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ABSTRACT 

IDENTIFICATION AND RETRAINING OF SENSORIMOTOR DEFICITS TO 

REDUCE INTENTION TREMOR IN MULTIPLE SCLEROSIS 

 

 

Megan Heenan 

 

Marquette University, 2015 

 

 

 

Multiple sclerosis (MS) affects approximately 1 in 1000 Americans and is a 

significant cause of disability in the United States. One significant contributor to 

disability in MS is intention tremor, which manifests as an oscillation about the endpoint 

of a goal-directed movement. A major challenge of treating intention tremor is that the 

underlying causes of tremor in MS are unknown. In this study, we describe a systems-

level computational model and an experimental technique that parameterizes subject-

specific deficits in sensory feedback control during goal-directed movements. We used 

this approach to characterize sensorimotor control and examine how sensory and motor 

processes are differentially impacted by age and MS. The specific aims of this study were 

to: 1) characterize age-related changes in sensorimotor control during goal-directed 

movements; 2) characterize deficits in sensorimotor control in individuals with multiple 

sclerosis; and 3) determine whether sensorimotor control deficits can be modified and 

intention tremor reduced using robot-assisted therapy. We show that age-related changes 

in movement control can be ascribed to increases in sensory noise, leading to slower and 

less accurate movements. In persons with MS, changes in movement control associated 

with intention tremor can be attributed to increases in visual response delay that are 

unaccounted for by predictive neuromotor control mechanisms. Finally, we show that 

training of goal-directed movements using carefully selected feedback delays can enable 

subjects to adapt to their increased visual delay, thereby reducing system instability and 

tremor. The results demonstrate that systems identification techniques provide an 

informative framework for investigating how neuromotor disease affects motor control 

and for developing individually targeted rehabilitation strategies to reduce motor 

disability.  
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CHAPTER 1: INTRODUCTION AND BACKGROUND 

 

1.1 INTRODUCTION 

 

The objective of this research is to use systems identification – a process of 

mathematical and statistical modeling – to examine how sensorimotor control of 

voluntary movement can be altered by aging or disease. One challenge of examining the 

mechanisms that guide goal-directed movements is the complex interaction between 

sensory, motor, and movement planning processes. Systems identification and modeling 

allow us to describe the complexity of highly redundant systems – such as sensorimotor 

control – with quantifiable parameters. Model-based approaches to understanding 

movement control have been widely used for decades to describe motor phenomena, 

guide human-machine interaction, and investigate the sources of deficits in motor 

disability [1-34].  

This dissertation aims to extend the understanding of motor deficits by using a 

systems-level model to characterize changes in sensorimotor control during aging and in 

persons with multiple sclerosis (PwMS) and to develop and analyze a rehabilitative 

protocol for subjects with MS and intention tremor. The following sections provide an 

overview of sensorimotor control in the context of goal-directed movement that forms the 

basis of the model developed here. Current understanding of motor control during pursuit 

and compensatory tracking and how they are differentially affected by aging and 

progression of MS with intention tremor will be reviewed. Finally, current rehabilitative 

strategies for MS will be outlined and the advantages of individualized rehabilitation 

techniques will be discussed.   



2 
 

 
 

1.2 PHYSIOLOGICAL BASIS OF VOLUNTARY MOTOR CONTROL 

 

 Control of voluntary movement is a complex process that forms the basis of our 

ability to interact with the environment. Deficits in control can result in disabilities that 

significantly affect quality of life. Understanding how movements are controlled, and 

how they can be impacted by disease, is therefore critical to understanding how healthy 

and impaired individuals perform daily tasks; it is also the first step in understanding and 

reducing motor disability.   

 Limb movement is planned and executed - in the cortex - primarily by the 

contralateral hemisphere, however, imaging studies have demonstrated that ipsilateral 

brain activity related to specialization of hemispheres is also present, especially during 

complex movements [35]. In general, the (contralateral) hemisphere that controls the 

dominant arm is also active during open-loop movements of the (ipsilateral) non-

dominant arm, while the (contralateral) hemisphere that controls the non-dominant arm is 

active during closed-loop movements which stabilize the dominant arm against external 

perturbations [36-42]. These two components of movements, controlled separately, may 

correspond to a two-stage movement process during reach: an initial “trajectory” phase, 

and a secondary “endpoint acquisition” phase [43, 44]. This lateralization of neural 

control based on the phase of movement can result in differential impairments of hand 

and arm movement due to cortical damage and disease [41, 42, 45]. 

Once movement begins, information regarding the state of the limb is unavailable 

until after sensory information is transmitted and processed, resulting in a reliance on past 

sensory information to guide future movements. Sensory delays result from signal 

conduction through the peripheral (PNS) and central nervous systems (CNS) combined 
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with delays associated with the processing of sensory inputs into estimates of movement 

outcome [20]. For proprioceptive feedback, conduction delays, which scale with the 

length of the path traveled through the PNS and spinal cord, form a large part of the total 

delay, resulting in delays that are approximately 100-150 ms in healthy adults [10]. For 

vision, conduction delays are much shorter, while processing delays are much longer due 

to the complexity of combining and interpreting visual signals. This extra processing time 

results in delays that are approximately 300-400 ms in healthy adults [46, 47]. 

The delays in sensory transmission and processing make on-line error reduction 

difficult due to long latencies between current position and sensory estimates of position. 

These delays can be compensated for by estimating current movement error and thereby 

allowing for correction of movement errors before delayed sensory feedback becomes 

available [19, 48, 49]. The cerebellum has been proposed to play a role in providing these 

forward estimates of sensory outcomes of movement. Population activity in the 

cerebellum has been shown to correlate with future sensory feedback, while damage to 

the cerebellum results in an inability to adapt to force fields [49]. In simulations, 

inaccuracies in the forward model produce similar movements to those seen in cerebellar 

ataxia, which provides a possible link between cerebellar activity and forward modeling  

[4, 33].  

For these predictive models to be generated, sensory estimates of position are 

generally combined from multiple sensory modalities. According to one model, sensory 

estimates of position are weighted based on the amount of uncertainty in each estimate 

such that sensory estimates with less variability are given more weight [15, 20, 23, 50-

52]. For example, if additional noise is present in visual estimates of position (i.e. “jitter” 
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in a visual feedback scenario), visual gain is decreased, while other relevant sensory 

inputs (proprioception, hearing) are up-weighted to optimize the accuracy of the 

combined sensory estimate [15, 20, 23, 50-52]. These weighted estimates are combined 

to produce a single, unified estimate of limb position. With additional information about 

the environment, Bayesian estimation – reweighting of sensory information based on 

previous information – acts to maximize the amount of sensory information available 

while decreasing the impact of errors in sensory processing [52]. 

Sensory weighting is also dependent on internal sources of uncertainty inherent to 

the nervous system. Sensory uncertainty, or noise, arises from several physiological 

mechanisms. Variability in firing rates of sensory neurons (i.e. photoreceptors in the 

retina) reduces accuracy in sensory perception [53, 54]. Information is lost during 

transmission [55] and during processing [54, 55] of sensory information due to variability 

in action potential spike timing. These sources of variability reflect noise inherent in the 

system and place limits on the accuracy of the sensory percept such that signals smaller 

than the noise cannot be reliably detected [53]. Inaccuracies in sensory estimates exist in 

all sensory modalities and, in the context of movement control, reflect the uncertainty in 

sensory estimates of limb kinematics [53]. In the sensorimotor control systems of healthy 

adults, the effects of sensory variability at the output of a movement are an order of 

magnitude smaller than the movement itself [53].  

 

1.3 MODELING OF GOAL-DIRECTED MOVEMENTS 

 

 

 

 Modeling has been used to characterize motor control during balance [9-11, 13-

15, 20, 21] and arm movements [2, 4, 19, 22, 25, 30, 31, 56, 57] including goal-directed 
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movements about the elbow and wrist. The primary purpose of these models has been to 

investigate the means by which posture and voluntary movements are controlled. Some 

of the earliest comprehensive models of motor control were designed to interpret human-

controller interactions in order to improve pilot performance during flight [12, 29, 30]. 

More recent models have been used to examine the processes that guide the maintenance 

of human balance, an inherently unstable process [9-11, 16-18, 20, 21, 58-62]. Models 

characterizing sensorimotor control as a whole have also been applied to the 

understanding of tracking movements of the wrist  [2, 22, 25] and arm [4, 56, 57, 63] to 

investigate the neuromotor control of voluntary, goal-directed movements. 

The means by which the brain plans and executes goal-directed movements can 

be modeled in several ways. A simple and effective class of controllers used for error 

reduction in control systems modeling include the PD (proportional-derivative) or PID 

(proportional-integral-derivative) controller [1, 20, 22, 56, 57, 61]. PD controllers 

respond to several aspects of the error: proportional control reduces the current error 

while derivative control responds to the change in error, allowing for faster responses and 

damping of oscillatory responses. PD controllers can result in significant endpoint error, 

which can be reduced with the addition of integral control (PID controllers). Other types 

of controllers employ cost functions designed to generate trajectories that minimize jerk 

[64] or minimize metabolic cost [65]. Minimum-jerk and minimum-cost trajectories have 

been shown to closely resemble reaching movements in human subjects [64, 65]. 

Intermittent control, or control using discrete “taps” in order to reduce error, has been 

examined in the context of balance control; it has been found to be an effective method of 

reducing movement error in unstable systems. Although intermittent control is effective, 
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it is also non-linear, making parameters difficult to estimate experimentally [9, 10]. 

Artificial neural networks (ANNs), which are typically more complex, have also been 

used to generate stereotyped movements similar to natural movements [66]. Models of 

error reduction span a continuum trading off simplicity (PD/PID, minimum-jerk) for 

model accuracy (intermittent control, ANNs).  

Delays in feedback during movement control can make systems inherently 

unstable and errors difficult to respond to [4, 19-22, 48, 49, 60, 61, 67, 68]. Intermittent 

controllers compensate for instability in continuous feedback systems by using small, 

discrete movements; this mode of control has been shown to closely replicate human 

movement during balancing tasks [9, 10]. The discretization of error compensation 

reduces oscillatory behavior without the need for predictive feedback [9, 10]. Another 

way to compensate for long delays is through the use of a Kalman filter to estimate the 

state of the system using an efferent copy of the motor command in combination with 

sensory information [60, 68]. In systems engineering, feedback delays can be 

compensated using a Smith Predictor, a predictive mode of control which contains 

additional feedback models of both the plant dynamics and predictions of delayed 

sensory feedback [19, 49]. Smith Predictors are particularly robust against long sensory 

delays, however, the neurological correlates of this type of forward model are unclear 

[60]. 

Recently, models of sensorimotor control have been used to investigate the causes 

of movement dysfunction in stroke [44], Huntington’s disease [69, 70], cerebellar ataxia 

[33], vestibular deficits [71], and Parkinson’s disease [1]. These studies have quantified 

motor deficits in terms of an underlying control architecture to identify where subclinical 
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deficits may be present, for example, in early stages of Huntington’s disease [69, 70]. 

They can also help identify mechanistic causes of specific deficits that may be targeted 

for rehabilitation; a recent study of cerebellar ataxia found that subjects with ataxia may 

be unable to predict limb dynamics accurately [33]. Devices and therapies to modulate 

limb dynamics may, therefore, be able to reduce ataxia in individuals with cerebellar 

damage [5, 33].   

 

1.4      AGING AND MOVEMENT CONTROL 

 

 

Healthy older adults (> 60 years old) exhibit several changes in motor control. 

Older adults tend to move more slowly [72-76], and with decreased accuracy [77-80] 

compared with younger subjects. Older subjects also exhibit increased trajectory and 

endpoint variability, which may be associated with decreased accuracy [79, 81]. They also 

may have difficulty coordinating complex movements, particularly those that require 

coordination of multiple joints and/or integration of information from multiple sensory 

sources [74-77, 82]. Additionally, older subjects also rely more heavily on sensory 

feedback information during closed-loop movements [83, 84], but use sensory information 

less efficiently and take more time to process sensory inputs [80]. Older subjects also 

exhibit more difficulties in adjusting to late changes in target position [80] and perform 

more poorly at adapting to novel force fields [65].  

Changes in muscle and the peripheral nervous system may contribute to alterations 

in motor control, including a reduction in the ability to generate large muscle forces [73, 

85] and an increase in signal-dependent motor noise [81, 86]. Central nervous system 

deficits may also contribute. Loss of grey matter in the cerebellum may result in poor 
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formation of new internal models and degradation of existing models [87, 88]. The cortex 

also exhibits reduced volume in both white [88-91] and grey [90] matter in older adults, 

which could also alter movement profiles by affecting the integrity of sensory input, 

sensory integration, and movement planning [92]. In particular, reductions in the size of 

the corpus callosum, common in older adults, could potentially lead to difficulty in 

coordinating complex movements, especially those that rely on ipsilateral movement 

control [92]. Older subjects may also prioritize accuracy over speed [73, 81], leading to 

changes in endpoint acquisition strategies; these changes could also be used as a 

compensatory mechanism to address deterioration in sensory or motor systems as 

described above [81]. 

 

1.5       MULTIPLE SCLEROSIS AND MOVEMENT CONTROL 

 

 

In persons with multiple sclerosis (PwMS), neuromotor dysfunction is due to a 

loss of myelin in the CNS which disrupts the transmission of information within and 

between brain areas. Arm movement and balance are particularly affected; tremor and 

ataxia may impact up to 75% of PwMS, while balance dysfunction affects nearly 80% of 

PwMS [93]. Arm movement can be particularly affected by intention tremor, a form of 

low-frequency (3-5Hz) tremor about the endpoint of a visually-guided, goal-directed 

movement. Intention tremor affects up to 15% of PwMS and is a particular cause of 

upper extremity disability [94]. Although there are several medical options available, 

most do not result in significant, long-term effects due to either increasing drug tolerance 

or to increasing symptom severity. Drug therapies – including isoniazid, propanolol, and 

carbamazepine – have been able to reduce intention tremor in select populations [95, 96]. 
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Side effects can also be significant, including reduced liver function, fatigue, and 

weakness [95]. Surgical treatments, including DBS and thalamotomy, can mitigate some 

effects of tremor [95].  However, the treatments are invasive and entail relatively high-

risk and, like medications, their effectiveness at reducing tremor also decreases over time 

[96]. Recently, rTMS has been shown to reduce tremor, although the treatment period can 

be long and the effects are typically short-lived [97, 98]. 

Physical therapy has been used successfully to reduce motor symptoms in other 

neurodegenerative illnesses, including Huntington’s disease and Parkinson’s disease [99], 

as well as for select motor symptoms in MS, including posture and balance deficits [100]. 

In particular, balance-based torso weighting has been shown to effect long-term 

improvements in mobility in persons with MS [100]. The goal of most exercise-based 

rehabilitation programs has been management, but not necessarily treatment, of motor 

symptoms. Because of this, exercise-based rehabilitation strategies have generally not 

been successful in achieving significant long-term improvements in motor performance 

[101]. Recent, more targeted studies by Feys et al. have shown that intention tremor in 

MS can be reduced through alteration of computer-generated visual feedback [102]. 

Delaying or time-averaging visual feedback information has been shown to reduce 

intention tremor during functional tasks [102-104], and the effect has been used 

successfully to assist with computer usage for people with intention tremor [102].  The 

effects do not persist once the altered feedback has been removed, suggesting that the 

procedure can be used to help manage the functional impact of intention tremor during 

select tasks, but does not improve motor performance generally.  
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Motor training using robotic devices to introduce proprioceptive and visual 

perturbations has been shown to reduce motor impairment in persons with MS [105-107]. 

Subjects with MS are able to correct movement trajectories in force fields, indicating that 

their ability to adapt is not completely lost due to neurological changes resulting from MS 

[105]. Moreover, the force field adaptations were shown to reduce tremor during and 

immediately post-task [106]. Error enhancement (an increase in visual error relative to 

position error) during visually guided tasks has also been shown to improve performance 

during and immediately following reaching tasks compared to training without error 

enhancement or training using error reduction (a decrease in visual error relative to 

position error) [107]. These short-term improvements in motor function suggest robot-

assisted training therapies may provide a viable approach to reducing motor dysfunction 

in MS.  

Intention tremor in MS also differentially impairs two types of movement; 

subjects with intention tremor perform nearly normal open-loop movements (movements 

which are made without sensory feedback). However, closed-loop control (movement 

control under sensory feedback) is impaired, and endpoint acquisition is severely 

impaired by the addition of tremor [45]. Despite this impairment, individuals with MS 

often select a closed-loop control strategy when an open-loop strategy may be more 

appropriate [108, 109]. By better understanding how open- and closed-loop movements 

are controlled, we can gain a better understanding of how control of movement is 

impacted by disease. A better understanding of the sensorimotor control mechanisms 

specifically impacted by MS may also maximize the impact of retraining on motor 

performance and functional outcomes in PwMS. 



11 
 

 
 

1.6       AIMS AND SIGNIFICANCE OF RESEARCH 

 

 The goal of the proposed work is to use a multi-input, single-output linear model 

of sensorimotor control to identify deficits in control that occur with aging and in PwMS. 

To achieve this goal, the research addresses three specific aims: 

 

Aim 1: Develop and use our model to characterize deficits in sensorimotor control due to 

aging during goal-directed movements.  Previous research has demonstrated that 

significant changes in motor control take place during aging. Here, we aim to 

systematically quantify these changes in motor control for three distinct types of goal-

directed tasks: visual compensatory tracking, visual pursuit tracking, and proprioceptive 

compensatory tracking. Elbow joint kinematic data will be collected and subjects’ motor 

performance in each task will be used together with systems identification techniques to 

characterize a model of sensorimotor control. Changes in model parameters with age will 

be examined using structural equation modeling to test causal models of motor deficits. 

We expect that this analysis will reveal directed relationships between age-related 

changes in sensorimotor control parameters that can be used to identify specific deficits 

in motor control that occur in healthy aging.   

 

Aim 2:  Use our model to characterize deficits in sensorimotor control in individuals with 

multiple sclerosis. Multiple sclerosis is a debilitating, degenerative disease whose 

symptoms can vary widely from person to person. Because individuals’ impairments are 

so diverse, it can be difficult to ascribe a specific cause to symptoms. Here, we will 

characterize sensorimotor control in individuals with MS using the model and 
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experiments developed in Aim 1. Elbow joint kinematic data will be compared against 

age- and gender-matched control subjects to determine which aspects of sensorimotor 

control are altered in persons with MS and characterize their functional contribution to 

intention tremor. We expect that characterization of the sensory and motor sources of 

impairment present in individuals with MS will form the basis for the development of 

targeted rehabilitation strategies to improve movement control. 

  

Aim 3: Determine whether sensorimotor control deficits identified in Aim 2 can be 

modified and intention tremor reduced using robot-assisted therapy. Current physical 

therapies for MS emphasize general strength training to alleviate the effects of fatigue 

and improve postural control. Here we test the hypothesis that functional outcomes may 

be improved by tailoring retraining strategies to subject’s individual deficits in 

sensorimotor control. Persons with MS will perform an adaptation task tailored to their 

individual sensorimotor deficits to determine whether targeted rehabilitation can be used 

to induce changes in sensory and motor processes that are beneficial in reducing intention 

tremor. Clinical measurements will be performed to determine the short- and long-term 

functional impact of the adaptation. We expect that targeted rehabilitation techniques will 

be more successful in reducing intention tremor than general therapeutic strategies and 

will provide a direction for future research in assisting persons with MS in reducing 

intention tremor and improving functional performance.   
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CHAPTER 2: CHANGES IN SENSORIMOTOR CONTROL 

DURING HEALTHY AGING IN ADULTS
1

 

1
This work is intended for publication. Authorship: M. Heenan, R.A. Scheidt, S.A. Beardsley. 

 

2.1 INTRODUCTION 

 

 

Healthy adults exhibit changes in sensory and motor performance related to aging. 

During reaching movements, healthy older (> 60 years old) adults move more slowly than 

younger adults [72-76].  They also exhibit decreased movement accuracy [77-80], and 

increased variability in both trajectory planning and endpoint acquisition [79, 81, 82]. 

Older subjects also exhibit increased intermittency during movement [77, 110], with 

movements that require a larger number of corrective submovements to acquire a target 

[81]. Older subjects also have difficulty creating smooth, complex movements [77, 79], 

particularly those that require coordination of multiple joints and/or integration of 

information from multiple sensory sources [74-76, 82]. This may be related to changes in 

sensory processing, including decreased effectiveness of visual feedback [80, 84]  and 

alterations in proprioceptive control of movement [77, 84].  

Several mechanisms have been proposed to explain why sensorimotor control 

changes with age. One source of decreased velocity and increased intermittency during 

goal-directed movement may be a reduction in the ability to generate the large muscle 

forces required for fast, long distance movements [73, 85]. Signal-dependent motor noise 

– associated with muscle fiber recruitment - may also increase in response to muscle 

weakness and reductions in motor neurons, both of which occur more frequently in older 

adults [81, 86]. A moderate reduction in maximum muscle force has a larger impact on 
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fast or forceful movements than on shorter movements at a self-selected speed, which do 

not require large amounts of force [81, 86].  

Deficits in central planning mechanisms have also been implicated in movement 

changes in older adults [74-76, 78]. Deficits have been attributed to slowed conduction 

times in the peripheral and central nervous systems [89-91], imprecision in internal 

models [77, 87, 88], loss of gray and white matter [89-91], and decreased effectiveness of 

working memory. Recent work has demonstrated that the cerebellum exhibits significant 

loss of connectivity with age which may result in difficulty in forming new predictive 

models of limb dynamics, and degradation of existing internal models [88]. 

Decreased reliability of sensory feedback could also potentially cause difficulties 

in generating movements that require significant reliance on sensory inputs to generate 

motor outputs [84]. Older subjects rely more heavily on sensory feedback information 

during closed-loop movements [83, 84], but use this information less efficiently and take 

more time to process sensory inputs [80]. They also exhibit more difficulties in adjusting 

to late changes in target position [80], suggesting that they require more time to process 

alterations in the movement plan. Older subjects also perform poorly at adapting to novel 

force fields, a task that requires subjects to rely heavily on sensory feedback errors for 

optimal performance [65].  

Widespread, generalized cognitive slowing, linked to reductions in volume in both 

white [87, 89-91] and grey [90] matter, could also alter movement profiles by affecting the 

integrity of sensory input, sensory integration, and movement planning simultaneously 

[92]. Additional cognitive load caused by decreased cognitive capacity in older adults has 

been shown to lead to movement slowing [111]. In particular, reductions in corpus 
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callosum size, common in older adults, can lead to difficulty in coordinating complex 

movements, especially in tasks that rely on the ipsilateral hemisphere for movement 

planning and control [92].  

