0 0 0 | a=happy

0 8 0 0 0 0 | b=anger

1 0 7 0 0 0 | c=sad

0 0 0 7 0 1 | d=disgust

0 0 0 0 8 0 | e=fear

0 0 0 1 0 7 | f=surprise

Table 3.3: Confusion matrix using Naı̈ve Bayes classifier.

3.4.4 Performance of Multi-modal System

The last part of the discussion addresses the performance of the multi-modal

system. The system performs better with the Naı̈ve Bayes fusion. The system

performance for correctly classifying the instances for the training database increased

from 89% to 93%. Out of 48 total instances, 45 were classified correctly.

A close analysis from the confusion matrix of the multimodal system from

Table 3.3 gives the rationale for the improvement.

First, the image previously misclassified as fear instead of anger is classified

correctly now. The reason is that the mean of energy for anger (8.56) is much lower

than that of fear (41.2). As a result, even if the image was not clear enough, it is

correctly classified. The same reasoning is also true for the data that was previously

mis-classified as anger instead of fear.

This data is now also classified correctly. Another interesting observation is the

confusion matrix entry for disgust. One disgust entry was mis-classified in the

unimodal system as anger.
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In the multi-modal system it still is mis-classified, but to a different class, fear.

It is observed that the mean of energy for disgust is equidistant from both anger and

fear. As a result, the system could not find a close match for this annotation.

3.5 Findings and Discussion

3.5.1 Inherent Theory of Emotion is Not Established

The theory of emotion is not established yet. Psychologists have different

approaches to identify different emotions. Research in the field of affective computing

is about finding the features that are most likely related to emotion-oriented

computing. Understanding those ideas and adapting those to any computational

methods is still in progress. Furthermore, expression of emotion greatly varies from

person to person, man and women, and also among different age groups and races.

Paul Ekman has identified six basic emotions for psychologists to identify from

video sequence using Facial Action Coding System (FACS). Those are happiness,

sadness, disgust, anger, fear and surprise. There are other emotions important for

automatic detection of emotions like boredom, frustration, excitement and many more.

Even Ekman expanded his list of basic emotions to include other emotions like

amusement, contempt, embarrassment, excitement, guilt, satisfaction etc.

There are also different approaches in computing for different theories in

psychology. For Ekman’s FACS to be implemented; feature extraction is needed from

facial image and then it needs to be classified. However, there are different emotions

with overlapping Coding Schemes which makes the implementation complicated.

For the holistic approach different machine learning algorithms are used. We

have used such an approach.

3.5.2 Multimodal System Needs More Modalities

We have argued that multimodal emotion recognition will contribute to the

more accurate affective classification. For that we might have to put different weights
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for different modalities. Also, in person to person communication, we may or may not

look for the same features in multiple channels like facial expression, speech and body

movements. More importance might be needed for finding same emotional cues in

multiple modalities. Again, this varies a lot among person to person. People tend to

understand about others emotion from facial expression, tone, body movement,

gestures and most importantly context. Depending upon context, the interpretation of a

message could be quite different from another. A combination of low level features,

high level reasoning, and natural language processing is likely to provide best

multimodal affect recognition. But very few systems have been developed in a natural

environment considering multiple modalities. Even if they were developed, their

performance is measured in a laboratory environment, which might be quite different

than in a natural environment.

3.5.3 Privacy

We have argued that affect detection is important but that also comes with

increasing concerns about privacy awareness of the people. However, this argument

can be contrasted with the fact that in our system, detected affective state is shared

only by the permission of the user. Nevertheless, there remains significant scope for

research regarding privacy issues and different levels of anonymization techniques to

be dealt with.

3.6 Conclusion

We provided much attention to validate the ‘ground truth’ data, we found that

some emotional states are ambiguous and even human can not identify the emotional

states properly. This is because human might have mixed emotions at a particular time.

There are no borders with different affective states. However, still we emphasized on

the labeling of the emotion by the PAs. Depending upon the interview with the

researcher, we incorporated that data for our training database or not. The success of
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the system largely depends on the emotional self-awareness of the PAs. We think that

instead of a particular classification of a particular affective state, one particular

instance should be labeled with the different probabilities of falling into different

categories. Depending upon those probabilities, machine interpretation of affective

states can be applied to human computer interaction. Also, affect sensitive applications

should be developed targeting the application scenario. For example, the application

for advertisement in smart phones may not be feasible for detecting boredom in a

learning environment. We also find that arousal can be captured easier than valence.

One such application might be capturing arousal from pupil size which is also a good

approximation of the arousal space. However, for mobile devices it might not be

appropriate because of the change of lighting and all other conditions. We believe that

by real time sensing of affective states using smart phones, we can machine interpret

human affective states and machines can understand part of larger human intelligence.

With the continuous advancement of sensor technologies in smart phones, we can

predict human affective states more accurately and the application of such affect

detection technique might be huge.
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Chapter 4

Pain Level: Smart Phone Based Pain Level Detection

4.1 Introduction

Timely and accurate information about patients symptoms is important for

clinical decision making such as adjustment of medication. Because of the limitations

of self-reported symptoms such as pain, whether facial images can be used for

detecting pain level accurately using existing algorithms and infrastructure for cancer

patients was investigated . For low cost and better pain management solution, a smart

phone based system for pain expression recognition from facial images is presented.

To the best of our knowledge, this is the first study for mobile based chronic pain

intensity detection. The proposed algorithms classify faces, represented as a weighted

combination of Eigenfaces, using an angular distance, and support vector machines

(SVMs). A pain score was assigned to each image by the subject. The study was done

in two phases. In the first phase, data were collected as a part of a six month long

longitudinal study in Bangladesh. In the second phase, pain images were collected for

a cross-sectional study in three different countries: Bangladesh, Nepal and the United

States. The study shows that a personalized model for pain assessment performs better

for automatic pain assessment and the training set should contain varying levels of

pain representing the application scenario.

In excess of 8 million individuals globally die each year from cancer and

three-quarters of these are reported to suffer from pain [99]. A primary barrier to

provision of adequate symptom treatment is failure to appreciate the intensity of the

symptoms most commonly pain–patients are experiencing [88]. One difficulty for

health care providers in helping patients with chronic conditions like cancers is having

accurate, complete, and timely information about symptoms, daily information if

possible. In particular, failure to use (repeatedly) validated symptom assessment tools
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prevents communication between patients and health-caregivers to bring attention to

symptoms issues [9]. The usual way to obtain such information is to ask office-visiting

patients standard questions about their symptoms and their intensities. For patients

with cancer the most widely used questionnaires for this task are the Edmonton

Symptom Assessment Survey (ESAS) or the Brief Pain Inventory [20][24]. Common

practice is to have patients provide answers on paper to these instruments when they

are seen in doctors offices. This practice of course means that the data obtained only

cover the particular situation the patient is in at that time. For example the patient may

have taken extra pain medicines because of the appointment trip and wait in the

doctors office. A more abbreviated symptom assessment strategy in doctor-patient

encounters is simply to have patients verbally report their current level of pain on a

visual analogue 1-10 scale; sometimes a picture of this scale with figure faces showing

different levels of distress is used. However, this is a one-time and one-item

assessment strategy.

In an ideal situation, to monitor patients more completely and know every day

how patients feel and then of course to make adjustments in treatments, such as types,

amounts and timing of pain medicines, it would be good to have data from such

questionnaires every day. In studies where patients have home computers, such daily

assessments reported by email and the resultant treatment adjustments, are associated

with increased quality of life and survival in terminally-ill patients with lung cancer. In

settings where hospice programs are available, patient and family satisfaction is clearly

related to intensity of monitoring and consequent associated prompt adjustments of

symptomatic managements. This intensity of hospice monitoring is almost always

greater than patients have had in their regular care, which has been usually and mostly

based on patient office visits face-to-face. Management through phone contact, or

email contact is usually limited, mostly because doctors are uncomfortable with their

command of the full picture of the problems they are managing, but also because the
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practice of medicine has historically been based on face-to-face encounters. All of

these issues are magnified in low- and middle income countries where limited access

to care, sub-optimal quality of care and usually no hospice care at all, are the norms.

One more practical way to make obtaining such more detailed symptom

information possible and usable by physicians, is to put the questionnaires on a cell

phone software platform, which the patient or his/her attendant could then complete at

home and send by phone each day to a doctors records/office. Such a system was

developed [43] and we are now trying to scale this up into a tele-home hospice system

in rural Bangladesh. Our experience has highlighted two broad issues; first particularly

with respect to chronic pain which characterizes the situation for patients with

incurable cancers, there is an apparent dis-connect between what patients report about

their pain levels using the standard instruments and their affect. Patients often report

high pain levels while smiling. Second, many patients cannot use these instruments

because of limited cognitive abilities or other medical conditionsfor example patients

who are seriously ill in medical intensive care units. These issues have led us to

investigate whether we could reproducibly and accurately record and quantitate

patients pain levels using cell phone camera images of facial expression. In this

communication we address three broad questions in our investigation: First, can in fact

facial images be used to reproducibly assess pain intensity among cancer patients?

Second, what algorithm can define pain intensity most accurately? Third, what system

design issues arise in this work?

Facial expression for quantitative pain assessment has its roots in psychology.

There have been historical concerns about the objectivity of self-report assessments

and their susceptibility to behavioral bias [77]. As a result, there is ongoing work to

identify universal cues for pain expression. Prkachin et al. showed that indices of

facial expression change due to variations of pain [78]. Ekman and Friesen’s [30]

Facial Action Coding System (FACS) has been used to identify universal Action Units
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corresponding to pain expression. It has been shown that for cold, pressure, ischemia

and electric shock there are significant changes in four types of actions - brow

lowering, eye orbit tightening, upper-lip raising/nose wrinkling and eye closure [76].

Prkachin and Solomon defined a Prkachin and Solomon Pain Intensity (PSPI) measure

as the sum of the intensities of these four actions [60]. Therefore, it appears that there

are multiple facial expression components (i.e. action units) that together comprise the

facial expression depicting the intensity of pain experienced by individuals.

We conclude that a few specific action units correspond to pain intensities for

most pain expressions. For acute and chronic pain, the change in different action units

might be of different magnitudes. A large amount of data for a particular target

application (e.g. pain monitoring for chronic pain) improves the accuracy of pain

intensity predictions using facial expressions [60]. While it is comparatively easy to

identify changes in action units due to acute pain, it is more difficult to find the exact

change in action units due to chronic pain. In this context, instead of using the FACS,

we use principal component analysis to extract information that would give us

reasonable variance across a given data set for pain expression. The fact that the

principal component analysis gave that the four core action units comprises 0.30 or

greater fraction of pain expression across all pain tests [80] supports this claim.

Therefore, we chose to use a principal component based method for detection of pain

expression. Eigenface method is such a method. Each of the Eigenfaces corresponds

to different levels of variance in the training data set.

To the best of our knowledge, our study is the first that does both longitudinal

and cross sectional study to measure pain intensity from facial images for chronic

pain. There has been works to measure pain from facial expressions using principal

component analysis (PCA)[67] but the accuracy was low. Previous works do not use

images of a single subject over a long period using a longitudinal data set for chronic

pain. A longitudinal dataset reduce the need for requiring a large sample by removing
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individual differences in pain expression and behavioral bias of self-report pain

intensity. In addition, a longitudinal study would allow us to know if a person’s use of

facial expressions for representing pain changes over time or they consistently use the

same expressions. This work explores machine learning techniques for automatic pain

detection from facial images. We show that an algorithm that uses Eigenface method

with proper distance measure works for pain intensities.

