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ABSTRACT 

SYNTHETIC AND MECHANISTIC STUDIES OF RUTHENIUM CATALYZED C-C,  

C-N AND C-O BOND ACTIVATION REACTIONS 

Nishantha Kalutharage, B.Sc. (Hons) 

Marquette University, 2015 

Transition metal catalyzed selective C-C, C-N and C-O bond activation reactions 
are fundamentally important in organometallic chemistry and organic synthesis. Catalytic 
C-C, C-N and C-O activation are highly valuable for reforming processes of crude oils. 
Significant research has been devoted to transition metal mediated C-C, C-N and C-O bond 
cleavage reactions to form new compounds as these processes are expected to provide 
novel ways to transformation of inexpensive hydrocarbons into more commercially 
valuable products such as pharmaceuticals, agrochemicals and polymers.  

A few examples of transition metal catalyzed cross coupling reactions involving C-
N bond cleavage have been reported. A well-defined Ru catalytic system has been 
developed for oxidative alkylation of alcohol by deaminative coupling reactions of amines 
to form alkylated ketones. The catalytic method was successfully applied to the 
decarboxylative and deaminative coupling of amino acids with ketones. 

Reductive deoxygenation of aldehydes and ketones has attracted considerable 
attention due to its many applications in fine-chemical synthesis and biofuel production. 
Classical methods for the deoxygenation of carbonyl compounds are generally associated 
with harsh reaction conditions and the use of stoichiometric amounts of toxic reagents, and 
poor functional-group tolerance. A well-defined Ru-H catalyst was found to mediate the 
reductive deoxygenation of carbonyl compounds to produce aliphatic compounds. Two 
different mechanistic pathways have been investigated in detail to probe the electronic 
nature of the catalysts and ligands.  

Reductive etherification of ketones/aldehydes and alcohols have been studied 
intensively as cheaper and greener ways to synthesize ethers. A method for the reductive 
coupling of carbonyl compounds with alcohols has been developed, which involved a 
highly chemoselective formation of unsymmetrically substituted ether products. The 
catalytic etherification method employs cheaply available molecular hydrogen as the 
reducing agent, tolerates a number of common functional groups, and uses environmentally 
benign water as the solvent. 
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CHAPTER 1 

TRANSITION METAL CATALYZED C-C AND C-N BOND ACTIVATION                   
REACTIONS 

1.0 INTRODUCTION 

Transition metal catalyzed selective C-C1, 3-5 and C-N2 bond activation reactions are 

fundamentally important in organometallic chemistry and organic synthesis as well as 

petrochemical refining processes. Designing selective catalytic C-C and C-N bond 

activation for the reforming processes of organic feedstocks is very challenging because 

they are thermodynamically less favored than C-H activation. During the last few decades, 

significant research attention has been focused on the transition metal mediated C-C bond 

and C-N bond cleavage reactions to form new compounds, as these processes are expected 

to provide novel processes for the transformation of inexpensive hydrocarbons into more 

commercially valuable products such as pharmaceuticals, agrochemicals and polymers. 

Catalytic C-C and C-N activation are also highly valuable for hydro-reforming and 

hydrodenitrogenation processes of crude oils to make high quality fuels.3 The main focus 

of this chapter is to survey synthetic and mechanistic aspects of transition metal mediated 

C-C and C-N bond cleavage reactions.  

1.1 C-C Bond Activation of Hydrocarbon Molecules 

Catalytic C-C bond cleavage process is fundamentally important for obtaining 

complex organic compounds from petroleum feedstocks. In petroleum cracking processes, 

heterogeneous catalysts are used to convert heavy petroleum into lighter hydrocarbons, but 
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harsh conditions such as high temperature >500 ⁰C gives low selectivity on forming C-C 

cleavage products.4,6 Designing catalytic C-C bond activation processes is one of the most 

challenging problems in the field of organometallic chemistry and homogeneous catalysis. 

Examples of C-C bond activation reactions using homogeneous catalysts are very rare 

because the oxidative addition of C-C bond is thermodynamically less favored than the C-

H activation for substituted hydrocarbon compounds.  

 

Scheme 1.1: Microscopic Reversibility of C-C Bond Activation. 

Selective C-C bond activation process of unstrained hydrocarbons which is reverse 

of the C-C bond formation, has been  rarely achieved because it forms two weak M-C 

bonds (20 kcal/mol each) by breaking a relatively strong C-C bond (90 kcal/mol) (Scheme 

1.1). Two basic strategies have been applied to facilitate the C-C activation reactions. One 

is to increase the energy of starting material, and the other is to lower the energy of C-C 

bond cleaved products.1c The first strategy is used for high energy starting materials such 

as strained 3- or 4-membered cycloalkane compounds. To overcome unstable ring strain 

of these cycloalkane compounds, metal complexes can affect the C-C bond activation by 

making more stable ring expanded metallocycle through metal insertion into the strained 

C-C bond. 
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1.1.1 Stoichiometric C-C Bond Activation Reactions 

 In a pioneering study, Bergman has shown that UV irradiation of Rh complex 1 

generates 16 electron species 2 which reacts with cyclopropane to give the C-H activated 

product 3, which upon heating leads to formation of 4-membered heterocycle 4.7  

 

Scheme 1.2: C-C Bond Activation of Propane by Cp*Rh(PMe3)(H)2. 

Milstein has shown that the formation of 5-membered metallocyles with pincer type 

ligands provided the driving force for the C-C bond activation. 8 Since then, reactions of 

pincer-type model compounds and various transition metal complexes have been achieved 

for C-C bond activation reactions under mild reaction conditions.8 The C-C bond activation 

of 5 by Rh(I) is thermodynamically and kinetically favored over the C-H activation due to 

stable 5-membered metallocyclic structure. The direct observation of intermediate 6 (when 

X = NEt2), confirmed the single step C-C activation in formation of the product 7. 

 

Scheme 1.3: C-C Bond Activation of Pincer-Type Ligands. 
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Crabtree has shown that the C-C bond activation of unstrained molecules by 

Cp*Ru+ (Cp* = C5Me5) can be explained by especial stabilization of lower energy states 

products. Elimination of methyl group in a series of steroid compounds such as ergosterol 

8, which forms stable products by the aromatic stabilization of ring B of  product 9 [eq. 

(1.1) ].9 

  

1.1.2 Catalytic C-C Bond Activation Reactions 

Only few examples of catalytic C-C activation reactions have been reported with 

limited substrate scope. Two common stratagies oxidative addition of a strained C-C bond 

and via β-carbon elimination have been utilizing for homogeneous catalytic C-C activation 

reactions. 

1.1.2.1 C-C Bond Activation of Strained Molecules 

A number of transition metal catalyzed direct C-C bond cleavage of strained 

molecules such as cyclopropane have been reported. Both Bart and Chirik reported a 

selective C-C activation of cyclopropane using a Rh(I) catalyst.10 Sterically hindered C-C 

bond of cyclobutane 10 is cleaved by formation of rhodacyclobutane 11, by the reaction of  

Rh(PPh3)Cl and β-H elimination followed by reductive elimination of branch alkenes 13  

which react  with H2 to produce 14. 
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Scheme 1.4: C-C Bond Activation of Propane by (PPh3)3RhCl. 

Murakami et al reported a similar kind of regio and stereo-selective C-C activation 

of cyclobutanone by using a Rh(I) catalyst.11 They successfully used this method to 

synthesize lactams using O-phenols and O-styryl cyclobutanone as starting materials. They 

proposed that cyclobutanone 15 oxidatively added to Rh(I)  (complex 17) and ring opened 

stereoselctively to give ring opened alcohol 18 through aldehyde 17 (Scheme 1.5). 

 

Scheme 1.5: Rh Catalyzed C-C Activation of Cyclobutanone. 

 Another way to promote C-C bond activation of strained molecules is via β-alkyl 

elimination. When a strained molecule is bonded to a metal through a C, N, O atom, β-

alkyl elimination can occur to give ring opened alkyl-metal intermediates. Uemura and 

coworkers reported that Pd catalyzed C-C bond cleavage of tert-cyclobutanol to produce 
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optically active ɤ-arylated ketone.12 In these reactions, tert-cyclobutanol 19 and arylating 

reagent PhBr in the presence of Pd(II) forms  Pd(II) alcohol complex 20,  and the β-alkyl 

elimination gives ɤ-arylated ketone 22 in excellent yield. In this reaction, chiral bidendate 

ligand controls the enantio-selectivity of the product (Scheme 1.6). 

OHPh
PhH + PhBr

Ph

Ph

Ph

O

Pd(OAc)2

 Cs2CO3

Chiral ligand

OPd(L*)PhPh
PhH

Ph
H

19

20 21

22

Pd(L*)Ph

Ph

O

-HBr
β-carbon elimination

 

Scheme 1.6: Proposed Mechanism of Pd Catalyzed Arylation of tert-Cyclobutanol. 

Different type of chiral N, P ligands, (R)- (R)-PPFA (23), (S)-FcPN (24) and (R)-

AMPHOS (25) were used for enantioselective reaction. They also published that 

palladium(0)-catalyzed β-alkyl elimination of strained molecules such as reaction of 

cyclobutanone O-acyloximes leading to various nitriles.13 Ito  proposed that 

spirocyclobutanone oxidatively added to Rh(I) prioer to β-alkyl elimination to produce 

cyclohexanones.14b Osakad et al reported that the palladium catalyzed ring opening of 

methelenecyclopropane associated with CO could be applied to the polymerization 

reactions.14a Pd(OAc)2 catalyst was successfully used to ring opening of tert-cyclobutanol 

under oxygen atmosphere. 
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1.1.2.2. Catalytic C-C Activation of Unstrained Hydrocarbons 

As described above, the β-alkyl elimination is an effective method to promote the 

C-C activation for the ring strained molecules. However, even with unstrained molecules 

it is possible to cleave the C–C bond through β-alkyl elimination by generating more stable 

products. Tertiary homoallylic alcohols have been successfully used for selective C–C 

bond cleavage. Mitsudo et al achieved a ruthenium-catalyzed deallylation of unstrained 

homoallylic alcohol 26, via the oxidative addition of a hydroxyl group and subsequent β-

allyl elimination of 27 to afford acetophenone and propene (Scheme 1.7).15  

 

Scheme 1.7: Ruthenium-Catalyzed Deallylation of Unstrained Homoallylic Alcohol. 
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The formation of a stable ɳ3-allyl ruthenium(II) species 28 served as the forward 

driving force of this reaction, because the tertiary alcohol 29 bearing no homoallylic 

functionality did not give any C–C bond cleaved product. 

1.1.2.3. Chelate Assisted C-C Bond Activation Reactions of Unstrained Molecules 

The cyclometallation via the chelate assistance is one of the promising methods for 

promoting C-C bond activation of unstrained molecules. Suggs and Jun developed 

activation of α-C-C bond to the carbonyl group in 8-quinolnyl alkyl ketone 30.16 When the 

reaction of 8-quinolinyl butyl ketone and ethylene was carried out using the [Rh(C2H4)2Cl] 

catalyst, 8-quinolinyl ethyl ketone 33 and 1-butene were obtained. They proposed a 

reaction mechanism, coordination of the nitrogen to ruthenium provides the metal with a 

more nucleophilic character, as well as bringing it close to the ketonic carbon (Scheme 

1.8). In this reaction, β-hydrogen elimination occurs in the acylrhodium(III) butyl complex 

31,  generated from the cleavage of the α-C–C bond, to give an acylrhodium (III) hydride 

32 and 1-butene. Further reaction of the acylrhodium(III) hydride with ethylene leads to 8-

quinolinyl ethyl ketone product 33.  

Murai et al17 demonstrated a similar type of decarbonylative C–C bond activation 

of the ketone 34, bearing an oxazoline group as a directing group for a facile C–C bond 

activation. In this reaction, the removal of the acyl group might take place via β-hydrogen 

elimination and reductive elimination of the resulting ruthenium (II) hydride complex 37, 

and removal of ketene resulted in the formation of decarbonylated oxazolidone 38. The 

coordinated ruthenium attacks the carbonyl group to generate 35, the first C-C bond 

cleavage to form 36. An aryl group rearranges in 35, then the five-membered metallacycle 
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36, is formed. The Ru-alkyl intermediate 36 undergoes β-hydrogen elimination, followed 

by reductive elimination, to give 38 and ketene.  

 

Scheme 1.8: Proposed Mechanism for the α-C-C Bond Cleavage of 8-Quinolinyl Alkyl 
Ketone. 

Jun reported a Rh-catalyzed C–C bond activation of unstrained ketones utilizing a 

chelation-assisted protocol, developed in the course of studies on a chelate-assisted 

hydroacylation using 2-amino-3-picoline 39 as a temporary chelating auxiliary.18 

Interestingly, benzylacetone reacted with excess olefin, tert-butylethylene, under co-

catalysts of Wilkinson’s complex and 2-amino-3-picoline to give an alkyl group-

exchanged ketone and a trace of styrene [eq. (2)]. 
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Scheme 1.9: Proposed Mechanism Decarbonylative C–C Bond Activation of 
Oxazolidine. 

  

The first step involves the formation of ketimine 40 by the condensation of ketone 

and 2-amino-3-picoline 39 (Scheme 1.10).18Then, the C–C bond of ketimine 40 is cleaved 

by the Rh(I) complex to generate an (iminoacyl)rhodium(III) phenethyl 41, which 

undergoes β-hydrogen elimination giving an (iminoacyl)rhodium(III) hydride 42 and 

styrene. At high temperature, styrene is polymerized. The hydrometallation of into tert-

butylethylene and the subsequent reductive elimination afford ketimine 43. Hydrolysis of 

ketimine 43 by H2O formed during the initial condensation step leads to the formation of 

ketone with regeneration of ligand 39. The formation of a stable 5-membered ring 

metallacyclic complex is the driving force for this catalytic reaction, which undergoes 
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further energy release by β-hydrogen elimination and subsequent hydride insertion of 41 

into 1-alkene.  

 

Scheme 1.10: Proposed Mechanism for Chelate Assisted C-C Bond Activation Catalyzed 
by (PPh)3RhCl. 

Since the reaction is a thermodynamic equilibrium, the polymerization of styrene, one of 

the products, might drive a forward reaction. 

Very recently, Shi19 reported reductive cleavage of the Csp2-Csp3 bond of 

secondary benzyl alcohol by Rh catalyst directed by pyridine and imidazole directing 

groups. [eq. (1.3)]. 

    

A possible mechanism is proposed in Scheme 1.11. First, the C-C bond of 45 is 

cleaved with the assistance of Rh(III) and thus the C-Rh species 49 is generated. The 

intermediate 49 could then be cleaved by H2 to generate 48 and the Rh (III) hydride species 

47, which reduces the aldehyde to the alcohol 50. Alternatively, 46 could undergo 
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protonation with H+ to regenerate the cationic Rh(III) species 49 for the C-C catalytic cycle. 

At this stage, they cannot exclude the conversion of the cationic Rh (III) precursor 49 into 

the Rh(III) hydride species 47. The Rh(III) hydride species 47 could then promote both the 

C-C bond cleavage and reduction of the aldehyde in the same catalytic cycle. 

1.1.2.4 Alkene/Alkyne Insertion Reactions via C-C Bond Cleavage 

Matsuda group have been reported rhodium-catalyzed intra-molecular alkene 

insertion reaction using cyclobutanone derivatives. 20   Also they have been reported that 

the Nickel catalyzed intermolecular insertion of alkyne into cyclobutanones that achieves 

ring expansion of four membered ring skeletons by two carbons, producing substituted 2-

cyclohexanones [eq. (1.4) ]21.  

 

Scheme 1.11: Proposed Mechanism for C-C Bond Cleavage of Secondary Benzyl 
Alcohol. 



13 

 

 

 They proposed a mechanism that Oxanickelacycyclopentene 52 is initially formed 

by oxidative cyclization of the carbonyl group of cyclobutanone 51 and an alkyne 50 with 

Ni(0). The 4-membered ring is then opened by β-carbon elimination, resulting in ring 

expansion to form seven membered nickelacycle 53. Finally reductive elimination gives 

the product 54 with regeneration the species of Ni(0). 

 

Scheme 1.12: Postulated Mechanism for the Ni-Catalyzed Intermolecular Alkyne 
Insertion into Cyclobutanone. 

Despite such remarkable advances, chelate assisted catalytic C–C bond cleavage of 

arylsubstituted alcohols, ketones and nitriles,22 and Pd-catalyzed decarboxylation 

methods,23 selective sp3-sp3 C–C bond activation of unstrained aliphatic compounds is still 

remained as an enigmatic problem in homogeneous catalysis,24 because the C–C bond 
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activation of unstrained saturated hydrocarbons is kinetically less favored than that of the 

C–H bonds.25 

1.2. Catalytic C-N Bond Activation Reactions 

1.2.1 Heterogeneous Hydrodenitrogenation of Nitrogen Heterocycles 

Catalytic hydrodenitrogenation (HDN) process, which removes nitrogen from 

petroleum feedstocks in the form of NH3, provides more processable and environmentally 

compatible liquid fuels. Nitrogen removal is required to maintain NOx emissions below 

regulatory levels due to maintain fuel stability.26,27  

Industrial HDN is generally affected over sulfided CoMo/ɤ-A12O3 or NiMo/ɤ-

Al2O3 under rather severe hydrogenation conditions (e.g. 350- 500 °C and 200 atm H2) that 

ultimately remove the nitrogen as NH3. Several non-molybdenum catalysts have also been 

used in HDN such as vanadium,28 ruthenium sulfide,29-30 NiW/Al2O3 and NiW/zeolite,31 

molybdenum nitrides.26b  Since most of the HDN studies were done by using metal 

catalyzed heterogeneous catalytic systems, the mechanisms of simple metal catalyzed 

HDN reactions are not well understood. In HDN reactions, most of the unsaturated N-

heterocyclic compounds are converted to saturated N-heterocycles and amino compounds 

and finally to hydrocarbons by C-N bond cleavage.  

1.2.1 Hydrodenitrogenation Reactions by Soluble Metal Complexes 

Hydrotreating and HDN is a principal H2 consumer since achieving nitrogen 

removal typically occurs only after complete hydrogenation of all aromatic rings at 

heterocycles. As a result, HDN reactions are non-selective and lead to lower the quality of 

fuel. Homogeneous model studies have been prepared to address this question.27 The goal 
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of C-N cleavage without prior hydrogenation of nitrogen containing heteroarenes was 

achieved by with substituted pyridine.27d, 32-34  

                                                     

Upon reacting ɳ2(N,C) coordinated tris(t-butyl )pyridine ligand in starting complex 

55  with 1 equiv of LiBEt3H (THF, 20 h, room temperature), red crystalline 56 can be 

isolated in low yield after appropriate workup. Spectroscopic data consistent with hydride 

addition occurring at the metal-bound carbon of the ɳ2(N,C)-pyridine ligand as shown in 

eq. (1.5). Several of these complexes with Ta-R group has been isolated and fully 

characterized. 27d The formation of Ta=N multiple bond provides the driving force for the 

C-N bond cleavage of these reactions. 

Wolczanski and co-workers have reported a remarkably selective pyridine C-N 

bond cleavage reaction.27c Reduction of (Silbox)3NbCl2 (Silox=But
3SiO) with Na/Hg in the 

presence of pyridine [eq. (1.6)] gives ɳ2(N.C)-pyridine complex 57 followed by 

thermolysis gives ring opened product 58 in which the cleave C=N forms a Nb=C 

alkylidine complex with one Nb and Nb=N imido complex with the other. Isomerization 

of C=C double bond gives four different isomers. Although the mechanism is not known, 

this reaction suggested a new way to think C-N cleavage without first hydrogenation. 
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Wolczanki have been reported reactions of (Silox)3Ta with series of substituted 

anilines [eq. (1.7) ]  to give products resulting from either C-N 59 or N-H 60 oxidative 

addition. 34 C-N oxidation addition product is favored by EWG where as EDG gives 

exclusively N-H ox addition product. It is important that in these reactions cleavage of C-

N even though the HDN of aniline requires hydrogenation of the arene ring before C-N 

cleavage occurs. 

  

Parkin 27f reported the reactivity of Mo(PMe3)6  towards Pyrrole ,indole and 

quinoline. They have observed the reaction of Mo(PMe3)6 three different coordination 

models ( ɳ1, ɳ5 and ɳ6) molecular structure of (ɳ6-indolyl)Mo(PMe3)H has been 

characterized by X-ray diffraction. The observation of ɳ6-indolyl is particularly interesting 

because indolyl ligand typically binds either ɳ1- through N or ɳ5-manner through 5-

membered heterocycle. Even for heterocyclic compounds like quinoline with Mo(PMe)6 

forms [ɳ6-(C5N)-quinoline]Mo(PMe3) which react with H2 at 80 0C to give inter alia 

Mo(PMe3)H4 and release 1,2,3,4-tetrahydroquinoline, the product of selectively 

hydrogenating heterocyclic ring 27e 



17 

 

  

Fig 1: X-ray Structure of (ɳ6-Indolyl)Mo(PMe3)H Adapted from Reference 27(f). 

Mindiola recently found that (PNP)Ti=CHtBu(CH2
tBu)  (PNP = N[2-P(CHMe2)2-

4-methylphenyl]2 can ring-open both pyridine and picoline at room temperature over 12h 

to afford  azametallabicyclic system 61 of type (PNP)Ti(C-(But)CC4H3RNH). They have 

reported that pyridine nitrogen of complex (61) can be denitrogenated under mild 

conditions and in a cyclic manner when treated with electrophile such as Me3SiCl. [eq. 

(1.8)] 

(PNP)Ti

CH2
tBu

CHtBu
[(PNP)Ti CtBu]

N

Y

X
Me3SiCl

(PNP)Ti
Cl

N(SiMe3)

X

Y

tBu

+
(PNP)Ti

HN

But

Y

X

61

62

63

(1.8)

 

They proposed a mechanism of denitrogenation reaction (Scheme 1.13). The first step of 

65 has been proposed to occur first by silylation of α-nitrogen composing to 

azametallobicyclic ring, followed by a ring expansion applying a 1,3-hydrogen shift to 

afford the eight membered ring intermediate. And then ring contract to generate bicyclic 

system and [2+2] retrocyclo-extrude the substituted arene product 64 as shown in Scheme 

1.13. 
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Scheme 1.13: Proposed Mechanism for Denitrogenation of N-heterocyle by Ti Catalyst. 

1.2.2. Catalytic Deaminative C-N Cleavage Reactions 

The nitrogen containing compounds such as amines, amides, enamines and imines 

are valuable and commercially important precursors for organic synthesis and medicinal 

chemistry. Therefore making and breaking of sp3 C-N bond in the construction of 

functional molecules are important steps in the synthesis of pharmaceutical and 

polymers.35, 2 C-N bonds are generally quite inert towards strong acid, base, metal salts and 

most of synthetic reagents including oxidants and reductants. 35 The synthetic application 

of breaking or cleavage of C-N bond to form C-C or C-heteroatom bond is one of the 

challenging topics in organic synthesis. Catalytic breaking of C-N had a long history and 

the past years have been significant research attention focused on breaking C-N bond to 

form new compounds.2  

1.2.2.1 C-N Bond Cleavage of Allylic Amines 

In an early study it has shown that the C-N bond of porphyrin is susceptible to 

cleavage by Ru3(CO)12.33 Recent work have shown that transition metal complexes34, as 

well as Bronsted acids 35, and Lewis acids 36 were able to facilitate C-N bond cleavage, 
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where amino or amide group has been served as leaving groups towards a range of 

nucleophiles. Recently, Zhang has reported Tsuji-Trost type Pd-catalyzed allylic alkylation 

of cyclohexanone by breaking very strong C-N bond of allylic amines. 37   Hirao and 

Yamamoto reported that Pd-catalyzed allylic alkylation of allylic amine using allylic 

ammonium cation as a lacy intermediate. 38  Aggawal and Trost adopted a vinyl aziridine 

to cleavage of C-N bond of allylic amine by means of minicyclic tension.39 More recently, 

Tian reported that cross coupling of primary allylic amines with Boronic acid and boronates 

through Pd catalyzed C-N bond cleavage. 40-41 Yudin showed that Pd catalyzed ring 

contraction and ring expansion of cyclic allyl amines. In this isomerization reactions 

[{(allyl)PdCl}2] used as the catalyst for C-N bond cleavage, P(OEt)3 as ligand ,presence of 

TFA, 10% morpholine and CH2Cl2 as solvent [eq. (1.9) ].42 

                                                      

They have shown several examples of ring-contraction reactions of seven and eight 

membered allylic amines and ring expansion of allylic aziridine. It is envisioned straight 

forward access to complex allylic amine by skeletal isomerization of readily accessible 

cyclic allylamine sinfolds (Scheme 1.14) 

 

Scheme 1.14: Isomerization of Allylic Amine Promoted by a Combination of Palladium 
and Protic Acid.  



20 

 
Zhang group reported that the hydrogen bond promoted C-N bond cleavage at allyl 

amines using Pd(II) as the catalyst. They have used very mild conditions (only alcohol as 

the solvent) [eq. (1.10) ].37 They used 6 mol % of dppf and 2.5 mol % [Pd(ɳ3-C3H5)Cl]2 as 

catalyst and pyrrodidine which supposed to be hydrogen bonded and generates enamines 

insitu as nucleophiles (Scheme 1.15).  

  

 

Scheme 1.15: Plausible Reaction Mechanism Pd Catalyzed Allylic Alkylation. 

The proposed mechanism begins with coordination of the Pd-catalyst to the allyl 

double bond to form a Pd-olefin complex 65. At the same time a hydrogen bond forms 

between N-atom of N-allylpyrrolidine and the H atom at the alcohol solvent. The C-N bond 

of N-allylpyrrolidine is thus activated by this hydrogen bond action, resulting in cleavage 

65 

66 
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of the C-N bond and subsequent formation of Pd allylic complex 66. The complex is then 

attacked by the enamine generated insitu, followed by removal of the Pd catalyst to give 

the C-C bond product. 

Recently Tian reported 40 regio- specific cross coupling of primary allylic amine 

with boronic acids which involves amino group as the leaving group. They used 5 mol% 

of Pd(OAC)2 or [Pd(PPh3)2Cl2] catalyst, B(OH)3 additive and dioxane as the solvent.[eq. 

(1.11) ] 

  

In the presence of 2 mol% of [Pd2(dba)3] and 8 mol% of TMEDA, a range of α-chiral 

primary allylic amines smoothly couple with boronic acid to give optically active alkenes 

in moderate yields. The proposed a reaction pathway, which the NH2 group of amine 

activated by boronic acid and the allylic C-N bond is cleaved by Pd(0) catalyst with 

inversion of configuration to give π-allylpaladium. Dong 41 and coworkers also 

successfully used Pd(0) catalyst to synthesis biologically active indole and pyrroles using 

chiral ligands L1 and L2. They have shown that vinylaziridines and pyrroles or indole 

derivatives can be used to synthesis alkaloids such as cyclocordin, agesamide A and 

Cyclooroidin. 
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1.2.2.2. C-N Cleavage of Arylamines 

MacMillan and coworkers documented the first Suzuki cross-coupling of 

aryltrimethylammonium salts. Ni(cod)2 catalyst was used in the presence of IMes.HCl as 

the ligand in dioxane as the solvent at 50⁰C. 44 In 2009, Kakiuchi reported the cleavage of 

C-N bond in aniline derivatives using ruthenium complex as catalyst. O-arylanilines were 

used as substrate and coupling reactions with various organoboronic acid esters proceeded 

using RuH2(CO)(PPh3)3 as a catalyst. [eq. (1.12)]43 

 

As they proposed in mechanism this is the first reported oxidation of arene C-N bond. And 

then trans metallation between the Ru amide complex and organoboronate and finally 

reductive elimination to form C-C bond. They were able identify isolate and characterized 

C-N oxidatively added intermediates 67 and 68. 
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1.2.2.3 C-N Bond Cleavage of Secondary and Tertiary Amines 

Catalytic free alkylation of sulfinic acid with sulfonamide via sp3 C-N bond 

cleavage was reported by Tian45, and also α-alkylation of ketone and aldehyde with N-

benzyllic sulfonamide through C-N bond cleavage was reported.46 In 2010 Tian 

published46 iron catalyzed regioselective synthesis of indene derivatives from N-benzyllic 

sulfonamides and disubstituted alkynes. And also very recently Shi and coworkers 

established similar reaction with a rhodium(III)- catalyzed annulations of benzimides with 

alkynes for the synthesis of indenones which involves an uncommon acylation of 

organorhodium(III) with an imide motif [eq. (1.13) ].48 

  

Only few transition metal catalyzed C-N bond cleavage reactions in amides or 

imides have been reported. Shi reported that the reaction of an organometallic reagent with 

ester or amide generates a ketone product which is typically more reactive than the starting 

material. They have successfully used oxazolidone as the best amide leaving group. 

Different substituent on aromatic rings, alkynes are used and electron-donating groups at 

the para- position of the aryl ring slightly decreased the yield, presumably because of the 

decreased electrophilicity of the imide which slows the addition of the C-Rh intermediate 
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to the carbonyl group. Functional groups such as methoxy and halide groups on alkyne 

were tolerated. An aryl alkyl alkyne, however, exhibited lower reactivity. Coordination of 

benzimide to the cationic rhodium species 69 and subsequent C-H cleavage forms the five-

membered rhodacycle 70. (Scheme 1.16) Then alkyne insertion gives the seven-membered 

intermediate 71, which undergoes an intramolecular insertion of the carbonyl group into 

the vinyl-Rh bond. Transmetallation between copper acetate and the rhodium alkoxide 72 

takes place to regenerate the catalyst with formation of the copper alkoxide 73, which 

decomposes to form the product and release the copper species. The beneficial effect of 

copper salt may also originate from the increased electrophilicity of imide moiety upon 

coordination with copper, thus facilitating the insertion of the carbonyl group into the C-

Rh bond. 

 

Scheme 1.16: Proposed Mechanism for Rh/Cu Catalyzed Anulation of Benzimide and 
Alkyne. 
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Hu and coworkers49 reported Pd-C catalyzed N-debenzylation of benzylamines. 

Benzylamines are major protective group for amines in multistep synthesis, where N-

debenzylation is an essential conversion for the deprotection and to remove auxiliary 

residues from the induced molecule.  Lactams also responsible for C-N bond cleavage 

under catalytic conditions. Aube50 reported that reductive cleavage of C-N bond of seven 

membered twisted amides by using Pd/C as the catalyst. None of the product resulting from 

reaction of the C-N bond in six membered rings was observed. The result was obtained 

once they used Pearlman’s catalyst (Pd(OH)2) in ethanol.  

1.2.2.4. Biochemical Deamination Reactions. 

The first step of amino acid catabolism in biological system is deamination which 

is removal of amino group of α-amino acids. One of the deamination methods in biological 

system is trans-amination with α-ketoglutarate to form α- keto acids and glutamate. The 

glutamate is oxidized to α-ketoglurate and ammonia by action of mitochondrial glutamate 

dehydrogenase. ([eq. (1.14)], Fig 2)51 

Amino Acid + α-ketoglutarate     α-ketoacid  + glutamate 

Glutamate   +  NAD+  + H2O        α-ketoglutarate  + NADH  +  H+   +NH4
+ 

------------------------------------------------------------------------------------------------------------ 

Amino acid + NAD++  H2O  α-keto acid + NADH  +  H+  +NH4
+           (1.14) 
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Figure 1.1: Combination of D-amino acid Oxidase and L-glutamate Dehydrogenase 
(Glu-DH).  