Finally, older subjects may alter their movement goals (either to compensate for 

any of the factors listed above or due to practice), for example, to prioritize accuracy over 

speed [73, 81]. Previous research has speculated that older subjects are more “error-

averse” than younger subjects, leading to changes in endpoint acquisition strategies. Such 

changes would present as altered movement planning processes [81].  Altered movement 

goals could also be used as a compensatory mechanism for deterioration in sensory or 

motor systems as described above [81].  

We have previously used systems identification techniques to characterize changes 

in sensorimotor control during goal-directed movement [6], in subjects with multiple 

sclerosis [57], and during aging [56]. In the current study, we examine the changes in 

sensorimotor control that occur with age during single-joint tracking tasks to determine 

which aspects of sensorimotor control are directly impacted during normal, healthy aging. 

Further, we examine the plausibility of the hypotheses described above, including (1) 

whether all facets of sensorimotor control are directly altered by aging; (2) whether 

changes in strategy (controller), limb dynamics (plant), or sensory noise drive changes in 

motor strategy; (3) whether changes in sensorimotor control can be described by a 

combination of hypotheses – that sensory gains are altered as a result of changes in 

sensory noise, and that aging directly affects either the controller or plant; and finally, (4) 

whether aging directly affects only sensory noise, which, in turn, alters sensory gains, and 

the neural controller/plant. 
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2.2 METHODS 

 

 

2.2.1  Participants 

 

 

 

Twenty-five healthy volunteers (14 women) between 19 and 76 years old (mean: 

40 ± 19 years) participated in the study. One subject was excluded from the final analysis 

because she was ambidextrous. Twenty-two of the twenty-four subjects were right handed, 

according to the Edinburgh Handedness Inventory. All subjects self-reported normal or 

corrected-to-normal vision. None reported any history of neurological, motor, or sensory 

deficits, or use of medications that would cause changes in motor control or attention. 

Written, informed consent was obtained from each subject in accordance with the 

Declaration of Helsinki and as approved by the Marquette University Institutional Review 

Board. 

 

2.2.2. Sensory Feedback Control Model 

 

 

 

Sensory feedback control includes adaptive feedforward and feedback 

mechanisms. Based on the work of Peterka [20], and McRuer [12, 112], we have 

developed a closed-loop model of sensory feedback control during single-joint, goal-

directed movement and have used it previously to describe sensorimotor responses to 

environmental perturbations and distortions of visual feedback (Figure 2-1) [6, 22].  In 

this study, we use the sensory feedback control model to examine how aging in healthy 

adults impacts feedback control. In the model, angular position error of the elbow joint 

(i.e. performance error) is calculated as the difference between desired position (θd) and 
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the weighted sum of visual and proprioceptive estimates of the actual arm position (θa) 

[6, 13, 20, 22, 62]. Desired position is weighted by a gain, Ks. The weights of the visual 

and proprioceptive paths are represented by Kv and Kp, respectively. Delays in visual and 

proprioceptive processing are modeled separately (Tv and Tp, respectively) to account for 

the overall response delay in each sensory path; these lumped-parameter terms combine 

feedback delays due to signal conduction and sensory information processing. In the 

forward path, actual performance error is compared to the predicted consequences of the 

intended action (i.e. the output of a forward model) to yield an instantaneous prediction 

error, which gives rise to a set of muscle activations through the action of a neural 

feedback controller, which for simplicity we model using a Proportional-plus-Integral-

plus-Derivative (PID) controller, C(s): 

 

                
  

 
 .    (1) 

 

This generic controller, which has previously been used to model movement 

control [20], contains separate derivative (Kd) proportional (Kpr) and integral (Ki) gains to 

allow the controller to minimize transient response errors as well as steady state errors. 

The output of the controller is a scalar quantity representing the intended net muscle 

activations, which in turn act through the musculoskeletal geometry (muscle attachment 

points and moment arms) to give rise to a net torque applied to the physical plant (the 

forearm / hand pivoting about the elbow). Note that we have simplified our model of the 

physical plant by discounting muscle activation/contraction dynamics, which are assumed 

to be dominated by the second-order passive dynamics of the arm. We do, however, 
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account for variations in muscle fiber recruitment [113] by reducing the precision of the 

intended torque by a multiplicative motor noise (α).  

The arm's dynamic response to the applied torque is estimated using a second-

order model of the plant, P(s),  

 

                                                                     
 

        
     (2) 

 

 

This model simulates the passive mechanical properties of the forearm and hand about 

the elbow via separate inertia (J), viscosity (B), and stiffness (K) terms.  

 

 

Figure 2-1: Multisensory feedback model of sensorimotor control [57].  
Feedforward (action selection) pathways have been omitted for simplicity. The model consists of a feed-

forward motor control path and three nested feedback paths. The outermost feedback path accounts for 

sensory (visual and proprioceptive) feedback. In the feedforward path, desired position (d) is weighted 

(Ks) and the sensory estimate of position is subtracted to generate a performance error. Neural processing 

associated with the correction of state is modeled generically by a PID controller (neural controller) 

containing separate proportional, integral, and derivative gains. Motor noise in the generation of torques is 

modeled by a multiplicative noise (). Corrective torque is converted to angular position of the arm using a 

2
nd

 order model characterizing the inertia, viscosity, and stiffness about the elbow. In each branch of the 

outer-most feedback path, arm position is delayed (T) and weighted (K) to provide a combined sensory 

estimate of arm position. The forward model provides predictive compensation of the arm dynamics and 

delays via the inner feedback loops. Dvision/ Dtorque denote external perturbations applied to the perceived 

visual (Tasks 1 and 4) and/or proprioceptive (Task 2) feedback of arm position. 
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The sensory feedback control model also includes an internal feedback path 

(referred to here as a forward model), which provides predictions of movement 

kinematics and the sensory consequences of those actions based on efference copy of the 

intended motor actions and internal estimates of the sensory gains (Kv*, Kp*), system 

delays (Tv*, Tp*), and limb dynamics (Plant* - Eq. 2). One important effect of the 

forward model is to compensate for the long-latency feedback loops (>100ms) associated 

with sensory processing.  

 

 

2.2.3. Experimental Setup 

 

 

 

All subjects participated in a single, two-hour experimental session wherein they 

performed a series of visual and proprioceptive tracking tasks to characterize sensory 

feedback control about the elbow.  Tasks and analysis are summarized in Table 2-1. 

Elbow angle and joint torque data collected during performance of six single-joint 

tracking tasks were used to obtain an individualized (best-fit) estimate of the sensory 

feedback control model depicted in Figure 2-1. Data collected from an additional single-

joint tracking task was used for model validation. The order of task presentation was 

counterbalanced across subjects. In order to account for potential task-related variations 

in subjects’ responses, all model parameters (aside from the physiological parameters: 

sensory delays and muscle noise) were estimated simultaneously from data collected 

during a single, high-frequency tracking task ("task 4", described below). 

During single-joint tracking tasks, subjects held the handle of a 1-D robotic 

manipulandum with their right hand (Figure 2-2); the robot's axis of rotation was aligned 
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with that of the elbow joint when the subjects’ arms were supported at an angle of 

approximately 90º of shoulder flexion and 90º  of shoulder adduction. Details of the robot 

implementation and control can be found in [114]. Rotation of the manipulandum about 

the elbow (limited to ±40
o
 relative to 90º of elbow flexion) was yoked to the horizontal 

position of a cursor (a red ring) displayed on a 19-inch computer monitor. The monitor 

was placed perpendicular to the line of sight at a distance of 60 cm, which resulted in a 

cursor diameter of 0.67
o
. During the tasks, a stationary target (a black circle 0.33

o
 in 

diameter) was also displayed on the screen. Direct view of the arm was blocked using an 

opaque barrier such that the cursor provided the sole visual cue of arm position. Rigid 

supports were placed on either side of the subject’s upper arm to minimize shoulder 

and/or upper arm movements. 

 

 

Figure 2-2: 1-D target tracking setup [57].  

Subjects held the handle of a 1-D manipulandum while seated in front of a computer display. The position 

of a cursor (red ring) was manipulated by rotating the manipulandum handle about the elbow joint. The 

cursor (or arm) was continuously perturbed (upper right inset) with a zero-mean, band-limited disturbance, 

and the subject was asked to compensate by bringing the cursor to a target (black circle) presented in the 

center of the display. The arm was occluded by an opaque screen (shaded region) so that the cursor 

provided the only visual cue of arm movement.  
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2.2.4. Target Tracking Tasks 

 

Continuous visual or torque perturbations were applied to the cursor, target, or 

arm, respectively, during the 1-D target tracking tasks described below and summarized 

in Table 2-1. During compensatory tracking (stabilization against an external 

perturbation), subjects were asked to compensate for low- or high-frequency visual and 

torque perturbations (low-frequency: 0-1Hz, band-limited white noise; high-frequency: 0-

10Hz, band-limited white noise, low-pass filtered at 1 Hz) by bringing the cursor or arm 

to the desired (stationary) target location as quickly and accurately as possible. During 

pursuit tracking (target tracking), subjects were asked to track a target with low- or high-

frequency visual perturbations (low-frequency: 0-1Hz, band-limited white noise; high-

frequency: 0-10Hz, band-limited white noise, low-pass filtered at 1 Hz such that higher 

frequencies are attenuated but still present) by bringing the cursor to the moving target as 

quickly and accurately as possible. Subjects performed between 10 and 25 trials per task. 

Trial lengths varied by task and ranged from 8-32 seconds, with 15-30 seconds of rest 

between trials. During the rest period, the screen displayed the instruction “relax”. Two 

seconds before the start of the next trial, subjects were cued to “get ready”. The trial then 

began when the cursor and target appeared on the screen. 
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Table 2-1: Summary of experimental tasks and analysis 

 

Task Input Parameter measured Analysis method 

Task 1 
Low frequency 

visual 
perturbation 

Tv
 

Visual response delay Cross correlation of 
subject response 

with input 
Tv

* 
Predicted response delay 

Task 2 
Low-frequency 

torque 
perturbation 

Tp 
Proprioceptive response 

delay 
Cross correlation of 
subject response 

with input Tp
* Predicted proprioceptive 

response delay 

Task 3 
Fixed levels of 

isometric torque 
α Multiplicative motor noise 

Linear fit of variance 
vs. average torque 

Task 4 
High-frequency 

visual 
perturbation 

J, B, K 
Inertia, viscosity, stiffness 

of elbow 

Bootstrapped model 
fit to the subject’s 

measured frequency 
response function 

(FRF) 

J
*
, B

*
, K

* 

Predicted inertia, 
viscosity, stiffness of 

elbow (matched to J, B, 
K) 

Kv, Kd, Kpr, Ki Controller gains 

σv
2
, σp

2
, av, ap 

Sensory noise 
parameters 

Task 5 Visual offset RMSE Movement error Kinematic analysis 

 

 

 

Tasks 1 and 2: Compensatory tracking with low-frequency perturbations 

 

 

 

 Visual (Tv, Tv*) and proprioceptive (Tp, Tp*) delays were characterized in separate 

compensatory tracking tasks. Subjects performed 10 trials per task and trial duration was 

20 seconds in each case. In the first task (Task 1), visual response delays (Tv, Tv*) were 

characterized by applying continuous pseudorandom visual displacements (0.05 – 1 Hz; 

RMS = 10
o
 visual angle) to the cursor position while subjects applied counter movements 

to the manipulandum so as to maintain the cursor on a stationary target presented at the 

center of the display. 

In the second task (Task 2), proprioceptive response delays (Tp, Tp*) were 

characterized by applying continuous pseudorandom torque perturbations (0.05 – 1 Hz; 



23 
 

 
 

RMS = 0.3 Nm) to the manipulandum while subjects applied counter torques to keep the 

manipulandum aligned perpendicular to the computer monitor. No visual feedback of arm 

position was provided during the torque perturbations so as to constrain sensory feedback 

to the proprioceptive path. To account for passive dynamics of the arm in the measured 

torque response during the second task, an additional five "control" trials (30 sec. each) 

were collected during which subjects were instructed not to apply corrective torques (i.e. 

subjects were instructed to maintain the same posture and level of stiffness as in the other 

tasks, but to not otherwise interfere with the task). During these trials, a high frequency 

torque perturbation was applied to the arm (0-30Hz, RMS = 1 Nm; first-order zero-phase 

Butterworth filter with 1Hz cutoff). The contribution of the passive mechanical 

impedance of the arm to the measured torque was estimated from the least-squares linear 

regression between the passive torque applied by the arm and externally applied torques 

during the passive trials (R
2
 > 0.75). The contribution of the passive mechanical 

impedance of the arm was then subtracted from the measured torque to estimate subjects’ 

voluntary corrective torque during proprioceptive task trials.  

 

 

Task 3: Tracking of step torque 

 

  

 

 Signal-dependent motor variability ("motor noise"), was assessed using an 

isometric task adapted from Jones et al [113], which measured joint torque variability as 

a function of average joint torque. During the task, the manipulandum position was fixed 

parallel to the subject’s sagittal plane while subjects produced several isometric torque 

contractions. Displacement of the cursor from the center of the screen scaled in 
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proportion to the torque applied to the manipulandum. The subject was required to place 

the cursor on one of five targets (desired elbow joint torques of 4, 6, 8, 10, and 12 Nm 

flexion) by applying the appropriate isometric contraction. Five trials were collected at 

each of the five torque levels (25 trials total). During each eight-second trial, visual 

feedback of the target and cursor was shown for the first three seconds. Visual feedback 

was then removed, while subjects attempted to maintain the specified torque level for 

remaining five seconds.  

 

 

Task 4: Compensatory tracking with high-frequency perturbations 

 

 

 

High-frequency, visual compensatory, visual pursuit, and proprioceptive 

compensatory tracking tasks were used to characterize the remaining elements of the 

sensory feedback control model including the controller gains (Kd, Kpr, Ki), visual and 

proprioceptive feedback gains (Kv, Kp), task gain (Ks), arm dynamics (J, B, K, J*, B*, 

K*), and noise (N). During the task, high frequency, continuous, pseudorandom visual 

and torque perturbations (0-10 Hz, RMS = 20
o
, first-order zero-phase Butterworth filter 

with 1 Hz cutoff) were applied to the cursor, target, or manipulandum, respectively. 

During visual tasks, subjects were asked to bring the cursor to the target (whether moving 

or stationary) as quickly and accurately as possible; during the proprioceptive task, 

subjects were asked to continuously return their elbow to a neutral (90º flexion) position. 

Ten 32-second trials were obtained for each subject. 
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Task 5: Pursuit tracking of step displacements 

 

 

 

A step displacement task was used to characterize changes in motor output during 

aging. Subjects performed ten trials of the task. Each 10-second trial started with the 

target and cursor located at the same screen position. After a one second delay, the target 

was randomly displaced to the left or right by a randomly selected distance ranging ±24.4 

cm along the horizontal midline of the display (corresponding to ±11.5 degrees of visual 

angle). Subjects were instructed to center the cursor on the target as quickly and 

accurately as possible and to maintain the cursor position until the end of the trial.  

 

 

2.2.5 Data Analysis 

 

 

 

Sensory delays (Tasks 1 & 2) 

 

 

 

 We used cross correlation analysis to estimate delays in the visual and 

proprioceptive feedback-driven responses to band-limited low-frequency perturbations 

applied in the two low-frequency compensatory tracking tasks (Tasks 1 & 2). The visual 

response delay, Tv, was estimated as the trial-wise average of the temporal offset (lag) 

between the perturbations in cursor position applied in Task 1 and the subject’s corrective 

responses measured by the robot's handle position. The proprioceptive response delay 

was obtained by correlating the subject’s voluntary corrective torque response in Task 2 

with the applied torque perturbations. The proprioceptive response delay, Tp, was 

estimated as the trial-wise average of the temporal lag between the continuous torque 
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perturbations applied to the arm in Task 2 and the subject’s voluntary corrective 

responses. For the purposes of this study, delays and their forward estimates (Tv, Tv*, Tp, 

Tp*) were assumed to be equivalent. 

  

 

Signal-dependent motor noise (Task 3) 

 

 

 

 The gain of the multiplicative (signal-dependent) motor noise, α, was estimated 

using the torques measured during Task 3, which involved pursuit tracking of step torque 

targets. For each target torque level, the mean and variance in the applied torque was 

measured during the last five seconds of each trial (i.e. after visual feedback was 

removed). The gain of the multiplicative noise  was estimated as the slope of the linear 

regression between the mean and the variance of the trial-averaged torque as a function of 

target torque level. 

 

 

Frequency response analysis (Task 4)  

 

 

 

For each subject, we estimated the remaining model parameters (Ks, Kd, Kpr, Ki, 

Kv, Kp, J, B, K, N) using the transfer functions of our model. The analysis consisted of a 

two-stage frequency response analysis, which related the experimentally-imposed cursor, 

target, and torque perturbations to changes in arm position. During the analysis, each 

subject's sensory delays and motor noise parameters were held constant at values derived 

during the analysis of data from the first three tasks. Forward model parameters (J
*
, B

*
,
 

K
*
, Kv

*
, Kp

*
) were constrained to be identical to their corresponding model parameters (Tv, 
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Tp, J, B,
 
K, Kv, Kp). The remaining model parameters were fit to each subject’s responses 

in the frequency domain using the simplex method (Matlab: fminsearch).  

In the first stage of the analysis, the second-order model of musculoskeletal 

dynamics (Eq. 2) was fit to the magnitude of the frequency response function (FRF) 

relating the subject’s arm position to the applied torque. To reduce measurement noise 

prior to the model fit, FRFs were computed for all pair-wise combinations of trials as the 

ratio of the trial-wise differences between the applied torque (τ) and measured arm 

position (  ) (See Appendix A), and then averaged: 

 

                                     
 

 
  

   
       

   

           

 
   
   

 
         (3) 

 

 

where N is the number of trials and M is the total number of trial-wise pairs. 

In the second stage of the analysis, the remaining model parameters were 

estimated from the transfer function relating the applied visual perturbation (Dext) and 

measured arm position (a):             

    

                
               

                         
     

     
  

   
  

              
             

                (4) 

 

which, when forward model parameters are matched to their feedback model 

counterparts, simplifies to:  

                                                             
               

          
                           (5) 

 

the transfer function relating the applied target perturbation (θd) and measured arm 

position (a):     
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                (6) 

 

 

which simplifies to: 

 

                                                                        
               

          
                            (7) 

 

 

and the applied proprioceptive perturbation (Dtorque) and measured arm position (a):      

    

                                                              
                            

          
                      (8) 

 

where P(s) and C(s) are the Plant and Controller transfer functions, respectively, defined 

by Equations 1 and 2. 

The remaining transfer functions related the internal noise sources to the subject’s 

arm position for all three tasks. The effect of sensory noise on limb position was 

estimated for each task using a subtraction analysis (see Appendix A) that removed the 

contributions of the perturbation signal. In this study, internal visual and proprioceptive 

noises were assumed to be statistically independent. The source(s) of sensory noise were 

assumed to be common across tasks such that the model transfer function was the same 

for each task (Eq. 9): 

 

                                   
 

    
 

          

          
   

 + 
 

    
 

          

          
   

                    (9) 

 

 

where N(s) is the effective sensory noise at the output, σv
2 

and σp
2
 are the variance of the 

visual and proprioceptive noise sources, respectively, and av and ap are filter constants 
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associated with the independent noise sources. For the proprioceptive compensatory 

tracking task, Kv (visual gain) was assumed to be 0 since no visual feedback of limb 

position was provided. 

The six FRFs defined across the three task conditions (effects of perturbation and 

effective sensory noises on subject responses during visual compensatory tracking (Eqs 5, 

9); visual pursuit tracking (Eqs. 7, 9); proprioceptive compensatory tracking (Eqs. 8, 9)) 

were fit to model transfer functions simultaneously. Parameters defining the noise 

sources for the noise FRFs (σv
2 

, σv
2 

, av, ap) were assumed to be common across all tasks, 

but noise spectra could be altered by task-specific sensory weights, controller gains, and 

plant dynamics. During the fits, α (motor noise), Tv and Tp (delays) and J, B, and K (plant 

dynamics) for each task were fixed at the values calculated in previous analyses. 

A bootstrap analysis was applied at each stage of the model fitting procedure to 

quantify uncertainty in parameter estimates of the FRF associated with measurement 

noise and model initial conditions. For each bootstrap, 10,000 model fits were performed 

(with random sampling of the initial conditions for each parameter and of the FRF data 

points included in each fit): Initial conditions for each parameter were selected from a 

uniform distribution spanning one order of magnitude centered on nominal values 

estimated across subjects in a previous analysis [6]; Three hundred data points were 

selected randomly with replacement across the three-decade range of the FRF. Model fits 

that did not converge to a solution within 400 iterations due to poor initial parameter 

estimates (~10% of cases) were discarded from subsequent analysis. For the remaining 

fits, the mean and standard deviation of the fitted parameters were used to estimate the 

nominal best-fit value and magnitude of uncertainty in the model parameters.  For the 
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second-stage bootstrap, plant parameter triplets (J, B and K) were randomly sampled 

from the first-stage FRF analysis to propagate the accumulated error across sequential 

model fits. During the second stage fits, these triplets were held constant. 

 

 

Pursuit tracking of step target displacements (Task 5) 

 

 

 

For each subject, target acquisition time and mean squared endpoint error were 

calculated and averaged across trials. Target acquisition time (AT) was calculated as the 

time required for the subject to move within two degrees of the target after the target 

appeared. Endpoint error was calculated as the mean-square error (MSE) from the 

moment of target acquisition to the end of the trial. AT and MSE were used to quantify 

changes in motor performance with aging.  

 

Statistical Analysis 

 

 

 

Statistical analysis was performed using MATLAB and IBM SPSS Amos (IBM, 

Armonk, NY, USA). Basic statistical analysis (mean, variance, linear regressions) was 

performed (using MATLAB) in order to examine simple correlations between parameters 

and to compare parameter values across tasks. Model parameters and noise were related 

via a piece-wise function in which parameters were fit by a constant value (up to a certain 

age) followed by a linear increase/decrease. 

Amos was used to perform structural equation modeling (SEM) to directly test 

specific models of age-related changes in sensorimotor control. Structural equation 
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modeling is a statistical method that tests a theoretical model of relationships between 

variables; the goal is to determine the extent to which the model accounts for the 

covariance of the data. Specifically, we used path analysis (also called causal modeling), 

a type of SEM that tests directional dependencies between variables, to examine the 

mechanisms of age-related changes in sensorimotor control. In constructing a path 

analysis, directed relationships are hypothesized between variables. A model covariance 

is generated, and this model is compared against the covariance matrix of the sample 

data. These two covariance matrices are compared statistically using the χ
2
 test of 

independence to determine whether the model covariance and data covariance can be 

considered to be different. 