4.1.1 Contribution

The contribution of this work is three fold. First, in this work we have designed

and deployed a mobile based system for remote monitoring of pain intensity from

facial images using a smart phone camera. In contrast to other systems for emotion or

pain detection, we have deployed the healthcare tool and it has been tested in a clinical

setting (results section). Second, we have identified the issues regarding training and

testing for better algorithm development for pain intensity detection (discussion

section). Third, we have identified the design challenges to overcome the barriers to

deploy the system for remote monitoring of pain intensity from facial expression

(design issues section). Each pain image is labeled with a value between 0 and 10 (0

being the lowest and 10 being the highest pain intensity) and the Eigenface method

that we develop has a mean absolute error of 2.483 for a single training database of all

the subjects. The system can be used in different settings including:

• Remote monitoring of pain

• ICU Patients

• Neonates

• Verbally impaired patients
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4.2 Our Approach

4.2.1 Related Work

Self-report of pain is considered an objective measure with a behavioral bias

[77]. There has been much research on obtaining a more objective measure for pain

detection using tissue pathology, imaging procedures, testing of muscle strength, etc.

[97]. These approaches are not suitable for our case as these are highly invasive and

require specialization and also not very accurate.

Facial expressions have also been used to detect pain [60]. Research in pain

detection from facial expressions was initiated by identifying the Facial Action Coding

Systems (FACS) for pain [30]. Prkachin et al. validated the use of several facial action

units (AUs) namely brow lowering, eye orbit tightening, levator contraction and eye

closing to constitute pain expressions in the face [80]. However, the method has been

recently developed and only been tested in a small sample of patients. This method

was developed using a sample that combined individuals with both acute and chronic

pain but it is well known that the clinical presentation of chronic pain can be very

different from acute pain [41].

Pain detection from facial images using FACS has been explored [7]. But most

systems that use FACS identify presence versus absence of pain, which does not

provide a quantitative estimate of the pain intensity. Recently there has been a shift in

research of affect detection from a lab environment to a natural environment i.e., in

situ measurement of emotion. Ayzenburg et al. [10] used electro dermal activity for

stress detection of a mobile user in their natural environment. Microsofts SenseCam

has also been used for logging emotional data in a natural setting. Isbister and her

colleagues designed Yamove! to introduce social interaction in dance games [47].

Many research studies describe facial expressions that individuals use when in

pain at different age levels (neonatal, adult) [27][28][29][37][38], groups of patients
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including pregnant women, patients suffering from shoulder pain [79], knee pain, and

chronic pain etc. However, limited work has been conducted on the topic of automatic

detection of pain from facial expressions. Several studies have been performed by

examining which facial action units are used to express pain [59][58].

A number of methods have been used to identify pain from facial expressions.

Different classifiers such as support vector machine (SVM), AdaBooster, Gabor filter,

and hidden Markov model (HMM) have been used alone or in combination with others

to achieve greater accuracy. Researchers have used active appearance models (AAM)

to identify specific facial features associated with pain [8][7]. The Eigenface-based

method was deployed in an attempt to find a computationally inexpensive solution

[66]. Later the authors included Eigeneyes and Eigenlips to increase classification

accuracy [68]. Several authors have relied on artificial neural network-based back

propagation algorithms to distinguish between pain versus no pain from facial features

[83][67]. A Bayesian extension of SVM named relevance vector machine (RVM) has

been adopted [71] to increase classification accuracy. Niese et al. and Becouze et al.

attempted to measure pain experienced by ICU/post-operative patients [12][71].

Becouze et al. built an algorithm based on the hypothesis that pain results in forming

extra wrinkles [12]. Niese et al. used a photogrammetric technique for finding features

and later a SVM filter with a radial basis function (RBF) Gaussian kernel was for

detecting pain [71]. Brahnam et al. worked to find pain in neonates [19][18].

Monwar et al. presented a method for recognizing pain expression from video

[66]. The extracted face image was used to build a feature space defined by

Eigenfaces. The Eigenfaces are images corresponding to different eigenvectors of the

training set images. Finally, each new image was tested by projecting the image onto

the feature space and finding the corresponding label of the training set. The closest

labeling was found using the Euclidean distance measurement of the weight vector.

Ashraf et al. also presented an approach for detecting pain from video
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sequences of facial expressions [8]. The image database was obtained from the

UNBC-McMaster shoulder pain expression database with images of adult patients

with rotator cuff injuries. The authors used a holistic approach to create active

appearance models (AAM) for a face and support vector machines (SVM) were used

as the classifier.

Boehner et al. [15] showed that emotion is not an objective measure and should

be considered as a subjective experience. Pain is obviously a subjective form of

emotion and should also be measured out of the lab. The Eigenface method was

applied in face recognition in [98]. It has also been applied in emotion recognition

[105] and pain and no pain condition detection in face images [66].

Almost all of these approaches are impacted by one or more of the following

deficits: 1) reliability on a clear frontal image, 2) out-of-plane head rotation, 3)

dilemma in correct feature selection, 4) failure to use temporal and dynamic

information, 5) considerable amount of manual interaction, 6) inability to handle

noise, illumination, glass, facial hair, skin color issues, 7) high computational cost, 8)

lack of mobility and 9) failure to classify intensity of pain level.

4.2.2 Design Issues

In the beginning of our work, we spent several weeks in clinics and hospitals

and in home visits with cancer patients in Bangladesh learning about patient needs and

health care professional challenges. Our experiences reinforced our sense that the

usual current system of office visits for patients with advanced cancers and pain serves

patients poorly. Physicians expressed significant interest in having real time usual day

and activity symptom data on their patients. Subsequently we spent similar durations

of time in the field working on deployment of our system.



40

Availability of Mobile Network

Among poor rural Bangladeshi patients we were encouraged to find that among 45

patients surveyed, 43 had access to a cell phone. Additionally we found that these

patients were served by good data networks. Most image processing techniques

require very high computing power and it is difficult to use a smart phone for this

purpose. The availability of good mobile data networks made it possible for us to use

the cloud for photo images using advanced software such as Matlab.

Smile for the camera

Common practice in affective computing is that when a person has a photo image of

their face taken for assessment of affective state, he or she is asked to pose for the

camera or smile for the camera [15]. To address the biases this usual practice likely

creates, we elected to take two facial expression pictures in each studied patient. The

first (candid) image was taken without giving any instructions. The second image was

taken after providing specific directions. We instructed the patient to make a facial

expression that reflected their current pain level. We defined that image as the acted

pain and the image without instruction as the real pain for the purpose of this paper. In

our training data set to be described below (dataset subsection), the images were

randomly selected from acted pain and real pain images.

Personalized Model

In the first phase of our work, our goal was to identify pain levels from facial

photographs for individuals followed longitudinally. There is a significant amount of

variance in pain levels with facial expressions among individuals. As a result, we

hypothesized that a training database with multiple images from a single person would

eliminate this variance. Furthermore, individualized training databases for pain

intensity would accommodate for different total numbers of images from individuals.
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Figure 4.1: Screen shots of mobile application for labeling and uploading pain image.
The first screen (a) shows status of image upload and the second screen (b) shows
labeling of pain intensity using a sliding bar in the local language Bangla.

4.2.3 Data

Our protocol for the longitudinal pilot study in a small number of patients was

approved by the Institutional Review Board (IRB) at Marquette University and by The

Bangladesh Medical Research Council in Bangladesh. All patients provided written

informed consent. Each patient was given a Nokia X6 phone with internet provided by

Grameen Phone, the largest mobile service provider in Bangladesh. The patients (all

women) were aged between 35 and 48 years.

Fourteen (14) subjects were recruited for the study. Each subject and the

attendant of the subject were trained how to take the pictures using the camera at the

health center. The key aspects of the training and image creation are:

• A doctor would take a picture of the subject.
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• The subjects were told about the Visual Analog Scale (VAS), which describes

the pain intensity with 0 being the no pain and 10 being maximum pain possible.

Figure 4.2 was used to explain the scale of pain intensity which is also written in local

language Bangla. While taking the picture, the subjects were asked

• To take a picture of only the face.

• To use a light background.

• Not to use sunglasses, if possible.

From among the 14 patients, 6 lived longer than 3 months and regularly provided a

total of 454 usable images

Figure 4.2: Visual Analog Scale (VAS) in the local language Bangla used for training.
For each of the pain intensity levels indicated on the line, the image of the face repre-
sents possible expression in the face. 0 means no pain and 10 (far right) indicates the
highest possible level of pain.

In the second phase of our work we conducted a cross sectional study. The

protocol for this study was approved at Marquette University and by the responsible

ethical review boards in Bangladesh, Nepal and Rapid City South Dakota in the United

States. In this study we recruited patients presenting for a clinic visit with advanced

cancer and at that single visit obtained two facial images as noted aboveone candid and

one after specific instructions. Table 4.1 shows that we obtained usable photographs
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Longitudinal Study
Subject Training Set Test Set Total

A 6 8 14
B 36 80 116
C 36 124 160
D 6 6 12
E 36 78 114
F 6 32 38

Cross-sectional Study
Location Training

Set
Test Set

Bangladesh 454 131
Nepal 454 311

United States 454 513

Table 4.1: Image data set size for longitudinal and cross sectional study. The entire data
set for longitudinal study was used as the training data set for the cross sectional study.

for 131 Bangladeshi, 311 Nepali, and 71 American Indian patients. 36 randomly

selected images were used as the training set for each subject during the longitudinal

study. For the cross sectional study, the entire dataset of the longitudinal study (454

images) was used as the training set.

4.2.4 Eigenfaces

This method is based on Principal Component Analysis (PCA) [95][96]. The

analysis technique includes only the characteristic features of the face corresponding

to a specific pain level and leaves other features. The resultant images are used as

samples for training with M Eigenfaces for the highest Eigenvalues. The Eigenface

method was described in chapter 3.

This technique can be explained using the Figure 4.3. The projected image is a

linear combination of eigenfaces. We find the image that is the closest match of the

linear combination of the eigenfaces.
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Figure 4.3: Each image is represented as a linear combination of the Eigenfaces

4.2.5 Closest weight vector of the image

For the classification of the weight vectors, we applied three approaches. These

approaches used Euclidean distance, angular distance and support vector machine

respectively. Different distant measures were needed for the high dimensions of the

weight vectors. The dimension of the weight vector is equal to the number of images

minus one in the training set. Consequently, for a training set of 36 images, we have 35

Eigenfaces and the weight vector was of 35 dimensions. The angular distance defined

in [103] is, d(A,B) = (A.B)
(|A||B|) Angular distance works better (mean absolute error

decreases) than Euclidean distance in high dimensional space. We also used support

vector machine to improve the sensitivity and specificity for each pain class. Support

vector machine is a classification problem where the series of input variables

X1, X2, X3Xn and their corresponding class labels C1, C2, C3Ck are given. The

classification problem is given a new input variable X , which would be the class label.

This is a binary classification problem which can be extended to multi-class classifier.

To classify a new input vector, the classifier function is defined as y(x) = W Tψ(x) + b

Where ψ is a continuous feature space transformation, W is the weight vector and b is

the bias parameter.
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4.3 Results and Evaluation

The results of our system were evaluated in terms of two performance measure:

the mean absolute error and, sensitivity and specificity analysis for the three pain

classes, low (L), medium (M) and high (H). Pain level between 1 and 4 was termed as

low, between 5 and 7 was considered as medium and between 8 and 10 was defined as

high. This classification into three categories is similar to the Brief Pain Inventory

which has been proposed and validated across different cultures [24]. As a

consequence of insufficient data for subjects A, D, and F (Table 4.1), the results are

shown only for subjects B, C and E, for which there were 36 images in the training set.