The amide group of Gln and Asn are hydrolyzed by specific enzymes glutaminase 

and Asparaginase respectively to produce NH3 and corresponding dicarboxylic acid Glu 

and Asp. Ammonia formed from amide and amino group that is not used for synthetic 

reactions is excreted as urea in most terrestrial animals and as NH3 in aquatic animal.50 

Oxidative deamination of amines can be catalyzed by a number of different 

enzymes including monoamine oxidase, horse radish peroxidase, hemoglobin cytochrome 

P450.52 Korzekwa proposed the mechanism of oxidative dealkylation of substituted N,N-

dimethyl anilines by Cyt-P450.53 Lap established Oxidative N-dealkylation of tertiary 

amines.54 Lippard reported oxidative N-dealkylation of a carboxylate bridged diiron(II) 

precursor complex by reaction of oxygen affords the elusive {Fe(μ-OH)2(μ-O2CR)}3+core 

of soluble methane monooxygenase hydrogenase. 55 
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Figure 1.2: Balancing the Supply of Nitrogen for Urea Cycle when Aspartate in Excess. 

Aberrant DNA methylation can be leaded to cytotoxic or mutagenesis 

consequences.56 A DNA repair protein in E. coli, AlkB, corrects some of the unwanted 

methylations in which methyl carbon is liberated as formaldehyde.  He reported that 

mechanism of oxidative demethylation of DNA base lesions. 1-methyl adenine and 3-

methylcytosine by AlkB Fe(II). AlkB uses a non heme-mononuclear iron (II) 74 and 

cofactor α-ketoglutarate and dioxygen to effect oxidative demethylation of DNA base 

lesions 1-methyladenine (1-meA), 3-methylcytosine (3-meC), 1-methylguanine (1-meG) 

and 3-methylthyamine (3-meT). In the event of oxidation reactions, AlkB utilizes an 
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iron(II) site , which is coordinated by the conserved His2/Asp motif, to activate the 

dioxygen molecule for oxidation of the inert C-H bond.  

 

 

Scheme 1.17: Proposed Repair Mechanism for AlkB-family Proteins. 

A possible mechanism involves formation of a superoxo radical anion (O2
-) bound 

to iron(III) 75, a subsequent bridged peroxo intermediate 76 produced by the attack of the 

superoxide to the R-keto carbon of an iron-bound 2-KG, and a speculated high-valent 

iron(IV)-oxo 77 intermediate that hydroxylates the C-H bond of the methyl lesion. One of 
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the oxygen atoms from the dioxygen cofactor is incorporated into succinic acid and the 

other becomes the oxygen of the hydroxyl product (Scheme 1.17). In the case of AlkB, the 

initial hydroxylation at the methyl group on the N1-position of adenine or N3-position of 

cytosine leads to the heterocleavage of C-N bonds, which gives the unmodified base and 

formaldehyde. 

Several deamination enzymes from biologically systems have been identified and 

characterized well.57 Raushel has been reported that 6-N-methyladenine can be deaminase 

to produce adenine and methylamine by the enzyme N-6-Methyladenine deaminase (6-

MAD) [eq. (1.15)] but the mechanism is unresolved.59 

Also deamination of isoguanine to xanthene by Isoguanine demainase 58 and deamination 

of isoxanthopterin to 7-oxylumazine by isoxanthopterin deaminase were reported. 51a 

Ammonia lyases are another kind of deamination enzymes found in biological system.60 

These are capable of cleaving C-N bonds without employing any hydrolysis of oxidation 

mechanism. Among various lyases found in nature three types of are specific for aspartate 

or its derived substrates. They are Aspartate ammonia lyase (aspartase), methyl aspartate 

ammonia lyase (MAL), and 3-hydroxyaspartate ammonia lyase. 61 Aspartate ammonia 

lyase is very important in nitrogen metabolism of microbes by catalyzing the reversible 

deamination of L-aspartate 78 into fumarate 79 and ammonia [eq. (1.16)]. 3-

Methylaspartate ammonia lyase (MAL) catalyses the reversible α, β-elimination of 

ammonia from L-threo-3-methylaspartate 80 and L-erythro-3-mthylaspartate 81 to 

mesaconate 82 [eq. (1.17)].  
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 General acid base reaction mechanism was proposed for aspartates (Scheme 1.18). 

The active site general base abstracts the pro-R proton from the C3 position of 81 resulting 

in a carbanion, which is stabilized as an aci-carboxylate intermediate (83). This proposed 

enolate anion intermediate can rearrange to eliminate ammonia and form the product, 

fumarate (82). The rate-determining step is the cleavage of the Cα−N bond, which may be 

facilitated by a general acid that donates a proton to the leaving group (NH3) to form an 

ammonium ion. 

 

Scheme 1.18: Mechanism of Aspartate Deamination by Lyases. 
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 CHAPTER 2  

TRANSITION METAL CATALYZED C-O BOND ACTIVATION REACTIONS 

2.1 Transition Metal Catalyzed Hydrogenolysis of Carbonyl Compounds. 

2.1.1 Classical Carbonyl Reduction Methods 

  The elimination of oxygen functional groups is a highly valuable transformation In 

fine chemicals synthesis. in particular, the carbonyl to methylene conversion is especially 

useful for converting polyfunctional natural products into useful building blocks or into 

bioactive molecules. There is a great need for new methodologies for promoting selective 

deoxygenation because such methods are useful for the conversion of polyfunctional 

natural products to useful building blocks and bioactive molecules. A few classical 

methods Clemensen1 or Wolff-Kishner reduction,2 have been developed but for carbonyl 

deoxygenation methos to aliphatic compounds both of which require very harsh reaction 

conditions.  

2.1.2 Wolff–Kishner Reduction 

Wolff-Kishner reaction requires condensation of the carbonyl compound with 

hydrazine forms the hydrazone, and treatment with strong base induces the reduction of 

the carbon coupled with oxidation of the hydrazine to gaseous nitrogen, to yield the 

corresponding aliphatic product. Even though the Wolff-Kishner reduction used harsh 

conditions, it has been successfully applied to the total synthesis of several organic 

molecules such as morphine,3 aspidospermidine,4,5 and dysidiolide.6 Several modifications 
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have been made to Wolff-Kishner reduction over the decades. Huang-Minlon reported a 

modified procedure for the Wolff-Kishner reduction of ketones in which excess hydrazine 

and water were removed by distillation after hydrazone formation.7 Significantly reduced 

reaction times and improved yields have been obtained by using this modification. Cram 

has modified the reaction condition by slow addition of preformed hydrazones to potassium 

tert-butoxide in DMSO as reaction medium instead of glycols allows hydrocarbon 

formation to be conducted successfully at temperatures as low as 23 °C.8 Treatment of 

tosylhydrazones with hydride reagents to obtain the corresponding alkanes is known as the 

Caglioti reaction.9  

2.1.2.1 Catalytic Modification to Wolff-Kishner Reduction 

In 2004, Myers and coworkers developed a novel catalytic method for the preparation 

of N-tert-butyldimethylsilylhydrazones from carbonyl-containing compounds.10 These 

products can be used as a superior alternative to hydrazones in the transformation of 

ketones into alkanes. The advantages of this procedure compare to Wolff-Kishner method 

are considerably milder reaction conditions and higher efficiency as well as operational 

convenience. The condensation of 1,2-bis(tert-butyldimethylsilyl)-hydrazine with 

aldehydes and ketones with Sc(OTf)3 as catalyst is rapid and efficient at ambient 

temperature. Formation and reduction of N-tert-butyldimethylsilylhydrazones were 

conducted in a one pot procedure to give the product in high yield. As shown in eq. 18, 

steroidal ketone 1 can be converted to TBS protected alcohol contained steroid 2 in high 

yield [Eq. (2.1)]. 
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They showed a broad substrate scope including benzylic aldehyde, benzylic ketone, 

aliphatic aldehyde, aliphatic ketone, protected sugar and unsaturated aldehyde contained 

double bonds without reducing C=C double bond. However, the use of freshly prepared 

dry solvents, the risk of detonation during the distillation of anhydrous TBSHs, and the 

tenuous operations might limit its applications in large scale synthesis. 

 

Jianbo Wang group 2013 added a modification to the Wolf-Kishner reduction.11 

They were able to develop a catalytic method to deoxygenate ketones and aldehydes by 

using a mild and efficient method. The reaction is mediated by N-tosylhydrazine with H2 

(1 atm) as the reductant and 10% Pd/C as the catalyst [Eq. (2.2)].  

This reaction involved a one-pot, two-step deoxygenation of carbonyl to methyl or 

methylene, which involve hydrogen as a clean reductant. Carboxylic acids, aromatic 

amines, benzylic alcohols, ethers, esters and halides are tolerated for these conditions. But 

they also were unable to avoid use of hydrazine. 

2.1.3 Clemmensen Reduction 

The well-known Clemmensen reduction is a general method in which aryl alkyl 

ketones are readily converted to the corresponding hydrocarbons by using amalgamated 

zinc and hydrochloric acid. However, it is not particularly effective, with alicyclic and 
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aliphatic ketones. and less reliable for unconjugated ketones. Normally reaction runs with 

hot conc. HCl in ethanolic solvent [Eq. (2.3)]. 

 

The Clemmensen reduction is particularly effective for reducing aryl-alkyl 

ketones.12 With aliphatic or cyclic ketones, zinc metal reduction is much more effective.12 

Clemmensen reduction is a historically important reaction. However, because of its original 

harsh conditions (aqueous HCl, reflux) and use of toxic Hg reagent, it is seldom applied in 

the modern organic synthesis but few examples are available in recent literature.13 In late 

1960s, Yamamura et al. developed an excellent modification of the Clemmensen reduction 

with a very mild condition (activated zinc, saturated HCl in Et2O at 0 ºC), which avoids 

the utility of toxic Hg.14  

Arimoto in 2010 developed the most recent modification to the Clemmensen 

reduction.13a They used TMSCl with the combination of Zn in in alcoholic solvents for the 

reduction. They were able to reduce steroidal carbonyl compounds to corresponding 

methylene by using milder conditions. Also they used the similar protocol to ozonolysis 

and reduce exocyclic double bond to methylene (Scheme 2.1). They were able to reduce 

ketone 3 to methylene compound 4 and also able to synthesis the same molecule by 

ozonolyisis of 5 .  
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Scheme 2.1: Zinc Promoted Reduction of Ketone and Ozonolysis of Alkene 

2.1.4 Reduction of Ketone/Aldehydes Using Aluminum, Silane Reagents 

Tashiro et al in 2003, reported the reduction of carbonyl group to corresponding 

methylene with Ni-Al alloy in water.14 Dixon et al15 (1959) reported hydrogenolysis of 6-

hexylbenzanthrone using LiAlH4 as the reducing agent. Boleslawski16 in 1992 reported 

reductive deoxygenation of ketone and secondary alcohols by organoaluminum Lewis 

acids. Few of the carbonyl reduction articles are reported using organosilanes as the 

reducing agents.17 Yamamoto et al17a reported the first examples of an efficient direct 

transformation of the aliphatic carboxylic acid, aldehyde, acyl chloride and ester function 

into the methyl group by using HSiEt3 in the presence of a catalytic amount of B(C6F5)3. 

An exhaustive reduction of aliphatic carbonyl groups into the hydrocarbons and partial 

reduction of their aromatic counterparts, as well as aromatic carboxylic acids, have been 

developed. Carboxylic acid 6 reacts with triethylsilane to produce triethylsillyl ester 7 and 

triethyl sillyl acetal 7 by further reacting with one more molecule of triethylsilane. 8  react 

with another silane molecule and removal of di(triethylsillyl) ether produces alkyl syllyl 

ether 9. 9 further react with triethyl sillane produces alkane 10 by removing another 

molecule of di(triethylsillyl)ether. (Scheme 2.2) 
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Scheme 2.2: Reduction of Carboxylic Acid into Alkane 

2.1.5 Homogeneous Catalytic Reduction Methods 

Campagne group established a method to reduce ketones and aldehydes to alkane 

compounds using FeCl3 Lewis acid as a catalyst (10 mol %) in the presence of PMHS as 

the reducing agent at 120 ºC microwave irradiation.18 They believe that the reduction goes 

though the Lewis acid character of iron salts promotes the reduction of intermediate O-silyl 

ether [Eq. (2.4)]. Olah has been reported similar method using Ga(OTf)3 as the catalyst19 

to deoxygenate aromatic ketones [Eq. (2.5)]. Both cases mechanisms are similar (Scheme 

2.3). 

  

 In 2010, Morris Bullock20 reported a homogeneous Ru catalyzed reduction of aryl 

ketone to methylene compounds. In the presence of 1.5 mol% of {[Cp*Ru(CO)2]2(µ-

H)}+OTf in CD2Cl2 under 4 atm H2 heat at 85 ºC for 4 days, acetophenone was cleanly 

converted to ethylbenzene. The substrate scope only limited to acetophenone and other 

ketones gives corresponding alcohols. 
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Most recently, Maleczka 21 reported C-O hydrogenolysis catalyzed by Pd-PMHS 

nanoparticles in the accompany of chlorobenzene. Catalyst Pd(OAc)2 and 

polymethylhydrosiloxane (PMHS), in conjunction with aqueous KF, and a catalytic 

amount of an aromatic chloride, led to the chemo-, regio-, and stereoselective 

deoxygenation of benzylic oxygenated substrates at room temperature. Preliminary 

mechanistic experiments suggest that the process involved palladium−nanoparticle-

catalyzed hydrosilylation followed by C-O reduction. The chloroarene additive appears to 

facilitate the hydrogenolysis process through the slow controlled release of HCl. Substrate 

scope is limited to benzylic ketones. 

 

 

Scheme 2.3: Mechanism of Ga(OTf)3 Catalyzed Reduction of Ketone by Silane. 
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They have shown that without chlorobenzene acetophenone converted to 1-phenylethanol 

under same reaction condition [Eq. (2.6)]. 

2.1.6 Reductive Deoxygenation of Ester, Amide, and other Carbonyl Compounds 

The development of homogeneous catalysts capable of hydrogenating esters has 

lagged way behind the research on hydrogenation of other carbonyl substrates such as 

aldehydes and ketones. This is mainly due to the fact that the carbonyl group in esters is 

less electrophilic than that in aldehydes and ketones. A few publications of catalytic 

reductive deoxygenation of ester22 amide23and carboxylic acids24 are reported. Sakai group 

established an efficient one-pot synthesis of unsymmetrical ethers by direct reductive 

deoxygenation of ethers using an InBr3/ Et3SiH catalyst system.23c They were able to 

convert ester into corresponding ether by combination of 0.05 equivalence of InBr3 and 4 

equivalence of Et3SiH in chloroform at 60˚C .  As shown in eq. 2.7, ester 14 can be 

converted to ether 15 catalyzed by InBr3.  

 

Under similar conditions they were unable to deoxygenate thioester, amides, or 

ketones. Carboxylic acid results corresponding alcohols but low yields and also ketones 
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results symmetric ethers. Very recently the same group published a paper to convert 

carboxylic acid into alkyl halides by reductive deoxygenation [Eq. (2.8)].25 

 

Catalytic reduction of esters into alcohols using hydrogen is much more common 

than true deoxygenation of esters.26 Although great efforts have been made in the past 

decades,  homogeneous hydrogenation of esters had been confined to special substrates 

under harsh conditions,26 until significant breatthrough was made by Milstein, 27 Saudan, 

28, Kuriyama,29 Gusev, 30 et al31. The common feature Milstein’s, Takasago’s and Zhang32 

catalyst is ruthenium catalysts feature a tridentate ligand and a CO ligand. (Complex 16, 

17 and 18). 

 

The mechanism of ester hydrogenolysis using above catalysts are similar. Milstein 

proposed a mechanism based on ligand aromatization and dearomatization (Scheme 2.4). 

Initially, dihydrogen addition to complex 16 resulted in aromatization, to form the 

coordinatively saturated, trans-dihydride complex 19. Dissociation of amine ligand can 

provide a site for ester coordinate to ruthenium center, to give the intermediate 20. A 

hydride ligand subsequently transfers to the carbonyl group of ester, followed by O-H 

elimination of hemiacetal and regeneration of complex 16 via intermediate 21. The 
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hemiacetal is equilibrium with aldehyde, which is readily hydrogenated following similar 

catalytic cycle via intermediate 22 to form the corresponding alcohol.  

 

Scheme 2.4: Proposed Mechanism for Ru Catalyzed Hydrogenolysis of Esters 

 Very recently Guan33 reported an iron-based catalytic method to hydrogenation of 

esters into corresponding alcohols. In the presence of catalyst (3 mol %) 23, 150-230 psi 

H2 gas in toluene at 115˚C successfully converted esters into corresponding alcohols. The 

mechanism they proposed is similar to scheme 2.4 above. Using the same protocol they 

were able to syntheses fatty alcohols from industrial samples of fatty accids esters [Eq. 

(2.9)]. 
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 Several traditional methods available for the deoxygenation of amides. Mainly used 

of highly active agents such as LiAlH4, boranes and NaBH4.33 Usually NaBH4 does not 

react with amides, but it can be modified with either inorganic or organic materials to 

increase its reductive strength to reduce amide to amine. ZnBH4 under reflux conditions 

will reduce aromatic amides to amines in high yield.34  

Beller36 reported for the first time the efficient reduction of tertiary amides using 

convenient zinc catalysts with excellent chemo-selectivity and unique functional group 

tolerance. They found that in the presence of 10 mol % zinc acetate and 3 equiv. of 

triethoxysilane N,N-dimethylbenzamide reduction took place at room temperature leading 

to the corresponding amine in 97% yield. Comparing differently substituted benzamides, 

they observed that the introduction of electron-withdrawing groups at the para-position of 

the benzene ring resulted in faster reduction than in the case of those bearing electron-

donating groups. Notably, amide reduction took place chemo-selectively even in the 

presence of a ketone group, which is known to be much more active.  

Based on these observations, they proposed the reaction mechanism shown in 

Scheme 2.5. Zinc acetate reacts with triethoxysilane at room temperature and forms an 

activated species 24. Next, the amide is coordinated to the metal center in 24 and generates 

the corresponding N,O-acetal C via 25. Release of the anionic zinc ether 26 led to the 

iminium species 27. Finally, another equivalent of the silane converts the iminium ion to 

the product and the siloxane.  
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Scheme 2.5: Proposed the Reaction Mechanism for the Zinc Catalyzed Amide  
 
 
 
Kaneda et al found a hydroxyapatite supported gold nanoparticles (Au/HAP) efficiently 

catalyzed the deoxygenation of amide to amines using silanes as reductants.37 Brookhart38 

in 2012 reported that iridium catalyzed reduction of secondary amides to secondary amine 

and imine by diethylsilane. They found that amides can be reduced to amines by 4 

equivalence of Et2SiH2 in the presence of Ir(COE)2Cl]2 (0.5 mol %) at room temperature 

in nonpolar solvents such as benzene or CH2Cl2. Compound 28 initially react with 

diethylsilane to form N-Sillyl compound 29 and acid work up let to form amine compound 

30 [Eq. (2.10)]. 
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2.1.7 Hydrogenolysis of C-O bond of Ethers 

2.1.7.1 Hydrogenolysis of Aryl Ethers 

Because of the strength and stability of these linkages, selective hydrogenolysis of 

aryl carbon-oxygen (C-O) bonds is challenging. 39 This process is important for the 

conversion of oxygen-rich lignocellulosic plant biomass to deoxygenated fuels and fine 

chemicals.40 The aromatic C-O bonds in lignin cannot be cleave by hydrolysis and 

dehydration using common processes used to hydrolyses the aliphatic C-O bonds because 

those are resisted selective cleavage by hydrogen.39a,c  Method for reductive cleavage of 

unactivated aromatic C-O bonds would expand the utility of alkoxy and aryloxy 

substituents as removable directing groups  that can influence synthetic transformations of 

aromatic systems. In contrast to hydrogenolysis of benzyl ethers, which proceeds 

selectively under mild conditions over heterogeneous catalysts, the cleavage of C-O bonds 

in aryl ethers requires high temperatures and pressures (over 250°C and 30 bar), which led 

to poor selectivities.39, 40a The C-O cleavage methods of aryl ethers require stoichiometric 

alkali metals41 or electro-catalytic hydrogenolysis,42 both of which are expensive and 

difficult to conduct on a large scale. In 1998 Milstein group published s Rh catalyzed for 

selective, reductive cleavage of various aromatic C-O bonds of Ar-OCH3 with hydrogen 

under mild conditions (scheme 2.6).41 
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Scheme 2.6: C-O Cleavage of Aryl-OMe Ether by Rh  

Reaction of the complex  [RhCl(C8H14)2]2 (C8H14 = cyclooctene) with 2 

equivalence of 31 in C6D6 at 85 °C for 3 h (in a sealed vessel) resulted in quantitative 

formation of the known Rh(III) hydride complex 33, which was unambiguously identified 

by various NMR techniques and by comparison to an authentic sample (Scheme 2.6). The 

presumably formed (unobserved) Rh(III)-OCH3 intermediate 32 undergoes readily β-

hydrogen elimination to afford complex 34 and formaldehyde.  

To realize a selective hydrogenolysis of aromatic C-O bonds, Hartwig envisioned 

a reaction that involves insertion of a discrete transition metal complex into the aromatic 

C-O bond and reaction of the resulting intermediate with hydrogen to yield arene and 

alcohol. They anticipated that the low reactivity of homogeneous catalysts toward 

hydrogenation of aromatic rings42 would prevent competitive formation of cycloalkanes 

and cycloalkanols from such a process. 
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Nickel complexes have been found to activate aromatic C-O bonds in the presence 

of aliphatic C-O bonds43. Catalytic reactions involving aromatic C-O bond cleavage with 

nickel complexes were first reported by Wenkert for cross-coupling of aryl ethers with 

Grignard reagents to form biaryl compounds.43a,b This reactivity has been developed further 

in recent years with less aggressive carbon nucleophiles and improved catalysts.43c-d 

However, the extension of such reactivity to the hydrogenolysis of C-O bonds is 

challenging because hydrogen is less reactive than main group carbon nucleophiles, and 

the hydrogenolysis or hydrogenation of typically unreactive moieties can lead to reduction 

of the catalyst itself to form heterogeneous systems44 that are less selective than their 

homogeneous counterparts. 

 
Figure 2.1. 2-Aryloxy-1-Arylethanols Approximate the Functionality in β-[O]-4′-
Glycerolaryl Ethers. 

Chatami published Ni(0) catalyzed direct amination of anisoles involving the 

cleavage of C-O bond of aryl ethers.45 Yu reported copper catalyzed cleavage of benzyl 

ethers with diacetoxyiodobenzene and p-toluenesufonamide.46 Bergman group published a 

paper on C-O cleavage of 2-aryl-1-aryloxy ether and they showed that can be applied to 

depolymerization of lignin polymers.47 They have found that RuH2(CO)(PPh3)3 (1 mol %) 

successfully catalyzed the cleavage of ether bond of 2-phenoxy-1-phenethanol in the 

presence of Ph-Xanphos (1 mol %) ligand in toluene at 135˚C [Eq. (2.11)].  
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For the depolymerization of lignin based polymer they used the catalytic system with 

high catalytic loading [Eq. (2.12)].  

 

Based on the experimental evidence they proposed the mechanism for the 

transformation as shown in Scheme 2.7. It begins with a well-known Ru-catalyzed 

dehydrogenative equilibrium between a benzylic alcohol and the corresponding aryl 

ketone. This is followed by loss of HX from the catalyst precursor and formation of Ru(0) 

complex 40. C-O activation in 40 leads to Ru-enolate (41). Hydrogenation of 41 yields a 

Ru-alkoxide (42) followed by reductive elimination of phenol and association with 40 to 

close the cycle. 
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Scheme 2.7: Proposed Mechanism for the Hydrogenolysis of Aryl Ether Catalyzed By 
Ru Catalyst. 

In 2011 Hartwig group published a seminal report, on the nickel-catalyzed 

hydrogenolysis of C-O bond of aryl ether.48 Using Ni(0) –NHC complexes as unusually 

active catalysts for the cleavage of a range of aryl and benzyl ethers with main group 

hydride donors, they explored the use of hydrogen a cheaper, cleaner, and milder reagent 

for the reduction of aryl ethers. Indeed, the combination of Ni(COD)2 and 1,3-Bis(2,6-

diisopropylphenyl)imidazolinium Chloride (SIPr⋅HCl, 20 mol %) as catalyst and NaOtBu 

(2.5 equiv.) as base effected the selective hydrogenolysis of various diaryl ethers 43,  with 

only 1 bar pressure of H2 in m-xylene to give the corresponding arenes 44 and phenols 45 

in good to excellent yields [Eq. (30)]. The scope of the reaction encompasses both electron-

rich and electron-poor diaryl ethers. Hydrogenolysis occurred faster with unsubstituted 

diphenyl ether and diaryl ethers bearing an electron-withdrawing trifluoromethyl group 

than with diaryl ethers bearing electron-donating alkyl or methoxy substituents. Reactions 

with the less reactive diaryl ethers required substantial catalyst loadings (20%) but occurred 

to high conversions [eq. (2.13)].  
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 He was able demonstrate C-O bond cleavage of several lignin model compounds 

using the same protocol. Model compound that represent β-O-4-linkage 43a, and α-O-4-

linkage 43b, were cleave by the nickel catalyst in excellent yield to products 45a, and 44a 

[Eq. (2.14) & (2.15)]. 

 

 In 2012, Hartwig group published a further developed method to cleave the aryl C-

O bond.49 A heterogeneous nickel catalyst have been used for the selective hydrogenolysis 

of aryl ethers to arenes and alcohols generated without an added dative ligand. The catalyst 

is formed in situ from the well-defined soluble nickel precursor Ni(COD)2 or 

Ni(CH2TMS)2(TMEDA) in the presence of a base additive, such as tBuONa. The catalyst 

selectively cleaves CAr-O bonds in aryl ether models of lignin without hydrogenation of 

aromatic rings, and it operates at loadings down to 0.25 mol % at 1 bar of H2 pressure. The 
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selectivity of this catalyst for electronically varied aryl ethers differs from that of the 

homogeneous catalyst reported previously, implying that the two catalysts are distinct from 

each other. 

They were able to change the selectivity of aryl ether bond of unsymmetrical ether 

by changing the reaction conditions. As shown in Figure 2.2, the ligandless nickel catalyst 

cleaved the CAr-O bond adjacent to the most electron-rich arene ring of 4-hydroxy diphenyl 

ether, 46 to form 2 equivalence of phenol as the sole product. In contrast, the SiPr-Ni 

catalyst preferentially cleaved the CAr-O bond adjacent to the more electron-deficient ring 

to form predominantly hydroquinone (67%) and benzene (48%). These results on both 

inter- and intramolecular competition experiments clearly indicate that the catalytic species 

generated without added ligand is distinct from the species generated with added SIPr 

ligand. 

Figure 2.2: Selective Cleavage of Aryl-Oxygen Bond in Different Conditions 

The ligandless nickel system also catalyzes the hydrogenolysis of benzyl aryl and 

benzyl methyl ether, 47 which are two additional types of linkages in lignin. Benzyl aryl 

ethers were converted to methyl-substituted arenes, 48 and phenols in excellent yields in 

the presence of 0.25–2 mol % of the nickel catalyst [Eq. (2.16)]. Benzyl methyl ether, 47 
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was unreactive under standard reaction conditions, but full conversion could be achieved 

in the presence of 1 equivalence of AlMe3. 

 Hanson et. al50 in 2012 found that C-O bond cleavage in phenolic lignin model 

compounds using vanadium catalyst. They used aerobic oxidation of lignin model 

compounds using two different vanadium catalysts (49 and 50) which has different 

selectivity. 

 

Scheme 2.8: Oxidation of Phenolic Ligand Model Compound with Vanadium Catalysts 

Remarkably, the two vanadium catalysts show different selectivity for the aerobic 

oxidation of 49. Vanadium catalyst 50 mediates a new type of reaction in which the C-C 
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bond between the aryl ring and the adjacent alcohol group is broken to give 2, 6-

dimethoxybenzoquinone, 56 and acrolein derivative 135, and ketone 53. In contrast, 

catalyst 49 affords C-O bond cleavage products 128 and 52, and ketone 54. The significant 

difference in selectivity between the two catalysts underscores the potential of 

homogeneous catalysts for controlling the selectivity in the aerobic oxidation of lignin. But 

they did not explore the reactivity towards the other lignin compounds (Scheme 2.7). 

  Li51 also investigate rhodium catalyzed aryl ether bond cleavage of 2-

arylloxybenzaldehyde 57 and rearrangement to 2-hydroxybenzophenone 58. They used 

[{RhCl(CO)2}2] (5 mol %) as the catalyst, tributyl phosphine (TBP) in chlorobenzene at 

160 ˚C [Eq. (2.17)]. Based on their experimental evidence they proposed the following 

mechanism Scheme 2.9.  

 

Initially, the chelating aldehyde C-H insertion of 2-(aryloxy)benzaldehydes 57 by 

RhI generates the RhIII hydride species 59. Upon reaction with TBP, the RhIII complex 59 

is formed, thus liberating one molecule of tBuOH. Then complex 59 may undergo an 

intramolecular SNAr process to afford the complex 60 upon heating to 160 °C, thereby 

generating the RhIII complex 61(an alternative process through 1, 4-elimination of Ar–Rh–

tOBu from 62 with subsequent conjugate addition of Ar–Rh–tOBu to the resulting enone 

species may be excluded based on the result of the cross-experiment), which could release 

one molecule of acetone (detected by GC-MS) to afford the RhIII/Me complex 63. Finally, 

reaction of the previously formed tBuOH with complex 63 can release one molecule of the 
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desired product 58 and form [RhIII(Me)(tOBu)] (65), which could regenerate the RhI 

catalyst through a reductive elimination process by releasing tBuOMe 

 

Scheme 2.9: Tentative Mechanism for the Rhodium-Catalyzed Rearrangement of 2-
(Aryloxy) Benzaldehydes to 2-Hydroxybenzophenones. 
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2.2: Transition Metal Catalyzed Ether Synthesis 

2.2.1 Introduction 

Ether bonds are prevalent in many natural and unnatural products that exhibit 

diverse biological activity (figure 2.3)52 and also drugs as well as many industrially 

important intermediate. Paxil (Parotin), 66 is active ingradient of drug used to treat major 

depressive disorder. Fluoxetine 67, (also known by the trade names Prozac, Sarafem, 

Ladose and Fontex, among others) is an antidepressant of the selective serotonin reuptake 

inhibitor (SSRI) class.  

 

Figure 2.3: Some Natural Products and Drugs Containing Ether Bond. 