In an initial analysis, model parameters were divided into three groups by task, 

resulting in 7 parameters for proprioceptive compensatory tracking, 11 parameters for 

visual compensatory tracking, and 12 parameters for visual pursuit tracking. Limb inertia 

was not included in the SEM, as it was assumed to be independent of both age and 

strategic movement choices. Age was assumed to be an exogenous (independent, no 

measurement error), uncorrelated factor; all other variables (sensory gains, controller 

gains, plant parameters, noise, movement error, target acquisition time) were assumed to 

be endogenous (dependent, possible measurement errors). During SEM for 

proprioceptive compensatory tracking, movement error and target acquisition time were 

excluded, since these movement outcomes were calculated from a visual, not 

proprioceptive, task. For the purposes of this study, we assumed that there were no latent 

(unmeasured) variables underlying endogenous parameters. The probability that each 

class of model described the changes in parameters was estimated by comparing the 
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theoretical covariance matrix of the model against the covariance matrix of the supplied 

data; statistical measures were the chi-squared test, which quantifies the probability that 

the model and data covariance matrices differ, and the goodness-of-fit index (GFI), which 

measures the amount of variance and covariance accounted for by the model covariance 

matrix. A specification search was performed using Amos to examine all possible 

combinations of paths within each model class in order to determine the path 

combinations that best account for the observed changes in sensorimotor control with 

age.  

 

2.3 RESULTS 

 

 

 

2.3.1 Participants 

 

 

 

Twenty-four subjects were included in the final analysis and ranged in age from 

20-76 years old (mean: 41 ± 18 years; N(18-30) =  11; N(31-50) = 5; N(51-60) = 3; N(61-

70 = 4; N(71-80) = 1). Ages were evenly distributed within genders; the age of the women 

(39 ± 16 years; range: 20-63 years) did not differ significantly from the age of the men (43 

± 21 years; range: 20-76 years) (t(22) = 0.41; p = 0.68). A full table of task parameters can 

be found in Appendix B. 

 

 

2.3.2 Sensory response delays 

 

 

 

 The mean visual response delay across subjects was 448.7.4±60.2 ms. Visual 

response delays exhibited a significant linear correlation (Figure 2-3, left) with age (r = 
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0.43; p = 0.029); delay was constant until age 25, after which it increased by 

approximately 1.5 ms per year of age. The mean proprioceptive response delay across 

subjects was 228.9±88.4 ms (Figure 2-3, right). Proprioceptive response delay was not 

well fit by the piece-wise function (r = 0.29; p = 0.15). 

 

 

Figure 2-3: Visual (left) and proprioceptive (right) response delays vs. age.  

Individual subject data (black circles) and the best-fit piece-wise regression (red). Error bars denote 

standard error. Visual response delay is positively correlated with age, while proprioceptive response delay 

is not significantly correlated with age. 

 

 

2.3.3 Feedforward Motor Noise and Plant Dynamics 

 

 

 

 Feedforward motor noise did not change significantly with age (mean = 

0.067±0.026; increase after age 20; r = 0.35; p = 0.11). Elbow joint dynamics exhibited 

systematic changes with age; as our model is linearized, changes in muscle tension and co-

contraction can affect both the lumped plant viscosity and lumped plant stiffness. Plant 

viscosity increased with age during visual compensatory tracking (mean = 1.14±1.01; 

increase after age 32; r = 0.70; p < 0.001), visual pursuit tracking (mean = 0.69±.0.58; 

increase after age 40; r = 0.63; p < 0.001), and proprioceptive compensatory tracking 
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(0.89±0.30; increase after age 63; r = 0.68; p < 0.001). Plant stiffness also increased 

significantly during visual compensatory tracking (mean = 5.48±3.00; increase after age 

29; r = 0.59; p = 0.0027), pursuit tracking (4.30±1.48; increase after age 41; r = 0.42; p = 

0.039), and proprioceptive compensatory tracking (13.97±7.57; increase after age 66; r = 

0.83; p = 0.027). The change in viscosity with age was greatest during visual 

compensatory tracking; for stiffness, the change was greatest during proprioceptive 

compensatory tracking. Across subjects, elbow viscosity was significantly higher during 

visual compensatory tracking than during visual pursuit tracking (paired t-test; t(22) = 

3.18; p = 0.0042) but there was no significant difference in viscosity between visual 

pursuit tracking and proprioceptive compensatory tracking or between visual 

compensatory tracking and proprioceptive compensatory tracking (paired t-test; t(22) > 

2.0; p > 0.05). Significant differences in elbow stiffness were observed between the three 

tasks for elbow stiffness such that stiffness was highest during proprioceptive 

compensation and lowest during visual tracking (paired t-test; t(22) > 1.9; p < 0.05). 

Plant inertia was not expected not to change with age or task type. However, 

during compensatory tracking, limb inertia was found to positively correlate with age 

(mean = 0.057±0.024; r = 0.51; p = 0.011). Changes are most likely due to un-modeled 

non-linearities in the elbow system. Limb inertia did not change significantly with age 

during either visual pursuit tracking or proprioceptive compensatory tracking (p > 0.05). 

Across subjects, limb inertia was significantly lower during visual pursuit tracking than 

during proprioceptive compensatory tracking (paired t-test; t = 3.28; p = 0.0032).  
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2.3.4 Neural Controller Gains 

 

 

 

 All FRFs were well-fit by the sensorimotor control model (r
2
 > 0.80). FRFs for 

both the perturbations and the noise are shown in Figure 2-4.  

 

 

Figure 2-4: Frequency response functions relating subject responses to external perturbations (top) 

and noise (bottom).  

Left: visual compensatory tracking; center: visual pursuit tracking; right: proprioceptive compensatory 

tracking. Subject FRFs for a representative (age = 25 years) subject are shown in black the best model fits 

for each FRF are shown in red. 

 

During visual compensatory tracking, derivative (mean=0.0052±0.0055; increase 

after age 50; r = 0.62; p = 0.0011) and proportional (mean=0.29±0.33; increase after age 

55; r = 0.79; p < 0.001) and integral gains increased with age (mean=2.54±6.82; increase 
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after age 59; r = 0.42; p = 0.039). During visual pursuit tracking, derivative (mean = 

0.0045±0.0029; increase after age 20; r = 0.53; p = 0.0079) and proportional gain (mean = 

0.20±0.20; increase after age 40; r = 0.63; p <0.001) increase with age. During 

proprioceptive compensatory tracking, none of the controller gains varied consistently 

with age (p < 0.05). Across tasks, there was no difference in any controller gains between 

the three tracking tasks (paired t-test, t(22) > 2.0; p > 0.05).  

 

 

2.3.5 Sensory gains 

 

 

 

 Visual gain decreased with age (mean=0.68±0.43; decrease after age 29; r = 0.65; 

p < 0.001) for visual compensatory tracking, but not for visual pursuit tracking 

(mean=0.95±1.32;  r = .16; p = 0.45). During proprioceptive compensatory tracking, all 

visual gains were assumed to be zero. Proprioceptive gains exhibited a similar trend, 

decreasing during visual compensatory tracking (mean=0.78±0.57; decrease after age 32; r 

= 0.58; p = .0028) and visual pursuit tracking (mean=0.50±0.52; decrease after age 29; r = 

0.52; p = 0.0092). Proprioceptive gain also decreased during proprioceptive compensatory 

tracking but the change was not significant (mean=2.35±2.27; decrease after age 27; r = 

0.45; p = 0.026). Task gain during visual pursuit tracking also decreases; this decrease also 

does not quite reach statistical significance (mean=0.84±0.53; decrease after age 40; r = 

0.53; p = 0.0071). Across subjects, visual gain did not change between visual 

compensatory and visual pursuit tracking (paired t-test; t(22) = 1.25; p = 0.22). 

Proprioceptive gain did change with task such that the highest proprioceptive gain was 
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observed during proprioceptive compensatory tracking, and lowest proprioceptive gain 

during visual pursuit tracking (paired t-test, t(22)>1.9; p < 0.05). 

 

 

2.3.6 Variance of Sensory Noise 

 

 

 

 The sensorimotor control model fit to the noise FRFs was unable to distinguish 

between visual and proprioceptive noise in subjects where the noise profiles (filter 

coefficients) were similar between visual and proprioceptive noise. For this reason, visual 

and proprioceptive noises were combined into a single sensory noise term for each task 

using a Bayes optimal weighting of sensory noises (Eq. 10): 

                                                            
           

     
                                             (10) 

 

 

The log of the combined sensory noise term (Figure 2-5) increased significantly 

with age for visual (mean=9.51±0.75; increase after age 32; r = 0.73; p < 0.001) and 

proprioceptive (9.88±1.05; increase after age 24; r = 0.69; p < 0.001) compensatory 

tracking. Increases in sensory noise during visual pursuit tracking did not quite reach 

statistical significance (8.98±0.68; increase after age 29; r = 0.39; p = 0.061).  
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Figure 2-5. Sensory noise vs.  age.  

Sensory noise vs. age for visual compensatory tracking (left), visual pursuit tracking (middle), 

proprioceptive compensatory tracking (right). Subject data is shown in black; best-fit piece-wise fits are 

shown in red. Error bars denote standard error. 

 

 

2.3.7 Movement error and target acquisition time 

 

 

 

During the visually guided reach-and-hold task, average mean squared endpoint 

error (MSE) across subjects was 0.0061 ± 0.0027 deg
2
/ms. MSE did not increase with age 

(Figure 2-6, left), until after age 66; as this only included two subjects, it is difficult to say 

whether the piece-wise fit was fitting noise (r = 0.81; p < 0.001). Average target 

acquisition time (TAT) across subjects (Figure 2-6, right) was 834.1 ± 179.0ms. TAT was 

significantly correlated with age (increase after age 50; r = 0.69; p < 0.001). 
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Figure 2-6: Mean square movement error (left) and target acquisition time (right) vs. age.  

Error bars denote standard error. Best-fit piece-wise functions are shown in red over subject data. 

 

2.3.8 Changes in parameters with age 

 

 

 

 We fit model parameters with a piece-wise function that assumed that parameters 

remained relatively constant in younger subjects before increasing or decreasing linearly 

with age in older subjects. In examining the age at which this change takes place, we 

noticed several characteristics that were consistent across tasks; results are summarized in 

Figure 2-7. First, sensory noise (N) begins to increase at a relatively young age (24-32 

years); sensory gains (Kv, Kp) and visual delay (Tv) also begin to change around the same 

time for all tasks. During visual compensatory tracking, a linear increase in plant 

dynamics (B, K) occurs around the same time as increases in noise and sensory gains, 

while the controller gains (Kd, Kpr, Ki) change later (50-59 years). During visual pursuit 

tracking and proprioceptive compensatory tracking, in contrast, controller gains change 

around the same time as sensory noise and sensory gains, while plant dynamics change 

later. Finally, target acquisition time (AT) begins to increase around age 50, while 
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movement error (MSE) begins to increase much later, around age 66. These results may 

indicate direct impacts of aging on a limited number of parameters, while later changes are 

the result of strategic changes due to alterations in other movement parameters. 

 

 

Figure 2-7. Ages at which sensorimotor control parameters begin to change. 

Parameter names are plotted against the age at which they begin to change. Red: visual compensatory 

tracing parameters; green: visual pursuit tracking parameters; blue: proprioceptive compensatory tracking 

parameters; black: delays and movement outcomes. Bold lettering: statistical significance (p < 0.05).  

 

 

2.3.9 Structural Equation Modeling 

 

 

 

 An initial analysis of sensorimotor control parameters across subjects identified 

significant correlations between a large number of sensorimotor control parameters (Table 

2-2). In visual compensatory tracking, 21 of the 36 parameter pairs were correlated (r > 

0.40; p < 0.05). In visual pursuit tracking, 11 of 45 parameter pairs were correlated (r
 
> 

0.40; p < 0.05). During proprioceptive compensatory tracking, 4 of 28 possible 
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correlations were statistically significant (r > 0.40; p < 0.05).To further parse the 

interactions between model parameters (e.g. direct vs. indirect effects) structural equation 

modeling was used to examine directional relationships between parameters. 

 

Table 2-2: Correlations between model fitted parameters across subjects.  

Correlations are shown for visual compensatory tracking (top), visual pursuit tracking (middle) and 

proprioceptive compensatory tracking (bottom). Significant correlations are highlighted in red. Values 

shown are Pearson’s correlation coefficient (r). 

 
Kv Kp Kd Kpr Ki N J B K 

Kv 1.00 
       

  

Kp 0.80 1.00 
      

  

Kd -0.49 -0.38 1.00 
     

  

Kpr -0.68 -0.60 0.67 1.00 
    

  

Ki -0.38 -0.29 0.35 0.65 1.00 
   

  

N -0.57 -0.61 0.30 0.59 0.33 1.00 
  

  

J -0.33 -0.29 0.18 0.14 0.11 0.50 1.00 
 

  

B -0.68 -0.63 0.77 0.81 0.34 0.51 0.07 1.00   

K -0.57 -0.52 0.21 0.50 0.00 0.71 0.55 0.51 1.00 
 

 

Ks Kv Kp Kd Kpr Ki N J B K 

Ks 1.00 
        

  

Kv 0.30 1.00 
       

  

Kp 0.00 -0.13 1.00 
      

  

Kd -0.55 -0.13 -0.08 1.00 
     

  

Kpr -0.49 -0.23 -0.41 0.67 1.00 
    

  

Ki -0.34 -0.18 -0.17 0.29 0.25 1.00 
   

  

N -0.27 -0.79 -0.20 0.29 0.49 0.35 1.00 
  

  

J 0.01 0.16 0.20 0.52 0.05 -0.24 -0.31 1.00 
 

  

B -0.31 -0.16 -0.29 0.15 0.31 -0.12 0.18 0.09 1.00   

K -0.31 -0.19 0.00 0.55 0.48 0.12 0.09 0.50 0.47 1.00 
 

 

Kp Kd Kpr Ki N J B K 

Kp 1.00 
      

  

Kd 0.02 1.00 
     

  

Kpr 0.10 0.20 1.00 
    

  

Ki 0.00 0.44 0.24 1.00 
   

  

N -0.41 0.11 -0.38 0.12 1.00 
  

  

J -0.01 0.15 0.17 0.19 -0.18 1.00 
 

  

B -0.38 -0.12 0.00 0.08 0.39 -0.22 1.00   

K -0.39 -0.10 0.00 0.05 0.59 -0.22 0.67 1.00 
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Structural equation modeling applied to the fitted parameters was used to test 

specific hypotheses regarding the impact of age on sensorimotor control (Figure 2-8, 

below). Parameters were grouped by parameter type – sensory noise (lumped noise term), 

sensory gains (Kv, Kp), neural controller (Kd, Kpr, Ki), plant (B, K), and movement 

performance parameters (MSE, AT). Each task was tested separately, so that separate 

models of parameter relationships were generated for visual compensatory tracking, 

visual pursuit tracking, and proprioceptive compensatory tracking. 

For the purposes of the modeling, each parameter type was assumed to have the 

same inputs and outputs. The first model tested whether aging is the direct cause of 

changes in all sensorimotor control and performance parameters (aging model). Three 

additional models tested specific hypotheses from the literature: (1) aging alters limb 

dynamics (plant), which alters all other parameters (plant-first model) [81]; (2)  aging 

alters controller gains via changes in task strategy and goals, which alters all other 

parameters (controller-first model) [78]; and (3) aging alters sensory noise via loss of 

fidelity in sensory transmission and processing, which alters all other parameters (noise-

first model) [77]. For the controller-first and plant-first models, we assumed that changes 

in sensory noise were due to age, since noise is an external input in the sensorimotor 

control model and thus is independent of other model parameters.  

We also tested a hybrid model structure in which aging causes changes in sensory 

noise and either the plant (noise-plant model) or the controller (noise-controller model). 

Sensory noise then modulates sensory gains, while the plant and controller are causally 

linked. In both cases, both paths modulate the model output characterized by MSE and 

AT. Finally, we tested a “cascade” model in which age causes changes only in sensory 
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noise in order to see whether alterations in sensory noise could explain further changes in 

movement control. In this model, sensory noise is modulated by age, followed by 

changes in sensory gains, the controller, the plant, and movement parameters (controller-

plant cascade); alternatively, age causes changes in sensory noise, followed by changes in 

sensory gains, the plant, the controller, and movement parameters (plant-controller 

cascade). 

 

 

Figure 2-8. Proposed models of age-related changes in sensorimotor control 

Independent (exogenous) parameters are shown in blue, while dependent (endogenous) variables are shown 

in gray. Parameters are shown grouped by type here so that all 10 parameters are in five groups. Black 

arrows indicate hypothesized causality. Green dashed arrows indicate that models were also tested with 

these parameters swapped. 
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 Each model was set up for visual compensatory, visual pursuit, and 

proprioceptive compensatory tracking to search for the most likely theoretical model of 

parameter relationships such that each parameter was connected to every parameter 

“below” it (as shown in Figure 2-8), resulting in a minimum of 10 possible paths (aging 

model) and a maximum of 65 possible connections (cascade models). Correlation 

coefficients between connected parameters were examined, and those with a p-value over 

0.30 (r
2
 approximately 0.05) were excluded from further analysis. The p-value of 0.30 

was deliberately used to prune the model while minimizing the chances that a potentially 

beneficial path might be discarded. A “specification search” was then performed; this 

method searches all possible path combinations (by removing and adding path 

connections) to determine the best-fit model (based on the χ
2 

statistic) of parameter 

relationships. This analysis was performed for each model class for the best-fit model. 

Best-fit path combinations for each model class were then compared across classes to 

determine the best overall model. The models’ ability to account for age related changes 

in sensorimotor control was tested for visual compensatory, visual pursuit, and 

proprioceptive compensatory tracking.  

The null hypothesis tested by SEM is that the model is able to account for the 

covariance of the data. Significant p-values (p < 0.05), therefore, indicate that the 

proposed model is rejected at the α < 0.05 level, while p-values greater than 0.05 indicate 

that the model cannot be rejected, and can be considered as a possible candidate model. 

For visual compensatory tracking, all model classes were rejected (p < 0.05) except for 

the cascade model. The best fit path combination for the controller-plant cascade model 

(df = 29; χ
2
 = 28.6; p = 0.49); is shown in Figure 2-9 (left). The goodness-of-fit index 
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(GFI) for this path combination was 0.90; that is, it accounted for 90% of the variance 

and covariance of changes in model parameters. Age directly correlated with sensory 

noise, which modulates sensory gains, controller gains, arm stiffness, and movement 

error. Visual gain alters derivative and proportional gains and arm stiffness, while 

proprioceptive gain alters arm viscosity and target acquisition time. Controller gains 

modify movement error and arm viscosity; proportional gain specifically also alters 

acquisition time, while integral gain alters arm stiffness. Stiffness is correlated with 

movement error.  

The best-fit path combination for the plant-controller cascade model (df = 28; χ
2
 = 

26.3; p = 0.56) is shown in Figure 2-9 (right). Changes in sensory noise are directly 

attributed to age. The best-fit path combination for this model accounts for 91% of the 

covariance in the parameters. Again, variations in sensory noise modulate sensory gains, 

arm stiffness, and target acquisition time. Visual gain is directly correlated with arm 

dynamics and proportional and integral controller gains, while proprioceptive gain 

modulates derivative gain and movement error. Arm viscosity is correlated with 

derivative and proportional gains and movement error; stiffness is correlated with integral 

gain and acquisition time. Controller gains are correlated with movement error.  
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Figure 2-9: Cascade models of visual compensatory tracking.  

The controller-plant cascade model is shown on the left and the plant-controller cascade model is shown on 

the right. Neither model was rejected (p > 0.05) by the SEM analysis. In each case, the model accounted for 

>90% of the covariance in parameters. Arrows denote directed (causal) relationships between sensorimotor 

parameters (blue: sensory noise paths; green: sensory and task gain paths; yellow: plant paths; red: 

controller paths). 

  

For visual pursuit tracking, all model classes were again rejected (p < 0.05), with 

the exception of the cascade model (p > 0.40). The best-fit path combination for the 

controller-plant model (df = 35; χ
2
 = 34.0; p = 0.514) is shown below in Figure 2-10 

(left). The model GFI was 0.78; that is, it accounts for 78% of the covariance in the data. 

In the model, variations in sensory noise are altered by age and modulate sensory and 

task gains and elbow stiffness. Task gain, visual gain, and proprioceptive gains in turn 

modulate the controller gains.  Task gain also alters limb viscosity while visual gain 

alters limb stiffness. Controller gains all alter limb viscosity, while only derivative gain 

and proportional gain are correlated with limb stiffness. Derivative gain, proportional 

gain, and limb viscosity are all correlated with target acquisition time. The best-fit path 

combination for the plant-controller model (df = 36; χ
2
 = 35.68; p = 0.48) is shown in 

Figure 2-10 (right). The model accounts for 77% of the covariance in the data (GFI = 

0.77). As in the controller-plant model, age alters sensory noise, which modulates sensory 
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and task gains as well as derivative gain. Proprioceptive and task gains modify arm 

viscosity; task gain modifies arm stiffness. Task gain, sensory gains, limb viscosity and 

limb stiffness modulate controller gains. Proprioceptive gain and task gain alter target 

acquisition time.  

 

Figure 2-10: Cascade model of visual pursuit tracking.  

The controller-plant cascade model is shown on the left and the plant-controller cascade model is shown on 

the right. Both models were not rejected (p > 0.05) by our analysis; models accounted for >75% of the 

covariance in tracking parameters. Arrows (blue: sensory noise paths; green: sensory and task gain paths; 

yellow: plant paths; red: controller paths) indicate paths that were not discarded during the specification 

search. 
 

 

While modeling proprioceptive compensatory tracking, movement outcomes 

MSE and AT were excluded from analysis since they were calculated from subject data 

during a visual, rather than proprioceptive, task. As there were fewer correlations 

between parameters, most relationships between parameters were eliminated and no 

model was rejected at the p<0.05 level. However, similar to the visual task, the best path 

models were Models 7 and 8 (cascade models). Best-fit path models are shown in Figure 

2-11. The best fit model (df = 18; χ
2
 = 15.1; p = 0.65) for the controller-plant cascade is 

shown in Figure 2-11 (left).  Aging alters sensory noise, which modulates proprioceptive 

gain, plant viscosity, plant stiffness, and proportional gain. Plant stiffness also modulates 
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proportional gain. Model GFI is 0.79; the model accounts for 79% of data covariance. 