4.3.1 First phase–longitudinal study

Mean Absolute Error

We have six different training sets for the six subjects from the first phased

longitudinal study. These training sets have a randomized combination of 36 images

when available (subjects B, C, E) of acted and real pain. The training sets in this setup

are referred as personalized training database in this paper. There are two reasons for

this. As indicated earlier such a training set would eliminate the individual differences

in pain expression. Second, our ’gold standard’ or ground truth, the pain level provided

by the subjects, is objective but with a behavioral bias. A personalized training

database would eliminate that behavioral bias. Each subjects images were tested

against the training set of the corresponding subject. With the personalized training

database, we tested the classification algorithm with three distant measures: Euclidean

distance, angular distance and support vector machine. Euclidean distance gave poor

results and is not reported here. The mean absolute error for angular distance and

support vector machine is shown in Table 4.2. Subjects A, D and F had only six

images in the training set. As a result, the method did not work well and the results for

subjects B, C and E are reported here. A 10 fold cross validation was performed.
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Subject B Subject C Subject E
Cross
Val

Angular SVM Angular SVM Angular SVM

1 0.95 1.07 0.71 0.88 1.06 0.64
2 1.02 1.142 0.71 0.77 1.01 0.67
3 0.79 0.81 0.75 0.80 1.04 0.68
4 1 1.01 0.8 0.78 0.98 0.66
5 1.12 0.97 0.83 0.83 0.98 0.72
6 1.07 0.86 0.707 0.94 1.22 0.66
7 0.88 0.94 0.82 0.87 1.09 0.62
8 0.83 0.91 0.73 0.92 1.12 0.75
9 0.92 0.73 0.78 0.82 1.04 0.53
10 1.04 1.05 0.79 0.78 0.96 0.63
Mean
±SD

0.96
±
0.10

0.94 ±
0.12

0.76 ±
0.04

0.84 ±
0.06

1.05 ±
0.08

0.66 ±
0.05

Table 4.2: Mean absolute error for a 10 fold cross validation for the longitudinal study.

Sensitivity Analysis

For reproducible use in clinical settings it would be optimal to reduce the mean

absolute error for pain level assessment. It is also important that the input and output

pain distributions are similar or it may be possible that the system is always giving the

same pain level as output but the mean absolute error is low. From a machine learning

perspective, the system would perform well when the input pain level distribution is

similar to that of the training data set. For a robust clinical decision support system we

want the system performing well independent of the input pain level distribution. The

sensitivity and specificity of each class (low, medium and high) of a 10 fold cross

validation for subjects B, C, and E are shown in Figure 4.4.
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Figure 4.4: Sensitivity and specificity of a 10 fold cross validation for the longitudinal
study

4.3.2 Second phase– cross-sectional study

Our findings from the first phase analyses could benefit from validation across

a large numbers and different populations. Because of the individual differences in

pain expression and behavioral bias from self-reported pain level data, a decrease in

the system performance with non- longitudinal and different population data was

expected. For the cross sectional study we had one image for each subject with a total
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Angular SVM
Sensitivity Specificity Sensitivity Specificity

L M H L M H L M H L M H
0.55 0.39 0.02 0.40 0.58 0.99 0 1 0 1 0 1

Table 4.3: Sensitivity and specificity for the cross-sectional study when the entire data
set from the longitudinal study was used as the training data set.

of 513 subjects. We experimented with different data set for the training. We found

that when we used the entire data set for the longitudinal study (454 images for six

subjects) as the training database, we had a mean absolute error of 2.91. The

sensitivity and specificity analysis is given in Table 4.3.

4.4 Discussion and Findings

4.4.1 Personalized model works better

The classification accuracy using the method works much better for the

longitudinal study when we use the images of one person over a long time. Table 4.2

shows that we had a mean absolute error less than 1 for the longitudinal study. This

proves the subjectivity of pain expression and reflects the behavioral bias of the

individual. We also found for the Eigenface method, angular distance and SVM gave

similar result when used with the longitudinal dataset, but angular distance was better

for the cross-sectional study (Table 4.3).

4.4.2 Distribution of pain level in the training set

The sensitivity and specificity varied much across different subjects and

different training database. The primary reason for that is the lack of images of the

representing class (low, medium and high) in the training data set. For example, the

sensitivity was very high for the class low for subject C whereas for subject E, the

sensitivity was high for the medium pain level across each cross validation (Figure

4.4). Analysis of the percentage of images with low and medium pain level in the

training database explains this result. We had a high percentage of images with low
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pain level for subject C in the training set, resulting in better accuracy for low pain

level for subject C (Figure 4.5).

Figure 4.5: Fraction of the number of images for the two different classes (low and
medium) and the sensitivity for each class for the 10 fold cross validation during the
longitudinal study.

4.4.3 Application scenario

It has been shown that pain measurement can be used in clinical settings for the

improvement of the quality of life for cancer patients with pain using pain assessment

tools such as Brief Pain Inventory (BPI) [5]. Consequently, automatic pain detection

into three categories: low, medium and high has application in clinical settings. The

primary goal is accurate and timely intervention for cancer patients with pain. One of

the barriers to that is inadequate measurement of pain levels and such systems are of

importance to address this problem.

4.5 Conclusion

Automatic emotion detection from facial images is a challenging research

problem and a significant amount of work has been done in this area during the last

twenty years [96][104]. The success of these application specific systems depends on

narrowing down the context of the application and collecting enough data from specific

settings [60]. In this paper we showed that a smart phone based tool can be used for
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remote monitoring of pain intensity for long term pain management with appropriate

training dataset. Most works for pain detection involve the detection of pain or no pain.

But in a clinical setting pain intensity is very important. The use of a mobile phone for

pain intensity detection might reduce the healthcare costs and allow assessments in

otherwise un-evaluable patients. Further work is needed to address the issues of

appropriate training set for target application and selection of the right algorithms. The

usability of such systems with patients with chronic pain and the effect on the system

performance due to candid image and acted image also needs to be investigated.
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Chapter 5

Arterial Blood Pressure: Novel index for Identifying Early Mark-
ers of Hemorrhage

5.1 Introduction

Identifying the need for interventions during hemorrhage is complicated due to

physiological compensation mechanisms that can stabilize vital signs until a

significant amount of blood loss. Because the physiological systems providing

compensation affect the arterial blood pressure waveform through changes in

dynamics and waveform morphology, we propose that Markov chain analysis of the

arterial blood pressure waveform can be used to monitor physiological systems

changes during hemorrhage. Continuous arterial blood pressure recordings were made

on anesthetized swine (N=7) during a 5 min baseline period and during a slow

hemorrhage (10 ml/kg over 30 min). Markov chain analysis was applied to 20 sec

arterial blood pressure waveform segments with a sliding window. 20 ranges of arterial

blood pressure were defined as states and empirical transition probability matrices

were determined for each 20 sec segment. The mixing rate (2nd largest eigenvalue of

the transition probability matrix) was determined for all segments. A change in the

mixing rate from baseline estimates was identified during hemorrhage for each animal

(median time of 13 min, 10% estimated blood volume, with minimum and maximum

times of 2 and 33 min, respectively). The mixing rate was found to have an inverse

correlation with shock index for all 7 animals (median correlation coefficient of -0.95

with minimum and maximum of -0.98 and -0.58, respectively). The Markov chain

mixing rate of arterial blood pressure recordings is a novel potential biomarker for

monitoring and understanding physiological systems during hemorrhage.
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5.2 Related Work

Hemorrhage is a medical emergency frequently encountered by clinicians in

situations as diverse as emergency and operating rooms, intensive care units or mass

casualty incidents. A significant amount of blood loss due to hemorrhage can cause

hemodynamic instability, inadequate issue perfusion, hemorrhagic shock, and, if left

untreated, eventual death [39]. Hemorrhage is the cause of 40% of deaths after a

traumatic injury in the United States [54]. One of the limitations to treating

hemorrhage is that vital signs can appear normal until a significant blood loss has

occurred. This delay in vital sign changes is due to the action of the sympathetic and

parasympathetic control of blood pressure, which can effectively compensate until

blood loss is significant. There is therefore much interest and value in identifying early

and sensitive biomarkers of hemorrhage.

Heart rate variability is one method suggested in the literature to identify

hemodynamic instability due to hemorrhage [94]. Although it has been shown that

aggregate group mean values of heart rate variability are correlated with stroke

volume, heart rate variability is less reliable when tracking individual reductions in

central volume during progressive lower body negative pressure or simulated

hemorrhage [87]. It has been suggested that reductions in vagal activity assessed with

heart rate variability or baroreflex sequences may represent identifiable early markers

of hemorrhage [62]. Loss of blood volume triggers withdrawal of the parasympathetic

nervous system and activation of the sympathetic nervous system which tries to

compensate for the drop in blood pressure. As a result, during the early stages of

hemorrhage the mean arterial pressure may remain constant and when a significant

change in blood pressure is eventually identified, the available medical interventions

may be limited. Markov chain methods may describe changes in the compensating

autonomic system dynamics related to hemodynamic instability prior to changes in
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traditional vital signs, potentially providing an early indicator of hemorrhage.

A Markov chain is defined as a system with different states where the transition

probability from one state to the next depends only on the current state, the Markov

assumption. A discrete Markov chain can be described by a countable number of states

(S) and a transition probability matrix (P) which describes the evolution of a sample

path from one state to the other. Regular Markov chains have a limit distribution or

steady state. The mixing rate of a Markov chain represents how fast the system is

approaching the steady state. Empirical Markov chains can be constructed from

sample time series data or first principles. Eigenvalues of Markov chains capture

information about changes in system dynamics, which cannot otherwise be captured

with nonlinear methods such as Poincare plots [63]. Properties of the transition matrix

eigenvalues such as the presence of complex numbers, information content of the limit

distribution, and the mixing rate (i.e. the second largest eigenvalue) can be examined

to better understand the underlying system.

The change in dynamics of the physiological systems that are represented in

the arterial blood pressure (ABP) waveform as the body attempts to compensate for

blood loss may be captured by the eigenvalues of the Markov chain. An empirical

Markov chain can be constructed from ABP recordings. Each state of the Markov

chain can be defined as a blood pressure range (e.g. 80 85 mmHg), and the steady

state then represents the probability that the signal is at any one range. As the system

dynamics and waveform morphology change, the system will approach steady state

faster or slower and this can be observed through the mixing rate.

Here, we present a method to monitor the mixing rate of ABP waveforms. We

hypothesized that a detectable change in the Markov chain mixing rate will occur prior

to noticeable changes in traditional vital signs in an anesthetized swine model

undergoing hemorrhage.
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5.3 Our Approach

5.3.1 Experimental Protocol

Experiments were performed at University of Texas Medical Branch at

Galveston. The protocol was approved by the University of Texas Medical Branch

Institutional Animal Care and Use Committee (IACUC). Immature swine (N=7,

female, 37.1 15.1 kg (mean SD)) were propofol anesthetized and instrumented with

bilateral catheters in femoral arteries and veins. An arterial pressure catheter was

advanced 40 cm into the artery for proximal arterial readings. The carotid artery was

catheterized for hemorrhages, a Foley catheter was inserted into the bladder, and a

splenectomy was performed. The animal was given a period of at least 30 minutes to

recover upon the completion of surgery before data collection.