Oseltamivir 68, marketed under the trade name Tamiflu, is an antiviral medication 

used to prevent and treat influenza A and influenza B (flu). Gambierol 69, is a marine 

polycyclic ether toxin a polyether ladder toxin derived from the marine dinoflagellate 
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Gambierdiscus toxicus. The physiological activity of these products are, at times, critically 

dependent on the stereochemistry adjacent to the C-O bonds within the framework of the 

molecule, which provides a strong impetus to the stereoselective synthesis of C-O bonds. 

2.2.2 Classical Methods 

Williamson ether synthesis is powerful method of forming ether bond linkages.53 It 

involves an SN2 reaction between an alkaline metal alkoxide and a suitable electrophile 

such as an alkyl halide to form unsymmetrical ethers.54 The Williamson ether synthesis is 

often complicated by competing elimination reactions and racemization of 

stereochemically intricate starting materials, making it difficult to be incorporated into the 

synthesis of complex molecules. In fact, the scope of the Willamson ether synthesis is 

primarily relegated to primary alcohols and alkyl halides. In an attempt to find more 

temperate alternatives to the Williamson ether synthesis much research has been conducted 

in search of transition metal mediated processes. In this part of the chapter, many transition 

metal-catalyzed methods developed as an alternative to the Williamson ether synthesis are 

discussed. 

2.2.2.1 O-Alkylation Method 

2.2.2.2 Mitsunobu Etherification 

In 1967, Mitsunobu and co-workers initially introduced the Mitsunobu reaction. 

Since its discovery, the reaction has become a useful tool in organic synthesis due to its 

effectiveness and versatility55. The reaction is starting with the conversion of a hydroxyl 

group into a potent leaving group that is able to be displaced by a wide variety of 

nucleophiles which require pKa less than 15 [Eq. (2.18)]. Using phenol as a nucleophile 

can be used to synthesis unsymmetrical ethers.  
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Nuc = carboxylic acid, amine, amide, azides, ester, phenol, hydrazoic acid 

Mitsunobu reaction has been widely used in pharmaceutical and natural product 

synthesis particularly for inversion of a chiral center. However, there are a couple of 

limitations to be overcome in Mitsunobu reaction. The coupling between bulky alcohols is 

not efficient in terms of yield and reaction time, the use of explosive diethyl 

azodicarboxylate (DEAD) and separation problem, and the use of which phosphonium 

oxide and hydrazine which complicate purification process in order to isolate its product. 

Shi et al. reported the etherification reaction of tertiary alcohol with various phenols via 

Mitsunobu reaction which is more electron rich diisopropylazodicarboxylate (DIAD) is 

used instead of diethyl azodicarboxylate (DEAD) [Eq. (2.19)]. 56  

 

2.2.2.3 Etherification by Using DialkyPhosphites 

In 1971, Kashmann57 reported etherification reaction of cholesterol with dialkyl- or 

diaryl-phosphite by using a catalytic amount of TsOH (Scheme 2.10). This method is able 

to produce cholestryl phenyl ethers (70) by a one step reaction of cholesterol (71) [Eq. 
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(2.20)]. 

 

The first step of the mechanism involves the protonation of dialkyl phosphite by 

catalytic amount of acid (TsOH). Nucleophilic hydroxyl of cholesterol attacks methoxy 

carbon of phosphite and forms carbocation and 72. The deprotonation of carbocation by 

TsO- forms unsymmetrical ethers (Scheme 2.10). 

 

Scheme 2.10: Mechanism of Etherification of Cholesterol, ROH= Cholesterol 

 

Cholesterol and excess amount of dimethyl or diphenylphosphite are required to 

synthesize unsymmetrical ethers58. Excess amount of alkyl or aryl phosphite are consumed 

and the yield of reaction is relatively low (50 %) based on cholesterol. The only functional 

tolerance groups are alkene and carbonyl groups. Also excess of phosphite 72 is formed as 

a waste (Scheme 2.10). Etherification of cholesterol is a very impressive result from first 

large molecular etherification in a one step, but the reaction is not efficient as described 

above.  
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2.2.3  Cross-Coupling Reactions 

Cross-coupling reactions of alkyl halide and phenols represents one of the simplest 

transition metal-mediated etherification methods. These reactions often include Cu or Pd 

as a mediator, a phenolic nucleophile, and an aryl halide or boronic acid. Due to the 

challenges associated with this type of cross-coupling process, these reactions are often 

bypassed in natural product synthesis. Among the major challenges are the often low 

reactivity of the electrophile and highly coordinative ability of the alcohols with the 

transition metal causing harsh reactions conditions such as high temperatures or high metal 

loading. However, examples have been shown where the cross-coupling approach 

successfully constructs the ether linkages that are otherwise difficult to form. 

2.2.3.1 Ullman Reaction 

Since its introduction in 1903, the Ullman coupling reaction between aryl halides 

and alcohols mediated by Cu has become a standard reaction in organic synthesis.59 its 

emergence in many total syntheses is due in large part to the incidence of biaryls ether 

bonds found in many biological active natural products. Unlike typical nucleophilic 

aromatic substitution (SNAr)60 the Ullman reaction does not require, additional activating 

groups. Limitations associated with the Ullman reaction includes necessity of high reaction 

temperatures and often superstoichiometric amounts of Cu. Even though catalytic versions 

of this reaction is rare, this reaction is the standard by which most other metal-catalyzed 

etherification reactions are compared. Many examples employing the Ullman or Ullman-

type reactions can be found in total syntheses of natural products. 

Many instances of Ullman coupling usage in total synthesis revolve around 

intramolecular ring closing reactions. The power of this form of coupling reaction is 
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evident in a few examples shown in Figure 2.4, where challenging etherification reactions 

have been accomplished. (+)-Hirsutellone B (73), isolated from the insect pathogenic 

fungus Hirsutella nivea BCC 2594, shows good activity against Mycobacterium 

tuberculosis. Tejedine (74) is a seco-bisbenzyltetrahydroisoquinoline isolated in 1998 as a 

minor component from Berberis vulgaris. 

Boger and co-workers reported a particularly striking application of the Ullman 

coupling is in the intramolecular ring closing etherification incorporated in the total 

synthesis potent antitumor antibiotic Bouvardin (74) [Eq. (2.21)].61 Aryl iodide 75 coupled 

with phenol in the same molecule to synthesis of cyclic intermeite 76 for the synthesis of 

74 by copper catalyzed Ullman coupling.  

 

Figure 2.4. Natural Products Pynthesed by Ullman Coupling 
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  Buchwald group developed an improved Cu(I)-based catalytic system for the 

reaction of alcohol and aryl halide for syntheses of alkyl aryl ethers [Eq. (2.22)].62The use 

of 3,4,7,8-tetramethyl-1,10-phenanthroline (Me4-Phen) as a ligand improved the Cu-

catalyzed cross-coupling reactions of aryl iodides and bromides with primary and 

secondary aliphatic, benzylic, allylic, and propargylic alcohols. Most importantly, by 

employing this catalyst system, the need for an excessive quantity of the alcohol coupling 

partner is alleviated. The relatively mild conditions, short reaction times, and moderately 

low catalyst loading allow for a wide array of functional groups to be tolerated on both the 

electrophilic and nucleophilic coupling partners. 

 

  

Zhang et al added a good modification to Ulmann etherification by Employing (2-

pyridyl) acetone, 77 as a new supporting ligand, the copper-catalyzed coupling reactions 

of aryl chlorides, aryl bromides, and aryl iodides with various phenols successfully 

proceeded in good yields under mild conditions. This reaction displays great functional 

groups compatibility and excellent reactive selectivity [Eq. (2.23)].63 
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Even in advanced Ullmann reactions, the Ullmann reaction still requires expensive 

or rare halogenated starting materials and excess amount of base, which forms 

stoichiometric amounts of halogenated byproducts.   

 

2.2.4 Catalytic Etherification Methods 

The developments of a new catalytic etherification methods are needed to eliminate 

many of the disadvantages associated with these stoichiometric reactions. Qiu.64 and co-

workers reported a method to syntheses of unsymmetrical benzyl ether using rhenium (I) 

catalyst. Benzyl alcohol (1.0 mmol) and 1-butanol (5.0mmol) with ReBr(CO)5 (0.03mmol) 

were autoclaved at 160 oC for 12 h [Eq. (2.24)].  

 

R1= hydrogen, methyl, chloride, R2= aliphatic 

 

The substrate scope was limited to benzylic alkyl ethers. They proposed the 

following mechanism based on their experimental evidence (Scheme 2.11). Re(I) complex 

78 reacts with oxygen to give Re(III) oxide 79.  Decarboxylation of Re(III) oxide 80 affords 

the intermediate Re(III) complex 80. Benzyl alcohol is added to 80 via an oxidative 
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addition. Alpha hydrogen addition to oxygen forms Re(III) complex 81. Re(III) complex 

81 released carbocation and Re(III) complex 82. Benzyl cation reacted with another alcohol 

produces the ethers. Dehydration of dihydroxo-rhenium(III) 83 is regenerated to 80. 

However, the reaction has less functional group tolerance.  

 

Scheme 2.11: Mechanism of Rhenium (I) Catalytic Etherification Cycle 

In 2009, Sakai et al65 developed a method for selective deacetoxylation of several 

organic compounds using the InBr3-Et3SiH system, remarkably it was found that, the 

InBr3-Et3SiH reducing system causes the reduction of the carbonyl function of esters under 

milder conditions, resulting in the preparation of unsymmetrical ethers [Eq. (2.25)].  
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 Synthesis of ether by reduction of ester is a completely different method than the 

previous explained methodology. Catalytic amounts of Indium complex are used to 

eliminate waste and the reaction condition is mild for functional group tolerance. This 

different method eliminates waste problems, selectivity issues, relatively modest yields and 

still the use of excess of Et3SiH are the common drawbacks.  

 

Scheme 2.12: Mechanism of In (III) Catalyzed Deoxygenation of Esters 

A plausible mechanism for the reaction is shown in Scheme 2.12. The reaction path 

involves the following steps: (i) transmetalation between Et3SiH and InBr3 as an initial step 

to generate 84, (ii) a consecutive abstraction of hydrogen by the radical intermediate 85 

and the formation of an ether product, and (iii) finally, the regeneration of an indium radical 

species 84.  
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2.2.5 Etherification by [IrCl2Cp*(NHC)] Catalyst 

Peris et al has shown that [IrCl2Cp*(NHC)] catalyst is effective for the cross 

coupling of benzyl alcohol with primary and secondary alcohols to form unsymmetrical 

ethers.66 It displays a high selectivity to the unsymmetrical ethers. Only for the 

homocoupling of benzyl alcohol they obtained a very low yield in the formation of benzyl 

ether because the dehydrogenation to form benzaldehyde is a highly favorable process for 

this alcohol [Eq. (2.26)].  

 

 

Plausible mechanism was proposed in Scheme 2.13. Initially, AgOTf activated 

Ir(III) complex 88 to generate Activated Ir(III) complex 89. Alcohol is added to the Ir(III) 

center via oxidative addition to form Ir(V) hydride 90. The key complex of the reaction is 

the formation of Ir(V) hydride species 90. Ir(V) hydride complex 90 acts as a Brᴓnsted 

acid and activates another alcohol. Coupling of the alkyl group of activated alcohol to the 

coordinated alkoxide produces water as a byproduct and ethers as a product. Main 

drawbacks of this reaction are limited substrate scopes and excess of aliphatic alcohol for 

high selectivity 
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Scheme 2.13: Proposed Mechanism of Synthesis of Unsymmetrical Ether by Iridium 
Catalyst 

2.2.6 Dehydrative Etherification of Alcohols 

The dehydrative etherification of alcohols is the most efficient way of synthesis of 

ether compounds in both industrial and academic laboratory settings.67,68  But the synthesis 

of unsymmetrical ether from two different alcohols selectively is challenging. Very 

recently two major papers were published based on metal catalyzed dehydrative coupling 

of alcohols to make ethers. The first, Graham group reported a nanoporous aluminosilicate-
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mediated synthesis of ether by dehydrative etherification approach [Eq. (2.27)].67a 

 

The Al-14-(3.18) catalyst (50 mg) was added to a mixture of benzyl alcohol (1 

mmol) and PMBA (2 mmol) in dimethyl carbonate (2 mL) and heated to 80 °C with 

vigorous stirring. The substrate scope was limited to PMB ethers and they have selectivity 

problem unresolved. The Al-14-(3.18) is consist of Si/Al ratio 14:1 and the pore size 3.18 

nm. 

Very recently, we reported an efficient and selective synthesis of unsymmetrical 

ether from dehydrative coupling of two different alcohols catalyzed by cationic ruthenium 

hydride complex 91.69 The catalytic method exhibits a broad substrate scope while 

tolerating a range of heteroatom functional groups in forming unsymmetrical ethers, and it 

is successfully used to directly synthesize a number of highly functionalized chiral 

nonracemic ethers [Eq. (2.28)]. 

 

On the basis of these observations, mechanistic hypothesis was proposed for the 

selective formation of unsymmetrical ethers (Scheme 2.13). They proposed that a cationic 

Ru-alkoxy species 91, initially generated from the deprotonation of the alcohol substrate, 

is the key intermediate species for the etherification reaction. They suggest a SNi type of 

nucleophilic displacement mechanism for the formation of α-chiral ethers. Also the acidity 

of alcoholic substrate may be an important factor in promoting the formation of Ru-alkoxy 

species 92 from the deprotonation of a less reactive, more basic alcohol substrate. The 
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coordination of another alcohol substrate to form complex 93 and the liberation of water 

byproduct through intermediate 94 would facilitate the regeneration of the alkoxy species 

92 via the Ru-hydroxy intermediates 95 and 96. Still, many aspects on how the catalyst can 

mediate a high degree of selectivity remain unresolved. 

Scheme 2.14: Working Mechanistic Hypothesis for Unsymmetrical Ether Formation 

 

2.2.7  Additions to Unsaturated Bonds 

Addition of nucleophiles to double bonds via transition metal-mediated catalysis 

has become a fundamental process in organic synthesis.71 The addition of alcohols to 

carbon-carbon double and triple bonds are two of the most utilized transition metal 

catalyzed ether bond-forming reactions in natural product synthesis. These methods have 

become attractive due to their flexibility and generality that has been shown over the years. 

Copious amounts of studies have shown the addition process to proceed in very predictable 

ways, establishing the feasibility of the formation of the ether bond with high stereocontrol. 
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2.2.7.1  Wacker-type Reaction 

The Wacker reaction offers a convenient method for oxidizing a C-C double bond 

to a ketone. An adjustment to this reaction using alcohols in place of water gives way to a 

method of forming C-O ether bonds.68,72 This process offers an approach to ether formation 

which utilizes simple Pd catalysis that can lead to further tandem reaction after the initial 

addition of the alcohol. This way of functionalizing a double bond could have great use 

when planning out a synthesis from the simplest starting materials. 

 

Figure 2.5: Natural Products from Wacker-type Oxidation 

 

This Wacker-type reaction has found great use in the total syntheses of many 

natural products. In particular, the capability of the alkyl-Pd intermediates to undergo 

further reactions has been shown to be of broad utility. A few of these examples are shown 

(Figure 2.5). 
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In the synthesis of microtubulin-stabilizer (-)-laulimalide (97),72 Uenishi and Ohmi 

showed that a Wacker-type reaction could be used to synthesize the chiral α,α’-

dihydropyran moiety 99 [Eq. (2.29)]. The installment of a chiral allylic alcohol helps to 

direct the Pd-coordination in order to block the Si-face of the olefin leaving the Re-face 

open for attack of the nucleophile alcohol in a 6-endo-trig fashion.72 Then, β-hydroxide 

elimination provided the dihydropyran the potential for alkyl-Pd intermediates to undergo 

additional functionalization. 

 

2.2.7.2 Hydroalkoxylation of Unactivated Aliphatic Alkenes 

Metal catalyzed hydroetherification (the addition of an O-H bond across an 

unsaturated C-C bond) is much less developed. The ether products of hydroetherification 

are more often formed by substitution reactions than addition reactions.74 The electrophiles 

in substitution reactions are typically prepared by a multistep sequence that includes 
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oxidation or reduction and functional group interconversion or activation of an alcohol. 

Moreover, these substitution reactions generate salt byproducts. Alternatively, ethers are 

formed by acid-catalyzed additions of alcohols to alkenes.75 However, these additions often 

require strong acids and high temperatures, form side products from isomerization of 

carbocationic intermediates, and occur without control of the product stereochemistry. 

Moreover, acid-catalyzed additions of phenols to alkenes occur with competitive reaction 

of the alkene at the O-H bond and at an ortho or para C-H bond.76 Metal-catalyzed 

hydroetherification would exploit the abundance and stability of alkene starting materials 

and could overcome many of the limitations of the classical syntheses of ethers. 

In 2013Hartwig group 77 reported one of the seminal intermolecular, metal-

catalyzed additions of phenols to unactivated α-olefins in good yields. The measurable 

enantioselectivity and lack of reaction in the presence of acid but the absence of the metal 

show that the iridium complex rather than a proton catalyzes the addition reaction. 

Mechanistic studies imply that the reaction proceeds by reversible oxidative addition of the 

O-H bond of the phenol followed by turnover-limiting insertion of the alkene [Eq. (2.30)]. 

 

 

These mechanistic data are consistent with the proposed catalytic cycle shown in 

Scheme 2.23.  In this mechanism, the (allyl) iridium hydride resting state 100, which 

equilibrates with hydrogen-bonded [100·HOAr], undergoes C-H bond-forming reductive 
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elimination to release the olefin and form an Ir(I) complex that can undergo reversible, 

endergonic oxidative addition of the O-H bond of the phenol to form 101.  

 

Scheme 2.15: Proposed Mechanism for Ir Catalyzed Hydroetherification of Phenol and 
Alkene 

Subsequent olefin coordination and turnover-limiting insertion into the Ir-O bond 

forms an alkyl-Ir complex 101. C-H bond-forming reductive elimination would then 

release the ether product, whereas β-H elimination from the same intermediate would form 

the enol ether side product. This mechanism is consistent with the observed zeroth-order 

dependence of the rate on the concentration of alkene because the alkene is released and 

added prior to the turnover-limiting step. This mechanism is also consistent with the 

fractional-order dependence with respect to the alcohol because a significant fraction of 
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the resting state exists as the alcohol adduct [100·HOAr]. The alcohol dissociates and adds 

prior to the turnover-limiting step of a reaction initiated from [100·HOAr] 

 

2.2.8 Dehydrative Coupling of Alcohols by Sodium Bisulfite 

Dehydrative coupling of two different alcohols are commonly used to synthesize 

symmetrical ethers because of low selectivity. Additionally, Elimination reaction competes 

with dehydration of the alcohol. With consideration of this selectivity issue, the synthesis 

of unsymmetrical ethers by using two different alcohols is not desired.  

 Liu78 and coworkers showed more effective ways to synthesize unsymmetrical 

ethers by using two different alcohols in catalytic amount of sodium bisulfite (Scheme 

2.24)79 The substrate scopes of this coupling reaction were limited to benzyl alcohol 

derivatives with various aliphatic alcohols with moderate yield [Eq. (2.31)].   

 

 

In the presence of 1 mol % of NaHSO3 benzylic alcohols (1 mmol) reacts with 

aliphatic alkyl alcohol (8.0 mmol) to generate asymmetric product ether at 110 ˚C. 

 

2.2.9 Reductive Etherification of Carbonyl Compounds 

Reductive etherification of carbonyl compounds is known as an alternative method 

of the Williamson ether synthesis. In 1972, Doyle et al. reported the synthesis of ethers by 

the reduction of carbonyl compounds with triethylsilane in alcohol in the presence of 



72 

 
excess amounts of sulfuric acid or trifluoroacetic acid.80 Nicolaou et al. demonstrated the 

formation of the oxepane ring from hydroxy ketone using 10 equiv. of triethylsilane and a 

stoichiometric amount of TMSOTf.81 In 2005, Izumi and Fukase described a reductive 

benzylation of hydroxy functions by using the combination of benzaldehyde, triethylsilane, 

and quite an excess molar TMSCl.82  On the other hand, some methods have been reported 

for reductive etherification of carbonyl compounds with triethylsilane and 

alkoxytrimethylsilane under the influence of Lewis acids.83 However, these reactions 

require an annoying step-bystep procedure or a longer reaction time. Although Wada et al. 

reported a reductive etherification of carbonyl compounds with alcohols promoted by 

bismuth(III) chloride under mild reaction conditions,79 this involves some substrate 

limitation; the yields of the ether products from aliphatic aldehydes and ketones are 

unsatisfactory [Eq. (2.32) and (2.33)]. 

 

 

While exploring the reactions promoted by iron(III) chloride,83 Iwanami et al have 

developed a highly efficient reductive etherification of carbonyl compounds with 

alkoxytrialkylsilane and triethylsilane catalyzed by iron(III) chloride [Eq. (2.34)].84
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 This includes some striking features: 1) extremely short reaction time is needed in 

contrast to the known methods, 2) not only trimethylsilyl (TMS) ether but also triethylsilyl 

(TES) and t-butyldimethylsilyl (TBS) ethers can be used as the parent silyl ether, 3) various 

ethers are obtained from a wide range of aldehydes and ketones, and 4) high-yielding 

process. Etherification of carbonyl compounds with the parent alcohol, not 

alkoxytrialkylsilane, is more straightforward and promising. Therefore, they applied this 

reductive etherification into the naked and unmodified alcohols. 

In 2011, Roth85 has reported a general metal-free method for the direct reductive 

synthesis of symmetrical ethers, unsymmetrical ethers, and thioethers from carbonyl 

compounds through the use of organosilanes. The reaction was performed under one set of 

reaction conditions with triflic acid (1-5 mol %) as the catalyst and capable of being carried 

out in an open flask without any exclusion of moisture or air [Eq. (2.35) and (2.36)]. 
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They proposed that in an initial step TESOTf 102, is formed as the active catalyst 

from triflic acid, triethylsilane and the carbonyl substrate (Scheme 2.24). 

 

Scheme 2.16: Proposed Generation of Active Catalyst 

 

The catalyst generated in situ then activates the carbonyl compound for a 

nucleophilic attack (104). Proton transfer and reduction gives the coupled product and 

silanol byproduct. The catalyst is regenerated and the catalytic cycle is completed (Scheme 

2.17). 

 

Scheme 2.17: Proposed Catalytic Cycle Based on TESOTf as Active Catalyst. 
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Few examples of application reductive etherification in synthesis of natural 

products.86 Evans used the BiCl3 catalyzed reductive etherification to syntheses the natural 

product (-)-Centrolobin ds≥99:1 with 93% yield [Eq. (2.37)].  

  

Reddy and coworkers described the formal total synthesis of (−)-exiguolide through 

the chiral-pool approach.87 The major methylene bis-tetrahydropyran fragment was 

achieved in a convergent manner from L-glutamic acid and L-aspartic acid involving the 

oxa-Michael reaction and an aldol-driven reductive etherification as key steps for the 

formation of a tetrahydropyran ring. HF (40 %) in CH3CN at room temperature is used for 

reductive etherification. 

 

Scheme 2.18: Synthetic Route for the Synthesis of (-)-Exiguolide, 108 
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In 2013, Sakai88 reported an efficient reductive etherification of aromatic or 

aliphatic aldehydes using a reducing system that combines Zn(OTf)2 with either TMDS or 

Et3SiH. This reducing system can also be applied to the hydrosilylation of aromatic 

aldehydes having either a strong electron-withdrawing group or a pyridine ring [Eq. 

(2.38)].  

 

 

On the basis of these results, a plausible reaction path for the etherification they 

proposed is shown in Scheme 2.26. As with the etherification using a conventional 

reducing system, the reaction of the silyl ether, which was formed by hydrosilylation, with 

an activated aldehyde 109 initially produced a silylated hemiacetal 110, followed by a 

second reduction of the acetal with another hydrosilane to afford the corresponding 

symmetric ether. Further, for the formation of the silyl ether, the introduction of a strong 

electron withdrawing group on the benzene ring remarkably lowered the nucleophilicity of 

the in situ formed silyl ether, which led to the preclusion of a subsequent addition. 
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Scheme 2.19: Proposed Mechanism for the Zn Catalyzed Etherification 
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CHAPTER 3 

SYNTHESIS AND MECHANISTIC STUDIES OF DEAMINATIVE COUPLING 
REACTIONS OF AMINES WITH ALCOHOLS AND AMINO ACIDS            

WITH KETONES. 

3.0. Introduction 

Carbon-nitrogen (C-N) bond is commonly present in numerous organic compounds 

including amines, amino acids, proteins, drugs and natural toxins. Direct C-N cleavage 

coupling reactions are rare in organometallic chemistry due to strong C-N bond and poor 

leaving group ability of the amino group. Transition metal catalyzed cross coupling 

reactions involving C-N bond cleavage are rarely investigated. Trost 1-2, Tian3 and Zhang4 

reported catalytic examples of cross coupling of allylic amines. Very recently, Tian 

reported decarboxylative alkylation of β-keto acids by electron withdrawing group-

activated alkylamines including C-N bond cleavage.3 Considerable research effort has been 

devoted Pd-catalyzed allylic alkylation reactions via the C-N bond cleavage of allylic 

amines.4 Hu established Pd catalyzed N-debenzylation of benzylamines in the presence of 

1,1,2-trichloethane.5 Very recently, Tian reported the Pd catalyzed cross coupling of 

primary allylic amine with boronic acid.6 Only few approaches have been reported on 

catalytic sp3 C-N bond cleavage of tertiary reactions of amines. Although many organic 

transformations via sp3 C-N bond cleavage have been widely encountered and investigated, 

simple and practical protocols for selective sp3 C-N bond cleavage of primary and 

secondary amines have been found to be difficult because they are unreactive under strong 

acidic and basic conditions.  
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Amino acids are one of the major classes of compounds containing C-N bond. 

Amino acids play central role as both building blocks for proteins and as intermediates in 

metabolic cycles. The 22 natural α-amino acids that are found in proteins convey a vast 

array of chemical versatility in biological functions. Amino acids also perform critical 

biological roles outside proteins including neurotransmitters and ion transport.7 Non-

protein amino acids also have important roles as metabolic intermediates, such as in the 

biosynthesis of the neurotransmitter γ-aminobutyric acid. Some non-standard amino acids 

are used as defenses against herbivores in plants.8 

In organic synthesis, naturally occurring α-amino acids are commonly utilized as 

chiral reagents and also employed in the asymmetric synthesis of complex chiral 

molecules.9 One of the major uses of amino acids are as chiral auxiliaries in transition metal 

based enantioselective organic synthesis.10 Peptide synthesis is also very important in 

synthesis of number of bioactive molecules.11 In typical peptide coupling reactions, the 

carboxylic acid moiety of the amino acid is first activated by an appropriate peptide 

coupling reagent, and then reacted with amine moiety of the other amino acid to produce 

desired peptides.12 Synthesis of 2,5-diketopiperazines (2,5-DKP) [eq. (3.1)] is also very 

important in synthesis of various bioactive natural products and pharmaceuticals. Amine-

protected and carboxylic acid protected amino acids are usually used for these coupling 

reactions. As an example fumitremorgin B, which is caused DNA damage in human 

lymphocytes is caused by amino acids Pro, Leu, Thr and Tyr.8 Optical active N-protected 

α-amino aldehydes which are derived from amino acids are extensively used in organic 

synthesis.13-14   
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Decarboxylation of amino acids has been found to be one of the effective methods 

for obtaining a number of important amines. Transition-metal-catalyzed decarboxylative 

coupling reactions hold considerable promise among novel carbon-carbon bond formations 

owing to their potential advantages, such as high efficiency, selectivity, and 

convenience.16,17 For example, Goossen,18 Myers,19 and Tunge20 groups have reported 

transition-metal-catalyzed intermolecular and intramolecular decarboxylative couplings of 

amino acids. 

Few catalytic decarboxylative methods have been reported including catalytic 

peroxide or ketone in high boiling solvents, irradiation with UV light and heating in 

diphenylmethane solvents. Aoki reported decarboxylation of amino acids catalyzed by 2-

cyclohene-1-one.21 Decarboxylation of amino acids by microbes such as Lactobacillus 

curvatus CTC273 was reported22 Golding reported NBS catalyzed decarboxylation of α-

amino acids into corresponding amines.23 

Li’s research group reported a C-C bond-forming reaction based on a copper- or 

iron-catalyzed oxidative decarboxylative coupling of sp3-hybridized carbons with N-

benzylproline.24 Wang have reported copper iodide catalyzed aldehyde induced tandem 
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decarboxylation-coupling of natural α-amino acids and phosphites or secondary phosphine 

oxide.25 Seidel and coworkers reported that decarboxylative Strecker reaction of amino 

acids with aldehyde coupling.26 These new reactions expand the scope and synthetic utility 

of the catalytic decarboxylative coupling reactions previously developed. However, this 

method still suffers from drawbacks as in these methods need other oxidants24 or transition 

metals25 besides copper to facilitate the reaction. In 2010, Li’s group [eq. (3.3)] and Seidel 

[eq. (3.2)] successfully improved the method involving a new reaction pathway, 

respectively, and they both reported an interesting aldehyde-induced intermolecular 

tandem decarboxylation-coupling of secondary α-amino acids with alkynes to afford 

propargylic amino derivatives, releasing H2O and CO2 as the only byproducts26,27 and also 

α-amination of N-heterocycle by using amino acid to make aminals [eq. (3.4)]28 In these 

methods, the carboxylic acids provide the possibility for site-specific functionalization of 

the α-amino acids skeletons, using decarboxylative coupling reactions to generate amine 

derivatives. 

 

  

Deamination of amino acids is another way to use amino acids in organic synthesis 

due to the fact that selective C-N bond cleavage is more energetically disfavored than 
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decarboxylation. But in biological system deamination of amino acids are more common.30 

However few catalytic examples of deamination of amino acids are reported but those also 

similar to biological molecules. Diorganotin(IV) promoted deamination of amino acids by 

pyridoxal was reported by Varela.30 Martel has reported molecular oxygen with pyridoxal 

derivatives and metal ion catalyzed oxidative deamination of amino acids.31 In all these 

cases, in the presence of Cu2+ and 3,5’-pyridoxal or pyridoxal 5’-phosphate react with 

amino acid to form Cu(II) complex of Schiff base intermediate, which reacts with O2 to 

form oxidative deaminated product α-keto acid (Scheme 3.1). All of the literature explained 

above have limited substrate scope to proline and also high temperature > 200⁰C. 

Furthermore, these reactions are limited to either decarboxylation or deamination of amino 

acids.  

Scheme 3.1: Pyridoxal Derivatives and Cu2+ ion Catalyzed Oxidative Deamination of 
Amino Acids.  

α-Alkylation of ketone is one of the most important reactions in organic synthesis. 

Traditionally ketones are transferred to metal enolates29a or enamines,32 which are ready to 

react with carbon electrophile to give α-alkylated ketones. All these methods require 

stoichiometric amount of base or other reagents. In recent years, transition metal catalyzed 

α-alkylation of ketones has been developed.33 Shim and coworkers reported that 

RuCl2(PPh3)3 can catalyze R-alkylation of ketones with primary alcohols.34 Ishii and co-
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workers found that [IrCl(cod)]2 is an excellent catalyst for the R-alkylation of ketones with 

primary alcohols.35 Very recently, the α-alkylation reaction of ketones with primary 

alcohols to make α-alkylated ketones was achieved using RuHCl(CO)(PPh3)3 as a catalyst 

in the presence of Cs2CO3 as a base was reported by Ryu.36 

In general, classical alkylation reactions have been described with numerous strong 

bases which makes it necessary to use an excess of one of the reagents in the presence of 

promoters, such as stoichiometric strong bases or acids which generate salts as byproducts. 