The best-fit plant-controller model (df = 17; χ
2
 = 15.5; p = 0.56) is shown in Figure 2-11 

(right). Aging alters sensory noise, which modulates proprioceptive gain, plant stiffness, 

and plant viscosity. Plant viscosity and stiffness are also altered by derivative and 

proportional gains. Model GFI is 0.79; again, the model accounts for 79% of data 

covariance. 

 

Figure 2-11: Cascade model of proprioceptive compensatory tracking.  

The controller-plant cascade model is shown on the left and the plant-controller cascade model is shown on 

the right. Both models were not rejected (p > 0.05) by our analysis; models accounted for >75% of the 

covariance in tracking parameters. Arrows (blue: sensory noise paths; green: sensory and task gain paths; 

yellow: plant paths; red: controller paths) indicate paths that were not discarded during the specification 

search. 

 

2.4  DISCUSSION 

 

 

 

Here, we used systems identification techniques applied to pursuit and 

compensatory tracking tasks to examine the effects of aging on motor control about the 

elbow during goal-directed movement. Characterization of sensorimotor control within 

subjects revealed a large number of model parameters that were significantly correlated 

with age, including those associated with movement planning and sensory noise. To better 

understand the specific impact of aging on these elements of motor control, either directly 
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(as an immediate effect of age) or indirectly (in response to age related changes elsewhere 

in the system), structural equation modeling was used to test specific hypotheses regarding 

the causal effects of age-dependent changes in motor control. Four classes of models were 

examined: (1) a direct aging model, in which all sensorimotor parameters are directly 

altered by aging; (2) specific hypotheses from the literature, including changes in strategy 

(controller) [81], changes in limb dynamics (plant) [78] and changes in sensory noise [77]; 

(3) a hybrid model, which combine two separate hypotheses – that sensory gains are 

altered as a result of changes in sensory noise, and that aging directly affects either the 

controller or plant; (4) a “cascade” model, in which age directly affects only sensory noise, 

which, in turn, alters sensory gains, and the neural controller/plant. 

The first model tested whether aging could directly account for all changes in 

model parameters and was rejected for visual compensatory and visual pursuit tracking, 

indicating that changes in age alone could not adequately account for the covariance 

between model parameters. Although aging is significantly correlated with a large number 

of parameters, the SEM analysis indicates it is not the direct cause of the observed 

changes, suggesting indirect effects of age on model parameters. We further tested a series 

of mixed-path models in which each major element of the sensorimotor control model 

(e.g. the neural controller) was modulated by aging, and in turn modulated other 

parameters. As an external model input, sensory noise was assumed to be modulated 

directly by age in all mixed path models. Each of these models was also rejected (p < 

0.05) for visual compensatory and pursuit tracking.  

These results suggest that changes in strategy with aging are not simply due to 

altered movement goals (controller-first hypothesis model) and therefore changes in 
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movement strategy may be the result of underlying movement deficits. Further, the 

rejection of the plant-first hypothesis model, taken with the result that feedforward motor 

noise does not increase with age, suggests that changes in motor noise or in effective limb 

dynamics are not primarily responsible for changes in movement planning; changes in 

limb dynamics may therefore be a deliberate strategic choice. Finally, the rejection of the 

noise-first hypothesis model suggests that age-related changes in sensory noise are unable 

to directly account for the widespread changes in sensorimotor control characterized here. 

The hybrid model postulated that sensory noise and sensory gains would be 

inversely related, while aging directly affected either the neural controller or the plant. 

This class of models was also rejected (p < 0.05), suggesting that a model in which aging 

affects multiple model parameters independently may not be able to account for our data. 

Finally, we tested a “cascade” model – one in which aging alters sensory noise, which 

modulates sensory gains; sensory gains then alter either the plant or the neural controller, 

which are responsible for changes in movement speed and accuracy (as measured by MSE 

and AT). This model class was not rejected for visual compensatory tracking, visual 

pursuit tracking, or proprioceptive compensatory tracking, indicating that the covariance 

of subject parameters did not differ significantly from the covariance predicted by the 

structural equation model. For visual compensatory tracking, the cascade models 

accounted for > 90% of the parameter covariance with age. During visual pursuit tracking, 

the models accounted for > 75% of the covariance with age. Finally, for proprioceptive 

compensatory tracking, these models accounted for 79% of the covariance of the sample 

data. 
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These models are supported by the results from our piece-wise function fits; the 

ages at which parameters change correspond with the parameter ordering of the best-fit 

cascade models. This analysis supports the theoretical structure tested by the structural 

equation modeling. These results suggest that noise and sensory gains are altered 

simultaneously, indicating that sensory re-weighting may occur on relatively short time 

scales.  For visual compensatory tracking, effective plant dynamics are altered at 

approximately the same time, while controller gains begin to change much later. During 

visual pursuit tracking and proprioceptive compensatory tracking tasks, controller gains 

are altered first, while effective plant dynamics change later. This may indicate that 

altering a single facet of movement strategy (either effective plant dynamics or neural 

controller gains) may be effective in the short term, but ultimately not sufficient to 

compensate for continued changes in sensorimotor control. 

In the cascade structural model, only sensory noise was directly modulated by age; 

age-related modulation of all other sensorimotor parameters occurred indirectly in 

response to the changes in sensory noise. In conjunction with the finding that visual 

response delays increased with age, this result implies that changes in sensory feedback 

may be a significant contributing factor to age-related changes in movement control. Since 

we did not see significant changes in proprioceptive response time, it seems unlikely that 

time delays related to sensory conduction are a significant factor in increased response 

time. The increases in response time and sensory noise may instead reflect deficits in 

sensory and/or cognitive processing. Previous research has shown that older adults take 

more time to process complex information than younger adults [90, 91, 115]. Visual 

processing is a complex task involving multiple stages of processing across visually-
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responsive areas of cortex which may be particularly susceptible to the effects of cognitive 

slowing; increases in sensory noise during proprioceptive compensatory tracking suggest 

that sensory processing may be impacted more generally. 

In the cascade model, changes in sensory noise led to decreases in sensory gains. 

From a Bayesian perspective, the decrease in sensory gains reflects an effort to maximize 

movement accuracy while minimizing feedback noise [49, 52]. In support of this, changes 

in gains are largest during compensation tasks (both visual and proprioceptive), which rely 

most heavily on accurate sensory feedback. The SEM analysis suggests that the 

combination of sensory noise and sensory gains drives changes in controller gains and 

effective limb dynamics, which in turn interact to impact changes in movement error and 

target acquisition time during visual tasks. In contrast, the relative lack of parameters 

correlated with age during proprioceptive compensatory tracking may indicate that 

proprioceptive control of movement is less susceptible to the effects of aging than visual 

control of movement. 

In the best-fit cascade model of visual compensation, controller gains modulate 

movement error. For visual pursuit tracking, controller gains are not correlated with 

movement error; instead proportional gain (for both models) and derivative gain (for one 

model) are both correlated with target acquisition time. In our task paradigm, pursuit 

tracking may correspond to an open-loop movement strategy, while compensatory 

tracking corresponds to closed-loop movement control. In this case, open-loop control 

corresponds to the early part of the movement, particularly that which alters target 

acquisition time, while closed-loop control takes over to guide endpoint acquisition. This 

supports a theory of movement control in which reach-and-hold tasks encompass two-
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stages of motor control, composed of a transport phase – corresponding to open-loop 

control strategies – and a stabilization phase – corresponding to closed-loop control 

strategies [43, 44, 114]. In both cascade models for visual compensatory tracking, changes 

in effective joint dynamics contribute to movement error and/or acquisition time, while 

error and acquisition time are much less dependent on the limb dynamics in the visual 

tracking task, suggesting that limb stiffness may play a larger role strategically during the 

closed-loop phase of movement than during the open-loop phase of movement. 

In our analysis, models in which controller parameters directly modulate limb 

dynamics (i.e. the plant) and vice versa did not differ significantly and could suggest that 

changes in both the controller and limb dynamics are modulated jointly, possibly by an 

additional latent variable that governs movement strategy. In the current SEM analysis the 

contribution of latent variables was not directly tested due to the limitations of our data; 

due to the small sample size and large number of possible correlations, additional path 

combinations could result in an underconstrained model. Future analyses could seek to 

increase the number of subjects in order to perform more rigorous analyses of the path 

models defining within the cascade model.  

In our analysis, models in which age-related changes in sensory noise modulate all 

other sensory and motor parameters are candidate models that best explain the observed 

relationships between aging, motor control, movement error and target acquisition time, 

accounting for a significant percentage of the age-related covariance of our data. These 

results suggest a model of aging in which increases in sensory noise caused by deficits in 

sensory processing are the primary driver of changes in motor control, including changes 

in sensory gains, movement strategy, and limb dynamics. These changes in sensorimotor 
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control in turn account for changes in movement speed and accuracy. This result suggests 

that changes in sensory feedback systems during aging may underlie altered visual 

compensatory and pursuit tracking during goal-directed movements [65, 80]. As sensory 

feedback becomes less reliable, sensory gains are reduced in order to reduce the 

detrimental effects of erroneous feedback [49, 52]. The neural controller, which governs 

movement strategy, and the plant are then altered in response to these changes, which may 

indicate that changes in movement strategy are a compensatory mechanism to cope with 

age-related deficits in sensory feedback [73, 81].  
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CHAPTER 3: INTENTION TREMOR AND DEFICITS OF 

SENSORY FEEDBACK CONTROL IN  

MULTIPLE SCLEROSIS
2 

2
A form of this work was published in the Journal of NeuroEngineering and Rehabilitation [57]; 

authorship: M.Heenan; R.A. Scheidt; D. Woo; S.A. Beardsley. 

 
 
3.1 INTRODUCTION 

 

 
 

Accurate arm and hand movements are the key to performing many daily tasks, 

but in individuals with Multiple Sclerosis (MS), the processes that control these 

movements are disrupted due to demyelination of the axonal projections that transmit 

information within and between brain areas. Upper extremity motor dysfunction in MS 

most often manifests as kinetic tremor (uncontrolled rhythmic motion of the joints during 

goal-directed movements) or dysmetria (a lack of coordination of movements typified by 

the under- or overshoot of the intended position of the hand or arm). Up to seventy-five 

percent of individuals with MS experience tremor in the arms and hands, with as many as 

27% of those reporting tremor-related disability [93-95, 116]. Drug therapies [117-121] 

and surgical treatments [94, 122-124] can mitigate some effects of tremor, although their 

effectiveness decreases over time [96] (for review see [125]). Recently, rTMS has been 

used to reduce tremor [97], however, the effects are short-lived. 

Because neural lesions that develop in MS are distributed throughout the central 

nervous system, similar movement deficits (i.e. tremor) may result from differing 

impairments in the sensory feedback control pathways. Consequently, the specific 

neuroanatomical etiology of tremor and dysmetria remain unclear. Tremor and dysmetria 

are most often associated with lesions in the cerebellum and/or the thalamic nuclei, 
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suggesting impairment of the cortico-cerebellar sensorimotor control loops used for the 

planning and adaptive control of movement [126, 127]; for review see Koch, et al. [95]. 

Recent studies also implicate impairments of the predictive mechanisms used to guide 

movement and/or degradation of the sensory information upon which such predictions 

are based, including impairment in sensory transmission of information, which is 

lengthened in those with MS [93, 94, 104, 108, 128, 129]. The many-to-one mapping of 

the source of impairment onto clinical symptoms poses significant challenges for 

developing effective therapies. For example, a therapy designed to compensate for one 

patient’s dysmetria caused by increased sensory processing delays may not be effective 

for another patient whose dysmetria is due to impaired prediction of limb dynamics. 

In this study, we describe a systems-level computational model and an 

experimental technique that parameterizes subject-specific deficits in sensory feedback 

control of the elbow joint [6, 20, 22, 62] in individuals diagnosed with MS.  We used this 

approach to test the hypothesis that tremor in MS results from subject-specific 

impairments in the adaptive feedback processes that guide movement. Specifically, we fit 

the parameters of a dual-feedback, sensorimotor control model to the kinematic data 

obtained from each subject’s responses to perturbations during a series of continuous 

elbow flexion/extension tasks [6, 22]. We compared the parameters obtained from 

subjects with MS to those of age- and gender-matched, neurologically-intact control 

subjects to identify the sensory and/or motor processes affected by MS, and the extent to 

which they correlate with intention tremor. Future studies using this approach to 

characterize changes in sensory feedback control induced by therapeutic intervention may 
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advance understanding of how to best mitigate individuals’ deficits of motor function as 

they evolve with progression of the disease. 

 

3.2 METHODS 

 

 

3.2.1  Participants 
 
 
 

Sixteen subjects participated in the study. Eight subjects had clinical diagnoses of 

MS and exhibited mild to severe tremor (ages 25-68 years old, 6 female, 7 right-handed). 

Eight healthy participants served as age- (±7 yrs) and gender-matched control subjects 

(ages 26-61 years old, 6 female, 8 right-handed). All participants provided written, 

informed consent in accordance with the Declaration of Helsinki and as approved by 

institutional review boards at Marquette University and the Medical College of 

Wisconsin. 

Subjects with MS were assessed clinically in a session conducted at the Medical 

College of Wisconsin prior to participating in the primary study (Table 3-1). Disease 

duration ranged from 6 to 30 years. Six subjects with MS had received disease-modifying 

therapy with either an immune-modulator or immunosuppressant, with four subjects 

continuing therapy at the time of the study. Severity of disability on the Expanded 

Disability Status Scale (EDDS) ranged from 1 to 7 (out of 10), with three subjects 

confined to a wheelchair. All of the subjects exhibited motor strength in the upper 

extremities of 4 or greater on the Medical Research Council system of grading, and all 

demonstrated normal tone and normal proprioceptive sensation in the upper extremities 

upon exam.  Visual acuities were 20/40 or better in all subjects.  Scores on the Ataxia 
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Scale for Dysmetria and the Tremor Assessment Scale ranged from 1 to 3 (scale 0-4; 

score of 0 indicates no tremor; score of 4 indicates severe tremor).  

 

Table 3-1: Clinical characteristics of MS subjects  
Disease type (RR: relapsing remitting, PP: primary progressive, SP: secondary 

progressive, PR: progressive relapsing), expanded disability status scale (EDSS), tremor 

and ataxia scores obtained during a separate clinical evaluation. Nine Hole Peg Test 

(NHPT) times were obtained the day of testing (*right hand only; DNC: did not complete 

in time allotted). 

Subject 

# 

Age Gender Dominant 

Hand 

MS 

Type 

EDSS Tremor 

Score* 

Ataxia 

Score* 

NHPT* 

(sec) 

1 45 F R RR 2 1 1 27.9 

2 57 F R PP 7 1 1 18.9 

3 31 F R RR 2 2 1 27.0 

4 29 F R SP 7 2 2 81.6 

5 55 F R - 6 2 2 DNC 

6 25 M R PR 7 3 2 75.1 

7 41 M R RR 6 3 2 77.2 

8 68 F L RR 1 3 3 141.0 

 

 

 

3.2.2 Sensory Feedback Control Model 

 

 

 

Based on previous work [12, 20, 112], we have developed a closed-loop model of 

sensory feedback control during goal-directed movement (Figure 2-1) [6, 22].  In the 

current study, we use this sensory feedback control model to examine how MS impacts 

sensory feedback control. In the model, the difference between desired position (θd) and 

the weighted (Kv, Kp) sum of visual and proprioceptive estimates of the actual arm 

position (θa) (i.e. performance error) drives the system [6, 13, 20, 22, 62]. Delays in 

visual and proprioceptive processing are modeled as lumped-parameter delays (Tv ,Tp) 

that account for time lost due to signal conduction and sensory information processing. 

The model also includes an internal feedback path (forward model), which provides 
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predictions of movement dynamics and the sensory consequences of those actions. In the 

forward path, actual performance error is compared to the predicted performance error to 

generate an instantaneous prediction error. Prediction error gives rise to a set of muscle 

activations via a neural controller, which for simplicity we model using a Proportional-

plus-Integral-plus-Derivative (PID) controller, C(s): 

 

                
  

 
 .    (1) 

 

 

This generic controller contains separate derivative (Kd) proportional (Kpr) and integral 

(Ki) gains to allow the controller to minimize transient response errors as well as steady 

state errors [20]. The output of the controller represents the intended net muscle 

activations, which act through the musculoskeletal geometry to generate a net torque 

applied to the physical plant (lower arm rotating about the elbow). We simplify the plant 

model by discounting muscle activation/contraction dynamics, which are assumed to be 

dominated by the second-order dynamics of the arm. We account for variations in muscle 

fiber recruitment [113] by reducing the precision of the intended torque with a 

multiplicative motor noise (α).  

The arm's dynamic response to the applied torque is estimated using a second-

order model, P(s),  

 

                                                             
 

        
     (2) 

 

 

which contains separate inertia (J), viscosity (B), and stiffness (K) terms.  
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3.2.3 Experimental Setup 

 

 

 

All subjects participated in a single, two-hour experimental session during which 

they performed a series of visual compensatory tracking tasks to characterize sensory 

feedback control about the elbow.  Tasks and analysis are summarized in Table 2-1. All 

subjects also performed a spiral tracing task to quantify tremor frequency and amplitude 

[130]. Subjects with MS additionally performed the 9-hole peg test (9HPT) at the 

beginning of the experimental session for comparison with clinical assessments (9HPT, 

EDSS [131], ataxia and tremor scores [132]). Subject performance during single-joint 

elbow tracking tasks was used to quantify and validate an individualized estimate of the 

sensory feedback control parameters depicted in Figure 2-1. The order of task 

presentation was counterbalanced across subjects to prevent ordering effects.  

During single-joint tracking tasks, subjects held the handle of a 1-D robotic 

manipulandum with their right hand (Figure 2-2). Additional details of the robot 

implementation, control, and experimental design can be found in Chapter 2 and in [114]. 

Joint angle (limited to ±40
o
 relative to the sagittal plane) was yoked to a cursor (a red 

ring) displayed on a 19-inch computer monitor approximately 60cm from the subject. 

Direct view of the arm was blocked so that the cursor provided the sole visual cue of arm 

position.  

Continuous, visual or torque perturbations were applied to the cursor or 

manipulandum, respectively, during the 1-D target tracking tasks described below. 

Subjects were asked to compensate for external perturbations (low-frequency: 0-1Hz, 

band-limited white noise; high-frequency: 0-10Hz, band-limited white noise, low-pass 
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filtered at 1 Hz) by returning the cursor or arm back to the desired location as quickly and 

accurately as possible.  

 

3.2.4 Target Tracking Tasks and Data Analysis 

 

 

 

2D spiral tracing task 

 

 

 

A digitized spiral tracing task (adapted from Feys and colleagues) [130], was used 

to characterize the frequency and signal power of each subject's tremor. During the task, 

subjects used a digital pen to trace the line of an Archimedes spiral (center-out) overlaid 

on a Wacom digital tablet (12x18.2 inch drawing surface; Wacom Technology 

Corporation, Vancouver, WA). Throughout the task, subjects self-supported their arm 

against gravity and were instructed not to rest their arm or hand on the table while they 

traced the spiral in the transverse plane. Pen location data was collected at 200 

samples/second in Matlab ver. 8.2 using the Cogent 2000 toolbox (Laboratory of 

Neurobiology, University College London, London, UK). The spiral was labeled with 

tick marks every 3 cm. To prevent the adoption of strategies that would compensate for 

tremor during the task, subjects were instructed to adjust their tracing speed according to 

a metronome such that they crossed one tick mark per beat, while keeping the movement 

as smooth as possible. During practice trials, subjects were instructed to avoid “stopping 

and starting” movements as they crossed each tick mark. Metronome speeds were 

adjusted based on the subject’s ability to maintain the target speed, and ranged from 60 

beats per minute (bpm) (3 cm/sec) to 240 bpm (12 cm/sec). Prior to the task, subjects 
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performed five practice trials to familiarize themselves with the task and timing 

requirements. The first two practice trials were completed at the subjects’ self-selected 

speeds without the metronome. In the remaining practice trials, subjects performed the 

task with the metronome, starting at 60 bpm and increasing the metronome speed by an 

additional 40 bpm in each subsequent trial to identify a comfortable base speed. 

Following the practice trials, subjects completed ten "test" trials limited to 20 seconds 

each. During the first eight test trials, task difficulty was increased from the base speed 

on every second trial by incrementing the metronome speed an additional 40 bpm (2 

cm/sec) until the subjects’ tracing speed fell below 90% of the metronome speed. During 

the last two trials, subjects were told to move as quickly as possible while accurately 

tracing the entire spiral. 

Tremor frequency and power were quantified using each subject's performance 

during the spiral drawing task. For each spiral trace, we performed a least-squared-error 

linear regression of the pen-tip trace angle vs. radial distance from the spiral's center 

(Matlab command: polyfit) to remove the linear relationship between angle and radius 

associated with the spiral. The best-fit regression was subtracted from the pen-tip data to 

obtain the variation in the subject’s movement about the spiral trajectory. The power 

spectrum of the residual pen-tip data was calculated for each trace and the best-fit (1/f) 

frequency spectrum was subtracted to account for low-frequency (<1 Hz) drift and to 

isolate the spectral power due to tremor. Tremor frequency was not correlated with 

movement speed, and frequency was therefore averaged across trials. Tremor power was 

correlated with movement speed (tremor increased as speed increased), and so only the 

fastest trial was used to gauge tremor power. Tremor frequency was defined as the 
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frequency that contained the maximum power in each trial; frequencies were averaged 

across trials to estimate the average tremor frequency. Tremor amplitude was defined as 

the maximum power in the tremor frequency range (2-6 Hz) for the trial performed at 

each subject’s fastest speed; this frequency range was chosen from the distribution of 

upper limb tremor frequencies associated with kinetic tremor (Alusi, 2001).   

 

 

Tasks 1 and 2: Compensatory tracking with low-frequency perturbations 

 

 

 

Visual (Tv, Tv*) and proprioceptive (Tp, Tp*) delays were characterized in separate 

compensatory tracking tasks. Subjects performed 10 trials per task and trial duration was 

20 seconds in each case. Visual response delays (Tv, Tv*) were characterized by applying 

continuous pseudorandom visual displacements (0.05 – 1 Hz; RMS = 10
o
 visual angle) to 

the cursor position; proprioceptive response delays (Tp, Tp*) were characterized by 

applying continuous pseudorandom torque perturbations (0.05 – 1 Hz; RMS = 0.3 Nm) to 

the manipulandum. In both cases subjects applied counter movements to the 

manipulandum to maintain the cursor on a stationary target (visual) or to keep the 

manipulandum aligned at 90º of elbow flexion (proprioceptive). No visual feedback of 

arm position was provided during the torque perturbations. To remove the passive 

dynamics of the arm from the torque response during the proprioceptive task, an 

additional five "control" trials (30s each) were collected. A high frequency torque 

perturbation was applied to the arm (0-30Hz, first-order zero-phase Butterworth filter 

with 1Hz cutoff) while subjects were instructed to not interfere with the perturbation (i.e. 

not try to correct). The contribution of the passive mechanical impedance of the arm to 
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the torque was estimated as a percent of the applied torque calculated from the least-

squares linear regression between the measured and applied torques during the passive 

trials (R
2
 > 0.75). The contribution of the “passive torque” was then subtracted from the 

measured torque to estimate subjects’ voluntary corrective torque.    