Data was collected during a slow continuous hemorrhage of 10 ml/kg over 30

min. Physiological monitoring began at least 5 min prior to the initiation of the

hemorrhage and occurred throughout the experiment. ABP was recorded using a

standard clinical pressure transducer at a sampling rate of 1,000 Hz.

5.3.2 Signal Processing

Heart rate and beat-by-beat blood pressures (systolic, diastolic, mean) were

calculated from the ABP waveform using the publicly available code by Zong et al.

[106][36]. This algorithm uses a windowed and weighted slope sum function to

identify ABP waveform features for each beat. ABP waveform data were down

sampled to 125 Hz prior to feature identification. Shock index was calculated by

dividing heart rate with systolic blood pressure [82].

5.3.3 Markov Chain Analysis

For computational efficiency, ABP waveforms were down sampled to 100 Hz

for the Markov chain analysis. A moving average window (length 2000 samples) was
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subtracted from the ABP waveform to remove the effect of a change in the mean

arterial pressure from the Markov model.

Figure 5.1: Figure 1.(a) 2 seconds recording (sampled at 100 Hz) of an arterial pressure
waveform with 3 states. (b) Example Markov chain and its transition probabilities for
the three states from the arterial blood pressure wavefrom in (a).

An empirical Markov chain was created from the ABP waveform by

segmenting the range of pressure (minimum to maximum pressure recorded for each

segment) over a specified window into a fixed number of states, each covering an equal

range of blood pressure. Figure 5.1(a) shows a sample ABP waveform filtered using a

moving average filter with the same length for two seconds with three states for

illustration. The range of blood pressure for each state is computed by dividing the

difference of the maximum to the minimum of the blood pressure waveform by three.

The empirical transition probability matrix represents the probability that blood

pressure will enter any state given only the state that it is currently in. The entry at the

ith row and jth column represents the probability with which blood pressure would

change from the ith to jth state. To compute the transition probability matrix, the state

is defined for each sample by identifying the blood pressure range the sample lies in.

Then, the matrix is filled by computing the number of instances a sample moves from

state i(Si) to state j(Sj) over all samples. Finally, the matrix is normalized by dividing
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Animal Heart
Rate

Systolic
Blood
Pressure

Pulse
Pressure

Shock
Index

A -0.10 0.47 0.56 -0.59
B -0.99 0.94 0.98 -0.93
C -0.09 0.96 0.93 -0.95
D -0.99 0.98 0.93 -0.98
E 0.36 0.78 -0.31 - 0.82
F -0.76 0.97 0.96 -0.98
G -0.98 -0.66 -0.95 - 0.97

Group Statistics
Median -0.76 0.94 0.93 -0.95

Min -0.99 -0.66 -0.95 -0.98
Max 0.36 0.98 0.98 -0.59

Table 5.1: Correlation coefficients between mixing rate and vital signs during hemor-
rhage.

each row with the sum of the row to have a probability distribution. These probabilities

are shown by the arrow labels in the Markov chain in Figure 5.1(b) which corresponds

to the example ABP waveform in Figure 5.1(a).

The eigenvalues and the left eigenvectors are determined from the transpose of

the transition probability matrix. For a regular Markov chain, all eigenvalues have

magnitude less than or equal to 1. 1 is always an eigenvalue, and the eigenvalue with

the second largest magnitude is defined as the mixing rate.

We tested a range of window sizes (5 to 30 seconds) and number of states (5 to

30) using the FDA Scientific Computing Laboratory Blue Meadow cluster with Octave

parallel computing to identify the appropriate settings for observing changes in the

mixing rate of the ABP waveform. The final window length and number of states used

for the results reported here were selected as 20 sec and 20, respectively.

5.3.4 Correlation coefficient

Pearson correlation coefficients were determined between the mixing rate and

each vital sign (heart rate, pulse pressure and systolic blood pressure).

The mixing rate (determined at 100 Hz of ABP) was first interpolated using a
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Animal

Time
till
Mix-
ing
Rate
changed
de-
tected
(min)

SBP
(mmHg)

HR
(BPM)

PP
(mmHg)

SI
(BPM/mmHg)

A 25 -38 0 -11 0.37
B 2 -7 5 -3 0.07
C 7 -23 6 -7 0.35
D 13 -17 21 -13 0.33
E 17 -19 -2 1 0.19
F 33 -19 4 10 0.14
G 12 -1 6 -2 0.04

Group Statistics
Median 13 -19 5 -3 0.19

Min 2 -38 -2 -13 0.04
Max 33 -1 21 1 37

Table 5.2: Timing of significant change in Mixing Rate and corresponding vital sign
changes

cubic spline to match the vital signs (determined at 125 Hz of ABP) that were

computed using the Physionet code and all signals were then smoothed using a moving

average filter (100 samples window) before computing the correlation coefficients.

5.3.5 Detection of change in the mixing rate

A probabilistic approach was applied to detect a change in the mixing rate

during hemorrhage. The distribution during the 5 min baseline period was considered

and the 95% confidence interval was determined. A change in the mixing rate was

considered at the first instance from the start of hemorrhage when 4 mixing rates

(selected from a twelve point window, each of them three points apart) were outside of

the 95% confidence interval in the same direction.
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5.4 Results and Evaluation

Figure 5.2 shows the vital signs and the mixing rate for each animal starting

from 5 minutes before the start of hemorrhage through the 30 min hemorrhage.

Hemorrhage was initiated at the red vertical line (0 min). The heart rate exhibited a

heterogeneous response to hemorrhage between animals. Heart rate was almost

constant in 4 animals while in 3 a dramatic rise in heart rate occurred. Most animals

have a steady decline in blood pressure and pulse pressure. Shock index, which

captures the changes in both heart rate and blood pressure rises for all animals. The

mixing rate decreases consistently in most cases.

The correlation coefficients between the mixing rate and the vital signs

quantify the relationship between the two and are presented in Table 5.1. Overall, the

mixing rate was inversely correlated with heart rate and positively correlated with

blood pressure and pulse pressure, but these were not consistent across all animals.

The mixing rate and shock index showed a strong inverse correlation for all animals.

The first time that a statistically significant change in the mixing rate was identified for

each animal is presented in Table 5.2. There was significant variation between swine in

the time that a change was detected, ranging from 2 to 33 min.
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Figure 5.2: The vital signs (heart rate, systolic blood pressure, and shock index) for
each animal along with the mixing rate during hemorrhage. Each color represents a
different animal.The red vertical lines in each subplot indicate the start of hemorrhage.
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The change in systolic blood pressure, heart rate, pulse pressure, and the shock

index at the time a change in the mixing rate was detected is also presented in Table

5.2. We see that the mixing rate change is identified for most swine prior to a

significant change in the heart rate (median change of 5 BPM), pulse pressure (median

change of 3 mmHg) or even shock index (median change of 0.19 BPM/mmHg). At the

time a change in the mixing rate was detected, the systolic blood pressure had dropped

by a median of 19 mmHg.

5.5 Discussion

In an anesthetized pig model, the Markov chain mixing rate of the ABP

waveform is strongly correlated with the vital signs. It has a correlation greater than

0.5 with systolic blood pressure (5 out of 7 animals) and inverse correlation greater

than 0.5 with heart rate (4 out of 7 animals) and shock index (7 out of 7 animals).

The relationship between the mixing rate and the shock index indicates that

this new variable might be an indicator of impending hemodynamic imbalance. Shock

index is widely used in clinical scenarios for identifying patients that need immediate

care. It has been shown that patients with an increasing or high shock index have a

higher mortality likelihood [21]. The decreasing mixing rate may provide further

information about the hemodynamic status of a patient. The shock index is computed

from mean vital signs whereas the mixing rate is derived from the dynamics/waveform

morphology. As a result, it is not necessary that they provide the same information.

The resulting high correlation suggests that the Markov chain mixing rate is capturing

changes in the system dynamics or waveform morphology that occur due to the same

physiological system changes that affect the mean heart rate and/or blood pressure.

A decreasing mixing rate indicates one special kind of hemodynamic

imbalance that occurs due to hemorrhage. Eigenvalues of Markov chains have

previously been shown to be identifiers of changes in system dynamics [63]. The

construction of the Markov chain from time series data indicates that a change in
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waveform morphology or a change in system dynamics might cause a decreasing

mixing rate. ABP waveform morphology has been shown to change during central

hypovolemia [11]. In the present study, we did not determine if the effects of dynamic

or morphological changes in the ABP waveform affect the mixing rate. We suspect

that both contribute to the observed decrease in the mixing rate during hemorrhage. To

identify if the changes in mixing rate are due to a specific change in waveform

morphology, a comparative study of the timing of the changes in the ABP morphology

and the timing of the change in mixing rate is needed.

The mixing rate change could be observed for a specific number of states (20)

and specific window size (20 seconds). This suggests that the waveform morphology

or system dynamics changes can be captured by this method with a 20 seconds

waveform segment. This might be useful to understand the utility and the limitation of

this method to identify hemorrhage or predicting impending hemodynamic imbalance.

Further work is needed to determine the utility of the mixing rate in hemodynamic

monitoring.
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Chapter 6

Heart Rate, Oxygen Saturation, and Perfusion Index: Measur-
ing Vital Signs Using Camera of the Smart Phone

6.1 Introduction

Smart phones with optical sensors have created new opportunities for low cost

and remote monitoring of vital signs. In this paper, we present a novel approach to find

heart rate, perfusion index and oxygen saturation using the video images captured by

the camera of the smart phones with mathematical models. We use a technique called

principal component analysis (PCA) to find the band that contain most

plethysmographic information. Also, we showed a personalized regression model

works best for accurately detecting perfusion index and oxygen saturation. Our model

has high accuracy of the physiological parameters compared to the traditional pulse

oxymeter. Also, an important relationship between frame rate for image capture,

minimum peak to peak distance in the pulse wave form and accuracy has been

established. We showed that there is an optimal value for minimum peak to peak

distance for detecting heart rate accurately. Moreover, we present the evaluation of our

personalized models.

6.2 Related Work

The use of mobile phones for healthcare solutions are creating new

opportunities for the solution of one of the greatest problems of humanity, providing

healthcare to low income people [52][16]. Studies have been conducted on the use of

short message service (SMS) for behavior change [31], the use of questionnaire based

symptom assessment system in rural settings [43] and many more. Smart phones that

can measure human physiological parameter can bring a rapid change the way

healthcare is provided in developing world as well as in developed countries. There
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have already a few android and iphone apps that can measure heart rate from facial

video as well as from fingertip [1][2].

Christopher et al. [6] used an algorithm depicted in [23] to detect respiratory

rate from smart phone video images. Their method used the technique for pulse

oxymeter. For oxygen saturation, they used the ratio of the red and blue band and a

linear equation to find the correlation. They argument for using red and blue band is

that they assumed it would be affected as the same way as the red LED and used blue

band as the reference. But there is no valid proof that the red band acts as the same as

red LED. They also lack the variation of the constants of the linear equation for

different persons. It is unclear from the discussion if this model is for a single subject

or it would work for multiple subjects.