In this context, recent advances have focused on methods able to develop catalytic, group-

tolerant, environmentally benign, and mild reaction conditions. Development of catalytic 

alkylation methods to make complex molecules starting from readily available amino acids 

is beneficial from synthetic and environmental points of view. We developed a catalytic 

system for oxidative C-H alkylation of alcohol by deaminative coupling reactions of 

amines which involve C-N bond activation of amine primary or secondary amines and 

byproduct as ammonia. The catalytic method was successfully applied to the 

decarboxylative and deaminative coupling of amino acids with ketones. This chapter 

devotes the synthesis and mechanistic studies of deaminative coupling of amines with 

alcohols and deaminative and decarboxylative coupling of amine acid with ketones. 
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3.1.Results and Discussion 

3.1.1 Synthesis and Mechanistic Studies of Deaminative Coupling Reactions of 
Amines 

Recently, our research group developed a convenient method to synthesize a 

cationic ruthenium-hydride complex [(ɳ6-C6H6)(PCy3)(CO)RuH]+BF4
- (1) from the 

protonation reactions of tetrameric ruthenium complex {[(PCy3)(CO)RuH]4(μ-O)(μ-

OH)2}, which was synthesized in two steps from ruthenium hydride complex 

(PCy3)2(CO)RuHCl (2) (Scheme 3.2).37 Reaction of 3 with KOH in 2-propanol produced 

the bimetallic complex 3, which was isolated in 85 % yield after recrystallization in hexane. 

The subsequent treatment of 2 with acetone at 95 ⁰C yielded complex 4 in 84 % yields as 

brown-red solid. Thus the treatment of tetrameric ruthenium complex 4 (200 mg, 0.12 

mmol) with HBF4.OEt2 (64 μL) in C6H6 at room temperature cleanly afforded the cationic 

ruthenium hydride complex 1, which was isolated as ivory-colored solid in 95 % yield 

(Scheme 3.2). The ruthenium-hydride signal was observed at δ -10.39 (d, JP-H = 25.9 Hz) 

by 1H NMR spectroscopy of 1 in CD2Cl2, and a single phosphine signal was detected at δ 

72.9 ppm by 31P{1H} NMR spectroscopy. The molecular structure of the ruthenium 

complex 1, as determined by X-ray crystallography, showed a three legged piano-stool 

geometry, which is capped by a ɳ6 benzene moiety.  

We also reported selective catalytic C-H alkylation of alkenes with alcohols38a 

[eq. (3.5)] and dehydrative C-H alkylation and alkenylation of phenol with alcohols to 

produce product 5 [eq. (3.6)].38b-39 In these reactions, alcohols were used as the alkylating 

agent to promote C-O bond cleavage which generate H2O as the only byproduct.  
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Scheme 3.2: Synthesis of Cationic Ruthenium Hydride Complex 1. 

 

  Yi and Kown37c reported chelate assisted oxidative coupling reactions of aryl 

amides and unactivated alkene catalyzed by the same catalyst 1.  

 

 

Having well defined cationic ruthenium-hydride complex 1 in hand, we next 

explored its catalytic activity for the deaminative coupling reactions of amines with 

secondary alcohols. Initially, we found that 1 is an effective catalyst for the coupling of 3-

methoxybenzylamine with 2-butanol in toluene at 130 ⁰C to give (6-(3-

methoxyphenyl)hexan-3-one) 6 in 89 % yield [eq. (3.7)].  
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 This catalytic method efficiently produced deaminative coupling product 6 from the 

coupling of 3-methoxybenzylamine with 2-butanol which was isolated by simple silica gel 

chromatography. The structure of 6 was completely established by spectroscopic 

techniques [eq. (3.7)]. From both environmental and economic points of view, alcohol 

substrates constitute a highly attractive class of organic compounds because they are 

inexpensive and often easily derived from natural sources. As will be presented below, the 

catalytic method employs environmentally friendly and cheaply available alcohols, and 

exhibits a broad substrate scope and high chemoselectivity towards C-N bond cleavage 

reactions without employing any reactive agents.  

3.1.2 Optimization Studies 

3.1.2.1 Catalytic Survey 

The catalytic activity of 1 was initially screened for the coupling reaction of 3-

methoxybenzylamine with 2-butanol (Table 3.1). Thus, the treatment of 3-

methoxybenzylamine (0.5 mmol) and with 2-butanol (0.6 mmol) with an excess amount of 

alkene (1.5 mmol) in the presence of the metal catalyst (3 mol %) in toluene at 130 ⁰C was 

analyzed by GC-MS after 12 h reaction time. Among the surveyed ruthenium catalysts, 

complex 1 exhibits a uniquely high activity for the deaminative coupling reaction in the 

presence of cyclopentene additive.  In the absence of cyclopentene as an additive, the 
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product yield is about 10 %. But none of them showed activity or gave product in low yield. 

All the other catalysts were investigated in the presence of cyclopentene. 

3.1.2.2 Solvent and Temperature Effects 

A number of different solvents were examined for the coupling reaction of amine 

and alcohol (Table 3.2). The treatment of 3-methoxybenzylamine (0.5 mmol) and 2-

butanol (0.5 mmol) with excess amount of alkene (1.5 mmol) in the presence of ruthenium 

hydride catalyst 1 (3 mol %) in different solvents at 130 ⁰C was analyzed by GC-MS after 

12 h reaction time. Both chlorobenzene and toluene were found to be the most suitable for 

the amine coupling reaction among screened solvents (entry 1 and 2). Acetonitrile strongly 

coordinates to the ruthenium center and inhibits the catalytic activity (entry 6). 

Coordinative solvents such as dioxane and THF also coordinate to Ru center and are less 

effective for the catalytic reaction (entry 3, 5).  

The temperature effect was investigated by running reactions at different 

temperatures (entry 7-9). The deaminative coupling reaction of amines requires relatively 

high temperatures at 130 ⁰C, as no reaction was observed below 110 ⁰C. No considerable 

increase in product yield was observed when temperature was increased to 140 ⁰C. 

Therefore, 130 ⁰C was chosen to be the most optimal temperature for the coupling reaction. 
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Table 3.1: Catalyst Survey for the Production 6 from 3-Methoxybenzylamine and 2-
Butanol.a 

Entry Catalyst Additive Yield (%)b 

1 {[(PCy3)(CO)RuH]4(μ-O)(μ-OH)2} Cyclopentene 0 

2 1 Cyclopentene 89 

3 1 - 10 

4 RuHCl(CO)(PCy3)2 Cyclopentene 0 

5 RuCl2(PPh3)2 Cyclopentene 0 

6 RuCl3·3H2O Cyclopentene 0 

7 [Ru(p-cymene)Cl2]2 Cyclopentene 0 

8 (PPh3)3(CO)RuH2 Cyclopentene 0 

9 Ru3(CO)12 Cyclopentene 0 

10 PCy3 Cyclopentene 0 

11 HBF4·OEt2 Cyclopentene 0 

aReaction conditions: 2-butanol (0.6 mmol), 3-methoxybenzylamine (0.5 mmol) , 
cyclopentene (2.5 mmol), catalyst (3 mol %) in toluene (2 mL) at 130 ⁰C, 12 h. b The 
conversion of alcohol was determined by GCMS analysis using C6Me6 as an internal 
standard. 

The coupling reaction was run with different amounts of catalytic loading. It was 

found that 3 mol % was the optimal catalytic loading as 1 mol % -1.5 mol % was less 

active), while the yield has not systematically increased at 5 mol %. From these 

optimization studies, we found that the optimum conditions for the coupling reaction are 3 

mol % catalytic loading, 10 mol % cyclopentene, at 130 ⁰C and 8-14 h reaction time and 

toluene as the solvent. 



89 

 
 

Table 3.2: Solvent Effect on the Reaction of 3-Methoxybenzylamine and 2-Butanol.a 

Entry Solvent Temp/⁰C Yield( %)b 

1 Toluene 130 89 

2 Chlorobenzene 130 90 

3 Dioxane 130 0 

4 Methanol 120 <2 

5 THF 120 22 

6 CH3CN 120 0 

7 Toluene 110 <10 

8 Toluene 120 75 

9 Toluene 140 93 

aReaction conditions: 2-butanol (0.6 mmol), 3-methoxybenzylamine (0.5 mmol) , 
cyclopentene (1.5 mmol) , Ru-H catalyst 1 (3 mol %) in solvent (1 mL) at different 
temperatures ⁰C, 12 h. b the conversion of ketone was determined by GCMS analysis 
using C6Me6 as an internal standard. 

3.1.3 Reaction Scope 

We found that catalyst 1 catalyzes deaminative coupling of amines and with alcohol 

to afford product 7 in high yield. [Eq. (3.8)] Addition of excess amount of cyclopentene 

(1.5 mmol) was found to promote the coupling reaction. Scope of the coupling reaction 

was investigated by the catalyst 1. 
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Simple aliphatic amines such as propylamine smoothly react with 2-butanol to 

produce deaminative coupling product 7a, which was analyzed by GC and GC-MS (Table 

3.3, entry 1). Excess amine (5 equiv.) was used because n-propylamines has a low boiling 

point, and the products were analyzed by GC-MS method. n-Propylamine with aromatic 

substituted alcohols like 4-phenyl-2-butanol and 1-phenyl-1-ethanol also gave the 

corresponding coupling products, in high yield, in which the alkylation produced 

regioselectively to less sterically hindered side of alcohol (Table 3.3, entry 2 and 3). 1-

Phenyl-1-ethanol with long chain primary aliphatic amines like 1-hexylamine also gives 

90 % yield product 7d (Table 3.3, entry 4).  

To investigate diastereoselectivity of coupling reaction, the reaction of propylamine 

with a cyclic aliphatic alcohol such as cyclohexanol and cyclopentanol was examined 

(Table 3.3, entry 5-6). Propylamine with 2-methylcyclohexanol gave 1:1 ratio of 

diastereomeric coupling product by GC-MS yield (Table 3.3, entry 7). Cyclic aliphatic 

amines like cyclohexyl amine with 3-methoxyphenethanol led to the formation of coupling 

product in 68 % yield (Table 3.3, entry 8).  

We investigated benzylamines with different aliphatic secondary alcohols. 

Benzylamines with 2-butanol, 1-phenylethanol gave the coupling products in high yield 

(Table 3.3, entry 9-10). Interestingly, 3-methoxybenzyl amine with 2-propanol, 2-pentanol 

and 1-penylethanol provided coupling product in reasonable yield (Table 3.3, entry 11-13). 

Next, we explored the reactivity of benzylamine with alphatic cyclic alcohols such as 

cyclopentanol, cyclohexanol, and cyclodecanol which gave moderately high yield of 

coupling products 7n, 7o, and 7q (Table 3.3, entry 14-17). Also the coupling reaction with 

3-methoxybenzyl amine with cycloheptanol produced 71 % of coupling product 7p.The 
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coupling reaction of 2-methylcyclohexanol is with benzylamine exclusively formed a 

diastereoselective cis product (Table 3.3, entry 18).  

Table 3.3: Deaminative Coupling of Amines with Alcohol.a 

entry amine alcohol product(s) time (h) yield (%)

NH2

OH

R

O

R

n

OH

R

n

1
2
3
4

O

R

n

n n
R = Et
R = CH2CH2Ph
R = Ph
R = Ph

n = 1
n = 1
n = 1
n = 3

7a
7b
7c
7d

12
8
8
8

64
91
82
89

n = 1
n = 2
n = 2

R = H
R = H
R = Me

5
6
7

7e
7f
7g

75
78
69

12
12
12dr(1:1)

89
84
97
92
90

9
10
11
12
13

NH2

MeO
ROH

R

87
68
71
63
74

O

X

X

OH

R

n

O

R

n

X = H
X = H
X = OMe
X = OMe
X = OMe

R = n-Pr
R = Ph
R = Me
R = n-Bu
R = Ph

7i
7j
7k
7l
7m

8
8
12
8
8

X = H, n =1
X = H,n = 2
X = OMe, n= 3
X = H, n = 6
X = OMe, n = 2

R = H
R = H
R = H
R = H
R = Me

8
8
12
12
12

14
15
16
17
18

7n
7o
7p
7q
7r dr (>20:1)

c-C6H11-NH2 Ar

OH

Ar

O

Ar = 3-OMeC6H4
7h

8212
8

 

aReaction conditions: alcohol (1.2 mmol), amine (1 mmol), cyclopentene (1.5 mmol), 
Ru-H catalyst 1 (3 mol %) in toluene (1 mL) at 130 ⁰C. 
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Table 3.3 Cont.…..

 

aReaction conditions: alcohol (1.2 mmol), amine (1 mmol), cyclopentene (1.5 mmol), Ru-H 
catalyst 1 (3 mol %) in toluene (1 mL) at 130 ⁰C. 

.  
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We investigated the reaction of secondary benzylamines such as N-methyl-3-

methoxybenzylamine with 2-butanol and 1-phenyl-1-ethanol selectively gave the coupling 

products 7s and 7t, which involved the cleavage of benzylic C-N over N-CH3 bond (Table 

3.3, entry 19, 20). Same amine with 2-methylcyclohexanol produces extremely cis 

diastereoselective of 7r (Table 3.3, entry 21). Highly deactivated benzylamines such as 3, 

5-dimethoxybenzyl amine with 2-butanol and 1-phenyl-1-ethanol also produced the 

coupling products 7u and 7v in 88 % and 92 % yield respectively (Table 3.3, entry 22, 23). 

Same amine with 3-hexanol gave exclusively regioselectively coupled at less hindered β-

carbon of alcohol in 84 % yield as a racemic mixture 7w (Table 3.3, entry 24). 1-Phenyl-

1-propanol with 3, 5-dimethoxybenzyl amine produced corresponding ketone 7x with a 

chiral center (Table 3.3, entry 25). Cyclic aromatic alcohols such as 1, 2, 3, 4-Tetrahydro-

1-naphthol and 1-indanol react with 3, 5-dimethoxybenzylamine yielding 87 % and 82 % 

coupling products 7y and 7z (Table 3.3, entry 26, 27). Then we explored the scope to 3-

methoxyphenethylamine with 1-phenyl-1-ethanol, 2-butanol, which formed coupling 

products and cyclopentanol in high yield (Table 3.3, entry 28-30).  

We explored the synthetic utility of coupling of alcohols by using biologically 

active amines and chiral and heterocyclic amines (Table 3.4). Ethyl 3-

benzylaminopropionate which is a β-alanine derivative also led to selective deamiantion of 

benzyl C-N bond coupling with alcohols (Table 3.4, entry 1). Chiral amines such as (R)-2-

phenyl-1-propylamine react with 1-(4-methoxyphenyl) ethanol leading to formation of 

chiral ketone 8b in 60 % yield with stereoselectivley (Table 3.4, entry 2).  

The reaction with 1-acenaphthenol gave the coupling product 8c with 3:2 

diatereomeric ratio in 90 % yield (Table 3.4, entry 3) and with cyclic alcohol such as 
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cyclopentanol with high diasteroselctivity 10:1 ratio in 85 % yield (Table 3.4, entry 46). 

Next we tried to expand the scope to α,β-unsaturated ketone substrate such as 1-acetyl-1-

cyclohexene with benzylamine which led to formation of saturated coupling product 8e 

(Table 3.4, entry 4). Then we expanded the scope for biologically active alcohol and 

ketone compounds. 

Table 3.4: Deaminative Coupling of Various Amines and Biologically Active 
Compounds. 

entry amine alcohol product(s) time (h) yield (%)

Ar

OH

Ph N
H

CO2Et
O

Ph

Ph

NH2

OH

O
Ph

(3:2)

Ar

OPh

Ar

OH

NH2

X

O

O

O

O

XH

H
H

H

3:1

O O

Ph

1

2

3

4

5

6

OH

O

Ph

8a

8b

8c

8d

8e

8f

85

85

75

60

12

12

12

12

12 65

Ar = 4-OMeC6H4

Ar

12 68

 
 

 

 

 

 



95 

 
Table 3.4: Cont.… 

 

aReaction conditions: alcohol (1.2 mmol), amine (1.0 mmol), cyclopentene (1.5mmol), Ru-
H catalyst 1 (3 mol %) in toluene (1 mL) at 130 ⁰C. 

The case of 3-methoxybenzylamine with progesterone led to the formation of 

selective alkylation of 2-benzyl progesterone 8f in cis:trans (3:1) diasetereomeric mixture 

in 65 % yield (Table 3.4, entry 5). When 3-methoxybenzylamine coupled with estradiol 

led to formation of selective alkylation of 16’-aryl progesterone 8g in cis:trans (2:1) 

diasetereomeric mixture in 70 % yield (Table 3.4, entry 6). In both cases, cis diastereomer 

is the major product. Benzylamine with cholesterol led to formation of 2-
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benzylcholetenone with high regio- and stereoselctive dr >20:1, 3-α product 8h. 

Benzylamine with benzyl deoxycholic acid ester produces 3-β product selectively 8i. 

Heterocyclic benzyl amines such as 2-aminomethylpyridine and 2-aminomethylfuran with 

1-pheylethanol produces corresponding ketone product in high yield (Table 3.4, entry 10-

12) 

3.1.4 Mechanistic Study 

3.1.4.1 H/D exchange experiment 

The following kinetic experiments were performed to gain mechanistic insights into 

catalytic C-N bond cleavage reaction of amines. To examine H/D exchange pattern of 

benzylamine, the reaction of  3-methoxybenzyl amine (0.2 mmol) with 2-propanol-d8 (0.4 

mmol, 99 % D) in the presence of  1 (4 mg, 3 mol  %) in toluene-d8 (0.4 mL) at 80 ⁰C was 

seen for 1 h [eq. (29)]. The reaction progress was monitored by both 1H and 2H NMR.   

 

A substantially higher amount of deuterium incorporation to the arene para to the methoxy 

group (34 %) was observed than to the hydrogen to the ortho to methoxy group (18 %) 

(Figure 3.1). The results indicate that the meta-electron releasing group promotes ortho-

metallation of benzylamine substrate.  

The results are not consistent with a possible mechanism through imine 

formation.39 But in H/D exchange experiment none of H/D exchange was observed at 

benzylic C-H of 3-methoxybenzylamine. If the mechanism is going through imine 

formation, it should exchange D at benzylic position of benzylamine [eq. (3.10)].  
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Figure 3.1. 1H and 2H NMR Spectra of the Reaction Mixture of 3-Methoxybenzyl Amine 
with 2-Propanol-d8 at 80 °C. 
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3.1.4.2 Hammett Study 

Hammett studies of para-substituted benzylamine substrates were performed to 

determine the electronic effects on arylalketone substrate during C-N bond cleavage 

reaction. Para-substituted benzylamines, p-X-C6H4CH2NH2 (X = OCH3, CH3, H, Cl) (1.0 
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mmol), 1-phenylethanol (1.5 mmol), cyclopentene (0.05 mmol) and complex 1 (3 mol %) 

were dissolved in toluene (2 mL) in six separate 25 mL Schlenk tubes in a glove box. The 

tubes were brought out of the glove box, and stirred in an oil bath set at 120 °C. Each 

reaction tube was taken out of the oil bath in 30 minute intervals, and was immediately 

cooled and analyzed by 1H NMR using hexamethyl benzene as the internal standard. The 

kobs was determined from a first-order plot of -ln([p-X-C6H5CH2NH2]t/p-X-

C6H5CH2NH2]0) vs. time. The Hammett plot of log(kX/kH) vs. σp is shown in Fig. 3.2.  The 

reaction rate was found to be considerably accelerated by benzylamine containing electron 

donating groups.   

 

Figure 3.2. Hammett Plot of p-X-C6H4CH2NH2 (X = OCH3, CH3, H, Cl, Br) with 1-
Phenyl-1-ethanol. 

The Hammett correlation of para-substituted benzylamine substrates (p-X-

C6H4CH2NH2 (X = OMe, CH3, H, F, Cl) led to ρ = -1.2±0.1 (Figure 3.2). Thus, a relatively 

electron rich Ru catalyst with electron-donating group should promote the binding and the 

activation of C-N bond. The negative value of ρ indicates considerable cationic character 
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in the transition state of the ruthenium complex which is generated from keto-enol 

taurtamization of ketone. We believe that a highly electrophilic ruthenium enolate complex 

is formed during the reaction and C-N bond cleavage is the rate determine step (Scheme 

3.4). 

 

 

 

3.1.4.3 Carbon Isotope Effect Study. 

The following 13C KIE experiment was performed to established rate- determine 

step of the catalytic reaction. In a glove box, 1-phenylethanol (1.5 g, 1.5 mmol), 1-

hexylamine (1.6 g, 12 mmol), cyclopentene (70 mg, 1 mmol) and complex 1 (180 mg, 3 

mol %) were dissolved in toluene (30 mL) in 3, 100 mL Schlenk tubes equipped with a 

Teflon screw cap stopcock and a magnetic stirring bar. The tube was brought out of the 

box, and stirred for 4h, 4.5h, and 5 h respectively, in an oil bath which was preset at 120 

°C. Compound 1-phenyl-1-octanone (7d) was isolated by a column chromatography on 

silica gel (hexanes/EtOAc = 40:1 to 10:1) separately after filtering through a short silica 

gel column eluting with CH2Cl2 (20 mL), and each solution was analyzed by GC (15, 18 

and 20 % conversion). The commecially available authenitc sample was used as the virgin 

sample. 

The 13C{1H} NMR analysis of the recovered and virgin samples of 1-phenyl-1-

octanone was performed by following Singleton’s 13C NMR measurement technique.40 The 
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NMR sample of virgin and recovered 1-phenyl-1-octanone was prepared identically by 

dissolving (100 mg) in CDCl3 (0.5 mL) in a 5 mm high precision NMR tube. The 13C{1H} 

NMR spectrum was recorded with H-decoupling and 45 degree pulse. A 60 s delay between 

pulses was imposed to minimize T1 variations (d1 = 60 s, at = 5.0 s, np = 245098, nt = 704). 

The data are summarized in Table 3.6. 

 

  
Table 3.5: Calculated Average 13C KIE from Virgin (Ro) and Recovered (R) Samples of 
Octanophenone. 

Carbon no. Authentic sample 
(Ro) 

Low conversion 7d 
(R) 

 R0/R 13C KIE 

1 1.000(0) 0.995(0) 1.005 1.000 

2 1.000(3) 0.977(5) 1.023 1.023 

3 1.000(1) 0.9998(3) 1.002 1.002 

4 0.998(9) 1.001(3) 0.997 0.997 

5 1.003(3) 1.002(1) 1.002 1.001 

6  1.000(1) 1.000(2) 1.000 1.000 

7 1.000(0) 1.000(0) 1.000 1.000 

 

As shown in Equation 3.12, the most pronounced carbon isotope effect was 

observed on the β-carbon atom of 7d when the 13C ratio of product at average 18 % 

conversion was compared to that of the virgin sample (13C(low conversion)/13C(virgin) at 



101 

 
Cβ = 1.020, average of three runs). Using the equations developed by Melander and 

Saunder,41 the 12C/13C isotope effects are calculated as summarized in Table 3.5. NMR 

measurement gave KIEs which are relative to some reference atom C(8), which has KIE 

1.000 by definition. C8 was chosen as the reference atom of 7d because it is the carbon 

atom furthest from the site of alkylation. We observed that a significantly lower 

incorporation of 13C at the C(3) = 1.020 of the product 7d due to slower rate of C-N bond 

cleavage. C(3) of the product is from the C-N bond of amines. This results consistence with 

the C-N bond cleavage is much slower than the other steps of the alkylation reaction. If the 

C-C bond formation or enolate formation is the rate limiting step 13C KIE should be higher 

on C2. 

3.1.4.4 Proposed Mechanism 

Although details of the reaction mechanism remain unclear, we present a working 

hypothesis involving ruthenium enolate as a mechanistic rationale for the cleavage of C-N 

bond and formation of product 7, as illustrated in Scheme 3.3. Dehydrogenation of alcohol 

to carbonyl compounds are known for the tetrameric ruthenium catalyst,37 and ketone from 

alcohol dehydrogenation was detected by GC-MS of crude mixture. Therefore, we propose 

that the first step would be the formation of ketone from alcohol. On the basis of similar 

reactivity pattern38a, we propose a mechanism involving a cationic Ru-alkenyl species 9, 

which is initially formed from the reaction of 1 with two equivalents of cyclopentene 

substrate via the vinylic C–H activation and an alkane elimination step (Scheme 3.3).39  
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Scheme 3.3: Generation of Cationic Ru-Alkenyl Species 9. 

 

Next we attempt to generate catalytically relevant ruthenium enolate complex 10, 

which could be formed from complex 9 with reaction of enol form of the ketone and 

cyclopentene act as a hydrogen accepter in this step.43 Hartwig et al have been identified 

and characterized O-bound (A) or C-bound Ruthenium enolates (B).43g-I Very recently, 

Martín-Matute also identified C-bound Ru enolate (C), and they proposed that is not the 

catalytically active species in the reaction of β-hydroxy ketone from allylic alcohol 

catalyzed by Ru(ɳ5-C5Ph5)(CO)2Cl. Their attempts were not successful to identify Ru O-

bound enolate species and they proposed the Ru O-bound enolate is the catalytically active 

intermediate.43f 
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(C) 

We also proposed that the O-bound ruthenium enolate 10 will be catalytically active 

species in the amine coupling reaction generated from active ruthenium species 9, because 

C-bound enolate stable 18e complex and O-bound enolate is in equilibrium with ɳ1 and ɳ3 

which has coordination site for another molecule. Then the amine coordinates to the active 

Ru species 10 (Scheme 3.4). Though the exact mechanism of the C–N cleavage step is not 

clear at the present time, one possible pathway involves the oxidative addition of the C–N 

bond to form a cationic Ru(IV)-alkenyl-alkyl species 11 (similar complexes for C-O bond 

has been proposed).40a  High negative Hammett value suggest that the cationic character in 

the rate limiting step of the reaction. We proposed that is due to formation of highly 

electrophilic ruthenium enolate species 10 is involved in the reaction. Therefore we 

propose that the oxidative addition of amine C-N bond will be the rate determine step as 

described under 13C KIE study. The next step is insertion of alkyl group to the enol to form 

ketone coupled product.43 Catalytically active species 9 is regenerated by reacting another 

enol and release of product 7 and NH3. Ammonia was detected from the crude reaction 

mixture giving white fumes with concentrated HCl. 
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Scheme 3.4: Proposed Mechanism for Deaminative Coupling of Amines with Alcohol. 
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3.2 Synthetic and Mechanistic Studies of Decarboxylative and Deaminative 
Coupling Reactions of Amino Acids with Ketones. 

From both environmental and economic points of view, amino acids constitute a 

highly attractive class of alkylating reagent because they are inexpensively derived from 

natural sources and ammonia and carbon dioxide is the only by-product resulting from the 

associated coupling reaction. We developed catalytic system for decarboxylative and 

deaminative coupling reactions of α- and β-amino acids ketones. The coupling reaction 

involves C-C and C-N bond activation of amino acids with linear alkyl chain also and for 

more functionalized amino acids.  The byproducts of this reaction are ammonia and carbon 

dioxide which are removed from the reaction mixture. To the best of our knowledge this is 

the first example of catalytic C-C and C-N bond cleavage of amino acids by metal ion 

catalysis [eq. (3.13)]. 

 

Having well defined cationic ruthenium-hydride complex 1 in hand, we explored 

its catalytic activity for decarboxylative and deaminative coupling reaction of amino acids 

with ketones. For example, L-Leucine (1.2 mmol), 4-methoxyacetophenone (1 mmol), 

cyclopentene (10  mmol) and complex 1 (17 mg, 3 mol %) were dissolved in toluene (2 

mL) and was stirred in an oil bath set at 120 °C for 12 h to obtain coupling product with 

90 % yield [eq. (3.14)]. This catalytic method efficiently produces decarboxylative and 

deaminative coupling product 14 from the reaction of L-leucine with 4′-

methoxyacetophenone which was isolated by simple silica gel chromatography and the 

structure was completely established by spectroscopic techniques [eq. (3.14)]. 



106 

 

 

3.2.1 Optimization of Reaction Conditions 

3.2.1.1 Catalytic Survey 

To assess the feasibility of the deaminative coupling reaction, we initially screened 

a number of ruthenium catalysts for the coupling reaction of (L)-leucine with 4’-

methoxyacetopheone under the reaction conditions stipulated in Equation (14). Among 

screened catalysts, the catalyst 1 shows distinctively high activity in forming the coupling 

product 1-(4-methoxyphenyl)-5-methylhexan-1-one (14). Moreover, the catalyst mediates 

highly regioselective alkylation to the sterically less demanding α-ketone carbon atom in 

forming the product 14.  

Following the previously developed protocol for generating an active ruthenium 

vinyl species,38c we have been able to promote the catalytic activity of 5 by adding a 

substoichiometric amount of an alkene (10 mol %). We have also been able to trap both 

ammonia and carbon dioxide byproducts by chemically converting them into isolable 

forms. Thus, carbon dioxide is readily converted into BaCO3 (82% CO2) with Ba(OH)2, 

while the treatment of the crude reaction mixture with HCl (aq.) is used to estimate the 

formation of ammonia (79 % NH3) by following a literature procedure.45-47  



107 

 

Table 3.6: Catalyst Screening for the Coupling of 4-Methoxyacetophenone with L-
leucine.a 

Entry Catalyst  Additive Yield (%)b 

1 1  90 

2 [RuH(CO)(PCy3)]4(O)(OH)2  5 

3 [RuH(CO)(PCy3)]4(O)(OH)2 HBF4·OEt2 55 

4 RuHCl(CO)(PCy3)2 HBF4·OEt2 0 

5 RuCl3·3H2O  0 

6 RuCl2(PPh3)3 HBF4·OEt2 0 

7 RuH2(CO)(PPh3)3 HBF4·OEt2 <5 

8 [RuH(CO)(PCy3)2(CH3CN)2]+BF4
-  10 

9 [(p-cymene)RuCl2]2  0 

10 Ru3(CO)12 NH4PF6 0 

11 HBF4·OEt2  0 

aReaction conditions: L-Leucine (0.6 mmol), 4-methoxyacetophenone (0.5 mmol), 
cyclopentene (10 mol %) , catalyst (3 mol %) in toluene (2 mL) at 120 ⁰C, 12 h. b The 
product yield was determined by GC and GC-MSusing C6Me6 as an internal standard. 

3.2.1.2 Solvent and Temperature Effects 

The solvent effect on the activity was examined for the coupling reaction of amino 

acid with ketone [Eq. (3.16)]. The treatment of L-Leucine (0.6 mmol) and 4-

methoxyacetophenone (0.5 mmol) with substochimetric amount of alkene (10 mol %) in 

the presence of metal catalyst 1 (3 mol %) in different solvents at 120 ⁰C was analyzed by 



108 

 
GC-MS after 12 h reaction time. It was found that the nature of the solvent considerably 

affects the activity of coupling reaction. 