We used cross correlation to estimate delays in the visual and proprioceptive 

feedback-driven responses during compensatory tracking tasks (Tasks 1 & 2). The visual 

and proprioceptive response delays Tv, Tp, were estimated as the trial-wise average of the 

temporal offset (lag) between the perturbations in cursor/manipulandum position applied 

in Tasks 1 and 2 and the subject’s voluntary corrective responses measured by the robot's 

handle position.  

 Subjects’ internal prediction of their visual and proprioceptive response delays 

(Tv
*
, Tp

*
) were estimated based on the timing of corrective submovements in Tasks 1 & 2 

respectively. Submovements have been associated previously with a discretization of 

corrective movements during closed-loop sensorimotor control which acts to minimize 

energy expenditure and movement error [9, 63, 67, 133]. Timing of corrective 

submovements has been linked to the visual response delay [48] and other neuromotor  

processes associated with movement planning and execution. Here, submovement 

intervals were defined as the times between zero-crossings of elbow angular velocity. We 

accounted for event detection failures in each task using a sum of Gaussians fit to the 

distribution of submovement intervals across trials. In each task, the means (and 

variances) of the component Gaussians were constrained to be integer multiples of the 

primary (i.e. shortest) interval, thus reflecting a doubling (one missed submovement) and 

tripling (two missed submovements) of interval durations (and variability in their 
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estimates). The internal estimate of the visual and proprioceptive response delays were 

taken as the means of the primary distributions of submovements in Tasks 1 & 2, 

respectively. 

 

Task 3: Tracking of step torque  

 

 

 

 Signal-dependent variability in torque ("motor noise") was assessed using an 

isometric task adapted from Jones et al [113]. Joint torque variability was measured as a 

function of average joint torque. During the task, the manipulandum position was fixed at 

90º of elbow flexion while subjects performed several isometric torque contractions to 

reach a displaced cursor. Displacement scaled with torque, such that the subject was 

required to place the cursor on one of five pseudorandomly displayed targets (desired 

elbow joint torques of 4, 6, 8, 10, and 12 Nm flexion) and then maintain that same level 

of torque once the cursor and target disappeared (after 3 seconds) by applying the 

appropriate level of isometric torque (for an additional 5s). Five trials were collected at 

each of the five torque levels (25 trials total). 

 The gain of the multiplicative (signal-dependent) motor noise, α, was estimated as 

the slope of the linear regression between the mean and the variance of the trial-averaged 

torque as a function of target torque level. For each target torque level, the mean and 

variance in the applied torque was measured during the last five seconds of each trial (i.e. 

after visual feedback was removed).  
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Task 4: Compensatory tracking with high-frequency perturbations and model fits 

 

 

 

 A high-frequency (0-10 Hz, RMS = 20
o
, first-order zero-phase Butterworth filter 

with 1 Hz cutoff) compensatory tracking task was used to characterize the remaining 

elements of the sensory feedback control model including the controller gains (Kd, Kpr, 

Ki), visual and proprioceptive feedback gains (Kv, Kp), and arm dynamics (J, B, K) 

together with their internal estimates (Kv
*
, Kp

*
, J

*
, B

*
, K

*
), vis-à-vis the forward model. 

Subjects were instructed to correct for visual perturbations movements “as quickly and 

accurately as possible” so as to maintain the cursor on a central stationary target. Ten 32-

second trials were obtained for each subject. 

We estimated the remaining model parameters (Kd, Kpr, Ki, Kv, Kp, J, B, K), and 

their internal estimates (Kv
*
, Kp

*
, J

*
, B

*
, K

*
) using fits to the transfer function of the 

model. This analysis was performed using a two-stage frequency response analysis. 

Model parameters were fit to each subject’s responses in the frequency domain using the 

simplex method (Matlab: fminsearch). In the first stage of the analysis, the second-order 

model of plant dynamics (Eq. 2) was fit to the magnitude of the frequency response 

function (FRF) relating the subject’s arm position to the applied torque. To reduce 

measurement noise prior to the model fit, FRFs were computed for all pair-wise 

combinations of trials as the ratio of the trial-wise differences between the applied torque 

(τ) and measured arm position (  ) (See Appendix A), and then averaged. In the second 

stage of the analysis, the remaining model parameters were estimated from the closed-

loop transfer function relating the applied visual perturbation (Dext) and measured arm 
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position (a): 

                               
               

                         
     

     
  

   
  

              
             

                  (3) 

 

where P*(s) is the same form (second-order low-pass filter) as P(s): 

 

                                                                        
 

                                  (4) 

 
 

characterizes the forward model prediction of arm kinematics. The closed-loop model 

(Eq. 3) was fit to a separate FRF formed from the ratio of trial-wise differences between 

the applied perturbation (Dext) and measured arm position (a) computed for all pair-wise 

combinations of trials (See Appendix). Visual and proprioceptive feedback gains (Kv
*
, 

Kp
*
) were assigned using the subject’s fitted sensory gains (Kv, Kp). Motor noise (α), 

visual (     
 ) and proprioceptive (     

 ) response delays were calculated based on 

experimental data, not model fits, and were fixed at the mean values estimated from tasks 

1-3.   

Phase data was excluded from the model fit due to the noise in FRF phase 

estimates, particularly at higher (> 2 Hz) frequencies where the power of both the input 

signal and the subject response were attenuated. For frequencies below two hertz, the 

model and FRF phase profiles were driven primarily by the visual delay in the system, 

which was more accurately estimated using the cross-correlation between the applied 

perturbations and the subject’s corrective response.  

To quantify uncertainty in the model fits, we performed a bootstrap analysis for 

each stage of analysis (described in Chapter 2 in more detail). For each bootstrap, 10,000 

model fits with resampled FRFs and randomized initial conditions were performed. The 
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mean and standard deviation of the fitted parameters were used as nominal parameter 

values.  For the second-stage bootstrap, plant parameters were randomly sampled from 

the first-stage FRF analysis to propagate the accumulated error across sequential model 

fits. During the second stage fits, these triplets were held constant. 

For completeness, model and FRF phases for each subject were compared post-

hoc using the best-fit model parameters to the FRF magnitude. Due to the noise in FRF 

phase estimates at higher frequencies, phase profiles could not be reliably “unwrapped” – 

corrected so that phases could fall outside the range ±π – using a one sample unwrapping 

procedure. Instead, a multi-sample unwrapping procedure was implemented using a 

linear regression of phase estimates across the preceding 20 frequency samples to 

generate a 95% confidence interval around the location of the next “unwrapped” phase 

value. The FRF phase was then unwrapped by adding or subtracting multiples of 2π 

until the estimate fell within the confidence interval. In cases where the phase estimate 

could be unwrapped to two or more locations within the confidence interval, the median 

was chosen. Uncertainty in the phase profile resulting from the interaction between the 

unwrapping procedure and the occurrence of multiple phase estimates for confidence 

intervals exceeding 2πwere quantified using a bootstrap analysis. During the bootstrap 

analysis, the unwrapping procedure was applied to the FRF phase estimates 1000 times, 

randomly sampling the phase at each frequency containing two or more unwrapped phase 

estimates within the confidence interval. The 95% confidence interval associated with the 

unwrapped phase profile was defined at each frequency from the distribution of samples 

obtained from the bootstrap analysis. 
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Task 5: Pursuit tracking of step displacements 

 

 

 

A step displacement task was used to characterize the functional impact of 

subjects’ deficits during a reach and hold task and compare target capture movements 

invoked by the subjects to those predicted by the sensory feedback control model of 

Figure 2-1. Subjects performed ten trials of the task. Each 10-second trial started with the 

target and cursor located at the same screen position. After a one second delay, the target 

was randomly displaced to the left or right by a randomly selected distance ranging ±24.4 

cm along the horizontal midline of the display (corresponding to ±11.5 degrees of visual 

angle). Subjects were instructed to center the cursor on the target as quickly and 

accurately as possible and to maintain the cursor position until the end of the trial.  

We evaluated the ability of each subject's best-fit model to characterize sensory 

feedback control in a separate task that required pursuit tracking in response to step 

displacements. For each subject, the trial-wise measures of target acquisition time and 

mean squared endpoint error were calculated. Target acquisition time was calculated as 

the time required for the subject to move within two degrees of the target. Endpoint error 

was calculated as the mean-square error (MSE) from the moment of target acquisition to 

the end of the trial. Target acquisition time and endpoint error were then compared with 

those of the best fit model to determine the extent to which subject performance was 

constrained by limitations of sensory feedback control as identified by the model of 

Figure 2-1.  
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3.2.5 Statistical Testing 

 

 

 

Healthy subjects were matched to patients by age and gender to control for 

differences in movement control due to factors unrelated to MS. Group differences in the 

measurements of visual and proprioceptive response delays, submovement intervals, 

motor noise, and best-fit estimates of the model parameters were tested for statistical 

significance using a paired, two-sample t-test. Within-subject comparisons of the 

parameters characterizing internal (predicted) and actual passive limb dynamics were 

tested for statistical significance using the paired samples z-score of the bootstrap 

distributions to evaluate the distribution difference from zero (i.e., no difference between 

distribution means). Pearson’s correlation coefficient was applied across participants with 

MS to identify significant linear relationships (p<0.05) between all combinations of best-

fit model parameters and the quantitative clinical assessments of movement performance 

(e.g. 9HPT, TAS). Post-hoc analysis of the relationship between spiral tremor power and 

the difference between the internal (predicted) and actual passive limb dynamics was 

characterized empirically using a least-squares fit to a saturating exponential function of 

the form 

                  

where C is a scaling factor, r is a constant, and x is tremor power.  
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3.3  RESULTS 
 
 

3.3.1 Tremor Frequency and Power 

 

 

 

Figure 3-1A shows selected spiral traces (insets) and corresponding power spectra 

for a subject with MS (Subject 6; TAS = 3) and an age-matched control subject. In the 

spiral drawing task, tremor frequencies for subjects with MS ranged from 2.36-5.01 Hz 

(mean±SD: 3.38±0.91Hz). Within the 2-6 Hz range associated with tremor, maximum 

power increased with the speed of movement (data not shown) and ranged from 0.22-

5.31 cm
2
-s (mean±SD: 1.48±1.82 cm

2
-s) across MS subjects for their fastest tracings 

(Figure 3-1B). The power in the 2-5 Hz band corresponded roughly with TAS, with 

subjects 5 (TAS = 2) and 8 (TAS = 3) exhibiting the worst tremor and subjects 1, 2 (TAS 

= 1), and 4 (TAS = 2), exhibiting the least tremor on the day of testing. Tremor power 

was significantly correlated with 9HPT score on the day of testing (r = 0.80; p = 0.006). 

 

 
Figure 3-1: Tremor assessment using the spiral drawing task [57].  
(A) Power spectra (with low-frequency (<0.5 Hz) drift removed vis subtraction of exponential function 

described in section 3.2.5) and sample spiral drawings (inset) for Subject 6 with MS (red; TAS = 3) and an 

age-matched control subject (blue). The shaded area highlights the range of frequencies associated with the 

subject’s tremor. (B) Maximum power within the 2-5 Hz frequency range for subjects with MS together 

with their corresponding tremor assessment score (TAS). 
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3.3.2 Visual and proprioceptive response delays (Tasks 1 & 2) 

 

 

 

 Figures 3-2A and 3-2B (right) show the average visual and proprioceptive 

response delays for individual subjects with MS and the corresponding range (±SD) for 

control subjects (shaded bands). The average visual response delay measured across 

subjects (Figure 3-2A-left), was significantly higher in subjects with MS (647.1±192.3 

ms), compared with control subjects (450.9±38.2 ms) (t(7) = 2.63, p = .034). In contrast, 

the average proprioceptive response delay (Figure 3-2B-right) did not differ significantly 

between groups (MS: 201.7±56.5 ms; Controls: 175.1±31.9 ms) (t(6) = 1.39, p = 0.21). In 

four of the eight MS subjects with elevated TAS scores (subjects 4, 5, 6, and 8), visual 

response delays were >3 above the range of control subjects. Across subjects, visual 

response delay times were not significantly correlated with either TAS or spiral tracing 

performance (p > 0.25), likely due to the "outlier effect" of subject 7 (low visual response 

delay, high tremor power) on the small population sample. Individual proprioceptive 

response delays for subjects with MS fell within the control group range - excepting 

subject 4, whose proprioceptive delay was >2 from the control average.  
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Figure 3-2 Visual and proprioceptive response delays for control subjects (blue) and subjects with 

MS (red) [57].  
(A) Group and individual proprioceptive response delays for subjects with MS. (B) Group and individual 

visual response delays. Error bars denote ±SD for group and individual measures respectively. Shaded 

regions denote the corresponding ranges (±SD) for the control group. 

 

 

Figure 3-3 shows representative single-trial velocity profiles within trial and the 

distributions of visual (TV
*
) and proprioceptive (Tp

*
) submovement intervals across trials 

for a representative subject with MS in Task 1 (left), which included visual perturbations 

and in Task 2 (right), which included physical perturbations. For all subjects, 

distributions were well fit by the Gaussian mixtures model (r
2
>0.70 p<0.001 with 3 

Gaussians) wherein the mean of each Gaussian was centered at an integer multiple of the 

interval associated with the primary distribution. For each subject, internal (predicted) 

visual and proprioceptive response delays were estimated as the mean submovement 

interval of the primary distribution. 
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Figure 3-3: Characterization of visual and proprioceptive submovement intervals [57].  
(A) Movement velocity profiles used to calculate visual (left) and proprioceptive (right) submovment 

intervals for Subject 4 (MS, TAS = 2). Examples of individual submovements are highlighted (gray) (B) 

Distribution of submovement intervals across trials for vision (left) and proprioception (right) for a 

representative subject with MS (Subject 4). The submovement interval for each subject was characterized 

by the mean and standard deviation of the best-fit gaussian mixtures model (red line) formed from 

successive gaussian functions whose means and variances are constrained to be integer multiples of the 

primary distribution (black lines). 

 

 

 

Figure 3-4A shows the average visual and proprioceptive submovement intervals 

across subjects. Proprioceptive submovement intervals did not differ significantly 

between the MS and age-matched control groups (t(6) = 1.88, p = 0.11). Visual 

submovement intervals tended to be shorter in subjects with MS compared to controls, 

however, the difference did not reach statistical significance (t(7) = -1.92, p = 0.097). 

Figure 3-4B compares the duration of visual and proprioceptive response delays for each 

participant with their corresponding submovement intervals. Proprioceptive 
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submovement intervals and response delays were approximately equal for both control 

and MS subjects (t(9) < 1.6, p > 0.05). Similarly, visual response delays and 

submovement intervals did not differ for control subjects (t(9) < 1.4, p > 0.05). By 

contrast, four of the eight MS subjects exhibited a dramatic mismatch between their 

visual submovement interval and corresponding visual response delay (Figure 3-4B; 

bottom right corner). In these subjects, visual response delays increased markedly 

compared to control subjects, resulting in a significant group difference between visual 

response delay and visual submovement interval (t(7)=2.55 p = 0.038).  

 

 
Figure 3-4. Comparison of submovement intervals and task response delays [57].  

(A) Group average submovement intervals (±SD) for control subjects (blue) and subjects with MS (red). 

(B) Visual (filled circles) and proprioceptive (open triangles) response delays (±SD) as a function of 

submovment interval for control subjects (blue) and subjects with MS (red). The diagonal line (black) 

represents equivalency between response delay and submovement interval. 

 

 

 

3.3.3 Feedforward Motor Noise (Task 3) 

 

 

 

 One subject with MS (Subject 5) was unable to complete the task due to time 

constraints. For the remaining subjects, the scaling of elbow torque variability with mean 
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elbow torque showed no significant differences between groups (control subjects: 0.021 ± 

0.010; subjects with MS: 0.025 ± 0.011; paired samples: t(6) = 0.72, p = 0.48).   

 

3.3.4   Frequency Response Analysis (Task 4)  

 

 

 

The frequency response functions (and corresponding model transfer function 

fits) relating corrective changes in arm position to the perturbation of cursor position are 

shown in Figure 3-5 for subject 4 with MS (right) and the corresponding age-matched 

control (left). For subject 4, the empirical frequency response function and corresponding 

model fit both contain a marked resonance peak between 2-4 Hz, closely approximating 

the tremor frequency observed in the subject's spiral tracing task (i.e., 2.4-5 Hz). The 

peak frequency identified in the compensatory tracking task was slightly lower than in 

the spiral tracing task, likely due to the additional inertia of the manipulandum handle 

and robot (inertia = 0.008 kg-m
2
), which would act to reduce the resonant frequency of 

the combined arm+robot system.  The magnitude of the FRFs for all subjects (control and 

MS) were well approximated by the model of Figure 2-1 (R
2
>0.80 in every case). The 

phase of the FRF was well approximated by the model until approximately 2Hz and 6Hz 

in the MS patients and control subjects respectively. Within this range, the phase profile 

was dominated by the phase lag associated with the visual delay (Figure 3-5B – gray 

line). At higher frequencies, phase estimates became too noisy to unwrap (correct phase 

range to include values outside the range ±π) reliably; however, model responses fell 

within the 95% confidence interval of possible phase profiles unwrapped from the FRF 

phase. 
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Figure 3-5: Magnitude and phase of frequency response functions [57] 

(A) Magnitude of the frequency response function (colored traces) relating applied cursor perturbation to 

corrective change in arm position for subject 4 with MS (TAS = 2; right) and the age-matched control 

subject (left). The best-fit model for each subject is denoted by the solid black line. (B) Phase of the FRF 

(colored traces) with 95% confidence intervals (grey shading) for subject 4 with MS (right) and age-

matched control subject (left). The solid black line denotes the best-fit model to the subject’s magnitude 

FRF (Eq. 3). The grey line denotes the phase profile associated with the subject’s visual delay. 

 

 

Of the ten parameters estimated using the frequency responses analysis (full 

results shown in Appendix C), significant differences between groups were observed only 

for the integral and derivative gains of the generic feedback controller. Subjects with MS 

exhibited higher integral gains than control subjects (6.86±4.71 vs. 4.71±2.39 Nm/deg-s; 

t(7) = -3.62, p < 0.01) and higher derivative gains than control subjects (8.3x10
-3

±3.8 

x10
-3

 vs. 3.3 x10
-3 

±1.8 x10
-3 

Nm-s/deg; t(7) = -3.38, p < 0.05). In control subjects, the 

derivative gain was significantly correlated with integral gain, musculoskeletal viscosity, 
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and musculoskeletal stiffness (r = 0.81, 0.71, and 0.75 respectively; p < 0.05). In subjects 

with MS, these correlations were absent; derivative gain was not correlated with actual 

(or predicted) musculoskeletal viscosity or stiffness and it was not correlated with tremor 

assessment score and tremor amplitude measured by the spiral tracing task (r < 0.50; p > 

0.25). Instead, the best-fit derivative gain was significantly correlated with visual 

response delay in subjects with MS (r = 0.77; p = 0.024). This shift in coupling from the 

plant (in controls) to the visual delay (in subjects with MS) is interesting in light of the 

derivative gain’s traditional role in modulating the transient response of the system. This 

finding suggests the increased visual processing delay seen in MS may play a central role 

in causing subjects to alter the effective closed-loop dynamic response of the arm during 

goal-directed movement.  

We next analyzed the best-fit sensory feedback control models from subjects with 

MS to identify systematic covariations between model parameters and clinical 

performance measures. We found that subjects with MS displayed a consistent mismatch 

between the model parameters characterizing predictive arm dynamics (eq. 4) and the 

actual arm dynamics (eq. 2). The degree of parameter mismatch - quantified by the 

mismatch magnitude normalized by the corresponding parameter value from the actual 

arm dynamics - varied systematically with tremor assessment score (TAS). Mismatches 

in all three dynamical parameters (J, B and K) increased with tremor severity, although 

mismatches in the effective viscosity were evident only in subjects with severe tremor 

(TAS = 3), (Figure 3-6A). By contrast, control subjects showed no mismatch between the 

parameters characterizing internal and actual passive joint dynamics (two-tailed Z < 1.9, 

p >.05 for each parameter).  
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Figure 3-6: Percent mismatches in limb dynamics [57] 

(A) Percent mismatch between predicted versus actual estimates of passive joint dynamics (inertia, 

viscosity, stiffness) as a function of tremor severity (TAS score) in subjects with MS. Mismatch between 

actual and predicted limb dynamics increased with tremor assessment score. Error bars denote ±SD of the 

bootstrap distribution. (B) Percent mismatch between the parameters characterizing internal (predicted) and 

actual effective joint dynamics for subjects with MS (±SD) vs. tremor power characterized using the spiral-

tracing task. Percent mismatch saturated with tremor magnitude and was well fit by an exponential function 

(red) for inertia and stiffness (R
2
>0.70; p<0.01) but not for viscosity (R

2
 = 0.16; p = 0.32).  

 

 

Mismatches in effective limb inertia and stiffness varied systematically with 

tremor power characterized by the spiral tracing task; in both cases, this relationship was 

well-approximated by a saturating exponential function (R
2
>0.73).  In contrast, no 

systematic relationship was observed between mismatches in effective viscosity and 

tremor power (Figure 3-6B).  
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3.3.5 Pursuit tracking of step target displacements 

 

 

 

We required subjects to perform a final tracking task to characterize the impact of 

sensory feedback control deficits on a 1-D reach and hold task similar to transporting a 

cup of water along a tabletop. The task also enabled us to compare movements generated 

by the subjects to those predicted by the sensory feedback control model of Figure 2-1.  

Subject and model performance were examined using measures of target acquisition time 

from the onset of the step displacement and steady-state endpoint error following the 

displacement. Control subjects’ performance tended to cluster into one of two general 

task strategies characterized by either larger endpoint errors and faster response times or 

smaller endpoint errors and slower (and more variable) response times (Figure 3-7; note 

the two distinct peaks in the bivariate distribution of control subjects’ performance 

represented by the dark shading). Approximately 25% of subject responses exhibited 

higher error, lower response time; 95% of these trials took less than 1200 ms to reach the 

target (Figure 3-7, top shaded distribution) and resulted in an endpoint MSE’s up to 0.02 

degrees
2
. Remaining responses were slower and had high endpoint accuracy; 95% of 

these trials were completed within 2000 ms with endpoint MSE’s less that 0.008 degrees
2
 

(Figure 3-7, bottom shaded distribution). 