For use of green band for analysis of the video image, the authors argued that

there is high absorption by hemoglobin in the green range. But there is no

mathematical proof that the green band contain the most information. Wim et al. [100]

used video image of the facial area for visible light plethysmographic information. The

authors argue that due to historical emphasis on PPG signal, visible spectrum has

mostly been ignored for plethysmographic information. The authors used a camera

with ambient light and the camera was 1.5 meter away from the face of the

participants. With this setup, they found up to four harmonics of fundamental HR

frequency. They also suggest that not only pulsatile information, but also phase

information can be found from the video image. While this experiment is a milestone

for visible light photoplethysmographic image, this was the beginning of the use of

visible light for pulse oxymetry. The work of Christopher et al. [6]is an extension of

[100]. While the authors of [100] found that green band contains the most variability

using time frequency transformation, we provide a more robust approach for using

green band for frequency analysis.

Ming-Zher et al. [75] used a similar approach of [100] to use facial video
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image to extract different physiological parameters namely HR, RR and hear rate

variability (HRV) using a webcam. But instead of the green band, they used the band

that has the maximum power spectrum of the three bands after independent component

analysis (ICA) of the RGB signal of the video image.

The concept of personalized medicine is a relatively new one. According to [3],

the Presidents Council on Advisors on Science and Technology states, Personalized

Medicine refers to the tailoring of medical treatment to the individual characteristics of

each patientto classify individuals into subpopulations that differ in their susceptibility

to a particular disease or their response to a specific treatment. Personalized medicine

is predominantly an idea from genome technology. Personalized medicine is used for

prescribing medication depending upon the molecular structure or genome profiling. It

is reducing the traditional trial and error prescribing and making drugs safer [4]. In this

context, a personalized model for perfusion index and oxygen saturation is of great

interest. The establishment of baseline values for different physiological parameters is

also an emerging idea. G. C. Kramer et al. [56] shows that a closed loop control for

fluid therapy using multi-parameter model might be of interest. The authors also argue,

since the baseline value for different parameters like cardiac output or blood pressure

is different for different persons; the baseline values of tissue oxygenation and CO

could be encoded in smart tag for a person for quick assessment in injury condition.

6.3 Our Approach

6.3.1 Modeling

The video image was first converted to signals. The mean of each frame is

considered one signal and that signal is a time series [Figure 6.1]. Each pixel in the

frame has three components; red, green and blue. Most of the work [6][100] done in

the literature uses the green band. We first show the reason of using green band by a

novel approach by applying principal component analysis which identifies the
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component that contribute to the largest possible variance. We found the principal

component of the RGB signal or the component corresponding to the largest

eigenvalue is very close to the green band. This important analysis validated the use of

green band for analysis of the signal. We then used three mathematical model for

finding heart rate, perfusion index and saturation of peripheral oxygen (SpO2). For

heart rate, we developed a method for finding the optimal minimum peak to peak

distance for maximum accuracy given the frame rate or the sampling frequency. For

perfusion index and saturation of peripheral oxygen we showed a personalized model

would work best to find those parameters accurately using polynomial fit.

6.3.2 Data

We used the camera of a Galaxy Nexus phone with Android 4.1 Jelly Bean

operating system. It was used to capture the video image of the index finger for 30

seconds with the flash of the mobile device on. The video image was 1280 times 720

pixels and in 3gp format at a frame rate of 29.5 frames per second. We used Matlab

2012 for all the analysis of the video image. Since Matlab functions only work for avi

format, we converted the file to avi using a free converter named Pazera.

6.3.3 Methods

The video image was first converted to signals. The mean of each frame is

considered one signal and that signal is a time series [Figure 6.1]. Each pixel in the

frame has three components; red, green and blue. Most of the work [6][100] done in

the literature uses the green band. We first show the reason of using green band by a

novel approach by applying principal component analysis which identifies the

component that contribute to the largest possible variance. We found the principal

component of the RGB signal or the component corresponding to the largest

eigenvalue is very close to the green band. This important analysis validated the use of

green band for analysis of the signal. We then used three mathematical model for
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finding heart rate, perfusion index and saturation of peripheral oxygen (SpO2). For

heart rate, we developed a method for finding the optimal minimum peak to peak

distance for maximum accuracy given the frame rate or the sampling frequency. For

perfusion index and saturation of peripheral oxygen we showed a personalized model

would work best to find those parameters accurately using polynomial fit.
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Figure 6.1: Red, Green and Blue component varying from frame to frame. The hori-
zontal axes represent number of frame and vertical axes represent pixel value (between
0 and 255)

Wim et al. [100] and Jonathon et al. [50] used green band to find the heart rate.

Each pulse is defined as consisting of the systole and diastole phase of the heart rate.

During the systole phase the heart pumps out the oxygenated blood and there is an

increase in the blood volume; during the diastole phase there is decrease in the blood

volume. We used a technique called principal component analysis (PCA) to find which

of the RGB signal is most representative of the signal. Principal component analysis is

a very well-known method used for dimensionality reduction. It is used to reduce the

dimensionality of the dataset where there is a large number of interrelated variables but

retaining the maximum possible variations present in the dataset [49]. PCA finds the

signal component corresponding to the eigenvalues in ascending order. The signal
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component that has the highest eigenvalue is the most representative of the signal and

explains the signal by highest variance. The method uses the offset translated data and

create the covariance matrix of the signals. In our case, the red, green and blue signals

are highly correlated and that puts the question of which signal to use for finding the

physiological parameters. In this context, PCA is a very good fit to find the

corresponding signal. We compute covariance matrix, C

C = E[B ⊕B]

where E is the expectation operator and ⊕ is the outer product operator. Then

the eigenvalues and eigenvectors of the covariance matrix is computed.

V −1CV = D

Where D is the diagonal matrix of the eigenvalues. The resulting eigenvalues

are then sorted and the source data is converted to the new basis, where eigenvectors

form the new basis. We found that the principal component or the projection of the

original data corresponding to the maximum eigenvalue is closest to the green band.

This similarity is found using Dynamic Time Warping Algorithm. We found the signal

corresponding to the maximum eigenvalue is closest to the green band. Figure 6.2 is

used to explain this idea. At first the mean of each signal is subtracted from each

signal for offset translation and then each signal is divided by the standard deviation

for amplitude scaling. The resulting graphs are plotted in Figure 6.2(a) which shows

the three components in three different colors. The principal component corresponding

to the highest eigenvalue is shown in Figure 6.2(b) which is very similar to the green

band.
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Figure 6.2: Principal component corresponds to the green band.

Heart Rate

Each time the hurt pumps, the red component is increased during the systole phase and

is decreased during the diastole phase in the video image. Here, the peak to peak

distance represents the time for one heart beat or one pulse. We used this formula to

find the heart rate.

HeartRate =
(FrameRate ∗ 60)

NumberofFramesBetweenTwoPeaks

The resulting heart rate was compared to the pulse oxymeter heart rate. For

finding the peaks, we needed do define number of minimum frames between two

peaks. We found an interesting relationship between frame rate, minimum peak to

peak distance and the accuracy. For a particular frame rate, there is an optimal peak to

peak distance for finding heart rate accurately. As we increase the minimum peak to

peak distance from 4 to 22, the accuracy first increases and then decreases.

Perfusion Index

Perfusion index is defined as the ratio of the pulsatile blood flow to the non-pulsatile

static blood flow in a patient’s peripheral tissue. Since the systole phase is represented
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Figure 6.3: Heart rate can be calculated using the formula HR =
FrameRate∗60

NumberOfFramesBetweenTwoPeaks

by the peak of the video image signal and the diastole phase represents the bottom of

the video image signal, we used the ratio of each minima to its previous maxima over

30 seconds of time period. Our goal was to find a mathematical model that would map

this ratio to the gold standard, which in this case is the pulse oxymeter value of

perfusion index.

The non-pulsatile blood flow may also be the average of the red pixel intensity.

But we started with the first hypothesis and tried to validate the claim using empirical

evidence. We found that for personalized data, that is over time if we take the perfusion

index measure for a same person, there is a linear regression equation that explains the

perfusion index well with the value of the pulse oxymeter; which is considered as the

gold standard for our case. This also explains why a personalized model would work

to find the model parameters to detect the perfusion index of a single subject. Figure

6.7 shows the two model with different degrees of polynomial and R2 value.
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Figure 6.4: Proposed approach for perfusion index which is defined as the pulse strength

Oxygen Saturation

For saturation of peripheral oxygen, it is defined as the ratio of the oxygenated

hemoglobin to the ratio of the total hemoglobin.

SpO2 =
HbO2

HbO2 +Hb

To find oxygen saturation we hypothesize to use the peak of each pulse as

Oxygenated (because it is bright red and during the systole phase). Then the minima +

the maxima is equivalent to HbO2 + Hb For this reason, we used this ratio as an

approximation of the oxygen saturation and fit a different degrees of polynomial

function to the pulse oxymeter data.

For saturation of peripheral oxygen we have used similar approach as to find

perfusion index. We have found that a polynomial fit between the gold standard, which

is the pulse oxymeter data for SpO2 and the ratios we have found from the video

image requires a higher degree polynomial.

Which in the end leads to an unstable system as the condition number of the

coefficient matrix becomes very large. On the contrary, a personalized model with
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saturation of peripheral oxygen of a single person can be modeled with even a

quadratic equation.

Figure 6.5: Proposed approach for oxygen saturation which is defined as the ration
between oxygenated hemoglobin and total hemoglobin.

6.4 Results and Evaluation

We collected video image data for 9 persons. All of them were healthy subjects

and between the age of 21 and 32. Seven of them are male and two of them are female.

For heart rate, we found a very good accuracy for all the persons. We calculated the

perfusion index and oxygen saturation for each of the persons and tried to model the

value extracted from the video image using the method discussed in section V. We

found that for oxygen saturation and perfusion index, a model takes a higher degree

polynomial for a good fit if we try to model the parameters for all the subjects. Figure

6.7 and 6.9 explain this idea. In both of the figure, the X axis represents degree of the

polynomial and Y axis represents R2 value. Interestingly, a model that considers the

data for a single subject over multiple time periods, only a quadratic equation gives

high R2 value. This is in connection with our hypothesis that a personalized model for

perfusion index and oxygen saturation would be of use in practical purpose. For

perfusion index, a simple linear equation can be used for perfusion index. However,
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Figure 6.6: It takes a polynomial of degree 5 for polynomial fit of perfusion index for 9
persons with ninety percent data fit. b) Only a linear equation explains ninety percent
data for one person.

for oxygen saturation, a linear equation does not give a good fit. But a quadratic

equation gives high R2 value.

6.4.1 Heart Rate

We found for the frame rate of 29.5 fps, the optimal minimum peak to peak

distance is 8. The reason behind is that heart rate is varies between 60 and 120 and the

sampling rate is the frame rate in this case. If the sampling rate is too high or too low,

it skips some of the pulses and that results in inaccurate heart rate. Figure 6.6(a) shows

the heart rate data points compared to the pulse oxymeter value for different minimum

peak to peak distance. Figure 6.6(b) shows the root mean squared error changes for

different minimum peak to peak distances.

This finding is important because it might be possible the frame rates might be

different for different cameras. But our model would give the least error by selecting

the optimal peak to peak distance based on frame rate.

6.4.2 Perfusion Index

We found that for oxygen saturation and perfusion index, a model takes a

higher degree polynomial for a good fit if we try to model the parameters for all the
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subjects [Figure 6.7 and 6.9].

In both of the figures, the X axis represents degree of the polynomial and Y

axis represents R2 value. Interestingly, a model that considers the data for a single

subject over multiple time periods, only a quadratic equation gives high R2 value. This

is in connection with our hypothesis

Figure 6.7: a) It takes a polynomial of degree 5 for polynomial fit of perfusion index for
9 persons with ninety percent data fit. b) Only a linear equation explains ninety percent
data for one person.