Table 3.7: Solvent Effect on the Reaction of Leucine with 4-Methoxyacetophenone.a 

Entry Solvent Temp/⁰C Yield( %)b 

1 Toluene 120 90 

2 Chlorobenzene 120 88 

3 Dioxane 120 18 

4 Methanol 120 <5 

5 THF 120 15 

6 CH3CN 120 0 

7 Toluene 100 <2 

8 Toluene 110 35 

9 Toluene 135 95 

aReaction conditions: L-Leucine (0.6 mmol), 4-methoxyacetophenone (0.5 mmol), 
cyclopentene (10 mol %) , catalyst (3 mol %) in solvent (1 mL), time 12 h. b the 
conversion of ketone was determined by GCMS analysis using C6Me6 as an internal 
standard. 

 

Non-protic, non-coordinating solvents such as chlorobenzene or toluene were 

found to be the most suitable for the amine and alcohol coupling reaction among screened 

solvents (Table 3.7, entry 1 and 2). Acetonitrile strongly coordinates to the ruthenium 

center and inhibit the catalytic activity (Table 3.7, entry 6). Coordinating solvents such as 

dioxane and THF also less effective for the catalytic reaction could be due coordination 

ability to Ru center (Table 3.7, entry 3, 5).  
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The temperature effect was investigated by running reaction at different 

temperatures in toluene (Table 3.7, entry 7-9). It was observed that high temperature such 

as 120 ⁰C is needed for decarboxylation and deamination of amino acids. At 100 ⁰C no 

reaction was observed and less active at 110 ⁰C. Once temperature increased up to 135 ⁰C 

no considerable increment of yield was observed. Therefore 120 ⁰C was found to be the 

best temperature for the reaction. 

3.2.1.3 Catalyst Loading 

 
Table 3.8: Catalyst Loading Effect on the Reaction of Leucine with 4-
Methoxyacetophenone.a 

Entry Catalytic loading / (mol %) Yield ( %)b 

1 1 65 

2 1.5 71 

3 2 80 

4 3 90 

5 5 92 

aReaction conditions: L-Leucine (0.6 mmol), 4-methoxyacetophenone (0.5 mmol) , 
cyclopentene (10 mol %) , catalyst (3 mol %) in toluene (1 mL) at different 120 ⁰C, 12 
h. b the conversion of ketone was determined by GCMS analysis using C6Me6 as an 
internal standard. 

The coupling reaction was optimized by using different amount of catalyst (Table 

3.8). It was found to be 3 mol % was the best catalytic loading for the coupling reaction 

(Table 3.8, entry 4). 1 mol % -1.5 mol % of 5was less active (Table 3.8, entry 1-3) and also 

5 mol % of 5 has not increased (Table 3.8, entry 5) the yield by significant amount. We 
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found that the optimum conditions for the coupling reaction are 3 mol % catalytic loading, 

10 mol % cyclopenene, at 120 ⁰C and 12 h reaction time in toluene as the solvent. 

 

3.2.2 Reaction Scope 

We found that catalyst 1 catalyzed decarboxylative and deaminative coupling of 

amino acids with ketone to afford product 14 in high yield [eq. (3.17)]. Addition of 

substoichiometric amount of cyclopentene (10 mol %) was found to promote the coupling 

reaction. Protected amino or carboxylic groups are generally used in coupling reactions, 

but in this case both amine and carboxylic acid groups are used as leaving groups.

Having established the optimized conditions at hand, we then surveyed the scope of the 

present α-alkylation of ketones, and the results are summarized in Table 3.9.  

In general, α-amino acids with both aliphatic and aryl side chains readily react with 

aliphatic ketones (Table 3.9, entry 1-2) and also acetophenone type ketones (Table 3.9, 

entry 3-6) to form the α-alkylated ketone products 14a-14f. The coupling of (S)-

phenylglycine with indanone and tetralone also produced coupling products high yield 

(Table 3.9, entry 7-8). The coupling of (S)-phenylglycine with both 2- and 3-

methylcyclohexanone result in a highly diastereoselective formation of the α-alkylated 

products 14i and 14j, respectively (entries 9 and 10). 
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Table 3.9: Decarboxylative and Deaminative Coupling of α-Amino Acids with Ketones.a  

 
aReaction conditions: amino acid (1.2 mmol), ketone (1 mmol), cyclopentene (10 
mol %) , catalyst (3 mol%) in toluene (1 mL) at 120 ⁰C. 
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Table 3.9: Cont... 

  

aReaction conditions: amino acid (1.2 mmol), ketone (1 mmol), cyclopentene (10 mol %), 
catalyst (3 mol %) in toluene (1 mL) at 120 ⁰C. 

A number of oxygen and nitrogen groups are tolerated in the coupling with aryl-

substituted ketone substrates (entries 11-17). Aliphatic amino acid such as L-leucine 

coupled with both tetralone and indanone to produce alkylated ketone products 14r-14t 

(Table 3.9, entry 18-20). The coupling of an amino acid having a chiral substituent, L-

isoleucine, with 4-methoxyacetophenone directly forms an optically active product (+)-

14u (Table 3.9, entry 21). α-Amino acids such as L-alanine, L-Valine, and L-phenyl 

alanine smoothly react with indanone to produce alkylated products 14v-14x (Table 3.9, 

entry 22-24). Protected α-amino acids having oxygenated side chains such as L-serine and 

L-aspartic acid derivatives smoothly afford the coupling products 14y and 14z, respectively 

(entries 25 and 26). In most cases, racemic d,l-amino acids can be used without any 

significant change in the product yields, but a secondary amino acid, L-proline, does not 

yield any coupling products. We also compared the analogous coupling of aliphatic and 

benzylic amines with ketones, and in these cases, similar alkylation products are formed 
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but with considerably lower yield because of the formation of imine and other side products 

resulting from the homocoupling of amines. To the best of our knowledge, the catalytic 

method represents a unique set of examples on using bio-based amino acids as the 

alkylating agent for the C-C coupling reaction. 

Heteroatom functionalized α-amino acids such as lysine, serine, threonine, cystine; 

guanine did not give coupling products because alcohol, primary amines and guanidine 

functionalities are known to prefer Ru coordination. But the serine which was alcohol 

group of protected by benzyl group was coupled with 5-methoxy-1-indanoone in 80% yield 

(Table 3.9, entry 16). Also ɤ-carboxylic acid protected L-glutamic acid 5-methyl ester 

coupled with 1-indanone in 75 % yield (Table 3.9, entry 26). In an effort to extend its 

synthetic utility, we next inspected the coupling reaction of β-amino acids with ketones 

(Table 3.10, [eq. (3.18)]).   

In the coupling of (S)-3-amino-2-methylpropanoic acid with aryl-substituted 

ketones, the n-propyl group is regioselectively alkylated to form the coupling products 15a-

f (entries 1-6). The coupling reaction with 2-phenylcyclohexanone leads to the 

diastereoselective formation of 15g (Table 3.10, entry 7). In contrast, a modestly 

diastereoselective formation of the ethylated product 15h is observed from the coupling of 

3-aminopropanoic acid with 2-phenylcyclohexanone (Table 3.10, entry 9). 

Generally, the coupling reaction with branched β-amino acids is quite sluggish, thus 

leading to the decomposition products predominantly. Despite such difficulties, we have 

been able to effect the coupling reaction of the branched β-amino acids such as 3-

aminobutanoic acid and 3-amino-3-phenylpropanoic acid with acetophenone and indanone 

substrates to form the alkylated products 15i-k (entries 10-12). 
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Table 3.10: Decarboxylative and Deaminative Coupling of β-Amino Acids with Ketones.a 

entry amino acid ketone product(s) time (h) yield (%)

81
78

10
11

H2N
CO2H

12

O O

1
2
3
4

15a

15b

15c

15d

12
12
8
8

80
85
78
90

5
6

15j
15k

12
12

X = H
X = OMe
X = OMe
X = H

R

R

R = H
R = H
R = Me
R = PhO

n

O

n

X X

n = 1
n = 2

15e
15f

8
16

90
83

O

Ph

O

Ph
12 83

15i (dr = 3:2)

CO2H

O

X

O

X

Ph

8

X = OMe
X = H

H2N

CO2H
H2N

O O

9

12 89

Ph

15g

Ph

O
O

Ph

dr = 10:1 12 90

H2N
CO2H

Ph

O
O

12 80

7

15h

15l  
aReaction conditions: Amino acid (1.2 mmol), ketone (1 mmol), cyclopentene (10 
mol %), catalyst (3 mol %) in toluene (1 mL) at 120 ⁰C. 
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Our attempts to couple with ɤ and δ amino acids with ketone were not successful 

indicating that chelation of amine and carboxylic acid to ruthenium catalyst with stable 5- 

or 6-membered ring structure prior to the decarboxylation. 

To further demonstrate synthetic versatility of the catalytic coupling method, we 

employed a number of bioactive ketone substrates to probe chemo- and stereoselectivity 

patterns on the alkylation products (Table 3.11). The alkylation of cholesterol (which 

readily undergoes alcohol dehydrogenation under the reaction conditions) and trans-

androsterone with (S)-phenylglycine occurs in a highly regio- and stereoselective manner 

to give the anti-selective alkylation products, (+)-16a and (+)-16b, respectively. In 

contrast, the cis-fused deoxycholic acid benzyl ester with (S)-phenylglycine leads to the 

syn-selective alkylation product (+)-16c. 

 

Table 3.11: Decarboxylative and Deaminative Coupling Reaction of Biologically 
Important Ketones and Peptides.a 

aReaction conditions: amino acid (1.2 mmol), ketone (1 mmol), cyclopentene (10 mol %), 
catalyst (3 mol %) in toluene (1 mL) at 120 ⁰C. 
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The alkylation of L-isoleucine with indanone leads to a modestly diastereoselective 

formation of the coupling product 16d (d.r. =2:1). The coupling reaction of (S)-

phenylglycine with dihydro-β-ionone proceeds in a regioselective fashion to give 16e, 

while the coupling of L-tryptophan with 4-methoxyacetophenone yields the coupling 

product 16f, thus resulting from the dehydrogenation of indole moiety. The regio- and 

diastereoselective formation of these alkylation products can readily be explained from 

imposing a sterically least hindered ruthenium enolate species. 

3.2.3 Mechanistic Studies 

 

3.2.3.3 H/D exchange Experiments 

 

We performed the following experiments to gain mechanistic insights into the 

coupling reaction. First, the treatment of C6D5COCD3 with L-leucine leads to substantial 

deuterium incorporation at both α- and β-carbon atoms on the coupling product [D]-14m 

[Eq. (38)]. The observed hydrogen-deuterium exchange pattern is consistent with a facile 
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keto-enol tautomerization of the ketone substrate and the ortho-arene C-H exchange. The 

extensive deuterium incorporation on the β-carbon atom can be interpreted as an amine-

imine hydrogenation/dehydrogenation of the amino acid substrate under the reaction 

conditions.  

 
Figure 3.3. 1H and 2H NMR Spectra of 14m-d Obtained from the Reaction of 
Acetophenone-d8 with (S)-Leucine.  

3.2.3.4 13C-Kinetic Isotope Effect 

Second, the NMR technique reported by Singleton and co-workers is used to 

measure the 12C/13C kinetic isotope effect (KIE) from the coupling reaction of 4-

methoxyacetophenone with L-leucine [Eq. (3.20)]. The most pronounced carbon KIE is 

observed for the β-carbon atom of 14 k, when the 12C/13C ratio of the product at 7 % 

conversion is compared to that of the product obtained at a low conversion (KIE on 

C3=1.024; average of 3 runs; see Table 3.12).40 

 

o- 
S α- β

m- 

γ-
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Table 3.12: Average 13C Integration of the Product 14k at High Conversion (R0; 96 % 
conversion), at Low Conversion (R; avg 18 % conversion) and the Calculated 13C KIE.  

Carbon no. High conversion 
14k (R0) 

Low 
conversion 14k 

(R) 

R0/R KIE 

1(ref) 1.000(0) 1.000(0) 1.000 1.000 

2 1.000(5) 0.997(1) 0.997 0.997 

3 1.000(1) 1.023(6) 1.024 1.024 

4 0.997(9) 1.001(3) 0.996 0.996 

5 1.003(3) 1.002(1) 1.001 1.001 

6  0.996(1) 0.998(2) 0.999 0.999 

β-Carbon of the product 14k is α-carbon of the starting amino acid. The higher 

incorporation of 12C at β-carbon of 14k, suggest that the C-N bond cleavage or 

decarboxylation step is intimately involved in the turnover limiting step of the coupling 

reaction. But as we observed the amine formation by decarboxylation of amine acid is the 

first step and faster than C-N cleavage step decaroxylation step is not the rate limiting step. 

Also as we explained earlier if Ru-enolate formation is the rate determine step, we should 

observe high 13C at α-carbon. Gathering all information we propose that the C-N bond 

cleavage step is the rate limiting step of the alkylation reaction. 
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3.2.3.5 Hammett Study 

To further probe electronic effect of the ketone substrate, a Hammett plot is 

constructed from the reaction of a series of p-X-C6H4COMe (X=NH2, OCH3, CH3, H, Cl, 

CN) with L-leucine [Eq. (3.22)]. A linear correlation from the relative rate versus the 

Hammett σp is observed with a positive slope (ρ=+1.2±0.2; see Figure 3.4). Strong 

promotional effects by para-electron-withdrawing groups suggests a substantial build-up 

of cationic character on the α-carbon atom of the ketone substrate, and the results can be 

explained by the formation of a cationic ruthenium enolate species. 

 

Figure 3.4. Hammett Plot of p-X-C6H4COCH3 (X = NH2, CH3, H, Cl, Br, CN) with (S)-
Leucine. 
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3.2.3.6 Formation of Intermediate Species 

To probe the deamination versus decarboxylation sequence, we surveyed a number 

of different carbonyl substrates with L-leucine. The trapped amide product 17 is 

successfully obtained from the treatment of dihydrocoumarin with L-leucine [Eq. (3.23)]. 

The selective formation of the amide product 17 supports a preferential decarboxylation 

over the deamination step for the amino acid substrate. Transition metal catalyzed 

decarboxylative coupling methods have been successfully employed for the synthesis of 

complex organic molecules.46  

 

3.2.4 Proposed Mechanism 

Although details still remain unclear, we propose a working mechanistic hypothesis 

for the coupling reaction on the basis of these experimental results (Scheme 3.5). By 

considering the first step of the mechanism is decarboxylation of amino acid evidenced by 

[Eq. (3.23)], we propose that the cationic ruthenium(II) enolate species 10, initially 

generated from the keto-enol tautomerization and dehydrogenation steps, is the key species 

for the coupling reaction. The observed deuterium exchange pattern on the coupling 

product [D]-14 m is consistent with a facile and reversible enolization of the ketone 

substrate via the ruthenium enolate species 10.48 Late transition metal/enolate complexes 

have been well known to mediate a variety of C=C coupling reactions, including Michael-
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type conjugate addition and nucleophilic addition reactions. We also showed that the 

ruthenium hydride complex effectively catalyzes the formation of silyl enol ethers from 

the coupling reaction of ketones and vinylsilanes. Though the trapping experiment supports 

for a preferential decarboxylation, we do not have any direct mechanistic evidence for the 

decarboxylation process at the present time 

 

Scheme 3.5: Proposed Mechanism for the Decarboxylative and Deaminative Coupling of 
Amino Acids with Ketone. 

If the enolate formation is rate determine step Hammett value should be positive 

value because electron withdrawing groups contained ketones stabilizes keto-enol 

tautomirization. Decarboxylation of amino acid would be the next step and decarboxylated 
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amine acid coordinates to the ruthenium complex 10. By correlating with Hammett studies 

shown in Chapter 2, rate-determine step would be generating positive charge on Ru 

complex. Therefore we propose oxidative addition of amine C-N bond in complex 11 to 

form complex 12 is the rate determine step. Then the insertion of alkyl group from amine 

to enolate double bond produces the expected ketone. Reaction of another enol form of 

ketone with complex 13 generates active Ru-enolate by releasing product 14 and NH3. 

Phenylglycine with 2-methylcyclohexanone yielded cis diastereomer product as 

high diastereoselctive product (Table 3.9, entry 11). Active species of Ru catalyst 

coordinates to opposite side of the methyl group of enol form of 2-methyl-1-cyclohexanone 

due to steric repulsion. Therefore bulky group contain Ru and PCy3 blocks the one side of 

enolate intermediate. Alkylation of enolate could occur opposite to the high steric catalyst 

which is same side of methyl group. Therefore cis-diastereomer is the major product of this 

alkylation reaction (Fig. 3.5). 

 

 

Figure 3.5: Transition State of Alkyl-Ruthenium Enolate Complex. 

After the initial decarboxylation, the resulting amine substrate proceeds to the C-N bond-

cleavage step either by a direct oxidative addition/reductive coupling mechanism or by the 

formation of an imine and the subsequent coupling with the enolate substrate. In either 
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case, the observed carbon KIE data provides support for the C-N cleavage as the rate-

limiting step in leading to the formation of the alkylated product 14. The regio- and 

stereoselective formation of the alkylation product can be readily rationalized from the 

preferential formation of the sterically least demanding ruthenium enolate complex and an 

intramolecular addition of the alkyl group. Finally, the extrusion of ammonia byproduct 

provides the driving force for the regeneration of the ruthenium enolate complex 10. 

 This work was publishe in Kalutharage, N. and Yi, C. S. (2013), Deaminative and 

Decarboxylative Catalytic Alkylation of Amino Acids with Ketones. Angew. Chem. Int. 

Ed., 52: 13651-13655. doi: 10.1002/anie.201307766. 

3.2.5 Conclusion: 

In conclusion, we have successfully developed a novel catalytic C-N bond cleavage 

method of saturated amines from the dehydrogenative coupling reactions with alcohols 

with high substrate scope. The catalytically method employs environmentally friendly and 

cheaply available alcohols and exhibit a broad substrate scope and high chemoselectivity.  

Also we have successfully developed a novel catalytic alkylation method using 

readily available amino acid substrates as a bio-based alkylation agent. The salient features 

of the catalytic method are that it achieves direct C-C and C-N bond cleavage of biomass-

derived amino acid substrates, exhibits a broad range of substrate scope, as well as high 

regio- and stereoselectivity, and it does not require any reactive reagents or pre-

functionalization of the substrates in forming the α-alkylated ketone products. 
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CHAPTER 4 

SYNTHETIC AND MECHANISTIC STUDIES OF REDUCTIVE 
DEOXYGENATION AND HYDROGENOLYSIS OF ALDEHYDES AND 

KETONES 

4.0 Introduction 

Ketones and aldehydes are commonly present in many natural organic compounds 

and pharmaceutical agents. A variety of biological functions are associated with aldehydes 

and ketones including flavors and fragrants (e.g. vanillin, cinamaldehyde, etc.), and 

hormones (e.g. estrone, testosterone, etc.).  Some are essential vitamin precursors, while 

the others may be drugs such as tetracycline and plant flavonoids naringin. 

                                           

           

Figure 4.1: Some Biologically Active Aldehydes and Ketone Compounds 

The depletion of fossil fuels has led to increasing interest toward the use of biomass 

feedstock as a sustainable source for chemicals and biofuels.1 Since fossil fuels are the 

major source of greenhouse gases, the challenge of producing the next generation of 
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biofuels that can effectively function as “drop-in” replacements for fossil fuels has led to 

renewed interests in conversion and utilization of cheaply and readily available alcohols 

and other oxygenated biomass precursors. Reductive deoxygenation of aldehydes and 

ketones to the  corresponding saturated compounds has attractive features, given its many 

applications in fine-chemical  synthesis2 and biofuel production.3 Unfortunately, classical  

deoxygenation methods of carbonyl compounds, such as those based on either the Barton–

McCombie,4 Clemmensen,5 or Wolff–Kishner6 methodologies, are generally associated  

with harsh reaction conditions and the use of stoichiometric  amounts of toxic reagents, as 

well as poor functional-group  tolerance.   

Wolff and Kishner first developed via hydrazone or semicarbazone cleavage in 

basic media.6 Clemmensen reduction method uses stoichiometric reducing agents Zn-Hg 

in strongly acidic media.5 The original Wolff–Kishner reduction procedure was to mix the 

carbonyl compound with 100 % H2NNH2 and potassium hydroxide in a sealed tube and 

heat the mixture at high temperature (160-200 °C) for days. Over the decades, the Wolff-

Kishner-Huang Minlon reduction method has been widely used in organic synthesis. For 

example, Huang-Minlon modified procedure employs 85 % H2NNH2·H2O in a high boiling 

point solvent (ethylene glycol).6d In the meantime, the original procedures have been 

modified in order to make the reaction conditions milder and more efficient.8-9 Other 

reduction methods involving the use of metal hydrides,9-12 with a combination of protic 

acids or Lewis acids have been well studied. From for the consideration of green chemistry 

and atom economy aspects, catalytic methods utilizing molecular hydrogen as a clean 

hydrogen source would be highly desired for the reduction of carbonyl compounds to 

hydrocarbons. 
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Currently, there are a number of catalytic protocols for the deoxygenation of 

carbonyl compounds by employing molecular hydrogen (H2).14 Although H2 constitutes 

the most atom-efficient and green reducing agent, its use is generally associated with high 

pressure, special equipment, and safety precautions to minimize the explosion risk.15 From 

an experimental point of view, it is very important to develop a catalytic method that avoids 

the use of highly active reagents, toxic starting materials, and minimize the formation of 

unwanted  byproducts. Exploring the use of molecular hydrogen as a sustainable source for 

the reduction of carbonyl compounds is an important research field for obtaining valuable 

hydrocarbon source from readily available alcohols sources. This chapter describes 

development of synthetic and mechanistic aspects of ruthenium catalyzed deoxygenation 

of carbonyl compounds by using molecular hydrogen. 

4.1 Results and Discussion 

 Our research group previously reported a selective catalytic C-H alkylation of 

alkenes with alcohols15 [Eq. (4.1)] from chap 4) and dehydrative C-H alkylation and 

alkenylation of phenol with alcohols [Eq. (26)] chapter 4).15 Very recently, we also 

reported a selective catalytic synthesis of unsymmetrical ethers from the dehydrative 

coupling of two different alcohols.16 [Eq. (4.1)]. In these cases, dehydrative C-O bond 

cleavage of alcohols has been utilized as the driving force for the C-C coupling reactions.  
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 In an effort to extend the scope of catalytic C-O cleavage reactions, we next 

explored its catalytic activity for reductive etherification of carbonyl compounds with 

alcohols to form the corresponding unsymmetrical ethers. Initially, we found that [(ɳ6-

C6H6)(PCy3)(CO)RuH]+BF4
-  (1) in the presence of phenol as a ligand could catalyze 

hydrogenolysis of  4-methoxyacetophenone  with iPrOH  in 1,4-dioxane at 130 ⁰C to give 

the product 1-ethyl-4-methoxybenzene 3 in >95 % yield  [Eq. (4.3)]. From the reaction of 

2-hydroxyacetophenone in the presence of excess amount of isopropanol did not produced 

the expected ether product, 2. Instead the reaction produced the ketone hydrogenolyses 

product 2-hydroxyethylbenzene 3 [eq. (4.2)]. In contrast, the coupling reaction produced 

unsymmetrical ether 2 as the major product in the absence of phenol [eq. (4.3)]. This 

catalytic method efficiently produces hydrogenolysis product 3 of 4-methoxyacetophenone 

with 2-propanol, which was isolated by simple silica gel chromatography and its structure 

was completely established by spectroscopic techniques [Eq. (4.3)]. The catalytic method 

employs environmentally friendly and cheaply available H2 and exhibits high 

chemoselectivity towards C-O bond cleavage reactions. This reaction employs H2, does 

not use any reactive agents and produces H2O as the only byproduct.  
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4.2 Optimization Study 

4.2.1  Catalyst, Ligand and Solvent Screenings 

To ascertain the ligand effect on the hydrogenolysis reaction, we screened a number 

of oxygen and nitrogen donor ligands as well as ruthenium catalysts to optimize the 

hydrogenolysis of carbonyl compounds (Table 4.1). Initially, 4’-methoxyacetophenone 

(160 mg, 1 mmol),  complex 1 (3 mol %)  and ligand (10 mol %) were dissolved in dioxane 

(2 mL) in a 25 mL Schlenk tube equipped with a Teflon stopcock and a magnetic stirring 

bar. The tube was brought out of the glove box, and cooled in liquid nitrogen and degased 

under vacuum. Then the Schlenk tube was filled with hydrogen gas (~2 atm), and the 

reaction mixture was was stirred in an oil bath set at 130 °C for 12 h [Eq. (4.4)].  

The preliminary survey showed that the Ru complex 1 with phenol ligand exhibited 

distinctively high activity for the hydrogenolysis of 4-methoxyacetophenone among 

screened ruthenium catalysts and the oxygen and nitrogen containing ligands (entry 1-10). 

Also, both the isolated complex 1 and in-situ formed from the reaction of tetranuclear 

ruthenium complex 4/H+ showed nearly identical activity for the hydrogenolysis.  
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Table 4.1: Ligand Screening for the Hydrogenolysis Reaction of 4-
Methoxyacetophenone.a 

 Catalyst Ligand Solvent Yield 

1 1 phenol dioxane >95 

2 1 phenol PhCl 89 

3 1 aniline PhCl <5 

4 1 2-NH2PhCOMe PhCl 35 

5 1 benzamide PhCl <5 

6 1 1,2-catechol toluene 73 

7 1 1,1’-BINOL toluene 54 

8 1 1,2-C6H4(NH2)2 toluene <5 

9   4 phenol dioxane <5 

10 4/H+ phenol dioxane 95 

11 [Ru(cod)Cl2]x phenol dioxane 0 

12 RuCl3·3H2O phenol dioxane 0 

13 Ru3(CO)12 phenol dioxane 0 

14 (PPh3)3(CO)RuH2 phenol dioxane 0 

15 [(PCy3)2(CO)(CH3CN)2RuH]BF4 phenol dioxane 30 

a Reaction conditions: 4-methoxyacetophenone (160 mg, 1 mmol), solvent (2 ml), catalyst 
(3 mol %), ligand (10 mol %), H2 (2 atm), 130 °C, 12 h. b The product yield of 5 was 
determined by 1H NMR using methyl benzoate as an internal standard.  
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4.2.1.1.1 Catalytic Loading and Solvent Effect. 

The hydrogenolysis reaction was screened with different amounts of catalyst 

loading and different solvents in order to optimize the reaction conditions. It was found 

that 3 mol % was the best amount of catalytic loading. The catalyst loading 1 mol % -1.5 

mol % was less active, while the yield has dramatically increased when polar solvents such 

as 1,-4-dioxane are used. Aliphatic ketones and aldehydes gave a low yield on the product 

under the similar reaction conditions. We believe that the phenol coordinated catalyst is 

active for the hydrogenolysis reaction. We ran those reactions using in situ generated 

phenol coordinated catalyst [Eq. (4.5)]. 

 

The following procedure was used to generate the phenol-coordinated cationic 

ruthenium hydride complex. Tetrameric ruthenium complex 4 (17 mg, 1 mol %) and 

phenol (4 mg, 4 mol %) were reacted with HBF4.OEt2 (6.6 µL, 4 mol %) in CH2Cl2 (1 mL) 

in a 25 mL Schlenk tube. The mixture was stirred about 15 min at room temperature. The 

carbonyl compound (1 mmol) and dioxane (2 mL) was added to the tube and the tube was 

filled with H2 gas (1 atm) via vacuum line. The tube was stirred in an oil bath set at 130 °C 

for 12 h. Analytically pure product 5 was isolated by a simple column chromatography on 

silica gel (280-400 mesh, hexanes/EtOAc).  
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4.3 Reaction Scope 

We found that the Ru-H catalyst 1 with phenol ligand efficiently catalyzes the 

hydrogenolysis of ketones and aldehydes to afford the alkane product 6 in high yield either 

by using either iPrOH or H2 as the hydrogen source. [Eq. (4.6)] Addition of in situ generated 

phenol coordinated Ru-H catalyst also showed identical activity for the hydrogenolysis 

reaction. We surveyed the scope of the hydrogenolysis reaction by using the isolated 

catalyst 1. 

+

OH

R R'

1 (3 mol %), phenol (10 mol %)

1,4-dioxane, 130 °C
(4.6)R R'

O

or

H2 (2 atm)

(2.5 mmol)

H H

R = aryl, alkyl
R' = aryl, alkyl, H

61 mmol

 

The hydrogenolysis of simple aromatic aldehydes such as 4-hydroxybenzaldehyde, vanillin 

and 3-phenoxybenzaldehyde gave the corresponding toluene product 6a, 6b and 6c in high 

yields (Table 4.2, entry 1-3).  Interestingly, aliphatic unsaturated aldehydes such as cis-11-

hexadecenal produces 74 % of hydrogenolysis product 6d without affecting the alkene 

bond (Table 4.2, entry 4).  
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Table 4.2: Reaction Scope of Catalytic Hydrogenolysis of Aldehydes and Ketonesa.
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Table 4.2: Cont.. 

 

a Reaction Conditions: (A) ketone/aldehyde (1 mmol), iPrOH (2 mL), catalyst 1 (3 mol  
%), 4-OMe-C6H4OH (10 mol %) 130 °C,  (B) ketone/aldehyde (1 mmol), dioxane (2 mL), 
catalyst 1 (3 mol  %), 4-OMeC6H4OH (10 mol %), H2 ( ~2 atm)  130 °C, 12 h. bIsolated 
yields. 
4-Hydroxyphenone derivatives such as 4-hydroxyacetophenone, 4-

hydroxypropiophenone, 1-(4-hydroxyphenyl)-3-phenyl-1-propanone yielded >90 % of the 

aliphatic product 6e-6g, which was believed to be produced via a chelate assisted pathway 

(Table 4.2, entry 5-7). 1-(5-Fluoro-4-hydroxyphenyl)-1-propanone produced in 91 % yield 

of the product 6h (Table 4.2, entry 8). Cyclic benzylic ketones such as indanone and 6-
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methoxy-1-tetralone also afforded 90 % and 88 % yield of the hydrogenolysis product 6i 

and 6j, respectively (Table 4.2, entry 9-10). 

To investigate the electronic effect on the para substituent of aromatic ketones, we 

ran the reaction of several p-substituted acetopheones which p-X-C6H4COMe (X = H, Cl, 

Me and OMe). All substrates gave over 80 % yield of hydrogenolysis products 6k-6m, but 

sightly higher yield of the products was obtained for electron donating group such Me and 

OMe (Table 4.2, entry 11-14). Simple aliphatic ketones such as 4-undecanone produced 

methylene product in 65 % yield 6o when the reaction runs 24 h at 3 atm of H2 gas (Table 

4.2, entry 15). Cyclic aliphatic ketones also produced methylene product in 54 % yield 

under similar reaction conditions. Oxygen containing aromatic ketones such as 1-(1-

benzofuran-2-yl)ethanone gave methylene product 6q in 95 % yield (table 4.2, entry 17).  