Subjects with MS exhibited similar trends in step-tracking performance, with the 

exception that the four subjects with high visual delays (Figure 3-7, dark red circles) 

exhibited performances that fell outside the 95% confidence interval bounds of the 

bivariate distribution of the response times and endpoint MSEs exhibited by control 

subjects.  The subjects with high visual delays all had high TAS and high tremor power.  
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Three of the four subjects (S4, S5, and S6) had significantly higher response times when 

performing the step-tracking task. Endpoint MSE was also increased, falling within the 

range of control responses emphasizing speed over accuracy. The fourth subject (S8) 

showed the reverse pattern with an increase in endpoint MSE but no apparent increase in 

response time. For all subjects with MS, the corresponding performance of the best-fit 

model, averaged across trials, is shown for comparison (Figure 3-7, triangles). In all 

cases, model-predictions underestimated actual response times and in all but two cases, 

model-predictions over-estimated actual terminal mean-squared errors.  

 

 
Figure  3-7: Log mean squared steady state error (degrees) vs. response time (ms) during a reach and 

hold task (step displacement) [57].  
Shaded regions (dark, medium, and light gray) denote the 50, 90, and 95% confidence intervals estimated 

from a mixture of Gaussians fit to control subjects’ response across all trials. For subjects with MS, trial-

averaged response times and MSEs are shown individually for clarity (filled circles). Dark red symbols 

denote MS subjects with “high” (>3SD above the control mean) visual delays, and pink symbols denote 

MS subjects with “low” (<3SD) visual delays. The average best-fit model performance to the same trials is 

also shown for each MS subject (filled triangles). In all cases, the best-fit sensory feedback control model 

for subjects with MS (filled triangles) reacted more quickly to a target perturbation than the subjects’ actual 

responses (filled circles).  
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3.3.6 Functional impact of mismatch between actual and predictive limb dynamics 

 

 

We examined the functional consequence of the mismatch between actual and 

predictive arm dynamics in a subsequent, post-hoc simulation analysis. For each MS 

subject we performed two forward dynamic simulations that characterized the model's 

performance on the step displacement task using (a) the best-fit model parameters, 

including mismatches between actual and predictive limb dynamics; and (b) "corrected" 

model parameters wherein the predictive limb dynamics of the forward model were 

forced to match the actual limb dynamical parameters. Figure 3-8 shows representative 

results for a subject with MS with moderate tremor (TAS=2). The step response of the 

model with a mismatch in limb dynamics (black) actually decreased the time to target 

acquisition and resulted in lower endpoint error than simulated responses with no 

mismatch in plant dynamics (gray), suggesting that mismatches in plant dynamics may be 

an adaptive response to the instability caused by mismatches in actual and predicted 

delays.  
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Figure 3-8. Step response of the sensory feedback control model [57] 
Response for the best-fit model containing a mismatch between the actual and expected elbow kinematics 

(black line) and for a model in which the actual and expected kinematics are matched (gray line).  

 
 

3.4  DISCUSSION 

 

We used a multisensory model of sensory feedback control to individually 

characterize sources of sensorimotor dysfunction in subjects with MS performing a series 

of goal-directed stabilization and movement tasks about the elbow. In contrast to the 

initial supposition that MS might impact sensory feedback control uniquely in each 

subject, the results suggest that upper extremity tremor and dysmetria may result from 

systematic changes in sensory feedback control. Specifically, subjects with moderate to 

severe tremor (TAS ≥ 2) exhibited increased visual response delays relative to normal 

control subjects. They also exhibited systematic mismatches between predictions of arm 

dynamics (vis-à-vis the forward model) and actual arm dynamics which were not present 

in normal control subjects; the degree of mismatch in subjects with MS correlated with 

tremor signal power measured in our spiral tracing task. We also observed group-wise 
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differences in the integral and derivative gains of a generic model of the neural feedback 

controller. Whereas the controller gain parameters covaried with the dynamic properties 

(i.e., apparent viscosity and stiffness) of the musculoskeletal system in normal control 

subjects, the derivative gain parameter in subjects with MS correlated instead with the 

visual delay; the increase in derivative gain may therefore be a response to the increase in 

instability related to increases in visual delay.  

A comparison of actual and simulated responses to step changes in desired 

performance suggests that the apparent mismatch between subject predictions of arm 

dynamics and actual arm dynamics may actually serve to improve response times in 

subjects with MS, despite their long visual delays. Taken together, our results suggest 

that tremor and dysmetria in MS may be caused by a combination of two factors: an 

inability of the brain to adequately adapt to increases in the time required to process 

visual information related to movement and by compensatory – but maladaptative – 

errors in predictions of arm dynamics.  

An increased visual delay such as the one observed here is consistent with 

reductions in the conduction speed of action potentials due to disease-induced 

demyelination in MS [134] and it agrees well with the increased time required by MS 

subjects to perceive visual information and perform visually-guided tasks [103, 134, 

135]. Proprioceptive conduction time in the lower extremities has also been shown to 

increase in MS [100], although we did not find a corresponding increase in 

proprioceptive response delay for the upper extremity. This may be due to the longer path 

length in the spinal cord for the transmission of motor control signals to the lower 

extremities.  
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Interestingly, the increased visual response delay in subjects with MS was not 

accompanied by an increase in the latency of submovements (i.e. their submovement 

interval). Submovements have been used previously to study impairments in movement 

control [136, 137]. Current theories of intermittent control during goal-directed 

movement associate individual submovements with discretization of sensorimotor 

control, such that each submovement represents a complete "primitive" movement profile 

comprised of movement planning, movement execution and sensory feedback phases [9, 

63, 67, 133].  For the purpose of characterizing feedback control in MS, we have 

assumed that the combined time delays associated with these three submovement phases 

form the basis of the expected response delays characterized by the model (Figure 2-1). 

Correspondingly, the submovement intervals measured experimentally in response to 

corrective movements mediated by visual or proprioceptive motion cues (Exp. 1a and 1b 

respectively) reflect internal estimates of the open-loop sensory processing delays. This 

interpretation is supported by the consistent match in control subjects between visual and 

proprioceptive response delays and the measured submovement intervals (Figure 3-4B).  

In subjects with MS, submovement interval and visual response delay differed 

significantly in four of the eight subjects, suggesting that they failed to adjust (or were 

unable to adjust) their expectations of visual processing delays to compensate for the full 

increase in visual processing time resulting from the disease. A previous study by Miall 

and Jackson has demonstrated that it is possible to adapt to increases in extrinsic 

feedback delays [48]. However, the visual delays seen here in subjects with MS were 

markedly larger than those that Miall and Jackson used to adapt their neurologically 

intact subjects (<300ms). Moreover, the delays experienced by MS subjects reflect 
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intrinsic, rather than extrinsic sources. It is possible that intrinsic sources of delay may 

not engage adaptive mechanisms that respond to task-specific changes in the environment 

(cf. [138]); our results suggest that subjects with MS may adapt their forward models of 

plant dynamics (creating a mismatch) in response to these increases. 

Although continuous control models, such as the one used here, make simplifying 

assumptions that neglect the impact of intermittent feedforward control actions, 

continuous control models have been shown to accurately predict human performance in 

a variety of single joint motor tasks that minimize the predictability of environmental or 

target perturbations [6, 20, 22, 62]. Additional simplifications of our model include the 

use of a 1-D task to characterize movement control and the use of a second-order 

musculoskeletal plant model.  These simplifications were made because the plant model 

of the arm becomes much more complicated with the inclusion of additional joints or by 

including higher-order models of muscle activation contraction dynamics [28]. We 

believe these simplifications are justified because the bandwidth limitations of the plant 

are dominated by the effects of the arm's inertia and mechanical viscoelasticity rather 

than by low-pass filter properties of the activation/contraction dynamics - at least in 

quasi-isometric conditions such as the stabilization tasks studied here. 

For subjects with MS, the pattern of mismatch in the limb dynamics (stiffness and 

inertia) co-varied with tremor assessment score and tremor power calculated from the 

spiral-tracing task (Figure 3-6). This was despite marked differences in task design; the 

model was characterized using single-joint compensatory tracking movements with the 

arm supported against gravity whereas the clinical assessments and spiral tracing required 

the subject to generate motion at multiple joints without arm support.  Correspondence in 
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the results of these disparate tasks is to be expected; a disease-related increase in visual 

processing time is expected to impact motor performance in any visuomotor task.  The 

simulation results of Figure 3-8 suggest that the observed mismatch between internal 

estimates of plant dynamics and actual plant dynamics may actually help subjects with 

moderate tremor reduce steady-state movement error despite an inability to compensate 

for long visual delays. This form of compensation would not be unreasonable, 

particularly for adaptive mechanisms in the brain that seek to minimize discrepancy 

between the predicted and realized sensory consequences of actions (cf. [139]). 

Uncompensated increases in visual delay would yield lagged perceptions of arm position, 

compromising limb state estimation [108]. Considering that a delay in the limb's response 

to descending motor commands also occurs when the hand grasps an object that is 

heavier than expected, an uncompensated lag in the visual perception of limb motion 

could be misconstrued as an unexpected increase in limb inertia. Therefore, increasing 

the internal estimate of limb inertia (Figure 3-8) could, within narrow limits, partially 

compensate the functional impact of inaccurate predictions of sensory delay. Beyond 

those limits, changes in the estimated limb dynamics could lead to increased joint torque 

production (intended to overcome an environmental load that is not in fact present) and 

inappropriate compensatory responses to the perceived error. This notion is consistent 

with the suggestion that intention tremor in MS is due, in part, to inaccurate voluntary 

corrections to errors in position [135]. From a neurological standpoint, cerebellar 

damage, which has been linked with tremor in previous studies ([24, 126, 127, 140]), 

could degrade pathways necessary for effective sensorimotor adaptations, causing 
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inappropriate compensatory responses to become more likely, and exacerbate tremor 

severity. 

During the reach-and-hold task, subjects with MS tended to move more slowly 

than the control subjects. They also moved more slowly than the performance predicted 

by best-fit models of Figure 2-1. These results are consistent with a favoring of accuracy 

over speed in the pursuit tracking of step changes in target location and may reflect a 

strategic choice by subjects to minimize endpoint errors associated with delay and 

kinematic mismatches. This bias toward accurate (rather than fast) movements is not 

surprising since in many daily activities (e.g. eating, dressing) it is more important to 

bring the hand accurately to a desired spatial location than to do so with speed. 

Our results suggest a possible reinterpretation of results of prior studies seeking to 

reduce tremor in MS. Tasks which force subjects to adapt to novel force fields or to 

perturbations [105-107] could allow subjects to “reset” maladaptive models and form a 

new model that is better able to compensate for long visual delays. Our results also 

suggest novel rehabilitative strategies for reducing intention tremor in subjects with MS. 

We envision at least two possibilities: one approach would require subjects to hold the 

handle of a rehabilitation robot while making goal directed movements within a simple 

virtual-reality environment. As training progresses, subjects would be required to adapt to 

slowly-increasing visuomotor delays while the robot would simulate mechanical loads 

that vary unpredictably from trial to trial, thus discouraging compensatory mal-adaptation 

of musculoskeletal property estimates. We speculate that providing practice in 

compensating for visuomotor delays while discouraging adaptation of limb dynamics will 
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favor appropriate adaptive compensations for physiological visual processing delays, 

thereby mitigating tremor. 

A second approach centers on the idea that the brain’s effort to minimize 

performance error hinders the ability to adapt to changes in the physiological visual 

delay. That is, we speculate the presence of a non-monotonic relationship between 

performance error and increases in predictive delay such that small increases in predictive 

delay would lead to increased errors, while large changes in expected delay could lead to 

optimal performance. This non-linear relationship may preclude the inherent adaptive 

mechanisms from matching the predictive delay to the true physiological delay. 

Rehabilitation under this approach would involve using the feedback control model 

(Figure 2-1) to identify and tailor the visual feedback to gradually shift the minimum 

performance error to the actual visual delay [141].  

The preliminary findings presented here demonstrate that systems identification 

techniques provide an informative framework for investigating how neuromotor disease 

affects motor control and the neuromotor causes of motor disability. Specifically, we 

have done so by examining deficits in the neural processes underlying upper extremity 

motor dysfunction in a small cohort of individuals with clinical diagnoses of Multiple 

Sclerosis. We found evidence that tremor and dysmetria may be caused by an inability of 

the brain to adequately adapt to increases in the time required to process visual 

information related to movement as well as by compensatory mal-adaptations of internal 

estimates of arm dynamics. Future studies should seek to confirm the findings reported 

here with a larger cohort of individuals with MS. Subsequent studies could then seek 
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effective ways to reduce intention tremor by identifying strategies that mitigate motor 

instability due to slowed visual processing caused by MS. 
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CHAPTER 4: DELAY ADAPTATION TO REDUCE 

INTENTION TREMOR IN MULTIPLE SCLEROSIS:  

A CASE SERIES
3 

3
This work is intended for publication. Authorship: M.Heenan; R.A. Scheidt; S.A. Beardsley. 

 

 

4.1 INTRODUCTION 

 

 

4.1.1 Background 

 

 

Persons with multiple sclerosis (PwMS) often experience severe neuromotor 

symptoms that significantly impact their quality of life. Because MS is degenerative, 

these symptoms can often be difficult to manage and treat. One particularly difficult 

symptom to manage is intention tremor, which affects approximately 15% of those with 

MS [94]. Intention tremor –tremor about the endpoint of a voluntary movement – affects 

many activities of daily living, including reaching, eating, driving and writing, and 

significantly impacts the ability of PwMS to maintain independence [95].  

Although there are several medical options available, including drug therapies and 

surgical treatments, most do not result in significant, long-term improvement due to 

either increasing drug tolerance or to increasing symptom severity. Physical therapy has 

been used successfully to reduce select motor symptoms in MS, including posture and 

balance deficits [100]. Recent, more targeted studies by Feys et al. have shown that 

intention tremor in MS can be reduced through alteration of computer-generated visual 

feedback [102], while motor training using robotic devices to introduce proprioceptive 

and visual perturbations has been shown to reduce motor impairment in persons with MS 

[105-107]. These short-term improvements in motor function suggest robot-assisted 

training may provide a viable approach to reduce motor dysfunction in MS. Maximizing 
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the impact of retraining on motor performance and functional outcomes requires a better 

understanding of the sensorimotor control mechanisms specifically impacted by MS.  

 

 

4.1.2 Sensorimotor deficits in Persons with Multiple Sclerosis 

 

 

 

Our recent work suggests that intention tremor may be due to an inability to adapt 

movement predictions to account for an increase in the time required to process visual 

feedback [57]. In the intact neuromotor control system, sensory delays can be 

compensated by predicting the future outcome of movement. This prediction process  can 

be characterized as a form of model predictive control, such that the effect of the time 

delay on the system transfer function is minimized by subtracting a prediction of the 

delayed feedback from the instantaneous error (Figure 4-1). When the actual feedback 

delay τ(s) and predicted feedback delay   (s) become mismatched, the system oscillates 

and can become unstable.  

 

 

Figure 4-1. Model Predictive Control.  
The effects of long feedback delays on system control can be reduced by using a predictive feedback 

controller to cancel the effects of the delay. The controller (H(s)) acts on the total error between the delayed 

τ(s) feedback of output Y(s) and the predicted, delayed error through the feedback loops of the estimated 

plant (Ĝ(s)) and the estimated time delay   (s). 
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It remains unclear why subjects with MS do not adapt directly to increases in 

visual delay, which would be the most effective method of reducing motor instability. 

Previous studies examining delay adaptation have found that healthy subjects are able to 

adapt to small increases in feedback delay, but are unable to adapt to large, sudden 

increases in feedback delay [19, 48]. Subjects with MS are able to correct movement 

trajectories in force fields, indicating that their ability to adapt is not completely lost due 

to neurological changes resulting from MS [105]. These results suggest that subjects with 

MS should be able to adapt successfully to gradual increases in visual delay. In subjects 

with MS, we have previously shown that the mismatch between actual and predicted 

visual feedback can create a mismatch between actual and predicted limb dynamics that 

may become maladaptive as motor dysfunction progresses [57]. Subjects may therefore 

attempt to first compensate for delay mismatches by altering predictions of limb 

dynamics. Once these changes become insufficient to compensate for  increases in visual 

delay, the additional feedback delay may be too large for subjects to be able to adapt to 

directly. However, instability is reduced when τ(s) is an exact multiple of   (s) because 

frequency multiples (harmonics) maximize destructive interference with the fundamental 

frequency. In individuals with MS, visual delays in subjects with severe tremor are 

approximately twice the delays of healthy control subjects [57]. Here, we hypothesize 

that that PwMS are reducing oscillation by maximizing destructive interference within 

the feedback loop and are unable to increase their predicted delay away from the first 

harmonic because doing so would increase instability. Further, we hypothesize that 

increasing visual feedback delay will shift the location of this first harmonic, resulting in 
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an increase in the optimal value of   (s) and inducing delay adaptation in subjects with 

MS.  

We have previously proposed a framework for investigating movement deficits 

leading to tremor on an individualized basis [57]. In the current study, we use this 

framework together with subject-specific simulations of sensorimotor control to 

investigate the barriers to delay adaptation in PwMS. Simulation results suggest that 

delay adaptation in PwMS can be facilitated by further delaying visual feedback; we test 

this hypothesis in three subjects to determine whether this presents a viable rehabilitation 

strategy. Finally, we examine the extent to which adaptive changes in subjects’ internal 

estimate of their visual delay can reduce intention tremor and improve motor 

performance in MS. 

 

 

4.2 SIMULATIONS 

 

 

 

4.2.1 Methods 

  

 

 

Model 

 

 

Sensorimotor control of joint angle was modeled as a multi-input single-output 

linear time-invariant system described in detail in previous work [6, 56, 57]. Three model 

inputs corresponded to external sensory perturbations to the cursor and limb (Dvision; 

Dtorque), and to the desired cursor/limb position (θd) , defined as the visual target; model 

output corresponded to current cursor/limb position (θa). The sensorimotor control model 
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(Figure 2-1) consisted of a feed-forward control pathway, two feedback pathways 

corresponding to visual and proprioceptive estimates of limb position, and a “forward 

model” – here modeled as a Smith Predictor - acts as a predictive controller to minimize 

the impact of system delays. Perturbations to visual feedback of limb position were 

combined with estimates of actual limb position which were weighted (Kv, Kp) and 

delayed (Tv, Tp).  This sum was subtracted from desired position (θd) to obtain an estimate 

of performance error. Simultaneously, the forward model generated a prediction of 

performance error used to account for delays in the feedback pathways. These two signals 

(performance error and predicted performance error) were summed to produce an overall 

estimate of prediction error. Prediction errors provided the input to a PID controller 

(corresponding to a neural controller which acts to minimize error), which commanded the 

musculoskeletal geometry (not modeled here), to produce a torque that moved the plant by 

rotating the arm about the elbow. The plant was modeled here as a 2
nd

 order system 

(inertia, viscosity, and stiffness) which converted command torque to joint angle. 

 

Model characterization 

 

 

Delay estimation: 

 

To estimate response delays, subjects were asked to respond to a continuous, low 

frequency (0-1Hz band-limited white noise), pseudorandom perturbation was applied to 

the cursor or manipulandum. Subjects were asked to return the cursor to the (stationary) 

target (visual perturbation) or return the elbow joint to 90
o
 of flexion (torque 

perturbation) during ten, 20-second trials. Response delays were estimated by finding the 

temporal offset of the cross-correlation between the perturbation and subjects’ responses. 



96 
 

 
 

Forward predictions of subjects’ individual sensory response delays (Tv
*
, Tp

*
) were 

calculated from the same task by examining the average length of individual 

“submovements” throughout the task. Submovements have previously been found to 

correlate with sensory response delays; this correlation may be related to the 

discretization of corrective movements to minimize error and reduce the amount of effort 

necessary to continuously process error feedback [57, 67, 133]. For each subject, the  

submovement interval and range of uncertainty were measured as the mean (μ) and 

standard deviation (σ) from a sum of Gaussians fit to the distribution of submovement 

intervals throughout the task [57].  

 

Plant dynamics, sensory weights, controller gains: 

 

 

Plant dynamics, sensory weights, and controller gains were fit to subjects’ 

responses to a high frequency (0-10Hz, low-pass filtered at 1 Hz with a 1
st
 order zero-

phase Butterworth filter) pseudorandom perturbation applied to cursor position. As in the 

previous task, subjects were asked to use the manipulandum to return the cursor to a 

stationary target as quickly and accurately as possible. For each subject’s responses, two 

frequency response functions (FRFs) were calculated. One FRF related subjects’ 

command torque to limb position and was used to determine plant dynamics. The second 

FRF related the subjects’ position response to the input perturbation and was used to fit 

the remaining parameters of the sensorimotor control model (Kv, Kd, Kpr, Ki, J*, B*, K*) 

for each subject. FRFs were averaged across trials using a subtraction analysis (See 

Appendix A). Each FRF was fit to the sensorimotor control model transfer equations 

(Eqs. 1-4) using the simplex method (Matlab fminsearch). To characterize the uncertainty 
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in each parameter, model fits were performed 1000 times. On each fit, the FRF data was 

resampled (with replacement) to provide an estimate of the uncertainty in the FRF 

calculation. Prior to fitting, model parameters were randomly initialized to span an order 

of magnitude about the set of nominal parameter values estimated from healthy human 

subjects (Chapter 2). For each model parameter, the resulting distribution was used to 

define the best estimate (mean) and uncertainty (SD) in the parameter estimates.  

The FRF relating the subject’s joint position to their input torque was well fit by a 

2
nd

-order model of joint dynamics (Eq. 1): 

      
 

        
 

(1) 

 

 

where J, B, and K correspond to the moment of inertia, viscous damping coefficient, and 

spring constant, respectively, of the elbow joint. 

The FRF relating the subject’s joint position relative to the applied perturbation 

was fit to the corresponding model transfer function 

 

                                          
               

                         
     

     
     

                             
                                                   (2) 

 

where P(s) is the transfer function of the plant and C(s) is the transfer function of the 

neural controller, characterized here as a PID controller: 

 

                
  

 
    (3)
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and P*(s) is the subject’s internal dynamics: 

 

       
 

           
(4) 

 

 

Subjects 

 

 

Subjects were drawn from the population of PwMS with moderate to severe 

intention tremor accompanied by a significant increase in visual response time 

(approximately 50% of the subject population [57]). Exclusion criteria included subjects 

with proprioceptive deficits, cognitive deficits, and eye movement deficits. Two women 

(41 and 60 years old) and one man (29 years old) participated in the study. All subjects 

were right handed, according to the Edinburgh Handedness Inventory. No subjects 

reported neurological deficits (aside from MS) that would interfere with their 

participation in the study. Two subjects were diagnosed with secondary-progressive MS; 

the third subject was diagnosed with relapsing-remitting MS. All had been diagnosed > 

10 years previously, and two subjects had EDSS > 5. EDSS for the remaining subject was 

unavailable. All subjects were on immunomodulating drugs at the time of the study. 