6.4.3 Oxygen Saturation

In general, the app was very close to the readings from the actual device. In

some cases, the app gave a reading of 100%, which is not correct. This may have been

due to the user turning on the flash. If the flash is on and the finger is covering both the

flash and the camera, the readings may be off, as the video will look 100% red from

the camera and video processing perspective. Figure 6.8(a) shows a comparison of the

readings from the application (red trace) and the actual oximeter device (blue trace).

The lines are close, with some measurement error.

Figure 6.8(b) shows a graph of the percent error. The absolute value of the

errors consistently falls under 10%, but it is believed that this accuracy can be

improved. This will be discussed later in this paper.
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Figure 6.8: Actual error and percentage of error for oxygen saturation.

Figure 6.9: a) It takes a polynomial of degree 5 for polynomial fit of perfusion index for
9 persons with forty five percent data fit. b) Only a quadratic equation explains eighty
percent data for one person

6.5 Conclusion

The analysis of RGB color space data in time series using principal component

analysis is a novel approach for determining the most significant color band. We found

PCA output is very close to the green band which validated the use of green band in

the literature. Also we showed that for optimal accuracy of the heart rate using video it

is necessary to use a minimum peak to peak distance for identifying the systole and

diastole phase of the pulse. Use of personalized modeling for perfusion index and

oxygen saturation would give a new aspect for these two parameters. Medical science

is getting more and more attention in personalized medicine in recent days [14]. One

of the critique for your work might be that the features of the signal that are used to

model the perfusion index and oxygen saturation may not be the correct one. Our

argument in this case is that we used the definition of perfusion index and oxygen
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saturation for the model. But work needs to be done to proof the connection of the

properties of visible light spectrum to the photoplethysmographic signal.

For regulatory perspective, software applications to measure physiological

parameters need FDA approval. But the regulatory organizations still lack the

guideline for the personalized measurement of the physiological parameters. But a

number of handheld devices and smart phone apps have already been approved by the

FDA and the rapid technological innovations are pushing the drive for the regulatory

guidelines.

Another major issue is the usability. In our approach, to build the model for

perfusion index and oxygen saturation, we need the first few video images labeled with

the real value using the gold standard such as traditional pulse oxymeter or laboratory

test result. In that context, the application of our system is limited to the patients who

regularly visit a healthcare center that offer such solutions. But still this is applicable

once the baseline of the parameter for each patient is established. Future physiological

parameter baseline could be established using genome profiling.

We showed that the vital signs such as perfusion index and oxygen saturation

can have a personalized model. This brings the use of visible light plethysmographic

imaging into picture and research in the area of detecting other parameters that can be

measured using PPG gets attention. Although historical emphasis on PPG signal

blocks the progress for this, the emergence of mobile devices would push the demand

for more research on visible light spectrum analysis for photoplethysmographic

imaging.

One simple example is finding the arterial fibrillation from video image.

Arterial fibrillation is considered as the irregular heart bit due to uncoordinated

movements of the arteries. It can be detected using ECG. In our video analysis, we

found for some persons, the pulse is not regular at all. It may be the case that those

persons have atrial fibrillation due to benign conditions since none of them are
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showing any symptoms.

6.6 Related Publications

• Mohammad Adibuzzaman, Sheikh Iqbal Ahamed; ”A Personalized Model for

Monitoring Vital Signs using Camera of the Smart Phones” in Symposium on

Applied Computing, SAC 2013
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Chapter 7

Hemoglobin Level: Assessment of Hemoglobin from Mini-
video Image Captured by a Mobile Phone

7.1 Introduction

Assessment of hemoglobin levels in human beings is a basic tool in the

evaluation of general health and multiple medical conditions. Preliminary studies

conducted by our research group show that a model can be developed to achieve high

concordance between hemoglobin levels across the usual range in human beings

obtained by analyzing mini-video images from a cell phone camera and the usual gold

standard laboratory determinations. We conducted a pilot study to investigate the

relationship between redness of the blood from a mini-video image of the distal ventral

pad of the finger and hemoglobin level as hemoglobin is mostly responsible for the

redness of blood. We found significant concordance of the red pixel intensity by

mini-video and the hemoglobin level by gold standard venipuncture laboratory testing

for a linear least squared regression with a correlation coefficient (r) of 0.68. Red pixel

intensity is also influenced by level of oxygenation along with hemoglobin level which

in all of our patients was high. In exploring our data we summarized that red pixel

color intensity at the fingertip might be influenced by the thickness of the skin which

in turn is age and gender-related (men have thicker skin, and thickness decreases with

age). We propose to validate our mathematical model for hemoglobin level detection

using the camera of a mobile device and develop a healthcare tool for that for effective

intervention, improving quality of life and continuous assessment of otherwise

unreachable population.

This proposed study is to verify our initial findings for the detection of

hemoglobin level from mobile devices from video image of ventral pads of index

finger. The application of such system would help improve the quality of life of
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patients with chronic diseases such as sickle cell disease, and anemia.

7.2 Related Work

Assessment of hemoglobin levels in human beings is important in evaluation of

general health and multiple medical conditions such as anemia, sickle cell disease and

many more. Current global practice in medical laboratories involves shining a light

through a small volume of blood drawn from patients by venipuncture and using a

colorimetric electronic particle counting algorithm to calculate the level. Such demand

for laboratory equipment and facilities, and a specific specimen of patient blood

obtained with associated discomfort and inconvenience, and the requisite time to

obtain results: all make this system less than optimally suited for ideal patient care.

The availability of an accurate, rapid and non-invasive means for determining

hemoglobin levels which could be used anywhere, would be useful in global medical

care.

Prior attempts to develop non-invasive methods of hemoglobin determination

have mostly involved hospital monitoring equipment and have given measurement

compared to gold standard laboratory assessments with wide variations of -1.7 to

+1.8g/dl [61][65][32][69][14][57][35][22]. Gayat et al. recently reported use of a spot

device-bedside monitor with a mean error of 0.21g/dl but again the variability of

assessment ranged from −3.01 to +3.42g/dl [34]. Finally an Israeli research group

more recently still reported use of a spot device for which they estimated a mean error

of 0.1g/dl, but still with a variability of −1.59 to +1.79g/dl [10]. Their device is

described as based on occlusion spectroscopy technology in the red/near-infrared

range. At the core of this technology is the generation of a new bio-physical signal

resulting from temporarily occluding the blood flow in the measurement site. The

measurement is performed by using an annular, multi-wavelength probe with

pneumatically operated cuffs, which generate an over-systolic pressure at the finger

base [40].
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In summary, a widely usable, practical, and accurate non invasive method for

hemoglobin assessment has not been developed. In our approach for hemoglobin level

detection, first, we have read mini-video signals from cell phone camera images of

finger pads as red, green and blue light components of varying pixel intensities over

time. We have used the average of the red pixel intensity (which should be correlated

with red blood cell count), create a calibration table, and determine a calibration

constant in a series of patients with different gold standard hemoglobin levels. We

found that an analytic method can be defined which can establish high concordance of

the redness of fingertip video and gold standard laboratory hemoglobin assessments.

7.3 Our Approach

7.3.1 Experimental Protocol

20 patients from the MCW Emergency Room who are in stable medical

condition, and who have otherwise had a hemoglobin determination as part of their

clinical evaluations, with these results in hand would, after written informed consent

(Appendix I), had a single 30− 45 second min-video taken using a cell phone camera

with the flash function on, pressed gently on the ventral bed (the pad) of the tip of the

middle finger of the right hand, by the research coordinator. The patients were

recruited in 4 blocks of 5 patients each: patients with hemoglobin levels: > 16g/dl,

13− 16g/dl, 9− 13g/dl, and < 9g/dl. For the research coordinator, patients were

sequentially identified only. The ER physician investigator recorded the laboratory

determined hemoglobin level (g/dl) and red blood cell count (106/ul) on the master

record, which were later provided to the research coordinator. Figure 7.1 shows the

distribution of hemoglobin level for the 17 subjects in the aforementioned four

categories. We did not have any patient with > 16g/dl hemoglobin level. The age and

gender information were also provided after a modification approved by the

Institutional Review Board.



82

Hemoglobin Level
<9 9-13 13-16 >16

N
um

be
r 

of
 S

ub
je

ct
s

0

1

2

3

4

5

6

7

8

9
Hemoglobin level distribution

Figure 7.1: Distribution Of Hemoglobin Level

The sequential steps in the study process are listed in Appendix II. Patient

eligibility criteria includes

• Hemoglobin level and red blood cell (RBC) count conducted as part of planned

appropriate medical care.

• Age >= 18 years

• Absence of skin infection involving hands,

• No history of Raynauds phenomenon.

• No administration of greater than 250ml intravenous fluid between time of

laboratory hemoglobin assessment sample and the proposed cell phone video

assessment.
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7.3.2 Data

We used the camera of a Galaxy Nexus phone with Android 4.1 Jelly Bean

operating system. It was used to capture the video image of the index finger for 30

seconds with the flash of the mobile device on. The video image was 1280 times 720

pixels and in 3gp format at a frame rate of 29.5 frames per second. We used Matlab

2014 for all the analysis of the video image. Since Matlab functions only work for avi

format, we converted the file to avi using a free converter named Pazera.

7.3.3 Methods

Each video image of the finger-tip with the flash of the camera on was

converted to three time series data: average of the red, green and blue pixels for each

frame over 30 seconds. For each frame, the Y axis represents the average of the red,

green and blue pixel intensity of all the pixels in one frame.

For regression analysis, we compared the average of the red pixel intensities

over all the frames during a 30 second video and the corresponding hemoglobin level.

Figure 7.2 shows the data for the 17 subjects. X axis represents hemoglobin level and

Y axis represents red pixel intensities.

7.4 Results

Pearson correlation coefficients were determined between the hemoglobin level

and the red pixel intensity over the entire video image. Figure 7.2 shows the data for

the 17 subjects. The correlation co-efficient was 0.41 across all the subjects. However,

our hypothesis was based on the fact that the skin thickness is similar for all the

subjects; and as a consequence, the red pixel intensity in only dependent on the

hemoglobin level. But in reality, this is not true. For example, women have thinner

skin and also as people age, the skin gets thinner [89][?]. As a result, women can show

high red pixel intensity even with lower hemoglobin level. To consider the effect of
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Figure 7.2: Hemoglobin level and red pixel intensity

skin thickness into consideration in our regression model, we hypothesized that the red

pixel intensity depends on hemoglobin level as well as age and gender.

RPI = β0Hem+ β1Oxy + β2ST + ε

Where

• RPI =Red Pixel Intensity

• Hem =Hemoglobin Level

• Oxy =Oxygenation

• ST =Skin Thickness

• ε = Error
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Figure 7.3: Hemoglobin level with pixel intensity, age and gender.

We consider age and gender as corresponding to skin thickness. Further, all the

patients had high oxygenation. Figure 7.3 shows the age, gender, hemoglobin level and

red pixel intensity. For a linear least squared regression model, the R2 value is 1,

validating our hypothesis.