Selective hydrogenolysis of 2-(4-methoxybenzylidene)-1-tetralone afforded the 

corresponding methylene product 6r, in chemoselective formstion towards carbonyl group 

over the exocyclic double bond (Table 4.2, entry 18). A ketone with an indole functional 

group, 1, 2, 3, 9-tetrahydro-4H-carbozol-4-one, also led to the product 6s (Table 4.2, entry 

19). Glycol protected phenolic aromatic ketones such as 1-(2, 3-dihydro-1, 4-benzodioxin-

6-yl)ethanone produced 85 % of methylene compounds 6t (Table 4.2, entry 20). 
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Table 4.3: Deoxygenation of Biological Active Ketone/Aldehyde Compoundsa

 

a Reaction Conditions: ketone/aldehyde (1 mmol), catalyst 1 (3 mol %), dioxane (2 mL), 
4-OMeC6H4OH (10 mol %), 130 °C, H2 (~2 atm), 130 °C, 12 h. bIsolated yields. 
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To further demonstrate its synthetic utility, we examined the hydrogenolysis of 

highly functionalized, biologically active alcohol and carbonyl substrates (Table 4.3). The 

treatment of cholesterol and progesterone led to the chemoselective hydrogenolysis of 

alcoholic and ketone groups formed the corresponding methylene products 7a and 7b, 

respectively. In case of progesterone, a 1:1 mixture of olefin isomerization products was 

obtained. The chemoselective hydrogenolysis of benzylic alcohol is observed over 

aliphatic alcohol and amide groups for chloroamphenicol 7d, while the hydrogenolysis 

occurred regioselectively at the 9 position for alizarin 7c. The hydrogenolysis of ebastatine, 

haloperidol and fenofibrate cleanly yielded the corresponding methylene products 7e, 7f 

and 7g without the formation of any alcoholic products.  

The catalytic method exhibits high selectivity toward the hydrogenolyiss of 

benzylic alcoholic and ketone groups while tolerating common oxygen and nitrogen 

functional groups such as amide, amine and ester. 

4.4 Mechanistic Study 

 
4.4.1 Hammett Study.  

To probe electronic effects of the phenolic ligand on the catalyst activity, we compared 

the relative rates of the hydrogenolysis of ketones by using a series of para-substituted 

phenol derivatives p-X-C6H4OH (X = OMe, t-Bu, Et, Me, H, F, Cl, CF3) [Eq. (4.5)]. The 

rate of the hydrogenolysis of 4-methoxyacetophenone with H2 (2 atm) in the presence of 5 

(3 mol %) and a phenol ligand (4 mol %) in dioxane was monitored by 1H NMR. The 
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appearance of the product peak was normalized against an internal standard (methyl 

benzoate) in 30 min intervals, and kobs of the each catalytic reaction was determined from 

a first-order plot of -ln[(4-methoxyacetophenone)t/(4-methoxyacetophenone)0] vs time. 

The Hammett plot of log(kX/kH) vs σp is shown in Figure 4.2. 

Two opposite electronic substituents effects were observed as depicted in the Hammett 

plot (Fig. 4.2). A linear correlation with highly negative linear slope was obtained from the 

phenols with electron-donating group ρ = -3.3±0.3 (X = OCH3, t-Bu, Et, Me)17, while a 

positive linear slope was successfully fitted from the phenols with electron withdrawing 

group ρ = +1.5±0.1 (X = F, Cl, CF3). Looking at the right side of the Hammett plot in Fig. 

18, one can observe that electron withdrawing group such CF3 and Cl on phenol increase 

the reaction rate with the Hammett value of ρ = + 1.5±0.1. In case of  electron donating 

groups ( X = OMe, Me, etc), the hydrogenolysis rate from the Ru catalyst with an electron 

donating group 4/p-OMe-C6H4OH was found to be several times faster than the rate from 

the catalyst 4/PhOH. This V-shaped Hammett relationship is indicative of changing 

mechanism on either side of the vertex.17 The observation of two opposing slopes clearly 

indicates different operating reaction mechanistic pathways between electron-donating and 

withdrawing groups.17 The Hammett study showed that the hydrogenolysis reaction is 

promoted by two opposing electronic factors. The results suggest that a relatively electron 

rich Ru center promotes the binding of H2 for the reaction catalyzed by electron-donating 

group, in which the activation of H2 may be involved in the rate-limiting step. On the other 

hand, a relatively electron-poor metal center should promote the binding of ketone and 

alcohol substrates, and the rate-enhancement by phenol with electron withdrawing group 

may be resulted from a strong coordination of these oxygenate substrates. 
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Figure 4.2. Hammett Plot of Hydrogenolysis of 4-Methoxyacetophenone Catalyzed by 4/ 
p-X-C6H4OH (X = tBu, Cl, CF3, Et, F, H, Me, OMe). 
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determined from a first-order plot of -ln[(4-methoxyacetophenone)t/ (4-

methoxyacetophenone)0] vs time (Figure 4.3). The kH/kD was calculated from the ratio of 

the first order plots. To check the pattern shown in the Hammet plot the same experiment 

was repeated for the hydrogenolysis of 4-methoxyacetophenone for five different para-

substituted phenolic ligands p-X-C6H4OH (X = OMe, Et, CF3, Cl, CF3), and the kH/kD for 

each cases was obtained from the first order plots (Figure 4.3-4.7). 

 

Figure 4.3: Deuterium Isotope Effect Study for the Reaction of 4-Methoxyacetophenone 
with H2/D2 with 4-OMe-C6H4OH as the Ligand. 

Under first order condition, 4/HBF4 with 4-methoxyphenol as the ligand, the plot 

of -ln[(4-methoxyacetophenone)t/(4-methoxyacetophenone)0] vs time yielded a straight 
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Figure 4.4: Deuterium Isotope Effect Study for the Reaction of 4-Methoxycetophenone 
with H2/D2 with 4-Ethylphenol as the Ligand 

With 4/HBF4 4-ethylphenol as the ligand, the plot of -ln[(4-

methoxyacetophenone)t/(4-methoxyacetophenone)0] vs time yielded a straight line with 

the slop of 6.40 x 10-6s-1 for H2 and 3.84 x 10-6s-1 for D2. The deuterium isotope effect 

(kH/kD) of 1.8 ± 0.3 was obtained from the slope of the graph (Figure 4.4). Also with (4-

Trifluoromethyl)phenol as the ligand, the plot of -ln[(4-methoxyacetophenone)t/(4-

methoxyacetophenone)0] vs time yielded a straight line with the slop of (6.92 ± 0.03)x 10-

6 s-1 for H2 and 1.12 x 10-5 s-1 for D. The deuterium isotope effect (kH/kD) of 0.6 ± 0.1 which 

is inverse kinetic isotopic effect (Figure 4.5) was obtained from the slope of the graph. 

With 4-chlorophenol as the ligand, the plot of -ln[(4-methoxyacetophenone)t/(4-

methoxyacetophenone)0] vs time yielded a straight line with the slop of 2.2 x 10-6 s-1 for 

H2 and 3.32 x 10-6 s-1 for D2. The deuterium isotope effect (kH/kD) of 0.8 ± 0.1 was obtained 

which is inverse kinetic isotopic effect (Figure 4.6). 
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Figure 4.5: Deuterium Isotope Effect Study for the Reaction of 4-Methoxycetophenone 
with H2/D2 with 4-CF3-C6H4OH as the Ligand 

 

Figure 4.6. Deuterium Isotope Effect Study for the Reaction of 4-Methoxycetophenone 
with H2/D2 with 4-Cl-C6H4OH as the Ligand. 
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Figure 4.7. Deuterium Isotope Effect Study for the Reaction of 4-Methoxycetophenone 
with H2/D2 with 4-F-C6H4OH as the Ligand. 

Table 4.4: Deuterium Isotope Effect Study for the Reaction of 4-Methoxycetophenone 
with H2/D2 with p-X-C6H4OH as the Ligand. 

 

Complex X kH/kD σσσσp 
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8c H 1.2 ± 0.1  0.00 

8d F 1.1 ± 0.1 +0.15 

8e Cl 0.7 ± 0.1 +0.24 

8f CF3 0.6 ± 0.1 +0.53 
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the slop of 1.10 x 10-6 s-1 when H2 used and 1.12 x 10-6 s-1 when D2 is used. The 

experimentally determined kinetic isotope value (kH/kD) within experimental error, is 1.0 

± 0.1 which is inverse kinetic isotopic effect (Figure 4.7).The kH/kD values for the 

hydrogenolysis reaction catalyzed by 4/p-X-C6H4OH (X = OMe, Et, F, Cl, CF3) are listed 

in Table 4.4. Normal deuterium isotope effect was observed for the reaction catalyzed by 

phenol with electron-releasing group (X = OMe, Et), and inverse isotope effect was 

measured for the phenols with electron-withdrawing group (X = Cl, CF3). A negligible 

small isotope effect was measured in the case of 4-fluorophenol. 

The magnitude of deuterium isotope effect data correlates well with the Hammett 

σp values. For the reaction catalyzed by Ru catalyst with an electron-rich phenol ligand, 

the observation of normal isotope effect is consistent with the notion that the H-H bond 

activation is intricately intertwined with the turnover-limiting step. Hence, the phenol 

ligand with an electron-releasing group should facilitate the oxidative addition of H2. For 

the reaction catalyzed by phenol with electron-withdrawing group, a relatively electron 

poor Ru catalyst is expected to have low affinity for oxidative addition of H2. Instead, the 

stepwise reversible coordination of H2 and the subsequent partitioning of the equilibrium 

can explain the observation of inverse isotope effect for the electrophilic nature of Ru 

catalyst.18-20 

  

 

Bergman21 explained the inverse KIE in Ir complex mediated C-H activation of 

hydrocarbons by using equilibrium isotope effect concept [Eq. (4.9)]. In this case, a 
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stepwise rapid equilibrium between σ-bonded alkyl complex followed by reductive 

coupled Ir complex and much slower alkyl hydride formation has led to inverse deuterium 

isotope effect (kH/kD = 0.7). One explanation for the origin of the inverse equilibrium 

isotope is that the σ-alkane complex contains an intact, strong C−H or C−D bond, whereas 

the alkyl hydride complex has a weaker M−H or M−D bond. Furthermore, since this 

inverse isotope effect is likely to be associated with the C−H/C−D bond-making/bond-

breaking step, rather than the alkane dissociation step, the overall isotope effect for alkane 

loss was attributed to an inverse equilibrium isotope effect (i.e., Keq
H/D < 1) separating the 

alkyl hydride complex from the σ-alkane complex. Inverse EIE is common for the 

oxidative addition C-H to a metal center (Scheme 4.1).18-20 

We can apply a similar kinetics on the H-H activtion catalyzed by Ru-H complex 

1, for the phenols with electron withdrawing groups. We proposed a similar rapid 

equilibrium in between Ru-H and Ru-H2 complexes [Eq. (4.10)]. On the other hand, Ru 

catalyst with phenol with electron-donating group should promote the binding and the 

activation of H2. (For X = OMe, kH/kD was 2.7).17d-e The normal KIE indicates H-H 

activation is rate determine step for the hydrogenolysis where weaker H-H bond breaks 

faster than the strong D-D bond (Scheme 4.1) 
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Chirik and co-workers reported a similar KIE effect in the addition of H2(D2) to Ti-

oxo complex, which exhibited a normal, primary KIE kH/kD = 2.7±0.3 [Eq. (4.11)]. Normal 

isotope effects of the same direction but with smaller magnitudes were determined for 

silane addition to the same system [Eq. (4.8)].22  KIE values are consistence with the 

Hammett data concerted pathway. 

Scheme 4.1: Electronic Effect of Phenol Ligand on Ru-H (8) Catalyzed H2 Activation. 

4.4.1.2 Carbon Isotope Effect Study  

To further determine the rate determining step of the catalytic reaction, the 12C/13C 
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kinetic isotope effect (KIE) was successfully measured for the hydrogenolysis reaction by 

employing Singleton’s NMR technique [Eq. (4.12)].23 To compare the electronic influence 

of the phenol ligand, we have chosen the phenol ligand with two electronically different 

substituents p-OMe-C6H4OH (σp= -0.27) and p-CF3-C6H4OH (σp=+0.54). The 

hydrogenolysis of 6-methoxy-1-tetralone (1.76 g, 10 mmol) was performed with H2 (3 

atm), 4 (1 mol %) and p-X-C6H4OH (X = OMe or CF3) (4 mol %) in 1,4-dioxane (8 mL) 

at 130 °C for 2-3 h. The product 6-methoxytetrahydronaphthalene (6j) was isolated by a 

column chromatography on silica gel (hexanes/Et2O = 40:1) and analysed by 13C NMR. 

The most pronounced carbon isotope effect on the product 6j is observed when the 13C 

ratio of the product 6j at three low conversions (15, 18 and 20 % conversion) was compared 

with that of the sample obtained at high conversion (95 %).  

 

Scheme 4.2: 13C KIE data for the 6-Methoxy-1,2,3,4-tetrahydronaphthalene (A) for the 
in-situ Generated Catalyst 8a (B) for the in-situ Generated Catalyst 8f. 
 

The hydrogenolysis of 6-methoxy-1-tetralone catalyzed by the catalyst 4/p-X-C6H4OH 

resulted in a significant isotope effect on the carbonyl carbon for phenol ligand with both 

electron-releasing and -withdrawing groups (13C at 95 % conversion)/(average of 13C at 17 
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% conversion) at C(1) = 1.042 for X = OMe and C(1) = 1.063 for X = CF3 (Scheme 4.2). 

The data indicates that the C-O bond cleavage is the rate-limiting step for the overall 

hydrogenolysis reaction. 

 

Table 4.5: Average 13C Integration of the Product 13j-[c1] at High Conversion (Virgin , 
R0; 96 % conversion), at Low Conversion (R; avg 18 % conversion) and the Calculated 
13C KIE for Catalyst 8a.  
  OMe C1 C2 C3 C4 

Virgin, Ro 1.0000 1.0051 0.9968 1.0000 1.0223 

Sample R1 1.0000 0.9991 0.9868 0.9999 0.9801 

Sample R2 1.0000 1.0050 0.9980 1.0006 0.9811 

Sample R3 1.0000 1.0050 0.9979 1.0005 0.9811 

Avg (R) 1.0000 1.0030 0.9942 1.0004 0.9807 

Ro/R 1.0000 1.0021 1.0026 0.9996 1.0424 

 
 
 
Table 4.6: Average 13C Integration of the Product 13j-[c2] at High Conversion (Virgin , 
R0; 96 % conversion), at Low Conversion (R; avg 18 % conversion) and the Calculated 
13C KIE for the Catalyst 8f. 
 OMe C1 C2 C3 C4 

Virgin, Ro 1.0000 1.0051 0.9968 1.0000 1.0223 

Sample R1 1.0000 0.9989 0.9972 0.9990 0.9615 

Sample R2 1.0000 0.9999 0.9969 0.9996 0.9617 

Sample R3 1.0000 0.9990 0.9970 0.9998 0.9627 

Avg (R) 1.0000 0.9993 0.9971 0.9995 0.9620 

Ro/R 1.0000 1.0058 0.9997 1.0005 1.0627 
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4.4.1.3 Deuterium Labeling Study 

To examine H/D exchange pattern on the products, 4-methoxyacetophenone (1.0 

mmol) was reacted with D2 (2 atm) in dioxane at 130 °C for 4 h (Scheme 4.3). The product 

12 was isolated by column chromatography, and its deuterium content was analyzed by 1H 

and 2H NMR (Figure 4.8-4.11). The deuterium content of the same product 12a, which was 

obtained from the analogous treatment of 1-(4-methoxyphenyl)ethanol (1 mmol) with D2 

(2 atm) and 4/p-OMe-C6H4OH, was also compared with the product obtained from the 

ketone. To compare the H/D pattern on the electronic effect of phenol ligand, the same set 

of experiments was repeated for 4/p-CF3-C6H4OH catalytic system (Scheme 4.3). 

 

Scheme 4.3: Deuterium Incorporation pattern of 1-Ethyl-4-methoxybenzene Product: (a) 
4-Methoxyacetophenone and 4-(Trifluoromethyl)phenol  (b)  1-(4-Methoxyphenyl)ethanol  
and 4-(Trifluoromethyl)phenol (c) 4-Methoxyacetophenone and 4-Methoxyphenol    (d) 1-
(4-Methoxyphenyl)ethanol  and 4-Methoxyphenol. 
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As illustrated in Scheme 4.3, a much higher amount of deuterium incorporation was 

observed in the product 3-d2 obtained from the hydrogenolysis of ketone compared to the 

product obtained from the alcohol 3-d4. A 29 % deuterium on the CH3 group on the product 

suggests that a facile H/D exchange takes place possibly via a keto-enol tautomerization of 

the ketone substrate (Scheme 4.3), while 68 % of deuterium on the ortho-arene C-H can be 

explained by the formation of chelate-assisted ortho-metallation, which is well-known 

process in catalytic C-H activation chemistry.23 

 
Figure 4.8: 1H and 2H NMR Spectra for the Hydrogenolysis of 4-Methoxyacetophenone 
with D2 Catalyzed by 4/4-CF3C6H4OH.  

A 59 % deuterium on the benzylic position supports the notion for rapid and 

reversible H/D exchange via keto-enol tautomerization and ortho-metallation processes. In 

contrast, only small deuterium incorporation on the product from the hydrogenolysis of 1-
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(4-methoxyphenyl)ethanol is consistent with the notion that the C-O hydrogenolysis occurs 

directly without going through the formation of ketone.  

 

 

Figure 4.9: 1H and 2H NMR Spectra for the Hydrogenolysis of 1-(4-
Methoxyphenyl)ethanol with D2 Catalyzed by 4/4-CF3C6H4OH.  

 
Figure 4.10: 1H and 2H NMR Spectra for the Hydrogenolysis of 4-Methoxyacetophenone 
with D2 Catalyzed by 4/4-OMeC6H4OH.  
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Figure 4.11: 1H and 2H NMR Spectra for the Hydrogenolysis of 1-(4-
Methoxyphenyl)ethanol with D2 Catalyzed by 4/4-OMeC6H4OH.  

 

 

Scheme 4.4: Keto-Enol Tutomerization and Formation of Ru-enolate Complex 

 

A similar set of H/D exchange pattern was obtained when the analogous 

hydrogenolyis of 4-methoxyacetophenione was performed with the catalyst 4/p-CF3-

C6H4OH having phenol with electron-withdrawing group. But for the hydrogenolysis of 1-

(4-methoxyphenyl)ethanol, a much less H/D exchange was observed in ortho- C-H of 

aromatic ring. These results indicate that the reoxidation of alcohol to ketone is not favored 

20 
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(scheme 4.3, 3-d3, 3-d4). High deuterium incorporation on keto and terminal carbon 

indicate that the keto-enol (scheme 4.3) equilibrium is more favored with 4-methoxyphenol 

than 4-(trifluoromethyl)phenol. 

4.4.2 Determination of Empirical Rate Law 

4.4.2.1 Catalyst Concentration Dependence 

  

Figure 4.12: (A) The Formation of 1-Ethyl-4-methoxybenzene vs Time. (B)  Initial Rate 
of the Formation 1-Ethyl-4-methoxybenzene vs at Different Catalyst Concentrations of 
4/HBF4·OEt2/4-OMe-C6H4OH (8a) 
 
 
 

 

Figure 4.13: (A) The Formation of 1-Ethyl-4-methoxybenzene vs Time. (B)  Initial Rate 
of the Formation 1-Ethyl-4-methoxybenzene vs at Different Catalyst Concentrations of 
4/HBF4·OEt2/4-CF3-C6H4OH (8f). 
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In an effort to further compare the kinetics of two phenolic ligands, we next 

determined the empirical rate laws for the hydrogenolysis reaction of 4-

methoxyacetophenone mediated by 4/p-X-C6H4OH (X = OMe, CF3) with opposite 

electronic environments. First, the rate dependence on the catalyst concentration was 

measured.  From the plot of initial rate (ν0) of formation of 1-ethyl-4-methoxybenzene as 

a function of [4/p-OMe-C6H4OH] under pseudo-first-order condition yielded a straight line 

with the slope of 4.5 × 10-6 s-1 for 4/p-OMe-C6H4OH [8] (Figure 4.12). The similar 

experiment using the catalyst 4/p-CF3-C6H4OH 8f also led to the linear dependence on 

[4/p-CF3-C6H4OH] with the slope of 4.0 × 10-6 s-1 (Figure 4.13). 

 

4.4.2.1 Dependence of Substrate Concentration 

The analogous method was employed to determine the [ketone] dependence. From 

the plot of initial rate (ν0) of formation of 1-ethyl-4-methoxybenzene as a function of [4-

methoxyacetophenone] under pseudo-first-order condition yielded a straight line for [4-

methoxyacetophenone] in the range of 0.3 M-2.0 M for both cases (X = OMe, CF3). Linear 

Slopes were obtained for the case of X = OMe (8a) was 5.06 x 10-7 s-1 (Figure 4.14), and 

for the case of X = CF3 (complex 8f) was 3.54 x 10-7 s-1 (Figure 4.15). 
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Figure 4.14: (A) The Formation of 1-Ethyl-4-methoxybenzene vs Time. (B)  Initial Rate 
of the Formation 1-Ethyl-4-methoxybenzene vs at Different 4-Methoxyacetophenone 
Concentrations for the Catalyst 4/HBF4·OEt2/4-OMe-C6H4OH (8) 
 
 
 

 

Figure 4.15: (A) The Formation of 1-Ethyl-4-methoxybenzene vs Time. (B)  Initial Rate 
of the Formation 1-Ethyl-4-methoxybenzene vs at Different 4-Methoxyacetophenone 
Concentrations for the catalyst 4/HBF4·OEt2/4-CF3-C6H4OH (8f) 
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16-55 psi for the reaction catalyzed by 4/p-OMe-C6H4OH. The plot of H2 pressure versus 

initial rate for the formation of 1-ethyl-4-methoxybenzene for 4-methoxyphenol 

coordinated catalyst 8a yielded a hyperbola (Fig. 4.16 B) which does not pass through the 

origin and gave a reaction order of -1.0 on ketone. The plot of pH2 vs 1/ν0 gave a linear fit 

(Fig. 4.16C) which indicate inverse depend ace on hydrogen concentration. The inverse 

dependence on [H2] for the catalytic hydrogenolysis catalyzed by 4/p-OMe-C6H4OH 

indicates that the coordination of second molecule of H2 inhibits the hydrogenolysis 

reaction. Since the Ru catalyst with electron-releasing group is expected to have a relatively 

strong affinity toward H2, it can effectively inhibit the coordination of the ketone substrate. 

 

Figure 4.16: (A) The Formation of 1-Ethyl-4-methoxybenzene vs Time. (B)  Initial Rate 
of the Formation 1-Ethyl-4-methoxybenzene vs at Different [H2] (C) Inverse rate vs [H2] 
for the Catalyst 4/HBF4·OEt2/4-OMe-C6H4OH (8a) 
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In sharp contrast, the plot of initial rate (ν0) for the hydrogenolyis of 4-

methoxyacetophenone by phenol with an electron withdrawing group 4/p-OMe-C6H4OH 

showed that the reaction rate is independent of [H2] in the rage of 16-55 psi. A straight line 

parallel to the x-axis was observed for plot of hydrogen pressure versus initial rate for the 

formation of 1-ethyl-4-methoxybenzene for 4-(trifluoromethyl) phenol coordinated 

catalyst 8f (Figure 4.17) which indicates zero order dependance on hydrogen pressure. This 

is consistent with a rapid and reversible coordination of H2, in which the electron-poor Ru 

catalyst has a low affinity toward H2 compared to the ketone substrate. 

 

Figure 4.17: (A) The Formation of 1-Ethyl-4-methoxybenzene vs Time. (B)  Initial Rate 
of the Formation 1-Ethyl-4-methoxybenzene vs at Different [H2] for the Catalyst 
4/HBF4·OEt2/4-CF3-C6H4OH (8f) 
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4.12. 

Rate = kobs[Ru][ketone][H2]-1                                                                                              (4.12) 
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Rate = kobs[Ru][ketone][H2]0                                                                                           (4.13) 

 

4.5 Isolation and Characterization of Catalytically Relevant Ruthenium 
Complexes.  
 
 

We explored the reactivity of the complex 1 to gain structural insights on the reactive 

intermediates. The treatment of 1 with phenol in a NMR tube in CD2Cl2 was followed by 

1H and 31P{1H} NMR. After 2 h of heating at 80 °C, a 1:1 ratio of cationic Ru-H complex 

1 and phenol-coordinated complex 8c, as evidenced by the appearance of new peaks at δ -

10.87 and 70.8 ppm by 1H and 31P{1H} NMR, respectively [Eq. (4.14)]. The formation of 

free benzene molecule at δ = 7.4 ppm was also observed by 1H NMR, but no evidence for 

PCy3 dissociation was detected under these conditions. A series of substituted phenol-

coordinated complexes are conveniently synthesized from the reaction of the tetranuclear 

Ru complex 4 with phenol and HBF4·Et2O, by following the similar procedure used to 

synthesize the complex 1. The structure of these phenol-coordinated complexes is readily 

determined by spectroscopic methods, and the solid state structures of 8a, 8c and 8e were 

also determined by X-ray crystallography (Figure 4.16-4.17).  
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Table 4.7: Selected Spectroscopic Data for Complexes 8a-g 

 

1H NMR 

Ru-H/ppm 

31P 
NMR/ppm 

FT-IR νCO/ cm-1 

X = OMe (8a) -10.61 (d, JPH = 27.0 Hz) 71.38 1963  

X = H (8c) -10.86 (d, JPH = 27.1 Hz) 70.78 1973 

X = F (8d) -10.29 (d, JPH = 26.8 Hz) 71.71  

X = Cl (8e) -10.40 (d, JPH = 27.4 Hz) 71.86 1983 

X = CF3 (8f) -10.55 (d, J = 26.0 Hz) 71.38 1947 

X = Me (8g) -10.58 (d, JPH = 27.1 Hz) 71.32  

 

Figure 4.18: ORTEP Diagram of Complex 8a (H atoms and Solvent Molecules Removed 
for Clarity) 

The complex 8a has a “piano stool” coordination around the Ru center. The 

phenolic ligand is stabilized by hydrogen bond with BF4
- counter ion.  The Ru1-P1 bond 

2.3349(10) Å and P1-Ru1-C19 bite angle is 98.18(8)˚. Ru1-C19 bond distance is 2.400(3) 

Å. Ru-H resonance was observed at -10.61 ppm in the H NMR spectrum in CDCl3. Ru-P 

resonance was observed at 71.38 ppm in the 31P{H} NMR spectrum in CDCl3. In both 

cases, Ru-CO and Ru-P bond distances are shorter than that of Ru-H benzene coordinated 

complex which are 1.8679(5) Å and 2.3207(13) respectively. 
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Figure 4.19: ORTEP Diagram of Complex 8a’ (H atoms and Solvent Molecules 
Removed for Clarity) 

The complex 8a’ also has a “piano stool” coordination. The phenolic ligand is 

stabilized by hydrogen bond with solvate isopropanol molecule, which in turn makes H-

bond with BF4
- counter ion. The Ru1-P1 bond 2.3159(4) Å is lower than that of complex 

8a which is 2.3349(10). P1-Ru1-C19 bite angle 88.66(5)˚ is lower than that of complex 8a’ 

which 98.18(8)˚. Ru1-C19 bond distance is1.8460(18) lower than Ru1-C19 bond distance 

is 2.400(3)Ru-H resonance was observed at -10.61 ppm in the H NMR spectrum in CDCl3. 

Ru-P resonance was observed at 71.38 ppm in the 31P{H} NMR spectrum in CDCl3. In 

both cases Ru-CO and Ru-P bond distances are shorter than that of Ru-H benzene 

coordinated complex which are 1.8679(5) Å and 2.3207(13) respectively. 

  

Figure 4.20:  ORTEP Diagram of Complex 8c (H atoms and Solvent Molecules Removed 
for Clarity) 
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The complex 8c shows a similar three legged “piano stool” geometry. The phenolic 

ligand is stabilized by hydrogen bond with solvate isopropanol molecule, which in turn has 

H-bond with BF4
- counter ion. The Ru1-P1 bond 2.3150(7) Å and P1-Ru1-C7 bite angle is 

87.04(11)˚. Ru1-C7 bond distance is 1.842(4) Å. Ru-H resonance was observed at -10.86 

ppm in the 1H NMR spectrum in CDCl3. Ru-P resonance was observed at 70.78 ppm in the 

31P{H} NMR spectrum in CDCl3. 

 

Table 4.8: Selected Physical Parameters of Complexes 5, 8a and 8f 

Parameter 

   

Ru-CO / Å 1.867(5) 1.8460(18) 1.842(4) 

Ru-P/ Å 2.3207(13) 2.3159(4) 2.3150(7) 

P-Ru-CO/˚ 88.84(15) 88.66(5)˚ 87.04(11) 

1H NMR Ru-H/ppm -10.39 -10.61 -10.86 

31P{H} NMR Ru-P/ppm 72.9 71.38 70.78 

 

Figure 4.21: ORTEP Diagram of Complex 8e (H atoms and Solvent Molecules Removed 
for Clarity) 
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The complex 8e shows a three legged “piano stool” geometry. The phenolic ligand 

is stabilized by hydrogen bond with BF4
- counter ion. The Ru1-P1 bond 2.3271(6) Å and 

P1-Ru1-C7 bite angle is 87.96(9) ˚. Ru1-C7 bond distance is 1.843(3) Å. Ru-H resonance 

was observed at -10.40 (d, JPH =  26.8 Hz) ppm in the 1H NMR spectrum in CD2Cl2. Ru-P 

resonance was observed at 71.86 ppm in the 31P{H} NMR spectrum in CD2Cl2. 

In an effort to trap catalytically relevant species, 1:1 ratio of cationic Ru-H complex 

1 and 2-hydroxyacetophenone (which is ligand acting also as substrate) were mixed in a J. 

Young tube using CD2Cl2 as the solvent. We observed that initially formed π-coordinated 

Ru-H complex 9 shows Ru-H resonance at -10.87 ppm and 31P{H} resonance at 70.8 ppm 

as monitored by 1H NMR and 31P NMR. The complex 9 was prepared from the analogous 

treatment of 4 with 2-acetylphenol and HBF4·Et2O in 90 % NMR yield (scheme 4.5).

Scheme 4.5: Synthetic Routes for the Complex 9 

 

Our attempt to crystallize the complex 9 led to a stable dimeric complex 10, which 

is isolated analytically pure complex in 90 % yield [Eq. (4.15)]. Structure of complex 10 

was established by spectroscopic methods. The X-ray structure of complex 10 is shown in 

fig. 4.22 
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.  

Figure 4.22:  ORTEP Diagram of Complex 10 (H atoms and Solvent Molecules 
Removed for Clarity) 
 
 
 

The cationic complex 10 has a dimeric structure with two bridging chelate 

acetophenolate ligands and bridging hydride. The unit has crystallographic 2-fold 

symmetry, with octahedral Ru(II) center. Bridging Ru-H resonance was appeared at δ -

28.30 ppm as triplet on 1H NMR spectrum. Ru-P resonance on 31P{H} NMR spectra 

found at δ 70.7 ppm. This suggest that initially formed π-coordinated phenolic ruthenium 

complex is rearranged to more stable Ru-phenoxy complex upon loss of H2.  