Written, informed consent was obtained from each subject in accordance with the 

Declaration of Helsinki and approved by the Marquette University Institutional Review 

Board. 
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Subject Parameters 

 

  

Subjects’ individual sensorimotor systems were characterized using the methods 

described above and in more detail in Chapter 3 and in [57]. Parameters used for each 

subject’s simulations are shown in Table 4-1. 

 

Table 4-1. Subject parameters used in simulations 

Sub Kv Kd Kpr Ki J B K J* B* K* Tv Tv* Tp 

1 0.71 0.008 0.15 1.42 0.034 0.92 2.77 0.059 1.24 2.57 686 301 360 

2 0.35 0.023 0.27 10.1 0.043 1.21 1.29 0.066 2.02 9.77 870 402 208 

3 0.17 0.025 0.51 16.8 0.087 1.19 14.7 0.12 1.25 30.6 540 320 170 

 

 

 

Simulations 

 

 

 

For each subject the best-fit sensorimotor control model was implemented in 

Simulink (MathWorks, Natick, MA). The step response of the model was used to 

simulate the subject’s response to a reach and hold task to estimate model movement 

error during the “endpoint acquisition” phase of movement – after the “limb” has covered 

80% of the target distance. Mean squared error (MSE) during this hold period was 

calculated as the average difference between the simulated joint angle and the target 

(“desired position”). Model MSE was calculated as a function of the predicted visual 

response delay (-200ms to 800ms difference from our estimate) defined by the forward 

model (Figure 2- 1).This created an “error profile” whose slope mapped changes in the 

MSE to corresponding changes in predicted visual delay. In order to investigate the 

effects of altering visual feedback, separate error profiles were generated for a range of 
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external visual delays (50, 100, 150, 200, 250, and 300 ms) which increased feedback 

delays. 

 

 

4.2.2 RESULTS 

 

 

Error Profiles 

 

 

 

 For each subject, we plotted MSE vs. increase in predicted visual response delay. 

An error profile for a sample subject (Subject 2) is shown below (Figure 4-3). In all 

subjects, a local minimum in the error profile existed near zero – near each subject’s 

current predicted delay. Error then increases with an increase in predicted visual delay up 

to approximately 100ms; this is followed by a decrease in movement error which reaches 

a global minimum at approximately each subject’s actual visual delay.  
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Figure 4-2. Simulated movement error as a function of the change in predicted visual response delay 

for Subject 2 (Error profile). 

Shown is the error profile for subject 2. Zero indicates subject’s predicted visual delay. The local minimum 

is located approximately at 0.  Another minimum is located between 500 and 600 ms above the predicted 

visual delay (approximately the actual visual response delay). 

 

Local minima reported in the table were based on the minimum MSE nearest to 

the subject’s internal estimate of visual response delay. Local minima in the simulated 

error profiles all fell within one standard deviation of the internal estimates of visual 

response delay characterized using the submovement interval. Global minima in the 

simulated error profiles occurred within one standard deviation of the actual visual 

response delay for two of three subjects, and within two standard deviations of the actual 

visual response delay for the third subject. Mean differences between local and global 

minima in the error profiles was 423.3±111.5 ms. 
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Table 4-2. Actual and expected visual response delays (mean±SD) and model local and global 

minima. 

Subject 

Predicted 
visual 

response 
delay (ms) 

Visual 
response 
delay (ms) 

Model 
local 

minimum 
error (ms) 

Model 
global 

minimum 
error (ms) 

Difference 
between local 

and global 
error (ms) 

1 299.0±105.3 686.0±227.5 361 741 380 

2 408.0±162.2 869.0±120.6 398 948 550 

3 318.3±131.0 517.2±39.7 280 620 340 

 

 

 

Error Profiles with Increasing Feedback Delays 

 

 

 

In order to examine the effects of increases in visual feedback delay, we simulated 

error profiles for three specific delay increases. Error profiles for the sensorimotor control 

model of Subject 2 are shown in Figure 4-3. When a 100 ms external feedback delay is 

added, simulation MSE was no longer at a local minimum (blue line). Minimizing 

movement error in the presence of the 100 ms external delay corresponds to an increase 

in the internal estimate of the visual response delay of approximately 10 ms. When 

external feedback delay is increased to 200 ms (cyan), movement error is no longer at a 

local minimum; minimizing error results in an increase in the predicted estimate of the 

visual response delay of approximately 60 ms. Finally, when the external feedback delay 

is increased to 300 ms, the error profile (green) indicates that the minimum movement 

error will occur when the expected visual response delay is increased by an additional 80 

ms – resulting in an overall increase of 140 ms in the internal estimate of the visual 

response delay. When the 300 ms external feedback delay is removed (and the additional 

external feedback delay is 0 ms), simulation MSE decreases as predicted visual response 
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delay increases toward the global error minimum corresponding to approximately the 

actual visual response delay (idealized path shown in red arrows). 

 

 

Figure 4-3. Error profiles with increasing feedback delays for Subject 2.  
The change in error profile with the addition of an external visual feedback delay are shown in blue 

(100ms), cyan (200 ms), and green (300 ms). Arrows indicate hypothetical changes in error in a system that 

seeks to minimize endpoint error. 

 

Here, we assumed that adaptation in subjects’ sensorimotor control systems 

would seek to minimize overall position error. To this end, we generated simulations of 

changes in predicted visual delay (in the direction of decreasing error) in response to 

increases in actual visual delay. Based on the simulated error profiles for each subject’s 

sensorimotor control model, three external visual feedback delays were selected to 

maximize adaptation in the internal estimate of the visual response delay toward the 

subject’s actual visual response delay. For subject 1 external delays of 120, 200, and 200 
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ms were used during the adaptation sessions. For subjects 2 and 3, the external delays 

were [100, 200, and 300 ms - shown] and [50m 100m and 150 ms] respectively.   

 

 

4.3 ADAPTATION 

 

 

 

4.3.1 Methods 

 

 

 

Outcome Measures 

 

 

 

Four outcome measures were used to evaluate the effect of delay adaptation on 

motor control: the nine hole peg test (9HPT), spiral tracing [130], handwriting, and a 

reach-and-hold (step) task using the manipulandum [57]. The 9HPT was timed and 

scored according to the multiple sclerosis functional composite score (MSFC). During the 

handwriting task, subjects were instructed to copy three sentences (typed with 20pt font). 

Sentence completion was timed using a stopwatch; timing started as soon as the subject 

began writing the first letter, and ended when the subject completed the sentence. The 

sentences chosen were, “I am writing this sentence”, “One thousand three hundred and 

eighty-seven dollars and twelve cents” (to mimic, for example, writing a check), and 

“The five boxing wizards jump quickly” (a pangram). Subjects were instructed to copy 

each sentence at a “normal writing speed”. Sentence writing speed was calculated (in 

letters/sec) by dividing the number of letters per sentence by the time (in sec) spent 

writing the sentence. Writing speed was then averaged across sentences. 
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During the spiral tracing task (described in detail in Chapter 3 and in [57, 130]), 

subjects were instructed to trace an Archimedes spiral on a Wacom tablet (Wacom 

Technology, Vancouver, WA). The spiral was marked every 3 cm with a tick mark. 

Subjects were instructed to match the speed of their tracing movement to the speed of a 

metronome by crossing one tick mark per beat. Tracing speeds range from 60bpm (3 

cm/sec) to 120bpm (12 cm/sec). Pen position and timing information was collected using 

Cogent (University of London, London) and MATLAB (MathWorks, Natick, MA). 

Spiral position was de-trended by subtracting the least-square error liner fit to angle vs. 

radius, resulting in deviations from the spiral trace. The power spectrum of each tracing 

trial was calculated and the frequency and magnitude of tremor was calculated by finding 

the maximum amplitude within the tremor frequency range (2-6Hz) [94]. Tremor 

frequency was estimated by average frequency across trials. Because tremor amplitude 

increased with speed, tremor magnitude was averaged across the three fastest trials only.  

Finally, target acquisition time (AT) and mean squared error (MSE) were 

calculated from each subject’s responses during the “endpoint acquisition” phase of a 

reach and hold task. During the task, subjects were seated at the manipulandum. A visual 

target placed along the midline of the computer display was displaced pseudo-randomly 

to the left or to the right by 18, 20, or 22 degrees with the restriction that joint angle not 

exceed ±40º from the midline (90º flexion). Subjects were asked to move to the target as 

quickly as possible; speed of the movement was emphasized in order to prevent subjects 

from altering their movement strategies in order to achieve greater accuracy. Subjects 

performed eight target jumps per trial with the timing between jumps randomized from 

3.5 to 4.5 seconds. During analysis, trials were parsed into eight, three second epochs 
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beginning at each target jump. For each epoch, target acquisition time was calculated by 

determining the time at which subjects completed 80% of the trajectory (80% of the 

distance to the target). MSE was calculated using the square of the difference between 

target and subject position after subjects acquired the target (e.g. at the end of the target 

acquisition time). 

 

 

Sham sessions 

 

 

 

In order to investigate which effects are due to practice, and which effects are due 

to adaptation, we had subjects participate in a “sham” adaptation while performing a 

series of reach and hold tasks using the manipulandum. During the task, the target was 

located along the horizontal midline of the display and randomly displaced to the left or 

the right. Subjects were again instructed to move to each target “as quickly as possible”. 

Displacements were randomly selected from ±10, 15, 20, 25, or 30 degrees and occurred 

pseudo-randomly every 3.5-4.5 seconds with the restriction that elbow joint angle not 

exceed 40º from the midline. Subjects performed three sets of 10, 64 second trials. Each 

trial contained approximately 16 target displacements per trial for a total of 480 target 

displacements during the session. During analysis, step trials were divided into epochs 

consisting of the first 3 seconds post-target jump and normalized against target distance. 

Trials where subjects moved too early (<0.1 seconds post-target jump), too late (>1.0 

seconds post-target jump), or in the wrong direction were excluded from analysis (<5% 

of trials). For each jump, MSE and submovement interval were calculated as described 

above and averaged across trials.  
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Delay Adaptation 

 

 

 

On a separate day, subjects performed the same reach and hold task as described 

above, but with the goal of facilitating delay adaptation. As in the sham session, each trial 

lasted 64 seconds. During each trial, the target was randomly displaced by 20±2 degrees, 

with the caveat that elbow angle not exceed 90±40 degrees. Slightly different target 

distances were used in order to prevent subjects from learning the task easily.  

Unlike the sham session, during adaptation sessions the presentation of the cursor 

feedback was delayed relative to the arm position. External delays used in the adaptation 

sessions were individualized for each subject based on the simulation results in order to 

provide the optimal feedback delays to induce adaptation; successive delays moved the 

subject’s simulated minimum MSE toward a higher internal estimate of visual response 

delay. All adaptation sessions began with 10 trials (a “set”) with 0 ms of added feedback 

delay, followed by three trial sets with external feedback delays equal to the first-third 

optimal delays identified by our simulations (Figure 4-4).  

Care was taken to ensure that subjects were unaware that the sham and adaptation 

sets were different; setup and questions asked were identical across days. Before and after 

the sham and adaptation sessions, subjects performed the pre- and post-tests described 

above to characterize intention tremor and improvements in functional performance. 

Finally, 24-48 hours after the adaptation session, subjects performed the pre- and post- 

tests a final time in order to examine whether changes in motor performance persisted. 

Performance on the pre- and post- tests was compared within and across sessions to 
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determine whether changes in movement control were due to visual delay adaptation or 

simply to practice effects. 

 

 

Figure 4-4. Delay adaptation experimental design.  

During this session, adaptation sets were performed between pre- and post-tests of visually guided reach. 

Adaptation sets consisted of 5 sets of 10 trials each; during each set, external feedback delay was held 

constant in order to give subjects time to adapt. External feedback delay was increased between delay sets 

1-3, then removed entirely for the post-test. 

 

 

4.3.2 Sham Results 

 

 

 

Across subjects, no significant differences in motor performance were observed 

before and after the sham adaptation session. Two subjects (subjects 2 and 3) showed 

decreases in 9HPT completion time (9.1% and 11%, respectively) in their dominant 

hands. Only one subject (subject 3) had a decrease in 9HPT time for her non-dominant 
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hand. Across subjects, the changes were not statistically significant for either the 

dominant (paired t-test; t(4) = 0.24,  p = 0.82) or non-dominant (paired t-test; t(4) = 0.25, 

p = 0.81) hands. Only one subject showed a large change (>70%) in tremor power as 

measured by the spiral tracing task, however, the change was not statistically significant 

due to high variance between trials (unpaired t-test; t(4) = 1.41, p = 0.23). No significant 

changes in handwriting speed was found within (unpaired t-test; t(4) < 2.0, p > 0.05) or 

between (paired t-test; t(16) = 0.54, p = 0.59) subjects. Similarly, movement error did not 

decrease within (unpaired t-test; t(68) < 2.0; p > 0.05) or across (paired t-test; t(4) = 0.52, 

p = 0.63) subjects. In two subjects, submovement intervals did not change significantly 

across sets (t(170) < 2.0, p > 0.05). However, one subject (Subject 3) did show a small (< 

70 ms), but statistically significant, increase (unpaired t-test; t(170) = 4.02; p < 0.001) in 

submovement interval. 

 

 

4.3.3 Adaptation Results 

 

 

 

Error reduction across trials 

 

 

 

Analysis of MSE from the delay adaptation sessions was used to directly probe 

changes in the internal estimates of the visual response delay. Increases in the external 

feedback delay were immediately followed by an increase in endpoint error that 

decreased across trials within a delay set (Figure 4-5). Linear correlations between error 

and trial number were negative (r<-0.20) in three of the four sets, including the final 

adaptation set, when the external visual delay was set to zero.  
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Figure 4-5. MSE across adaptation sets (black circles) and best-fit linear regression within each set 

(red lines) for Subject 2.  
In general, correlations are negative, but only one (300 ms delay; p = 0.02) reaches significance. Error bars 

denote standard error. 

 

 

Submovement Interval 

 

 

 

Submovement intervals increased throughout the adaptation session for all three 

subjects (Figure 4-6). Internal estimates of subjects’ visual response delays increased 

significantly (t(170) > 2.0; p<0.05) across adaptation sets in all three subjects. Only 

Subject 1 exhibited changes in submovement interval that increased to a value 

comparable to actual visual response delay. In all three subjects, submovement interval 

increases significantly (t(170) > 2.0; p < 0.05) during and after adaptation. In two 

subjects, the effect is retained 24-48 hours following adaptation (t(170) > 2.0; p < 0.05). 



111 
 

 
 

 
Figure 4-6.  Submovement interval across adaptation sets.  

Pre-test: dark blue; Delay Set 1: blue; Delay Set 2: light blue; Delay Set 3: light green; Post-test: green; 

Next-day post-test: yellow. Error bars denote standard error. Actual visual response delay (±SD) is denoted 

by the shaded region. 

 

 

 

Error Reduction 

 

 

 

For subject 1, movement error decreased significantly (unpaired t-test; t(138) = 

2.54;  p = 0.012) following adaptation to the three external delays; movement error 

decreased slightly from post-adaptation testing to the following day (Figure 4-7 left). 

Movement error for subject 2 decreased consistently from pre- to post- testing and 

movement error continued to decrease on the following day, however, the changes did 

not reach statistical significance (t(138) < 2.0, p > 0.05). Error in subject 3 also decreased 

from pre- to post- testing, although the change was not significant (t(138) = 0.63, p = 

0.53). Error increased significantly from post-adaptation testing to the following day 

(t(138) = 2.47, p = 0.015). Figure 4-7 (right) shows the average movement profile in 

response to step displacements of the target (normalized to displacement magnitude) 
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before and after adaptation for subject 2. Subject 2 shows a tendency to approach the 

target more slowly during post-adaptation testing (green), but with fewer direction 

changes and lower variance when compared to pre-test performance (t(2998) = 4.33; p < 

0.001). During follow-up testing the next day (yellow), subject speed increased, but 

endpoint variance has remained lower than pre-adaptation variance (t(2998) = 2.72; p = 

0.0065). 

 

   

Figure 4-7.  Endpoint error and average movement profile  
(Left) Endpoint error. Error bars denote ±standard error (Right) Average normalized movement profile 

during a reach and hold task before (blue), immediately following (green) and 24-48 hours after delay 

adaptation (yellow) for Subject 2. Dashed lines denote variance about the mean movement. 

 

 

Movement Speed 

 

 

 

 In addition to examining movement error, we calculated target acquisition time in 

order to ensure that subjects were not simply moving more slowly. As feedback delay 

increased, subjects moved more slowly, with target acquisition time peaking between the 

second (Subjects 1 and 2) and third (Subject 3) delay sets. Once the external feedback 
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delay was removed, target acquisition time decreased to the times observed before 

adaptation (Figure 4-8). 

 

Figure 4-8. Target acquisition time (TAT) across adaptation sets.   
TAT before (dark blue), during (blue, turquoise, light green), and after (green) adaptation sets and in the 

follow-up session (yellow). 

 

 

9HPT 

 

 

Time to completion scores on the 9HPT consistently decreased following delay 

adaptation (Figure 4-9). Decreases in the time to complete the task were observed in 

subjects 1 and 3 in both their dominant (left) and non-dominant (right) hands. Subject 2 

also improved in his dominant, but not his dominant hand. Nine hole peg test score with 

the dominant arm showed modest improvements of 3.5% and 11.2% for subjects 1 and 2. 
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Larger improvements were seen across days, resulting in 21.2%, 13.3%, and 10.7% 

decreases in 9HPT time for subjects 1-3. Improvements in performance were also seen in 

the non-dominant arm, with post-adaptation improvements of 8.3%, and 27.1% in 

subjects 1 and 3. Across days, the same subjects had improvements of 15.1% and 29.1%. 

Because the 9HPT was only measured twice for each test, within-subject statistical 

comparisons could not be made. However, across subjects, there was a significant 

improvement in 9HPT time for the dominant hand from pre-adaptation to the following 

day (paired t-test; t = 11.5; df = 5;  p < 0.001). A similar change was not seen in the non-

dominant hand (paired t-test; t = 0.30; df = 5; p = 0.78). 

 

 

Figure 4-9: 9HPT scores for the dominant (left) and nondominant (right) limb. 

Before (blue) and after (green) delay adaptation, and during the follow-up testing after 24-48 hours.  

 

 

 

Handwriting 

 

 

Handwriting speed improved significantly (unpaired t-test; t (4) = 3.1; 0 = 0.036) 

following delay adaptation in Subject 2 (Figure 4-10, left). Subjects 1 and 3 both showed 
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slight increases in handwriting speed but the difference was not significant. The quality 

of handwriting samples also improved following delay adaptation (Figure 4-10, right). 

Handwriting appeared smoother post-adaptation and the improvements were sustained 

into the following day. In the representative writing sample shown in Figure 4-10, 

handwriting appears more accurate following adaptation, based on the number of letters 

that touched (rather than “floated above”) the writing line. Further, handwriting appeared 

more fluid post-adaptation; crossbars (e.g. “I” and “t”) are straighter, and curved letters 

(e.g. “m” and “n”) are more rounded. 

 

 

Figure 4-10. Handwriting speed and samples.  

(Left) Handwriting before (blue) and immediately after (green) adaptation, and after 24-48 hours. Error 

bars denote ±1 standard error. (Right) Handwriting sample from a representative subject (Subject 2) 

 

 

 

Tremor frequency and power 

 

 

Tremor power (averaged across the three fastest trials of the spiral tracing task) 

decreased in all three subjects (Figure 4-11, left) although the changes were not 

significant (t(2) > 2.0, p > 0.10) due to variance in tremor power across trials of varying 
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speeds. In subject 1, tremor power decreased by 57.1%; in subject 2, by 36.4%; and in 

subject 3, by 75.7%. While decreases in tremor power were observed in all subjects the 

effect across subjects was not statistically significant (paired t-test; t(4) = 1.87; p = 0.13) 

due to the small subject sample size. On the following day, tremor power increased in all 

three subjects from the post-adaptation session. Tremor frequency (Figure 4-11, right) 

was also altered by delay adaptation. In two of three subjects (Subjects 2 and 3), tremor 

frequency decreased significantly from the pre-test to the post-test (t > 1.9; p<0.05)  This 

effect did not last into the follow-up testing (p > 0.05). 

 

 

Figure 4-11. Tremor power and frequency.  
Tremor power during spiral tracing task before (blue) and after (green) adaptation task and during next-day 

post-test (yellow). Error bars denote standard error. 

 
 

4.4 DISCUSSION 

 

 

 

We have previously shown that PwMS and intention tremor have high visual 

response delays but normal submovement intervals; in our model, we link this to an 

inability to generate an accurate forward model to account for long sensory delays. In 
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simulations, this results in oscillatory behavior; in human subjects, it can result in tremor 

during goal-directed movements. These large differences between actual and predicted 

visual delays are correlated – in our subject population - with large mismatches between 

the plant and its forward model. Changes in the forward model of the plant, but not the 

delay, suggest that persons with MS may be unable to adapt directly to the increase in 

visual response delay [57]. Instead, subjects alter their internal estimates of limb 

dynamics – a model that is more readily adaptable [49]. The goal of the current study was 

to investigate the barriers to direct delay adaptation in PwMS and whether delay 

adaptation can be facilitated through the alteration of visual feedback.  

Here, we characterized subjects’ individual sensorimotor systems and simulated 

movement outcomes in order to examine why subjects with MS are unable to adapt 

directly to increases in feedback delay. The sensorimotor control model for each subject 

was used to examine the consequences of changes to the internal estimate of visual 

response delay on movement endpoint error. Model simulations suggest that subjects’ 

ability to adapt their internal estimate of visual response delay may be confounded by the 

need to minimize endpoint error during movement, which may provide an explanation for 

our previous results -  subjects may be forced to adapt other aspects of the motor control 

system in order to reduce error. However, model simulations with an externally applied 

visual feedback delay indicate that the local minimum of endpoint error can be shifted 

toward higher internal estimates of visual delay by applying specific sequences of 

external delays. Assuming subjects naturally adapt in the direction of minimum error, 

these specific sequences of external feedback delays should allow subjects to directly 

alter predicted visual delay. 
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To determine whether adaptation of the internal estimate of visual response delay 

was taking place, movement error and submovement intervals during adaptation sets 

were examined. Trends toward decreases in movement error occurred across adaptation 

trials, suggesting that subjects are able to reduce error in response to external feedback 

delays. Increases in submovement interval, used here to characterize the internal estimate 

of visual response delay, also occurred during adaptation trials. This suggests that internal 

estimates in the visual response delay may be changing in response to the targeted 

adaptation tasks. These factors, taken together, may indicate that subjects were 

successfully adapting their internal estimates of visual response delay in an effort to 

reduce movement error.  