7.5 Conclusion

To verify our initial finding and to build a robust model for hemoglobin level

detection, we need to conduct a large scale pilot study for hemoglobin level detection

and consider other factors that can influence the pixel intensities of a finger-tip video

image such as pigmentation, skin thickness and oxygenation. Our goal is to collect

data for 200 subjects with a varying level of hemoglobin. We would collect data in

partnership with our local Non-government Organization (NGO), Amader Gram, in

Bangladesh from rural population in Bagerhat, Bangladesh. The skin thickness and

oxygenation would also be recorded for the study subjects using ultraviolet skin
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thickness measurement device and a pulse oximeter respectively. The data would then

be used for a mathematical model development that would map the red pixel

intensities of finger-tip video image to the corresponding hemoglobin level. The

resulting mathematical model would then be used for creating a mobile phone based

healthcare tool for remote and continuous assessment of hemoglobin level with our

partner Amader Gram.
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Chapter 8

Evaluation: Evaluation of Machine Learning Algorithms For
Application in Clinical Setting

8.1 Introduction

In the previous chapters, different mathematical techniques have been

discussed for analysis, and monitoring of health parameters for clinical understanding

of the patients. For translational clinical research, these algorithms need to be

understood in terms of their risk and benefits. There have been much work for

algorithmic development for different healthcare problems in recent years. Many

algorithms showed promise to advance the healthcare engineering. However, there is

much gap between the success of these algorithms in clinical setting and the

innovation.

That being the case, there is much need to study the evaluation techniques of

these algorithms in a clinical setting that gives us better insights about the risks and

benefits of the algorithms. In this chapter, we looked into some of the algorithm

development techniques for recommendation of those algorithms in a clinical setting.

The influence of the selection of training, testing and validation data set on the

performance, namely the sensitivity, specificity and area under the receiver operating

characteristics curve which shows the risks and benefits, of different algorithms are

investigated.

The study purpose is developing insights on machine learning algorithm

development techniques for multi-parameter patient monitoring for the goal of

evaluating these algorithms; such that these algorithms can be used for a larger patient

population other than the one that has been included in the clinical study. In recent

years, machine learning algorithms and the increase of computational power showed

promise for mult-parameter patient monitoring using multiple vital signs [46][93][25].
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Traditional devices that monitor patients vital signs such as heart rate, blood

pressure, oxygen saturation or respiratory rate in the hospital settings have their own

individual warning systems for clinical intervention. On the other hand, these devices

do not consider the context of the patients underlying physiological status and the

relative values of other vital signs. It is argued in medical science and machine

learning community that data fusion techniques including machine learning algorithms

that consider multiple vital signs would improve early warning systems by reducing

number of false alarms (high specificity) and at the same time would represent a better

understanding of the patients status and accurately detect or predict critical hospital

events (high specificity). Consequently, a good algorithm should have high sensitivity

and specificity; which indicates the area under the ROC curve needs to be maximized

and the variability of those performance measures should be consistent across random

selection of the target patient population. Questions remain how to evaluate these

algorithms, such as

• How to select the training, testing and validation data set for developing the

algorithms?

• Do the algorithms outperform the existing reference system for early warning

score?

• And, if the algorithms have less number of false alarms and thus help solve the

problem of alarm fatigue.

8.2 Our Approach

A large clinical data set was used for random selection from the target

population for the study. The algorithm development technique is mimicked from real

life scenarios and was divided in three stages: 1) training, 2)testing and 3) validation.

The independent validation set was pre-selected and was same for the validation phase.
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The training and testing data sets were based on different sizes and different random

splits.

These data sets were used for training and testing, and the algorithms were

designed to predict clinical events. One such clinical event is called critical hospital

event, for which urgent care is needed. Medical Emergency Activation Criteria (MET

Activation Criteria) is considered as one such critical hospital event; upon the

activation of these events, a team consisting of medics are activated for urgent care of

the patient. The use of such medical emergency team has been proved to improve

patient outcome [13].

8.2.1 Data

For our study, we used a large publicly available data set in intensive care unit

of Beth Israel Deaconess Medical Center called Multi-parameter Intelligent

Monitoring in Intensive Care (MIMIC II). The database containts high resolution

temporal data including lab results, electronic documentation, bedside monitor trend

data and waveforms. The data set has two components: clinical database and

waveform database. They also have a matched subset of 6000 records that matches the

clinical database record to the corresponding waveform database record (Figure 8.1).

The clinical database contains de-identified information regarding the clinical

care of patients as well as data from hospital archives; including lab tests, hourly vital

signs, ventilator settings, fluid intakes etc. The waveform database contains high

resolution vital signs including electrocardiogram data, blood pressure, oxygen

saturation and respiratory rate.

2400 records remained after applying the inclusion exclusion criteria.

Inclusion exclusion criteria includes, a) the records are matched across clinical data set

and waveform data set, b) at least 5 hours of continuous trend data for heart rate,

oxygen saturation, systolic blood pressure and respiratory rate were present (Figure

8.2). Of these 2400 records, 400 records were selected as an independent validation set
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Figure 8.1: Components of Multi-parameter Intelligent Monitoring in Intensive Care
(MIMIC II) data set. Image Courtesy: Scully, C.

and 2000 records were used for training and testing. These 2000 records were

randomly split into different subsets for creating different training sizes. For example

there were 1 subset of size 2000, 1 subset of size 1500, 2 subsets of size 1000 and 4

subsets of size 500. For each subset, the training, testing and validation was performed

independently. The algorithm development for each subset was done by a 10 fold cross

validation with 10 different random splits for training and testing. The best algorithm

for each subset was selected as the one from the cross validation that gives the best

accuracy using the test sets.

8.2.2 Study Design

A moving window of 130 minutes that shifts each minute at a time was

selected. Of these 130 minutes, the first 60 minutes was defined as the observation

window, the next 60 minutes were defined as the gap window and the last 10 minutes

were set as the target window (Figure 8.3). The goal was to predict a critical hospital

event in the 10 minute target window, 60 minutes in advance, which is defined as the

gap window. The prediction algorithm were fed the vital signs data of 60 minutes
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Figure 8.2: Selection of training, testing and validation data set for the study.

before the gap window. This window of 60 minutes, for which the machine learning

algorithms used different features such as mean, variance, kurtosis of the vital signs is

defined as the observation window. Figure 8.3 shows how the observation window, gap

window and target window was defined for the study.

8.2.3 Algorithms

For the study, two machine learning algorithms were used: decision tree and

support vector machine (SVM). For each of the algorithms, 19 features were selected

and fed into the machine learning algorithms.

Features include mean, median, variance, kurtosis, skewness from each of the

vital signs and the cross correlation coefficient between any two vital signs.

Additionally, the early warning score using the National Early Warning Score was

selected as another feature [5]. Figure 8.4 shows the feature selection and the flow of

the algorithms for the prediction of medical emergency team activation.

Medical emergency team (MET) activation criteria

Medical emergency team (MET) activation criteria is used in hospital settings as

clinically critical events and was set as the event to predict in our study. The MET
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Figure 8.3: Observation, gap and target window for the prediction of critical hospital
events from vital signs.

criteria for the three vital signs: heart rate, systolic blood pressure and oxygen

saturation is given below. If one or more criteria is satisfied in the target window, a true

positive event was considered. MET activation criteria includes:

• Heart rate (< 40 or > 160 bpm)

• Systolic blood pressure(< 60 or > 200 mmHg) or

• Oxygen saturation (< 85%)

The goal of the algorithms is to predict if MET activation will occur 60 minutes in

advance (in the target window)

For example, Figure 8.5 shows a true positive event as the oxygen saturation

drops below 85% for at least 9 minutes in the target window of 10 minutes. Figure 8.6

shows the example of a true negative window, in which case all the vital signs are

within the normal range in the target window.
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Figure 8.4: Feature selection and use of machine learning algorithms in the study.

Figure 8.5: Example of a ’true positive event’ using the MET activation criteria. The
green vertical lines denote the observation window and the red vertical lines denote the
target window.
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Figure 8.6: Example of a true negative window for the MET activation as the target
window does not satisfy MET activation criteria.

Decision Tree

Decision tree is a machine learning algorithm for binary classifier. For classification of

true positives and true negatives from the training set, it looks into all the features and

all the thresholds such that it can maximally discriminate between true positives and

true negatives. That threshold is set as the root. If one threshold cannot discriminate all

the true positives and the true negatives in the training set, it iterates over all the

features and the thresholds again and creates a multilevel decision tree as the classifier.

The thresholds on each node depend on the training set. Figure 8.7 shows a sample

decision tree for medical emergency team activation.
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Figure 8.7: Example of a decision tree for MET activation.

Support Vector Machine (SVM)

Support vector machine is another binary classifier that classifies the true positive

events and the true negative events using a hyperplane. The hyperplane is found by

using the classifier function,

y(x) = W Tψ(x) + b

Where ψ is a continuous feature space transformation, W is the weight vector and b is

the bias parameter. Figure 8.8 shows the basic concept of support vector machine

using a simple two dimensional feature space.

National Early Warning Score (NEWS)

For our study, we used the early warning score recommended by the review committee

at the Royal College of Physicians for identification of future patient deterioration.

This was criteria was considered as the ’gold standard’ against the algorithms. Figure

8.9 shows the thresholds for different vital signs for different scores of NEWS.
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Figure 8.8: Support vector machine for binary classification using two dimensional
feature space.

Figure 8.9: Thresholds for different vital signs for different score using NEWS.

A normal range for the vital signs are scored as 0. As the vital signs deviates

from the normal range, lower or higher, the score is higher (between 1 and 3). A true

positive event (prediction for MET activation) using NEWS was defined,

• If any of the vital signs reaches the threshold of 3 for 10 minutes in a 60 minute

observation window.

• If the cumulative score reaches 5 for 10 minutes in a 60 minute observation
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window.

8.3 Results

The results were analyzed for the three approaches: two machine learning

algorithms, and the reference system in terms of sensitivity and specificity. Figure 8.10

shows the sensitivity and Figure 8.11 shows the specificity for the three approaches.
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Figure 8.10: Sensitivity for the machine learning algorithms for different training sizes.
X-axis represents training size and trial. For each training set, the results of a 10 fold
cross validation are reported as box plots (the central red line is the median, the edges of
the box are the 25th and 75th percentiles, the whiskers extend to the extreme data points
the algorithm considers to be not outliers, and the red + sign denotes outliers). The blue
asterisks represent the performance on the validation set of the algorithm that performs
best on the test set. The blue dashed lines represent the performance of NEWS score.

The results indicate that increasing the training size does not necessarily

increases the performance of the algorithms. Also, the increase in performance relative

to the increase in the training data size is algorithm dependent. For example, for lower

training size, decision tree has higher sensitivity, but lower specificity; but it is the

other way in case of support vector machine.
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Figure 8.11: Specificity for the machine learning algorithms for different training sizes.
X axis represents training size and trial. For each training set, the results of a 10 fold
cross validation are reported as box plots (the central red line is the median, the edges
of the box are the 25th and 75th percentiles, the whiskers extend to the extreme data
points the algorithm considers to be not outliers, and the red + sign denotes outliers).
The blue asterisks represent the performance on the validation set of the algorithm that
performs best on the test set. The blue dashed lines represent the performance of NEWS
score.

Furthermore, the best algorithm in the testing phase, does not necessarily

performs best for the independent validation set. Often, the best algorithm for the

independent validation set does not represent the best algorithm in the training phase

using the test set. This variability of the performance of the algorithms should be

minimized for a robust machine learning algorithm.
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Figure 8.12: Area Under the Curve (AUC) for different Receiver Operating Charac-
teristics Curve (ROC) for different thresholds using decision tree. X axis represents
training size and trial. For each training set, the results of a 10 fold cross validation are
reported as box plots (the central red line is the median, the edges of the box are the
25th and 75th percentiles, the whiskers extend to the extreme data points the algorithm
considers to be not outliers, and the red + sign denotes outliers).