The reaction of binuclear Ru-H complex 10 in wet 1,4-dioxane smoothly converted 

into the formation of binuclear Ru-hydroxo complex 11, which is fully characterized by 

using spectroscopic techniques. Bridging Ru-(μ-OH) resonance was appeared at -3.18 (s, 

1H) ppm on 1H NMR spectrum [Eq. (4.17)] and PCy3 resonance 66.5 ppm on 31P{H} 

NMR. The structure of complex 11 was unambiguously characterized by single crystal X-

ray diffraction (Figure 4.23). The complex is isostructural with the complex 10, in that each 
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Ru(II) core has octahedral coordination containing two bridging acetophenolate ligands. A 

considerably longer metal-metal distance of 2.948 Å of 11 compared to the hydride 

complex 10 (2.680 Å) is probably due to a larger ionic radius of the bridging oxygen 

compared to the hydrogen atom. The dimer has a local 2-fold symmetry but not a 

crystallographic one, as opposed to complex 10. Both Ru(II) ions have octahedral 

coordination.  We believe that further reaction with H2 gas complex 10 produces H2 

coordinated complex 13 via 12 (scheme 4.6) similar to Shvo25 catalyst but the attempt to 

identify the intermediate was failed due to the fact that those species are highly reactive 

and readily hydrogenolyses the acetophenolate ligand into 2-ethylphenol. 

  

 

Figure 4.23: ORTEP Diagram of Complex 11 (H atoms and Solvent Molecules Removed 
for Clarity) 
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Scheme 4.6: Possible Intermediates from the Reaction of Complex 10 with H2 

 

4.5.1 Catalyst Concentration Dependence Study.  

 

  

Figure 4.24: A) Plot of [2’-Hydroxyethylbenzene] vs Time at Different Catalyst 10 
Concentrations (4µM-16µM). B) Initial Rate of Formation 2’-Hydroxyethylbenzene vs 
Different Catalytic 10 Loading 
 
 
 

The hydrogenolysis reaction catalyst concentration dependence on catalyst 10 the 

reaction rate was studied to prove the active species is monomeric ruthenium complex. 

Hydrogenolysis of 2-hydroxyacetophenone to 2-ethyl phenol using different amount of 

catalyst 10 studied under pseudo first order condition in 10 min time interval at 130 ˚C for 

3h in 1,4-dioxane.  Concentration of 2-ethylphenol was determined by 1H NMR using 

methylbenzoate as the internal standard. From the plot of initial rate (ν0) of formation of 2-

ethylphenol as a function of [10] under pseudo-first-order condition yielded a straight line 

0

1000

2000

3000

4000

5000

6000

0 1000 2000 3000

[P
ro

d
u

c
t]

X
 1

0
-6

M

(A)               time/s

4.02 µM
5.62  µM
8.04 µM
09.65  µM
12.07  µM
14.48 µM

y = 0.9762x - 2.4769
R² = 0.9379

0.5
2.5
4.5
6.5
8.5

10.5
12.5
14.5

3.5 8.5 13.5 18.5in
it

ia
l 

ra
te

X
1
0

-8
M

s
-1

[Catalyst 24 ]/ mmol L-1

(B)



165 

 
for [10] in the range of 4 µM-15 µM has been observed. The procedure was repeated for 8 

different catalyst concentrations (4 µM-16 µM). The plot of catalytic concentration vs 

initial rate of the reaction is shown in Figure 4.24. 

From the plot of initial rate of hydrogenolysis of 2-hydroxyacetophenone, the 

pseudo first order rate constant 9.76 x 10-9 Ms-1 was obtained. The results are consistent 

with the rapid dimer dissociation into monomers or one of the monomer part is catalytically 

active or the dimer itself is active for hydrogenolysis. From the similar experiment for the 

complexes 8a-8f also we obtained first order of catalyst concentration. Therefore it is 

inconsistent with the later and consistent with first assumption that is the dimer will 

dissociate into monomer and formed a catalytically active one part and inactive part. 

Scheme 4.7: Synthetic Route for the Complex 14 

 

All attempts to trap the intermediate 13 by using different ligands and solvents were 

unsuccessful. Cationic ruthenium hydride complex 1 with 2 equivalence of PCy3 in CH2Cl2 

at 80 ˚C formed neutral Ru-H species 14 and one equivalent of phosphonium salt. In this 
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case, PCy3 acted as a base to abstract an acidic proton from phenol ligand. Complex 10 in 

the presence of PCy3 exclusively produced complex 14 without dimerization. We can argue 

that the complex 14 is analogous to complex 13 which replaced 1H by PCy3 ligand. We 

were able to characterized the complex 14 by 1H NMR and 31P{H} NMR and X-ray 

diffraction techniques (Figure 4.25). An alternative way, complex 14 was synthesed from 

complex (Ch3-3) with the reaction with 2-acetylphenolate in dioxane solvents at 80 ˚C, 1h 

reaction time by a single step is shown in eq. 4.17 below. 

 

 

Figure 4.25: ORTEP Diagram of Complex 14 (H atoms and Solvent Molecules Removed 
for Clarity) 
 
 
 
4.6 Determination of pKa of Ru-H Complexes 

Acidity of metal hydride complexes is very important in hydrogenolysis of C-O bonds. 

26-28 Application of general literature method available for determination of pKa of metal-
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ligand bifunctional catalyst was unsuccessful due to dissociation of phenol ligand.  We 

have surveyed number of different methods to measure the pKa29 of Ru-H catalyst, but we 

failed due to de-coordination of benzene ligand in the experimental conditions. Finally pKa 

of Ru-H complex 1 was determined by measuring pH of different concentration of Ru-H 

in aqueous medium in the range of 1x10-4-1x10-6 M. pKa was calculated by extrapolating 

the plot of the plot of pH vs log([A-]/[HA]) to get y intercept (which A- = 15 and HA = 16) 

Figure 4.26, [Eq. (4.18)].30 

 

 

Figure 4.26: The Plot of pH vs Log([A-]/[HA]) 

 

Since the displacement of benzene from the cationic ruthenium hydride is 

feasible. We measured the pKa of Ru-aqua complex 16, from which pKa = 1.65 

calculated. According to the bifunctional catalytic system it is very important to be 

phenol H much more acidic than this value (Figure 4.27). 
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Figure 4.27: Acidic and Hydridic Nature of Ruthenium Phenol Bifunctional Catalyst 

 

4.7 Proposed Mechanism 

We propose that the hydrogenolysis reaction of ketones has two stages. The first 

stage is the hydrogenation of ketone C=O double bond into alcohols. The mechanism of 

hydrogenolyis of ketone to alcohols should be similar to outer-sphere mechanism catalyzed 

by Noyori type bifunctional catalyst.31 

Noyori31 and Morris32 proposed that the active species 17 is generated from the 

precursor chloride complexes (ɳ6-arene) RuCl((S,S)-H2NCHRCHRNTs) by reaction with 

a reductant (formic acid or 2-propanol) and base. For imines, the reactions are conducted 

in a formic acid-triethylamine azeotropic 5:2 mixture with or without an additional solvent. 

Chiral alcohols derived from aryl alkyl ketones and a variety of chiral amines from 

prochiral imines are obtained in very high ee. They proposed mechanism for the transfer 

hydrogenation of ketones (Scheme 4.8) via a concerted transfer of the proton and the 

hydride from 18 to the substrate in a six-membered cyclic transition state to give the alcohol 

and 19. The proton and the hydride from 2-propanol are then delivered to the ligand and 

the metal, respectively, forming 20 and acetone. The reaction is proposed to proceed via 

outer-sphere mechanism without coordination of either alcohol or ketone (aldehyde) to the 
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metal. Casey proposed a similar mechanism for the hydrogenation of ketone using outer-

sphere mechanism.33 

By adopting their mechanism, we explain first stage of hydrogenolysis of ketone 

catalyzed by Ru-H complex 8a (Scheme 4.9). Complex 8a reacts with ketones to form 

similar complex 21 as 17, proton and hydride transfer to ketone in concerted fashion 

(complex 21).  Hydride transfer to carbonyl carbon and phenolic hydrogen transfer to 

carbonyl oxygen to form alcohol. Then H2 gas reacts with Ru center with hydride transfer 

to electrophilic carbonyl carbon and the proton transfer to oxygen making alcohols which 

is stabilized by hydrogen bonding (8a’).  Decoordination of alcohol make active ruthenium 

catalyst by reacting with H2 gas via the intermediate 22. The catalyst 8a and the resting 

state 8a’ which was generated by 4-OMeC6H4OH was characterized by X-ray 

crystallography shown in Figure 4.20. 

 

Scheme 4.8: Catalytic Cycle of Noyori Catalyst via a Concerted Six-membered Transition 
State 
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Scheme 4.9: Outer-sphere Mechanism for the Hydrogenation of Ketones to Alcohols. 

 

In contrast to ketone hydrogenolysis reaction, the mechanism of the second stage 

of hydrogenolysis of alcohol C-O bond to methylene compounds has not been studied 

extensively. According to our kinetic data, two different mechanistic pathways operate 

between phenol ligands with electron donating group and electron withdrawing group 

contained. From 13C KIE data, we observed that the C-O cleavage is the rate limiting step 

of the mechanism for both cases. 

 

Table 4.9: Summary of Kinetic Parameters for the Hydrogenolysis of Aryl ketone 
Catalyzed by 4/p-X-C6H4OH (X = OMe, CF3). 

Kinetic parameter X = OMe X = CF3 

Hammett ρ -3.3 +1.5 

kH/kD 2.7 0.6 

rate dependence on [H2] 1/[H2] [H2]0 

k12C/k13C
a 1.04 1.06 

a The carbon isotope effect of 6j obtained from singleton method. 
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The kinetic data for the catalytic hydrogenolysis are summarized in Table 4.9. On 

the basis of these kinetics as well as spectroscopic observations, we compiled two plausible 

mechanistic pathways for the selective hydrogenolysis of a ketone substrate to the aliphatic 

product based on the electronic nature of ligands (Scheme 4.10 and Scheme 4.11). Based 

on the 1H NMR studies34 and available X-ray data, we proposed that the ligand 

displacement of cationic Ru-H complex 1 with phenol ligand would generate the complex 

8. Phenol ligand switched the coordination mode from ɳ6 π-mode to ɳ1 O- by deprotonation, 

and alcohol molecule coordinates as shown in complex 23. The complex 23 is stabilized 

by coordination of 1,4-dioxane solvent molecules. This is supported by the formation of 

complex 10 in the presence of 2-hydroxyacetophenone as the ligand, which is fully 

characterized by spectroscopic techniques. the complex 10 shows the same catalytic 

activity for the hydrogenolysis reaction. We proposed the intermediate 23 is the key 

intermediate species for the hydrogenolysis reaction for both pathways.  

For the Ru catalyst with electron-rich phenol ligand (X = OMe), 13C KIE (1.04) and 

high negative Hammett value (ρ = -3.3) indicate that the C-O bond cleavage is the rate 

limiting step of the hydrogenolysis reaction. The magnitude of deuterium isotope effect 

data correlates well with the Hammett σp values. High kH/kD normal isotope effect indicates 

that the concerted addition of H2 is rate limiting step for the H-H activation. We proposed 

that the complex 23 reacts with H2 to generate H-H bond cleave product 24 which is 

analogous to metal ligand bifunctional catalyst evidence for concerted H-H addition.26 The 

complex 24 could be in equilibrium with π-coordinated complex.  
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Scheme 4.10: Proposed Mechanism of Ruthenium Catalyzed Hydrogenolysis of 1-
Phenethanol to Ethyl Benzene for the Catalyst 8a (X = OMe). 
 
 
 

The inverse dependence on hydrogen pressure suggests that the hydrogenolysis 

reaction is inhibited by addition of second hydrogen molecule to generate complex 27. This 

will compete for the alcohol substrate coordination. For the reaction catalyzed by the 

phenol ligand with an electron-donating group, the observation of normal isotope effect is 

consistent with the H-H bond activation is intricately intertwined with the rate determine 



173 

 
step. Hence, the phenol ligand with an electron-releasing group should facilitate the 

oxidative addition of H2. High negative Hammett value indicate a relatively electron rich 

Ru catalyst containing phenol with electron-donating group should promote the binding 

and the activation of H2. Based on high negative Hammett value and 13C KIE, we suggest 

that the cleavage of C-O bond of alcohol is mediated by hydrogen coordinated species 25 

in concerted fashion.  

The production of aliphatic product from the complex 25 and coordination of a H2O 

molecule to ruthenium center generates intermediate 26. We were able to trap analogous 

intermediate (complex 11) by using 2-hydroxyacetophenone. The analyses data of complex 

11 described in this chapter suggested that the chelation of 2-hydroxyacetophenone lead to 

generate more stable adduct by reacting a neutral intermediate. Interestingly, this complex 

11 also catalytically active for the hydrogenolysis reaction. Another molecule of ketone 

react with complex 26 to regenerate the active catalytic intermediate 23. 

On the other hand, for the Ru catalyst with electron-poor phenol ligand (X = CF3), 

electrophilic nature of the ketone substrates seems to be important in promoting the 

hydrogenolysis. The generation of active intermediate 23 is same for both mechanisms. 

The independent kinetics of hydrogen pressure indicate that there is a higher affinity of 

alcohol substrate than H2 to stabilize the electrophilic ruthenium center. The independence 

of [H2] on the rate suggests that the dative coordination of alcohol is preferred over the H2 

binding to electrophilic Ru center. 
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Scheme 4.11: Proposed Mechanism of Ruthenium Catalyzed Hydrogenolysis of 1-
Phenethanol to Ethyl Benzene for the Catalyst 8f (X = CF3). 
 
 
 

To explain the rate independent of hydrogen pressure, we proposed that the addition 

of molecular hydrogen to complex 23 is rapid and reverisible step of the reaction. Inverse 

kH/kD indicates that hydrogen addition is ɳ2 fashion and then oxidative cleavage occurs 

stepwise as described earlier in this chapter. Inverse kH/kD indicates stepwise rapid and 

reversible formation of dihydrogen coordinated Ru species (28) and complex 29. Based on 
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the high value of 13C KIE, we proposed that the C-O bond cleavage is the overall rate 

limiting step of hydrogenolysis of C-O bond of catalyst contained electron withdrawing 

ligand. Relatively high positive Hammett value indicates a relatively electron-poor Ru 

catalyst should promote the binding of ketone and alcohol substrates, and the rate-

enhancement by phenol with electron withdrawing group may be associated with a strong 

coordination of these oxygenated substrates. Both mechanisms have the same intermediate 

25 as shown in Scheme 4.11. Then the catalytically active complex 23 will regenerate in 

the same pathway described for the electron donating group. 

4.8 Conclusions 

We have developed a highly selective catalytic hydrogenolysis method for carbonyl 

compounds and alcohols by using a well-defined cationic ruthenium-hydride catalyst with 

tunable phenol ligands. The catalytic method employs cheaply available H2, and exhibits 

high chemoselectivity toward the reduction of aldehydes and ketones to corresponding 

aliphatic compounds under environmentally sustainable conditions. The detailed kinetic 

and mechanistic analyses revealed strong electronic effects of phenol ligand on promoting 

the hydrogenolysis reaction. The ruthenium catalyst with electron-rich phenolic ligand 

facilitates the H2 addition step, while the electron poor ruthenium catalyst promotes the 

hydrogenolysis through strong coordination of the ketone substrate. These kinetic and 

structural studies provide new mechanistic insights on the rational design of catalyst for 

the hydrogenolysis of oxygenated compounds. 
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CHAPTER 5 

SYNTHETIC AND MECHANISTIC STUDIES OF RUTHENIUM CATALYZED 
REDUCTIVE ETHERIFICATION OF CARBONYL COMPOUNDS AND          

ALCOHOLS 

5.0 Introduction  

Ethers represent an important class of compounds in nature and play a pivotal role 

in biochemistry. In addition, they are used as solvents, fuels, fragrances, pharmaceuticals, 

insecticides, and fumigants in the bulk and fine-chemical industries. To date, the general 

strategy for constructing ethers strongly relies on either the Williamson reaction, which 

was discovered in 1850, or the Ullmann ether synthesis.1 The two methods suffer from 

drawbacks such as the use of a strong base and organohalide substrates. From an 

environmental and economic point of view, modern organic synthesis has to avoid the 

formation of stoichiometric amounts of problematic waste products.2 However, for a 

benign preparation of ethers novel methodologies are rather underdeveloped despite the 

fast development of organic synthesis.3 Developments in transition metal catalysis have 

made available many convenient methods for synthesizing various strategic C-O bonds. 

Alkyl ether is one of the most important functional groups for organic synthesis, 

because it is included in many organic chemicals. Further, it is widely used as a protective 

group of the hydroxy function.4 The synthesis of unsymmetrical ethers from carbonyl 

compounds silyl ethers has also been achieved in the presence of a variety of Lewis acid 

catalysts.5 However, the more direct approach for the synthesis of unsymmetrical ethers 

from carbonyl compounds and unprotected alcohols with the aid of catalytic methods has 
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been only moderately investigated and has so far only been achieved by employment either 

of large amounts of BiCl3 (>20 mol %)3 or of catalytic amounts of FeCl3.6 None of the 

described methods has included study of the impact of additional functionalization of the 

alcohol coupling partner or attempts to introduce nucleophiles based on different 

heteroatoms or direct coupling between alcohol and carbonyl compounds without silanes.  

Cheaper and greener ways to synthesize ethers by reductive etherification of 

ketones/aldehydes and alcohols have been studied intensively.7 As described in Chapter 1, 

synthetic routes of unsymmetrical ethers have been developed over the years. There were 

significant improvements on etherification such as Williamson ether synthesis, Mitsunobu 

reaction, the Ullmann condensation, and other catalytic methods. These methods showed 

pre-functionalized substrates, formed copious amounts of byproducts, and exhibited a 

relatively limited range of substrate scope and functional group tolerance in forming 

unsymmetrical ether products.  

We recently discovered that a well-defined cationic ruthenium hydride complex 

[(C6H6)(PCy3)(CO)RuH]+BF4
- (1) is a highly selective catalyst precursor for the 

etherification of two different alcohols in order to form unsymmetrically substituted 

ethers.8 While the etherification reaction directly forms unsymmetrical ethers without 

forming any wasteful byproducts, it was not effective for the coupling between 

electronically similar and sterically demanding  aliphatic alcohols, as it gave a mixture of 

symmetrical and unsymmetrical ethers. In an effort to extend the scope of the etherification 

reaction, we explored the analogous reductive coupling reaction of carbonyl compounds 

with alcohols. Herein, we report a highly chemoselective formation of unsymmetrically 

substituted ether products from the reductive coupling of alcohols with aldehydes and 
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ketones. The “green” features of the catalytic method are that it employs cheaply available 

molecular hydrogen as the reducing agent, tolerates a number of common functional 

groups, and uses environmentally benign water as the solvent. 

5.1 Result and Discussion 

5.1.1 Optimization Studies 

5.1.1.1 Catalyst Screening 

We initially screened the catalyst activity of the ruthenium complex 1 for the 

reductive coupling reaction of 2-butanol with 4-methoxybenzaldehyde [Eq. (1)]. While 

searching for a suitable set of conditions, we discovered that H2 (1-2 atm) can be used as 

the reducing agent and water as the solvent. Under the optimized set of conditions, complex 

1 was found to exhibit distinctively high activity and selectivity in forming the ether 

product 2 among screened ruthenium and acid catalysts, as analyzed by both GC and NMR 

spectroscopic methods (Table 5.1). It should be emphasized that molecular H2 is rarely 

used as the reductive etherification reaction, as it typically requires silane as the reducing 

agent.7 

We initially screened the catalytic activity of 1 with the etherification of 4-

methoxybenzaldehyde and 1-butanol. 4-methoxybenzaldehyde (136 mg, 1.0 mmol), 2-

butanol (185 mg, 2.5 mmol) and a catalyst 1 (2.0 mol %) were dissolved in 1:1 mixture 

Toluene/H2O (1 mL) in a 25 mL Schlenk tube [Eq. (5.1)]. The tube was for 12 h in an oil 

bath which was preset at 110 °C. The reaction mixture was analyzed by GC and GC-MS. 

The results are summarized in Table 5.1. Among the surveyed ruthenium catalysts, 

complex 1 exhibited a uniquely high activity for the reductive coupling reaction.  
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Table 5.1: Catalyst Survey for the Reaction of 4-Methoxybenzaldehyde with 1-Butanola 

aReaction conditions: 4-methoxybenzaldehyde (136 mg, 1.0 mmol), 1-butaanol (185 
mg, 2.5 mmol), catalyst (2.0 mol %), additive (1.0 equivalent to Ru), toluene/H2O (1:1 
mL), 110 °C, 12 h. The product yield was determined by GC and GC-MS. 

Entry Catalyst  Additive  Yield (%) 

1 [(C6H6)(PCy3)(CO)RuH]+BF4
- (1)   95 

2 HBF4·OEt2   6 

3 [RuH(CO)(PCy3)]4(O)(OH)2   0 

4 [RuH(CO)(PCy3)]4(O)(OH)2 HBF4·OEt2  72 

5 RuCl3·3H2O HBF4·OEt2  0 

6 RuCl2(PPh3)3   0 

7 RuCl2(PPh3)3 HBF4·OEt2  0 

8 RuH2(CO)(PPh3)3   3  

9 RuH2(CO)(PPh3)3 HBF4·OEt2  10 

10 [RuCl2(COD)]x HBF4·OEt2  0 

11 [RuH(CO)(PCy3)2(CH3CN)2]+BF4
-   20 

12 [(p-cymene)RuCl2]2   0 

13 Ru3(CO)12 NH4PF6  0 

14 CF3SO3H   trace 

15 BF3·OEt2   trace 

16 Cy3PH+BF4
-   trace 

17 AlCl3   7 

18 FeCl3·H2O   <5 
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5.1.1.2  Solvent and Temperature Effects 

Table 5.2: Solvent Effect on the Reaction of 4-methoxybenzaldehyde with 1-butanol.a 

Entry Solvent Temp/⁰C Yield( %)b 

1 Toluene 110 63 

2 Chlorobenzene 110 82 

3 Dioxane 110 45 

4 H2O 110 85 

5 H2O/Toluene 110 90 

6 Chlorobenzene 120 90 

7 H2O 120 95 

8 H2O/Toluene 120 95 
aReaction conditions: 4-methoxybenzaldehyde (122 mg, 1.0 mmol), 1-butanol (122 mg, 
1.2mmol), catalyst 1 (1.0 mol %), in solvent (1 mL) at different temperatures ⁰C, 3h. b the 
yield was determined by GCMS analysis using C6Me6 as an internal standard 
 
 
 

A number of different solvents were examined for the optimization of the 

unsymmetrical etherification reaction (Table 5.2). The reactions of 4-

methoxybenzaldehyde (136 mg, 1.0 mmol), 1-butanol (185 mg, 1.2 mmol) and a catalyst 

1 (2.0 mol %) with different solvents at 60 ⁰C were analyzed by GC-MS after 3h of reaction 

time. The solvents affected the activity of the unsymmetrical etherification reaction. 

Chlorobenzene or H2O was found to be the most effective solvent for 

unsymmetrical etherification reaction among screened solvents (entry 1- 6). Polar solvents 

chlorobenzene, H2O at 120 ⁰C exhibited with higher conversion (>95 %) of unsymmetrical 

ethers based on 4-methoxybenzaldehyde. Among those solvents H2O is the greenest 

solvent but most organic compounds insoluble in H2O therefore a H2O/Toluene mixture 
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was used as the solvent, at higher temperature of 110-120 ⁰C, higher conversion (> 90 %) 

of unsymmetrical ethers was achieved in chlorobenzene or H2O.  

5.1.2 Optimization of Turnover Number (TON) and Turnover Frequency (TOF) 
 

 The turn over number (TON) of reductive etherification reaction was explored 

under the optimized reaction condition. The reaction between 4-methoxybenzaldehyde (20 

mmol) and 2-butanol (23 mmol) mixed with ruthenium complex 1, 0.2 µg (0.0017 mol %) 

in a fisher-porter-bottle and degassed and filled with pressure of 20 PSI H2 gas. The fisher-

porter-bottle was stired in an oil bath at 110 ⁰C and aliquot of reaction mixture were 

analyzed by GC and NMR spectroscopic methods after 1h and after 18h.  The same 

experiment was repeat in the presence of 3 mL of water as the solvent. This reaction 

resulted in the selective formation of the 2-(4’-methoxybenzyloxy)butane  and 338 of TON 

and 7648 h-1 of TOF as measured by 1H NMR and GC for neat condition and 25500 of 

TON and 5099 h-1 of TOF in H2O solvent (Fig. 4). The most salient feature of the catalytic 

method from an environmental point of view is that it employs cheaply available H2 as the 

reducing agent and water as the solvent. 
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5.2 Reaction Scope 

5.2.1 Reaction Scope of Synthesis of unsymmetrical Ether by Ruthenium Catalyzed 
 Reductive Etherification of Carbonyl Compounds and Alcohols 

The substrate scope on the etherification reaction was explored by using the catalyst 

(Table 5.3). The reductive coupling reaction of carbonyl compound and alcohols gave very 

high selectivity toward the formation of unsymmetrical ether products over that of 

symmetrical ether products [Eq. (5.3)].  

 The coupling reaction between aliphatic secondary alcohols such as 2-butanol and 

benzaldehyde substrate produced unsymmetrical ether selectively in high yield (Table 5.3, 

entry 1-5). Reaction between 2-butanol with different para-substituted benzaldehyde 

contained electron withdrawing group such as Cl (Table 5.3, entry 4) has low reactivity 

and slightly lower yield when compare with electron donating groups such as OMe, OBn 

(Table 5.3, entry 2-3) for the etherification with 2-butanol. Primary alcohols such as n-

hexanol with benzaldehyde gave the unsymmetrical ether in high yield (Table 5.3, entry 

6). Cyclic alcohols such as cyclopenanol coupling with benzaldehde produced ether 95 % 

((Table 5.3, entry 7). Alcohols contained remote chiral center reacted with benzyllic 

aldehydes to produce unsymmetrical chiral alcohol without affecting the chirality (Table 

5.3, entry 8). 1,2-hexanediol and 1,3-butanediol reacts with para-methoxybenzaldehyde to 

produced only selectively reactive towards primary alcohol over the secondary (Table 5.3, 

entry 9-10).  
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Table 5.3: Synthesis of Unsymmetrical Ethers from the Dehydrative Coupling of 
Alcoholsa 
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Table 5.3: Cont..  

entry alcohol carbonyl compd product(s) time (h) yield (%)

24
25
26

2x
2y
2z

Ph

O

Ph

16
16
16

94
92
65

R = 1-butyl
R = cyclopentyl
R = benzyl Ph Ph

OR

R-OH

21
22
23

88
93
55

R = n-butyl
R = cycopentyl
R = Bn

2u
2v
2w

16
16
16

O

OMe OMe

R-OH

O
R

O

MeO

HO

4'-OMeC6H4CHO

20
12 90

2t

 

 

a Reaction conditions: R1OH (1.0 mmol), R2OH (1.2 mmol), chloroform (2 mL), 5 (0.5-1 
mol %). b Isolated yield of the products with > 95 % purity. c The product yield is 
determined by GC. 
p-methoxy benzyllic alcohols reacted with different aldehydes such as hexanal, isobutyl 

aldehyde, cyclohexylcarboxyaldehyde, and also benzaldehyde to produce product 2k, 2l, 

2m and 2n respectively in high yield (Table 5.3, entry 11-14). Primary aliphatic alcohols 
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such as ethanol and 1-hexanol reacted with aliphatic aldehydes such as 1-hexanal and 

cyclohexyl carboxyaldehyde to produce corresponding ether 2o and 2p in moderately high 

yield (Table 5.3, entry 15-16). Amide contain alcohol such as 1-(2-Hydroxyethyl)-2-

pyrrolidone reacted with benzyllic alcohols producing ether 2q in high yield showing that 

amide group tolerance for the reaction (Table 5.3, entry 17). 2-pyridyl aldehyde and 1-

naphthaldehyde also reacted with 2-butanol to produce ether 2r and 2s in high yield (Table 

5.3, entry 18-19). (R)-nopol reacted with 4-mthoxybenzyldehyde to produce optically 

active ether 2t in 90 % yield. Aliphatic and benzyllic alcohols such as 1-butanol, 

cyclopentanol, and benzylalcohol produced ether compound 2u-2w reacting with benzyllic 

ketone substrate, 4-methoxyacetopheone (Table 5.3, entry 21-23). 

Next we examined the coupling between different alcohols with benzophenone. 

Primary aliphatic alcohol such as1-butanol, cyclic aliphatic alcohol such as cyclopentyl 

alcohol and benzyl alcohol exclusively reacted with benzophenone giving high yield ether 

products 2x, 2y and 2z respectively (Table 5.3, entry 24-26). Chromanone also coupled 

with 1-butyl, cyclopentyl and 2-proyl alcohols to produce high yield of ether products 2aa, 

2ab, and 2ac in high yield (Table 5.3, entry 27-29). 4-methoxybenzyl alcohol reacted with 

cyclohexanone and cyclopentanone to produce 2ad and 2ae in 85 % and 90 % yield 

respectively (Table 5.3, entry 30-31). Aliphatic alcohols such as 3-phenylpropanol reacted 

with aliphatic cyclic ketone such as cyclopentanol to produce ether product 2af in 98 % 

yield. Aliphatic linear ketone such as 2-heptanone produced ether product 2ag in 55 % 

yield. Alcohol bearing ester functionality and remote chiral group reacted with 4-methoxy 

acetophene to produce 1:1 mixture of diastereomeric products 2ai in 78 % yield (Table 5.3, 

entry 34) without affecting ester functional group. 
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5.2.2 Reaction Scope of Synthesis of Unsymmetrical Ethers from the Dehydrative 
Coupling of Highly Functionalized Bioactive Alcohols 

 

To further illustrate synthetic versatility of the catalytic coupling method, we next 

surveyed the etherification reaction of functionalized alcohol substrates of biological 

importance (Table 5.4). First we examined the coupling between 4’-methoxybenzaldehyde 

with nucleotide 2’,3’-isopropylidenedeoxyuridine in the presence of 1atm H2 at 90 ̊ C. This 

reaction produced 52 % ether product 3a without affecting any other functional group. Next 

we examined the reaction of 4-methoxybenzaldehyde with (1R, 2S, 5R)-(−)-Menthol in 

same condition. This reaction produced the ether product 3b in 90 % yield without 

racemization. The reductive coupling of 4-methoxybenzaldehyde with different steroidal 

compounds were tested. Cholesterol, trans-Androsterone produced ether products 3d and 

3e respectively in 65 % and 80 % yield selectively. 3β-Hydroxy-5-pregnen-20-one 

produced ether product 3f in 78 % yield without racemization of 3β C-O bond. Same 

aldehyde with (N-benzoyl) threonine methyl ester produced ether 3c in 84 % yield without 

racemization of alcohol. Deoxycholic amide of L-phenylglycine methyl ester produced 

selectively β-benzyloxy ether 3j, in 81 % yield. Broad spectrum antibiotic and antifungal 

agent chloroamphenicol selectively produced primary alcohol protected ether 3g in 65 % 

yield also with aliphatic aldehyde such as butaldehyde produced product 3h. The bioactive 

molecule fenfubrate reacted with aliphatic alcohol such as butanol produces ether 3i. 
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Table 5.4: Synthesis of Unsymmetrical Ethers from the Reductive Coupling of Carbonyl 
Compounds with Alcoholsa 

 

a Reaction conditions: alcohol (1.0 mmol), alcohol (1.0 mmol), toluene (2 mL)/ 
Chlorobenzene (2 mL), 5 (1-5 mol %), 70 - 110 °C. 
 