As an effect of the adaptation task, significant reductions in MSE were observed 

within one of the three subjects as well as between subjects (between-subject significant 

results, in the absence of significant within-subject results, is due to large within-subject 

variance). In addition to the reduction in MSE, improvements in other functional 

measures of motor control were also found, including handwriting speed, 9HPT score, 

and tremor power and frequency during spiral tracing (Table 4-3). Subject 2 had the 

largest tremor initially and had improvement in 4 of 7 metrics: submovement interval, 

handwriting (speed and accuracy), and 9HPT score. Tremor power and movement error 

were also reduced, but results were not statistically significant. For subjects 1 and 3, 

results were similarly mixed; both Subjects 1 and 3 showed improvement in 3 of 7 

metrics,. Some of these effects persisted into a second day; submovement interval and 

improvements in handwriting, in particular, had the largest persistent effects. In contrast, 
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tremor power and frequency were altered only immediately post-task, suggesting that 

changes in tremor cannot be explained simply by practice effects. 

Although there was a trend towards a generalized improvement in all subjects, 

small sample sizes and large variations in task performance limited the power of the 

statistical tests. Comparable changes were not seen in the sham adaptation session, with 

the possible exception of 9HPT score (improvements in 3/6 hands after sham adaptation 

vs. improvements in 5/6 hands after delay adaptation). This may indicate that the 9HPT is 

more susceptible to practice effects and/or that performance on the 9HPT can be 

improved by performing generic goal-directed tasks.  

 

Table 4-3. Summary of changes in functional performance following delay adaptation.  

Green arrows indicate significant improvement. Yellow arrows indicate no significant change in 

performance. 
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The predictions of the model simulations were not fully realized while testing the 

subjects. Specifically, complete adaptation of visual response delay to the subjects’ actual 

visual response delay did not occur. This is likely due to factors that were unaccounted 

for (by the model), including changes in sensorimotor control not related to the increase 

in expected visual response delay predicted in simulation. For example, an increase in 

arm co-contraction, a common response to unanticipated movement errors, would 

manifest in the model fits to the subject’s limb dynamics, potentially altering as many as 

five model parameters (actual joint viscosity and joint stiffness, predicted joint inertia, 

viscosity, and stiffness). Significant changes in other model parameters would be 

expected to alter the “error space” used to select the external delays used to maximize the 

effects of delay adaptation. Furthermore, subjects may not have adapted fully in the 

current test paradigm. Changes in movement error during adaptation suggest that this 

may be the case; in several cases error did not stabilize at a new level before the delay 

was changed. Additionally, although our model predicts complete adaptation, previous 

studies have found that learned internal models may be stored for future retrieval [49]. 

These models (which are more practiced) may interfere with complete adaptation as 

subjects switch between tasks. 

The pilot results reported here suggest that individualized delay adaptation may 

be successful in reducing intention tremor in PwMS. All subjects showed improvements 

in motor performance immediately following adaptation to targeted external delays. In 

two subjects, the functional effects of delay adaptation were retained over 24 hours. More 

subjects are required to confirm whether targeted delay adaptation can provide an 

effective approach to reduce tremor across the broader population of PwMS. 
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Additionally, future studies should seek to increase subjects’ internal estimate of their 

visual response delay over a more extended training period to determine whether the 

internal estimate of the visual response delay can be fully adapted, and whether such 

adaptations can be sustained following training.  

The results presented here may partially explain previous findings regarding 

alteration of sensory feedback in subjects with MS. Changes in visual [103, 128, 135, 

142] or torque feedback [105, 106] may force subjects who have adapted incorrectly to 

increases in the visual response delay to re-learn more effective movement strategies. 

Altering error feedback directly [107] may alter the error profiles relative to the internal 

estimate of the visual response delay and shift the position of local error minima. 

Although these studies have seen mixed results, we propose that strategically and 

individually altering feedback – specifically, visual feedback delays – may be more 

effective than having all subjects with MS perform identical tasks. Here, our data indicate 

that subjects do not adapt fully to the additional feedback delays, which may explain why 

we see only moderate effects. 

 Visual delay adaptation can reduce intention tremor in PwMS and may provide a 

new avenue for rehabilitation. Subjects with intention tremor and a visual delay mismatch 

improved their motor performance after exposure to a series of targeted external visual 

feedback delays designed to systematically shift minimum endpoint error in relation to 

the subject’s internal estimate of visual response delay. Motor improvement was seen in 

at least three tasks in subjects with moderate (Subject 1, Subject 3) intention tremor and 

in a subject with severe (Subject 2) intention tremor. Crucially, increases in 

submovement interval with training occurred alongside these improvements, suggesting 
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that visual delay adaptation may be able to reduce or potentially eliminate intention 

tremor in PwMS.  
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CHAPTER 5: SUMMARY OF RESULTS 

 

 

The goal of the work presented in this dissertation was to develop a quantitative 

and mechanistic framework for examining atypical neuromotor control and for the 

development of hypotheses regarding therapeutic measures to reduce motor dysfunction. 

To this end, we developed a linear model of sensorimotor control whose parameters 

could be characterized within individual subjects using systems identification techniques. 

We then investigated motor dysfunction as the result of aging and multiple sclerosis and 

tested the hypotheses generated by our model by developing and evaluating a 

rehabilitative strategy for individuals with MS and intention tremor.  

We first used our model to characterize the changes in motor control that take 

place during healthy aging in adults. We characterized three types of task – visual 

compensatory tracking, visual pursuit tracking, and proprioceptive compensatory tracking 

– in order to examine the sensorimotor system under multiple sensory and control 

conditions. Our results show that changes in motor control that take place during aging 

may be related to losses in the reliability of sensory feedback, including slower sensory 

response times and increased uncertainty in sensory feedback (sensory noise). We found 

that increases in sensory variances were correlated with changes in neural control as well 

as changes in effective limb dynamics (which can be controlled voluntarily as part of the 

overall motor control system), suggesting that increases in sensory noise may drive 

changes in task strategy with age. 

We then extended the model to examine the underlying causes of intention tremor 

in multiple sclerosis. We found that subjects with MS and moderate to severe intention 
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tremor have significantly larger visual response delays than both healthy controls and 

subjects with MS with no or mild intention tremor. Through the model, we showed that 

increases in visual response delays associated with the disease are not accounted for by 

predictive mechanisms that may be used to compensate for long loop delays. At the same 

time, changes in visual response delays were correlated with changes in the expected 

limb dynamics, which could be the result of maladaptation to high, uncompensated, 

visual processing delays. 

Based on these results, we developed a rehabilitation strategy for intention tremor 

centered on adapting the internal estimate of visual response delay to match the subject’s 

actual visual response delay – thus reducing the system instability responsible for 

intention tremor. Simulations of subjects’ sensorimotor control models indicated that the 

inability to adapt to high visual response delays may be due to the existence of a local 

minimum in error which would require subjects to accept an increase in movement error 

in order to adapt their internal estimate of visual response delay. Additional simulations 

revealed that targeted external visual delays could be used to shift the local error 

minimum toward higher internal estimates of visual response delay, thereby reducing 

tremor. Preliminary tests in three subjects with MS have provided support for the model 

predictions. Increases in feedback delay induce changes in internal estimates of visual 

response delay that are correlated with reductions in intention tremor across several tasks 

and can be sustained over a 24-hour period. 

Systems identification and modeling is potentially a powerful tool for 

understanding the processes that guide sensorimotor control. Here, we show that systems 

identification can be used to describe and quantify the mechanisms that underlie 
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alterations in motor control due to aging and multiple sclerosis. Further, these models can 

be used to predict motor behavior in response to external changes in feedback and guide 

development of targeted rehabilitation strategies to improve motor function. One avenue 

for future investigation should be to verify and extend the preliminary results shown here 

and determine whether long-term reductions in tremor due to delay adaptation can be 

achieved. Additionally, the methods presented in Chapter 4 of this dissertation may be 

extended to the investigation of several potential avenues for rehabilitation. The methods 

developed here can potentially be simplified to a continuous motion task with a visual 

feedback delay increase; these tasks could potentially be performed by subjects on a 

laptop at a clinic or at home, which would provide a convenient and user-friendly method 

of rehabilitation for tremor in PwMS. Further, similar sensory deficits have been 

implicated in balance deficits in PwMS; these results may therefore be applicable to the 

understanding and rehabilitation of balance dysfunction. The outcomes of these future 

studies may help reduce motor deficits in PwMS and may provide insight into avenues 

for future rehabilitation techniques. 
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APPENDIX A 

 

A subtraction analysis was used to reduce the impact of noise on the estimate of the 

subjects’ frequency response function (FRF). For each trial, the relationship between the 

input to the sensorimotor control system and joint angle output can be expressed as: 

 

                     
 

where X(s) is the power spectrum of the input – either the torque or external perturbation 

– and N(s) is the power spectrum of all noise sources combined. H(s) is the transfer 

function relating the input X(s) to the output θa(s). The sum of noise sources n(t) is 

assumed to be zero mean and characterized by a nominal spectrum N(s). In the frequency 

domain, the addition of noise results in a frequency dependent offset from the “true” 

FRF. This offset can be characterized as a random variable Ni(s) with variance σn
2
(s), 

whose mean corresponds to the average noise spectrum. To eliminate this offset, 

individual estimates of the FRF were obtained by pair-wise subtraction of the trial-wise 

input and output spectra. For a pair of trials,    

 

  
   

                     

 

   
                     

 

subtraction yields 

 

   
       

                                     

 

so that the nominal noise spectrum is removed and the variance is now centered around 0. 

Rearranging this equation, we get: 

 

      
   

       
   

           
 

           

           
 

 

where the first term characterizes the difference FRF of the system and second reflects 

the contribution due to noise. The frequency response due to noise has zero mean and 

variance   
    

 . 

 

The transfer function for the system, H(s), was estimated by taking the average of the 

difference FRFs across all pair-wise trial combinations (i, j),  

 

             
 

 
  

   
       

   

           

 

   
   

 

   

 

where M is the number of pairwise trial combinations and the contribution of the (zero-

mean) noise spectrum decreases as the inverse square root of M. 
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Meanwhile, the noise spectrum can be calculated by eliminating the effects of the transfer 

function (H(s)) through a similar subtraction analysis.  

 

   
                     

 

   
                     

 

First, system equations are divided by the input (X(s)): 

 
   

   

     
      

     

     
 

   
   

     
      

     

     
 

and then are subtracted to yield: 

   
   

     
 

   
   

     
  

     

     
 

     

     
 

assuming that N1(s) and N2(s) have the same trial-by-trial statistical properties, we can 

factor out N(s): 

   
   

     
 

   
   

     
       

 

     
 

 

     
  

rearranging, we can see that: 
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APPENDIX B 

  
Table B-1. Parameter descriptions. 

Parameter Description Units 

Ks Task gain Unitless 
Kv Visual Gain Unitless 
Kp Proprioceptive Gain Unitless 
Kd Derivative Gain Nm-s/deg 
Kpr Proportional Gain Nm/deg 
Ki Integral Gain Nm/deg-s 
N Lumped noise term Unitless 
J Limb Inertia Kg-m2 
B Limb Viscosity Nm-s/rad 
K Limb Stiffness Nm/rad 

Tv Visual Delay ms 
Tp Proprioceptive Delay ms 
α Motor Noise Multiplier Unitless 

MSE Movement Error Deg2 

AT Acquisition Time sec 
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Table B-2. Model parameters for visual compensatory tracking during aging.  

  VISUAL COMPENSATORY TRACKING 

Age Kv Kp Kd Kpr Ki log(N) J B K 

20 0.478 0.271 0.006 0.234 2.017 9.322 0.065 0.659 4.556 

20 0.613 0.420 0.004 0.158 2.145 9.725 0.023 0.394 2.380 

20 0.583 1.036 0.000 0.223 0.639 8.957 0.035 0.269 3.650 

24 1.061 2.002 0.003 0.106 0.813 8.657 0.046 0.184 3.083 

24 1.386 1.352 0.000 0.094 0.032 8.728 0.048 0.321 5.400 

25 0.232 0.417 0.002 0.481 11.982 8.848 0.033 1.872 3.730 

25 1.676 1.936 0.002 0.042 0.565 9.143 0.028 0.196 1.411 

26 0.806 1.372 0.001 0.167 0.148 8.702 0.062 0.484 7.965 

27 0.917 1.152 0.004 0.131 0.160 8.981 0.060 0.687 4.762 

27 0.893 0.362 0.005 0.143 0.083 9.311 0.081 0.804 4.832 

29 1.483 1.567 0.002 0.055 0.358 9.433 0.045 0.394 2.927 

32 0.957 1.037 0.007 0.071 1.203 8.948 0.057 0.207 3.387 

40 0.687 0.669 0.003 0.119 1.022 9.106 0.052 0.723 5.039 

40 0.962 0.803 0.002 0.048 0.022 9.164 0.014 1.520 3.099 

41 0.449 0.855 0.004 0.179 1.719 9.184 0.055 0.732 4.453 

50 0.428 0.184 0.004 0.246 0.189 9.742 0.038 1.993 6.659 

55 0.415 0.946 0.003 0.029 0.032 10.718 0.093 1.084 7.551 

59 0.341 0.408 0.006 0.187 0.535 10.481 0.093 1.345 10.559 

60 0.846 0.448 0.004 0.168 0.060 9.533 0.090 0.887 5.101 

61 0.156 0.015 0.007 0.864 1.210 11.326 0.085 2.606 15.325 

63 0.475 0.920 0.014 0.200 2.732 9.121 0.090 1.349 3.754 

66 0.156 0.324 0.025 0.976 0.166 9.543 0.033 4.418 7.149 

70 0.085 0.139 0.015 1.278 32.528 10.963 0.078 2.647 6.368 

76 0.225 0.057 0.004 0.759 0.814 10.495 0.065 1.572 8.308 
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Table B-3. Model parameters for visual pursuit tracking during aging.  

  VISUAL PURSUIT TRACKING 

Age Ks Kv Kp Kd Kpr Ki log(N) J B K 

20 0.581 1.186 0.225 0.005 0.178 1.688 8.387 0.059 0.545 5.020 

20 0.771 0.194 0.281 0.000 0.145 1.017 9.452 0.018 0.361 1.902 

20 0.837 0.610 0.469 0.000 0.148 0.906 9.002 0.020 0.266 2.609 

24 0.795 0.788 1.230 0.004 0.151 1.293 8.640 0.057 0.385 5.570 

24 0.961 0.402 0.974 0.006 0.089 0.831 8.347 0.094 0.089 5.199 

25 0.988 0.276 1.004 0.002 0.127 0.129 8.614 0.047 0.849 5.954 

25 0.888 2.388 0.466 0.006 0.141 1.374 8.770 0.056 0.654 2.558 

26 0.145 0.742 2.174 0.005 0.051 1.074 8.697 0.050 0.218 3.858 

27 1.899 5.961 0.182 0.002 0.057 0.051 7.291 0.060 0.295 4.273 

27 1.189 0.215 0.210 0.002 0.092 0.487 9.308 0.031 0.299 2.302 

29 1.597 0.399 1.279 0.003 0.062 0.194 9.428 0.048 0.609 2.270 

32 0.833 1.148 1.129 0.008 0.050 1.140 8.769 0.067 0.340 4.256 

40 0.909 0.277 0.379 0.004 0.113 0.956 9.204 0.053 0.484 4.180 

40 2.443 0.173 0.417 0.001 0.060 0.027 9.189 0.052 0.518 4.215 

41 1.021 2.646 0.095 0.003 0.077 0.645 8.122 0.026 0.201 2.222 

50 0.542 0.097 0.151 0.005 0.230 0.210 9.470 0.049 1.433 4.407 

55 0.700 0.431 0.249 0.008 0.125 1.688 9.656 0.055 0.569 4.731 

59 0.301 0.035 0.136 0.007 0.391 11.378 9.955 0.027 0.568 4.987 

60 0.782 0.366 0.144 0.004 0.181 0.099 9.482 0.067 1.822 5.242 

61 0.344 0.089 0.010 0.013 1.004 1.351 10.210 0.065 0.441 6.408 

63 0.550 1.476 0.505 0.008 0.189 2.151 8.466 0.072 0.807 6.012 

66 0.289 0.124 0.342 0.006 0.457 0.357 9.268 0.045 2.536 7.636 

70 0.381 2.501 0.082 0.006 0.341 0.223 8.017 0.066 1.495 3.604 

76 0.392 0.376 0.068 0.005 0.359 2.325 9.782 0.039 0.845 3.900 
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Table B-4. Model parameters for proprioceptive compensatory tracking during aging.  

  PROPRIOCEPTIVE COMPENSATORY TRACKING 

Age Kp Kd Kpr Ki log(N) J B K 

20 1.650 0.000 0.018 0.031 10.259 0.053 0.552 14.694 

20 1.482 0.001 0.313 0.352 10.303 0.047 1.355 17.947 

20 1.712 0.000 0.410 0.679 8.914 0.071 0.898 16.414 

24 2.896 0.006 0.222 0.932 8.685 0.106 0.579 14.032 

24 3.848 0.007 0.323 2.569 9.011 0.070 0.376 13.840 

25 2.065 0.004 0.157 4.758 9.166 0.046 0.997 16.074 

25 3.299 0.001 0.038 0.513 9.443 0.053 0.803 6.656 

26 1.969 0.004 0.129 2.680 8.679 0.061 0.826 9.340 

27 11.882 0.005 0.172 2.301 9.498 0.061 0.565 5.712 

27 2.094 0.006 0.501 2.114 9.325 0.080 0.827 11.679 

29 3.120 0.005 0.184 1.153 9.451 0.096 0.995 5.148 

32 3.212 0.005 0.126 0.770 9.354 0.096 0.517 5.623 

40 2.345 0.002 0.124 1.406 8.872 0.063 1.242 13.573 

40 3.753 0.007 0.330 0.338 9.119 0.038 0.890 14.840 

41 1.874 0.001 0.170 3.435 9.489 0.108 0.826 11.495 

50 1.074 0.000 0.082 0.607 10.669 0.050 0.910 18.335 

55 0.741 0.011 0.097 3.431 11.045 0.058 0.839 11.893 

59 0.757 0.004 0.092 0.360 11.025 0.062 0.748 13.317 

60 1.621 0.004 0.106 0.568 9.661 0.075 0.916 5.423 

61 0.314 0.005 0.035 0.026 12.523 0.064 0.847 19.650 

63 1.883 0.003 0.136 1.171 9.425 0.060 0.908 12.216 

66 1.392 0.009 0.220 5.988 9.845 0.067 1.120 13.736 

70 0.273 0.008 0.273 6.234 11.435 0.085 1.144 21.468 

76 1.172 0.003 0.093 0.052 11.978 0.063 1.781 42.263 
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Table B-5. Delays, motor noise, and movement outcomes during aging.  

  DELAYS MOTOR NOISE MOVEMENT OUTCOMES 

Age Tv (ms) Tp (ms) α MSE (deg
2
) AT (s) 

20 435.0 142.3 0.061 0.004 0.958 

20 473.7 141.8 0.109 0.004 0.880 

20 408.1 165.6 0.084 0.004 0.736 

24 434.5 239.6 -- 0.007 0.779 

24 393.3 192.0 0.088 0.007 0.729 

25 341.5 252.7 0.108 0.004 0.913 

25 410.5 414.8 0.080 0.008 0.584 

26 381.6 176.6 0.048 0.007 0.658 

27 410.3 276.8 0.086 0.006 0.650 

27 432.0 284.0 0.035 0.006 0.603 

29 504.0 271.5 0.058 0.003 0.939 

32 405.0 261.0 0.099 -- --  

40 458.2 117.3 0.014 0.005 0.741 

40 578.0 238.8 -- 0.007 0.840 

41 421.3 104.7 0.057 0.007 0.497 

50 437.0 198.0 0.104 0.005 0.794 

55 472.2 323.0 0.053 0.010 0.830 

59 472.1 261.5 0.048 0.007 0.790 

60 456.4 344.3 0.054 0.004 1.160 

61 438.4 434.6 0.063 0.007 1.035 

63 508.4 166.0 0.085 0.004 0.899 

66 512.6 189.8 0.066 0.005 0.898 

70 599.2 138.3 0.034 0.004 1.124 

76 384.4 159.5 0.054 0.016 1.151 
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APPENDIX C 

 
Table C-1. Model parameters for visual compensatory tracking in subjects with MS.  

Subject Kv Kd Kpr  Ki J B K J* B* K* 

1 0.194 0.008 0.724 12.04 0.068 1.947 17.62 0.046 2.077 15.11 

2 0.403 0.007 0.141 4.563 0.043 0.499 5.092 0.043 0.703 8.011 

3 0.224 0.012 0.257 8.531 0.043 0.767 4.247 0.070 0.867 6.563 

4 0.375 0.000 0.290 3.379 0.066 1.196 9.829 0.050 1.042 9.507 

5 0.872 0.012 0.086 4.265 0.072 0.754 6.955 0.142 0.553 14.45 

6 0.524 0.011 0.108 1.241 0.053 0.983 1.516 0.075 3.197 0.037 

7 0.864 0.007 0.147 5.698 0.053 0.352 2.954 0.082 0.840 5.567 

8 0.234 0.010 0.231 15.134 0.015 0.250 2.463 0.030 0.244 5.852 

 

Table C-2. Model parameters for visual compensatory tracking in control subjects.  

Subject Kv Kd Kpr Ki J B K J* B* K* 

1 0.511 0.002 0.053 1.694 0.025 0.225 1.978 0.022 0.260 2.370 

2 0.230 0.007 0.151 7.890 0.031 0.916 5.324 0.023 0.455 2.487 

3 0.528 0.002 0.076 0.857 0.020 0.269 1.676 0.023 0.261 2.258 

4 0.809 0.003 0.165 0.486 0.068 0.898 3.905 0.071 0.852 5.159 

5 0.365 0.004 0.095 1.671 0.015 0.574 1.643 0.020 0.524 2.394 

6 0.420 0.002 0.069 2.571 0.021 0.171 2.421 0.017 0.228 2.329 

7 0.997 0.002 0.097 1.035 0.048 0.443 2.981 0.052 0.562 4.006 

8 0.336 0.004 0.096 1.258 0.036 0.554 3.080 0.051 0.491 3.069 
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