To understand the variability of the machine learning algorithms across cross

validation and between test phase and validation phase, the area under the curve for

different cross validations, different training sizes are plotted in Figure 8.12. Here, it is

found that there is much variability within the same training size in terms of the area

under the curve (AUC) of the receiver operating characteristics. But there are instances

when the AUC is much higher for the test test than in validation set, which may lead to

the ’false belief’ that an algorithm has good performance using the test set, and

eventually be a high risk algorithm in a clinical application with an independent

validation set.
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8.4 Discussion

We could not reach any definite conclusion as to how we can claim the best

machine learning algorithm for a clinical application. However, we have identified

there remains significant risk in defining an algorithm as ’high performing’ without an

independent validation set. In addition to that, increasing the training size and the

performance increase in the algorithms is very algorithm dependent. It usually

depends on the size of the hypothesis space for that particular algorithm. In general, a

good algorithm should have less variability in the performance across cross validation

and needs to be tested with an independent validation data set for minimizing the risk

in a clinical setting; as a lower performance of these algorithms could be life

threatening. But as the algorithms show prospect for performing the existing system, a

’good’ algorithm has the potential to be beneficial in clinical setting and improve

patient outcome.

8.4.1 Challenges

Key challenges to build such systems include:

• How to deal with large amount of data.

• How to define a clinically meaningful event without any annotation in the data

set and

• How to compare the results without any existing reference systems.

To address the first challenge, we used the FDA supercomputer (Betsy Cluster)

to split the data set and to search into the data set for true positive and true negative

events with octave parallel computing and 400 nodes. In the case of the second

challenge, we build our system with the definitions from physiology (Medical

Emergency Activation Criteria) that define a true positive event, a true negative event.

We also used the current methods used by the physicians to address the third
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challenge, by using the National Early Warning Score (NEWS) as the reference

system. We argue that such algorithms should use domain specific knowledge for the

definitions of true events and improve the performance in that particular domain.

8.4.2 Future Work

The study design for this work is not perfect and there are different issues that

needs to be addressed. The definition of a true positive event and a true negative event

is important and must represent the underlying physiological condition of the patient.

There are many ways that could represent a false situation of the patient because of

noise, displacement of the sensor, movement of the subject, and different baseline for

different individuals. In our study design, these factors are not considered.

Not to mention, the algorithm development phase needs to be studied carefully.

We have selected 19 features for the study. They are mean, median, variance, kurtosis,

skewness from each of the vital signs and the cross correlation coefficient between any

two vital signs. Additionally, the early warning score using the National Early

Warning Score was selected as another feature. But all of these features does not

differentiate the true positive event and the true negative events significantly. Only

those features should be selected, that differentiate that distinguishes the positive and

negative classes adequately.

Besides, the number of false alarms in this particular setting needs to be

considered as another performance measure for multi-parameter patient monitoring

along with the receiver operating characteristics or area under the curve. The end goal

is to have less false alarms with high sensitivity.

Alternative techniques and the mathematics of the algorithms also needs to

designed carefully as to represent the clinical situation. For example, a decision tree

algorithm might be a good fit for this setup, but a neural network may not; as the

patient monitoring phase works as different levels of a decision, similar to the decision

tree algorithm.
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In summary, future works to improve early warning patient monitoring

algorithms should investigate:

• Careful definition of true positive and true negative events.

• Number of false alarms.

• Key signal features to include in the algorithms.

• Alternative techniques to combine information from multiple sources.
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Chapter 9

Conclusion

9.1 Summary

We have built systems, developed algorithms for monitoring of health

parameters and explored the evaluation of these algorithms in a clinical setting.

Despite much advance in hardware and software as well as computational power

during the last decade, there is much gap between the advancement in technologies

and the application of those technologies in a clinical setting. The research work that

utilizes this advanced sensors is presented here so that it can have an impact by

addressing the issues of system deployment, utilizing the mobile sensors, and

evaluation techniques of the algorithms in a clinical setting. There is much scope for

future work to advance the knowledge in this area.

For affect detection from multiple modalities, other modalities can be

incorporated in the model such as heart rate, skin temperature and pupil size. For pain

level detection, the images can be pre-processed for adjustment of lighting condition

and face extraction. For hemoglobin level detection, a large pilot study is being

undertaken in Bangladesh to validate the model. For evaluation approaches, careful

construction of the study is needed to look at the results in terms of number of false

alarms and defining the true positive and true negative events.

9.2 Contributions

The contribution of the research work is in algorithm development, system

design, usability for monitoring of health parameters and evaluation of the algorithms

for application in a clinical setting. The contribution of the work is discussed in

relationship to each of the applications.
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9.2.1 Affect: Smart Phone based Affect Detection

Most of the research in multi-modal affect detection has been done in

laboratory environment. Little work has been done for in-situ affect detection. In this

study, affect detection in natural environment using sensors available in smart phones

was explored. Facial expression and energy expenditure of a person were used to

classify a person’s affective state by continuously capturing fine grained accelerometer

data for energy and camera image for facial expression and measure the performance

of the system. The system was deployed in natural environment and was provided

special attention on annotation for the training data validating the ‘ground truth’.

Important correlation between facial image and energy was found, which validates

Russell’s two dimensional theory of emotion using arousal and valence space.

9.2.2 Pain Level: Smart Phone Based Pain Level Detection

The hypothesis of using smart phone cameras for pain assessment of breast

cancer patients in a developing country is validated in this study. A smart phone based

system was built that detects pain intensity from facial images using the Eigenface

method which is based on principal component analysis (PCA). The weight vectors of

the Eigenfaces are classified using a Euclidian distance, angular distance and support

vector machine (SVM). The system performs best with a support vector machine when

the performance measure is the distribution of the input and output labels. The system

uses facial images submitted by rural breast cancer patients in Bangladesh, which were

taken with the camera of a mobile phone. Each image was assigned a pain value by the

users. The data were collected as a part of a six month long longitudinal study funded

by International Breast Cancer Research Foundation (IBCRF). We show that a

personalized model for pain assessment works better for automatic pain assessment in

this setting. This work is a proof of concept of using smart phones for remote pain

assessment which might be a game changer to provide low cost health care solutions
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while the labeled pain image data set could be used to identify real world insights for

community reuse.

9.2.3 Arterial Blood Pressure: Novel Index for Identifying Early Markers of

Hemorrhage

Identifying the need for interventions during hemorrhage is complicated due to

physiological compensation mechanisms that can stabilize vital signs until a

significant amount of blood loss. Because the physiological systems providing

compensation affect the arterial blood pressure waveform through changes in

dynamics and waveform morphology, Markov chain analysis of the arterial blood

pressure waveform was used to monitor physiological system changes during

hemorrhage. Continuous arterial blood pressure recordings were made on anesthetized

swine (N=7) during a 5 min baseline period and during a slow hemorrhage (10 ml/kg

over 30 min). Markov chain analysis was applied to 20 sec arterial blood pressure

waveform segments with a sliding window. 20 ranges of arterial blood pressure were

defined as states and empirical transition probability matrices were determined for

each 20 sec segment. The mixing rate (2nd largest eigenvalue of the transition

probability matrix) was determined for all segments. A change in the mixing rate from

baseline estimates was identified during hemorrhage for each animal (median time of

13 min, 10% estimated blood volume, with minimum and maximum times of 2 and 33

min, respectively). The mixing rate was found to have an inverse correlation with

shock index for all 7 animals (median correlation coefficient of -0.95 with minimum

and maximum of -0.98 and -0.58, respectively). The Markov chain mixing rate of

arterial blood pressure recordings is a novel potential biomarker for monitoring and

understanding physiological systems during hemorrhage.
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9.2.4 Heart Rate, Oxygen Saturation, and Perfusion Index: Measuring Vital

Signs Using Camera of the Smart Phone

In this chapter, we present a novel approach to find heart rate, perfusion index,

oxygen saturation and hemoglobin level using the video images captured by the

camera of the smart phones with mathematical models. Principal component analysis

(PCA) was used to find the band that contain most plethysmographic information.

Also, it was shown that a personalized regression model works best for accurately

detecting perfusion index and oxygen saturation. The model has high accuracy of the

physiological parameters compared to the traditional pulse oxymeter. Also, an

important relationship between frame rate for image capture, minimum peak to peak

distance in the pulse wave form and accuracy has been established. It was showed that

there is an optimal value for minimum peak to peak distance for detecting heart rate

accurately.

9.2.5 Hemoglobin Level: Assessment of Hemoglobin from mini-video image cap-

tured by a mobile phone

Assessment of hemoglobin levels in human beings is a basic tool in evaluation

of general health and multiple medical conditions. In current global practice this is

done in medical laboratories by shining light through a small volume of blood drawn

from patients by venipuncture and using a colorimetric electronic particle counting

algorithm to calculate the level. Such demand for laboratory equipment and facilities,

and a specific specimen of patient blood obtained with associated discomfort and

inconvenience, and the requisite time to obtain results all make this system less than

optimally suited to ideal patient care. This study shows that a method can be

developed to achieve high concordance between hemoglobin levels across the usual

range in human beings obtained by analysis of mini-video images from a cell phone

camera and the usual gold standard laboratory determinations. We conducted a pilot
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study to investigate the relationship between red pixel intensity from a mini-video

image of the distal ventral pad of the finger. Under an ethical committees approved

protocol we collected data from 17 patients seen at the emergency department of

Froedtert Hospital, Milwaukee, Wisconsin. The sample set had a distribution of

hemoglobin levels in three different groups: ¡9 g/dl (N=3), 9-13 g/dl (N=6), 13-16 g/dl

(N=8). We found significant concordance of the red pixel intensity by mini-video and

the hemoglobin level by gold standard venipuncture laboratory testing with a linear

least squared regression correlation coefficient (r) of 0.68. We know that red pixel

intensity is influenced by level of oxygenation which in all of our patients was high. In

exploring our data we surmised that red pixel color intensity at the fingertip might be

influenced by the thickness of the skin which in turn is age and gender-related (men

have thicker skin, and thickness increases with age).

9.2.6 Evaluation: Evaluation of Machine Learning Algorithms For Application

in Clinical Setting

This is study was performed for developing insights on machine learning

algorithm development techniques for multi-parameter patient monitoring for the goal

of evaluating these algorithms. Traditional devices that monitor patients vital signs

such as heart rate, blood pressure, oxygen saturation or respiratory rate in the hospital

settings have their own individual warning systems for clinical intervention. But these

devices do not consider the context of the patients status and the relative values of

other vital signs. It is argued in medical science and machine learning community that

data fusion techniques including machine learning algorithms that consider multiple

vital signs would improve early warning systems by reducing number of false alarms

and at the same time would represent a better understanding of the patients underlying

physiological status. Questions remain how to evaluate these algorithms such that, the

system can be used in a clinical setting; such as
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• How to select the training, testing and validation data set for developing the

algorithms?

• Do the algorithms outperform the existing reference system for early warning

score?

• And, if the algorithms have less number of false alarms and thus help solve the

problem of alarm fatigue.

9.3 Broader Impact

The work would help understand the different issues related to building sensor

based systems and developing algorithms for interpreting clinical events. These

systems would also help the under served groups for the improvement of quality of

life. Thus would vastly increase the use of existing infrastructure for low cost solutions

of health care problems with the goal of improved patient outcome.
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