 
 
5.3 Determination of X-ray Crystallography 

Analysis of the X-ray single crystal structure of product 3d, 3e and 3f confirmed 

the stereocenter remained same as starting material. Single crystals of 3d, 3e and 3f suitable 

for X-ray crystallographic analysis were obtained from slow evaporation of CH2Cl2. Single 

crystals of 3d, 3e and 3f were colorless needles type. The absolute configuration of single 

crystal was established objectively. 
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(A)                                                                 (B) 

 

(C) 

Figure 5.1: X-ray Crystal Structure of (A) 3d (B) 3e (C) 3f. 

5.4 Mechanistic Studies 

 

5.4.1 Hammett Study.  

To probe electronic influence on the aldehyde substrate, we constructed a Hammett 

plot from measuring the rate of a series of para-substituted benzaldehydes p-X-C6H4CHO 

(X = OMe, Me, H, F, Cl) with 2-butanol [Eq. (5.4)].  Para-substituted benzyladehyde, p-

X-C6H5CHO (X = OCH3, CH3, H, Cl, F) (0.25 mmol), 2-butanol (0.75 mmol), H2O (0.05 

mmol) and complex 1 (3 mol %) were dissolved in toluene-d8 (0.5 mL) in six separate J-
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Yong tubes. The tubes were brought out of the box, and stirred in an oil bath set at 110 °C. 

Each reaction tube was taken out of the oil bath in 20 minute intervals, and was 

immediately cooled and analyzed by 1H NMR. The kobs was determined from a first-order 

plot of -ln([p-X-C6H5CHO]t/p-X-C6H5CHO]0) vs. time. The Hammett plot of log(kX/kH) 

vs. σp is shown in fig. 37.  A linear correlation from the relative rate vs Hammett σp led to 

a relatively high negative ρ value of -1.6 ± 0.1 (Figure 5.2). This result is consistent with 

the C-O bond cleavage and the hydrogenolysis step is likely promoted by the by electron-

releasing group, but not expected during the formation of hemiacetal species. Similar 

Hammett ρ values have been observed in the catalytic coupling reactions of arenes.9 

 

Figure 5.2: Hammett Plot from the Reaction of p-X-C6H4CHO (X = OMe, Me, H, F, Cl) 
with 2-Butanol. 
 
 
 
5.4.2 Solvent Isotope Effect 

The solvent isotope effect was measured to probe the solvent influence on the 

etherification reaction. The initial rates of the reaction between 4-methoxybenzaldehyde 

with 2-butanol (2 equivalence) were separately measured in H2O and D2O. Briefly, 4-
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methoxybenzyladehyde, p-OMe-C6H5CHO (340 mg, 1.5 mmol), 2-butanol (462.5 mg, 

6.25 mmol) and complex 1 (40 mg, 2 mol %) were mixed in a vial and divided into five 

separate 25 mL Schelenk tubes. 0.5 mL of H2O or D2O was added to each tube and 

degassed under vacummed line. The  tubes were stirred in an oil bath set at 110 °C. Each 

reaction tube was taken out of the oil bath in 15 minute intervals, analysed by 1H NMR 

using 10 mg hexamethyl benzene as the internal standard. The kH2O or kD2O was determined 

from a first-order plot of -ln([p-OMe-C6H5CHO]t/p-OMe-C6H5CHO]0) vs. time. The first 

order plots showed a relatively high normal isotope effect of kH2O/kD2O = 2.9 ± 0.2 (Figure 

5.3). Similar value of solvent isotope effect was obtained from 2-propanol/2-propanol-d8 

(kPrOH/kPrOD = 2.0 ± 0.2, Figure 5.4). A relatively large solvent isotope effect value suggests 

that the water molecules are intricately involved in C–O bond cleavage and hydrogenolysis 

steps via extensive hydrogen bonding network interactions.10 

Essentially, there are three factors that lead to kinetic solvent isotope effects: (1) Solvent 

molecules participate as reactants in the reaction. Depending on the other preconditions, 

actual primary or secondary kinetic isotope effects then appear. (2) The transition state of 

the reaction can be stabilized by interactions between the reactants and solvent molecules. 

The extent of these interactions in isotope-substituted solvents can differ from that in the 

original solvent. As a result, the transition state's energy and thus, the activation energy Ea 

of the respective reaction step (elementary reaction) are altered. If this particular reaction 

step is the rate-determining step, the result is a kinetic isotope effect. The positively 

charged transition state of the ether formation, for example, interacts with the polar water 

molecules to a considerable degree with cationic ruthenium species. (3) Especially in 

acidic, deuterated solvents (e.g. D2O or 2-butanol-OD), an H/D exchange or a D transfer 
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between the solvent molecules and the reactants can occur. Consequently, an actual 

primary or secondary kinetic isotope effect is obtained. After it has been transferred to 

ether, D could cause a secondary kinetic isotope effect if the rate-determining step still 

follows 

Data about the rate-determining step and the structure of the transition state, as well 

as the participation of solvent molecules in the reaction by either solvating the transition 

state or acting as reactants can be inferred from kinetic solvent isotope effects and not only 

from pure and obvious primary or secondary kinetic isotope effects. It should be taken into 

consideration that the formerly mentioned causes of kinetic isotope effects can occur 

simultaneously and can enhance each other, as is the case in the ether formation.  

 

Figure 5.3: First Order Plot of the 4-Methoxybenzaldehyde (S) with 2-Butanol in H2O 
(circle) and in D2O (triangle). 
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Figure 5.4: First Order Plot of the 4-Methoxybenzaldehyde with 2-Propanol (triangle) 
and in 2-Propanol-d1 (circle). 
 
 

 

 

Figure 5.5: Transition State of Ruthenium Alkoxy Species 
 
 
 
5.4.3 H/D Exchange Experiment 

A series of kinetic experiments were performed to gain mechanistic insights for the 

etherification reaction. First, the H/D exchange pattern on the coupling reaction was 

examined. 
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5.4.3.1 H/D Exchange Reaction of 4-methoxybenzaldehyde with 1-butanol in D2O. 

The treatment of 4-methoxybenzaldehyde with 1-butanol (2 equivalence) in the 

presence of complex 1 (3 mol %) in D2O at 110 ˚C led to the selective deuterium 

incorporation to benzylic position of the product 2f [Eq. (5.5)]. The products were 

completely characterized by 1H and 2H NMR spectroscopic methods. The 1H and 2H NMR 

of 2f-[D] are shown in Figure 5.6. 

O

H

MeO
+ HO

1, (2 mol %)

D2O, 110 °C, 6h

O

MeO

56 % D 6 % D

(5.5)

 

 

Figure 5.6: 1H and 2H NMR Spectra of the Product 2f Isolated from the Reaction of 4-
Methoxybenzaldehyde with 1-Butanol in D2O.  
 
 
 
5.4.3.2 H/D Exchange Reaction of 4-methoxybenzaldehyde with iPrOH-d8 in H2O.  

Conversely, 4-methoxybenzaldehyde with 2-propanol-d8 (2 equiv.) in H2O under 

 
 

1H NMR 

2H NMR 



194 

 
the similar conditions above gave the product with ~50 % protons on benzylic position [Eq. 

(5.6)]. The 1H and 2H NMR of 5-[D] are shown in Figure 5.7. In a control experiment, the 

treatment of 2-propanol with D2O in the presence of 1 (2 mol %) led to a rapid H/D 

exchange to form (CH3)2CHOD at room temperature (Figure 5.7). These results suggest an 

extensive H/D exchange between the solvent and alcohol substrate, and further implicate 

strong involvement of solvent molecules during the C=O hydrogenolysis step. 

 

 

Figure 5.7: 1H and 2H NMR Spectra of the Product 5-[D] Isolated from the Reaction of 
4-Methoxybenzaldehyde with 2-propanol-d8 in H2O.  
 
 
 

The following kinetic experiments were performed to gain mechanistic insights 

into catalytic C-O bond cleavage of alcohol. To examine H/D exchange pattern of 4-

methoxybenzaldehyde-d1, the reaction of 4-methoxybenzaldehyde-d1 (0.2 mmol) with 
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H2O (1 mmol) in the presence of 1 (4 mg, 3 mol %) in benzene-d6 (0.4 mL) at 110 ⁰C was 

stopped after 12h [Eq. (5.7)], and was monitored by both 1H and 2H NMR (Fig. 5.8).   

 

 A negligible amount of proton incorporation to the aldehydic deuterium (< 0.05 %) 

was observed (Figure 5.8). The results indicate that the carbonyl oxygen is coordinates to 

metal center and aldehyde alcohol functional group transfer is impossible for benzaldehyde 

substrate.  

 

Figure 5.8: 1H and 2H NMR Spectra of the Reaction Mixture of 4-methoxybenzaldehyde-
d1 with H2O at 110 °C. 
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Figure 5.9: 1H NMR Spectra of the Reaction Mixture of iPrOH with D2O at 20 °C. 

But in H/D exchange experiment all D exchange was observed at alcoholic OH of 

2-propanol that is well known process (Fig. 5.9, eq. (5.8)). 

H3C OH

CH3

H

+ D2O
H3C OD

CH3

H

+ HDO (5.8)

 

5.4.4 Carbon Isotope Effect  

In order to obtaine a detailed picture of rate determine step of etherification 

reaction, 13C KIE experiment was caried out. By following the general protocol complex 1 

(3 mol %) 4-methoxybenzaldehyde (1.36 g, 10.0 mmol), 1-hexanol  (0.255 g, 2.5 mmol), 

water (10 mL) and in toluene (5 mL) was reacted in a 100 mL Fisher-porto-bottle [Eq. 
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(5.9)].  

O

O

1.000

1.004

1.001

1.001

1.000

1.010
1.021

 

Table 5.5: Calculated Average 13C KIE from Virgin (Ro) and Recovered (R) Samples of 
2f. 

Carbon no. virgin (Ro) 
Recovered (R) 

(18 % conv.) 
Ro/R 

13C KIE 

1 (ref) 1.0000 0.9999 1.0001 0.999 

2 1.0068 1.0068 0.9995 1.004 

3 1.0036 1.0024 1.0001 1.001 

4 1.0010 1.0009 1.0001 1.001 

5  1.0029 1.0030 0.9999 1.000 

6 1.0087 0.9992 1.0096 1.010 

7 1.0071 0.9860 1.0215 1.021 

 

Three  reactions were run separately and each  reaction was stirred in an oil bath 

set at 110 °C for 2h, 2.5h, and 3 h respectively. Compound 1-[1-(hexyloxy)methyl]-4-

methoxybenzene (2f) was isolated by a column chromatography on silica gel 

(hexanes/EtOAc = 40:1) separately after filtering through a short silica gel column eluting 

with CH2Cl2 (20 mL), and each solution was analyzed by GC (15, 18 and 20 % conversion). 

The recovered and virgin samples of 1-[1-(hexyloxy)methyl]-4-methoxybenzene were 

prepared by following same procedure for 16h. 

The 13C{1H} NMR analysis of the recovered and virgin samples of 1-[1-

(hexyloxy)methyl]-4-methoxybenzene was performed by following Singleton’s 13C NMR 
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measurement technique. The NMR sample of virgin and recovered 1-[1-

(hexyloxy)methyl]-4-methoxybenzene  was prepared identically by dissolving (100 mg) in 

CDCl3 (0.5 mL) in a 5 mm high precision NMR tube. The 13C{1H} NMR spectrum was 

recorded with H-decoupling and 45 degree pulse. A 60 s delay between pulses was imposed 

to minimize T1 variations (d1 = 60 s, at = 5.0 s, np = 245098, nt = 704). The data are 

summarized in Table 5.5. 

The most pronounced carbon isotope effect on the product 2f is observed when the 

13C ratio of the product 2f at three low conversions (15, 18 and 20 % conversion) was 

compared with the sample obtained at high conversion (98 %). The reductive etherification 

reaction catalyzed by the catalyst 1 resulted in the significant isotope effect on the 7-carbon 

of the product 2f for (13C at 98 % conversion)/(average of 13C at 18 % conversion) at C(7) 

= 1.021.  According to the 13C-KIE data aldehydic carbon has the most pronounce KIE 

which indicates the C-O cleavage of hemiacetal type intermediate is the rate limiting step. 

But according to Hammett value nucleophilic attack to carbonyl carbon cannot be rate 

limiting step. The rate limiting step could be the C-O cleavage of intermediate hemiacetal 

type compound. 
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5.4.5 Identification of Catalytic Active Intermediates 

 

Scheme 5.1: Synthesis of Complex 7, 8 and 9 

 

To discern the structure of catalytically relevant species, we explored the reactions 

of 1 with alcohols and water. The treatment of the complex 1 (0.07 mmol) with excess 1-

butanol (0.7 mmol) in CD2Cl2 (0.6 mL) led to the formation of a new Ru-H species within 

30 min at room temperature (Scheme 5.1). The appearance of a new set of peaks was 

observed along with the formation of free benzene molecule as monitored by NMR (1H 

NMR: δ -18.8 (d, JPH = 31.3 Hz) ppm; 31P{1H} NMR: δ 76.0 ppm) (Fig. 5.10). We 

tentatively assign the new species to the alcohol-coordinated complex [(1-

butanol)3(PCy3)(CO)RuH]+BF4
- (7), in light of the previously observed arene exchange 

reaction of 1.12 The analogous reaction with excess water also formed the water-

coordinated complex 8 (1H NMR: δ -17.7 (d, JPH = 30.3 Hz) ppm; 31P{1H} NMR: δ 73.0 

ppm) (Fig. 5.11). Both complexes 7 and 8 slowly decomposed within 12 h at room 

temperature. The catalytic activity of complex 7 was found to be identical to 1 for the 
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etherification of 4-methoxybenzaldehyde with 2-butanol under the conditions described in 

Eq. (5.1).  

 

Figure 5.10: 1H NMR Spectra of the Reaction of 1 with 1-Butanol. 

Since the alcohol-coordinated complex is not stable at room temperature, we next 

examined the reaction of complex 1 with diols and triols as a way to form stable complex. 

Thus, the treatment of 1 with 1,1,1-tris(hydroxymethyl)ethane in acetone at room 

temperature led to the triol-coordinated complex 9, which was isolated in 80 % after 

crystallization in acetone/pentane. The X-ray crystal structure of 9 showed (Fig. 5.12) a 

distorted octahedral geometry with a facial arrangement between the triol and the ancillary 

ligands. A number of ruthenium-hydride complexes have been successfully utilized as 

catalysts for the alcohol coupling reactions.10 
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Figure 5.11: 1H NMR Spectra of the Reaction of 5 with H2O. 

 

Figure 5.12: ORTEP Diagram of Complex 9 (H Atoms Removed for Clarity) 
 
 
 

Under similar experimental conditions cationic ruthenium hydride complex 1, 

dissolved in acetone to generate complex 10 as ketone coordinated complex which 

evidence that ketone also coordinate to the ruthenium center in etherification conditions. 
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The complex 10 was isolated in 80 % after crystallization in acetone/pentane. The X-ray 

crystal structure of 10 Ru(II) has an octahedral coordination and the complex represents a 

cis-isomer. Positions of hydride ligand and H atoms of the aqua ligand are trans-positioned 

to carbonyl. It contained one H2O molecule due to acetone solvent contained H2O as the 

impurity (Fig. 5.13).  

 

 

Figure 5.13: ORTEP Diagram of Complex 10 (H Atoms Removed for Clarity)  

 

Figure 5.14: ORTEP Diagram of Complex 11 (H Atoms Removed for Clarity) 
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We observed that the complex 8, in the presence of HBF4 in et dioxane undergo 

rearrangement to tetraaqua coordinated dicationic complex 11 which is confirm by X-

defraction technique and 1H NMR and 31P NMR technique. X-ray structure of complex 11 

is shown in figure 5.14. 

5.5 Proposed Mechanism 

On the basis of these results, we present a possible mechanism of the catalytic 

reaction for the selective formation of unsymmetrical ethers (Scheme 5.2). We propose that 

an alcohols coordinated cationic Ru-H species 7 initiate the reaction based on the 

intermediate observed. Complex 7 is initially generated from the benzene ligand 

displacement and the dehydrogenation steps. In support of this notion, we have been able 

to detect/isolate the formation of alcohol-coordinated cationic Ru-H complex 7 from the 

reaction of 5 with alcohols and water. Formation of H2 gas molecule by deprotonation of 

alcohol open up an empty coordinate site (intermediate 12) for carbonyl compound with 

Ru-alkoxy species 13. It is the key intermediate species for the etherification reaction.  
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Scheme 5.2: Proposed Mechanism for the Catalytic Reductive Coupling of Carbonyl 
Compound with Alcohols. 
 
 
 

Then the nucleophilic addition of alkoxide to carbonyl carbon which is promotes 

reactivity by hydrogen bonding found from solvent kinetic isotopic effect generates 

hemiacetal type intermediate 14. The observed H/D exchange pattern on the α-carbon of 

the ether product 2 as well as a normal solvent isotope effect indicates that the solvent 

molecules are intricately involved in the C–O bond hydrogenolysis step. Hammett data and 
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13C KIE indicates the electron donating group promotes the reactivity and due to 

hydronenolysis of C-O bond of hemiacetal intermediate is the rate limiting step of the 

mechanism. C-O cleavage of complex 15 by H2 or solvent promoted hydride transfer 

produced ether and Ru-OH species 17. The coordination of another alcohol substrate and 

the liberation of water byproduct would facilitate the regeneration of the alkoxy species 

13.  

Part of this work was publishe in Nishantha Kalutharage and Chae S. Yi Org. Lett., 

2015, 17 (7), pp 1778-1781; doi: 10.1021/acs.orglett.5b00553. 

 

5.6 Conclusion: 

In conclusion, we successfully developed a highly chemoselective catalytic 

etherification method of aldehydes and ketones with alcohols. The ruthenium-hydride 

catalyst exhibits a uniquely high activity as well as broad substrate scope in promoting the 

reductive etherification reaction of carbonyl compounds in an aqueous solution without 

using any reactive reagents or forming wasteful byproducts. We anticipate that the catalytic 

etherification method provides an environmentally sustainable and cost effective protocol 

for forming unsymmetrical ether compounds. 
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CHAPTER 6 

EXPERIMENTAL SECTION 

6.0 General Information. 

  All operations were carried out in a nitrogen-filled glove box or by using 

standard high vacuum and Schlenk techniques unless otherwise noted. Solvents were 

freshly distilled over the appropriate drying reagents. Tetrahydrofuran, 1,4-dioxane, 

benzene, toluene, hexanes and ether were distilled from purple solutions of sodium and 

benzophenone immediately prior to use. Toluene and chlorobenzene (C6H5Cl) were dried 

over calcium hydride. The 1H, 13C and 31P NMR spectra were recorded on a Varian 300 or 

400 or 600 MHz FT-NMR spectrometer, and the data are reported as: s = singlet, d = 

doublet, t = triplet, q = quartet, p = pentet, m = multiplet, br = broad, app = apparent; 

coupling constant(s) in Hz; integration. Mass spectra were recorded from an Agilent 6850 

GC-MS spectrometer with a HP-5 (5% phenylmethylpolysiloxane) column (30 m, 0.32 

mm, 0.25 μm). The conversion of organic products was measured from a Hewlett-Packard 

HP 6890 GC spectrometer. High resolution mass spectra were obtained at the Center of 

Mass Spectrometry, MO and at the Mass Spectrometry/ICP Lab, Department of Chemistry 

and Biochemistry, University of Wisconsin-Milwaukee, Milwaukee, WI. Optical rotation 

were measured by using a 1 mL cell with 1 dm path length on a Perkin-Elmer 341 

polarimeter with a sodium lamp, and are reported as follows: []T
C (c = g/100 mL, solvent). 

Element analyses were performed at the Midwest Microlab, Indianapolis, IN. 
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6.1. Synthesis and Mechanistic Studies of Deaminative Coupling Reactions of 
Amines with Alcohols 
 
6.1.1 General Procedure for the Coupling Reaction of an Amine with an Alcohol.  
 

In a glove box, an amine (1.0 mmol), an alcohol (1 mmol), cyclopentene (1.2 

mmol) and complex 1 (17 mg, 3 mol %) were dissolved in toluene (2 mL) in a 25 mL 

Schlenk tube equipped with a Teflon stopcock and a magnetic stirring bar. The tube 

was brought out of the glove box, and was stirred in an oil bath set at 130 °C for 6-12h. 

The reaction tube was taken out of the oil bath, and was immediately cooled in a dry 

ice/acetone bath. After the tube was open to air, the solution was filtered through a short 

silica gel column by eluting with CH2Cl2 (10 mL), and the filtrate was analyzed by GC 

and GC-MS. Analytically pure product was isolated by a simple column 

chromatography on silica gel (280-400 mesh, hexanes/EtOAc = 100:1 to 1:1). The 

products were completely characterized by NMR and GC-MS spectroscopic methods. 

 

6.1.2 Synthesis of Ru catalysts 

The tetrametallic complex 5 was synthesized in two steps from the ruthenium-

hydride complex (PCy3)2(CO)RuHCl (2) (Scheme 3.2). Thus, the reaction of 2 with KOH 

in 2-propanol produced the bimetallic complex 3, which was isolated in 85% yield after 

recrystallization in hexanes.  

6.1.3 Synthesis of [(η6-C6H6)RuH(CO)(PCy3)]+BF4
- (2). 

 
In a glove box, complex 5 (200 mg, 0.12 mmol) was dissolved in benzene (10 mL) 

in a 25 mL Schlenk tube equipped with a Teflon screw-cap stopcock and a magnetic stirring 

bar. The tube was brought out of the box, and HBF4·OEt2 (64 μL, 0.48 mmol) was added 

via syringe under N2 stream. The color of the solution was changed from dark red to pale 
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yellow immediately. After stirring for 1 h at room temperature, the solvent was removed 

under vacuum, and the residue was crashed by adding hexanes (10 mL). Filtering the 

resulting solid through a fritted funnel and recrystallization from CH2Cl2/hexanes yielded 

the product as an ivory color powder (262 mg, 95% yield). Single crystals of 2 suitable for 

X-ray crystallography were obtained from a slow evaporation of benzene and hexanes 

solution. 

For 2: 1H NMR (CD2Cl2, 400 MHz) δ 6.53 (s, C6H6), 2.0-1.2 (m, PCy3), -10.39 (d, 

JPH = 25.9 Hz, Ru-H); 13C{1H} NMR (CD2Cl2, 100 MHz), δ 196.4 (d, JC-P = 19.3 Hz, CO), 

100.0 (C6H6), 38.4, 38.2, 30.2, 29.9, 27.4, 27.3 and 26.2 (PCy3); 31P{1H} NMR (CD2Cl2, 

162 MHz) δ 72.9 (PCy3); IR (KBr) νCO = 1991 cm-1; Anal. Calcd for 2 C25H40BF4OPRu: 

C, 52.18; H, 7.01. Found: C, 51.73; H, 6.91. 

 

6.1.4 Catalyst Screening for the Alkylation of 2-Butanol with 3-
methoxybenzylamine. 
 

 In a glove box, an amine (1.0 mmol), an alcohol (1 mmol), cyclopentene (0.05 

mmol) and complex 2 (17 mg, 3 mol %) were dissolved in toluene (2 mL) in a 25 mL 

Schlenk tube equipped with a Teflon stopcock and a magnetic stirring bar. The tube was 

brought out of the glove box, and was stirred in an oil bath set at 100-130 °C for 6-12 h. 

The reaction tube was taken out of the oil bath, and was immediately cooled in a dry 

ice/acetone bath. After the tube was open to air, the solution was filtered through a short 

silica gel column by eluting with CH2Cl2 (10 mL), and the filtrate was analyzed by GC and 

GC-MS. Analytically pure product was isolated by a simple column chromatography on 

silica gel (280-400 mesh, hexanes/EtOAc = 100:1 to 1:1). The products were completely 

characterized by NMR and GC-MS spectroscopic methods. The results are summarized in 
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Table 3.1. 

6.1.5 Deuterium Labeling Study.  
 

In a glove box, 3-methoxybenzyl amine (0.2 mmol), 2-propanol-d8 (0.4 mmol, 99 

% D) and 5 (6 mg, 5 mol %) were dissolved in toluene-d8 (0.4 mL) in a J-Young NMR 

tube with a Teflon screw cap stopcock (Wilmad). The tube was brought out of the box, and 

the reaction progress was monitored by both 1H and 2H NMR at 80 °C. After 1 h, the 3-

methoxybenzyl amine substrate was found to contain 34% deuterium on the C(2) position, 

was also detected as analyzed by both 1H and 2H NMR. Figure 3.3 shows the 1H and 2H 

NMR spectra of the reaction mixture after 1 h of the reaction time. 

 

6.1.6. Carbon Isotope Effect Study. 
 

 In a glove box, 1-phenylethanol (1.5 g, 10 mmol), 1-hexylamine (1.6 g, 12 mmol), 

cyclopentene (70 mg, 1 mmol) and complex 2 (180 mg, 3 mol %) were dissolved in toluene 

(30 mL) in a 100 mL Schlenk tube equipped with a Teflon screw cap stopcock and a 

magnetic stirring bar. The tube was brought out of the box, and stirred for 4h, 4.5h, and 5 

h respectively, in an oil bath which was preset at 130 °C. Compound Octanophenone (7d) 

was isolated by a column chromatography on silica gel (hexanes/EtOAc = 40:1 to 10:1) 

separately after filtering through a short silica gel column eluting with CH2Cl2 (20 mL), 

and each solution was analyzed by GC (15, 18 and 20 % conversion). Comercially 

available Octanophenone was used as the virgin samples. 

The 13C{1H} NMR analysis of the recovered and virgin samples of Octanophenone 

was performed by following Singleton’s 13C NMR measurement technique (chaper 4, ref. 

22). The NMR sample of virgin and recovered octanophenone was prepared identically by 
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dissolving (100 mg) in CDCl3 (0.5 mL) in a 5 mm high precision NMR tube. The 13C{1H} 

NMR spectrum was recorded with H-decoupling and 45 degree pulse. A 60 s delay between 

pulses was imposed to minimize T1 variations (d1 = 60 s, at = 5.0 s, np = 245098, nt = 704). 

The data are summarized in Table 3.5. 

 

6.1.7 Hammett Study.  
 

Hammett studies of para-substituted benzylamine substrates were performed to 

determine the electronic effects on arylalketone substrate during C-N bond cleavage 

reaction. Para-substituted benzylamines, p-X-C6H5CH2NH2 (X = OCH3, CH3, H, Cl) (1.0 

mmol), 1-phenylethanol (1.5 mmol), cyclopentene (0.05 mmol) and complex 2 (3 mol %) 

were dissolved in toluene (2 mL) in six separate 25 mL Schlenk tubes. The tubes were 

brought out of the box, and stirred in an oil bath set at 130 °C. Each reaction tube was 

taken out of the oil bath in 30 minute intervals, and was immediately cooled and analyzed 

by 1H NMR. The kobs was determined from a first-order plot of -ln([p-X-C6H5CH2NH2]t/p-

X-C6H5CH2NH2]0) vs. time. The Hammett plot of log(kX/kH) vs. σp is shown in Fig. 3.2.  

The Hammett correlation of para-substituted benzylamine substrates (p-X-C6H4CH2NH2 

(X = OMe, CH3, H, F, Cl) was ρ = -1.2 ± 0.1 calculated from slope of the plot (Figure 3.2).  

 

6.1.8 Characterization of Organic Products 

Data for Table 3.3, Compound 7a: 1H NMR (400 MHz, CDCl3) 

δ 3.32-3.43 (m, 4H), 1.51 (p, J = 7.3 Hz, 2H), 1.27 (sextet, J = 7.4 Hz, 

2H), 1.01 (t, J = 7.4 Hz, 3H), 1.01 (t, J = 7.3 Hz, 3H) ppm; 13C NMR 

(400 MHz, CDCl3) δ 210.1, 41.9, 35.6, 25.8, 22.2, 13.6, 9.9 ppm; GC-
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MS m/z = 114 (M+).1H and 13C NMR spectral data are in good agreement with the literature 

data.1  

Data for Table 3.3, Compound 7b: 1H NMR (400 

MHz, CDCl3) δ 7.02−7.22 (m, 5H), 2.79 (t, J = 8.1 Hz, 2H), 

2.62 (t, J = 8.1 Hz, 2H), 2.28 (t, J = 7.5 Hz, 2H), 1.44 (p, J= 

7.5 Hz, 2H), 1.18 (sextet, J= 7.5 Hz, 2H), 0.78 (t, J = 7.5 Hz, 1H) ppm; 13C NMR (400 

MHz, CDCl3) δ 210.7, 141.6, 128.9, 128.8, 126.5, 44.7, 43.2, 30.2, 26.3, 22.7, 14.3 ppm; 

GC-MS m/z = 162 (M+). 1H and 13C NMR spectral data are in good agreement with the 

literature data.2 

Data for Table 3.3, Compound 7c: 1H NMR (400 MHz, 

CDCl3) δ 7.85−7.91 (m, 2H), 7.45−7.51  (m, 1H), 7.35−7.42 (m, 

2H), 2.90 (t, J = 7.2 Hz, 2H), 1.65 (p, J = 8.6 Hz, 2H), 1.34 (sextet, 

J = 8.0 Hz, 2H), 0.88 (t, J= 7.5 Hz, 3H), ppm; 13C NMR (400 MHz, CDCl3) δ 200.6, 137.1, 

132.8, 128.5, 128.0, 38.3, 26.5, 22.5, 14.0 ppm; GC-MS m/z = 162 (M+). 1H and 13C NMR 

spectral data are in good agreement with the literature data.3 

Data for Table 3.3, Compound 7d: 1H NMR (400 

MHz, CDCl3) δ 7.96 (dt, J = 7.0, 1.4 Hz, 2H), 7.55 (tt, J = 

7.5, 2.1 Hz, 1H), 7.45 (tt, J = 7.5, 1.4 Hz, 2H), 2. 96 (t, J = 

7.8 Hz, 2H), 1.73 (p, J = 7.3 Hz, 2H), 1.20-1.45 (m, 8H) 0.88 (t, J= 7.1 Hz, 3H), ppm; 13C 

NMR (400 MHz, CDCl3) δ 200.6, 137.1, 132.8, 128.5, 128.0, 38.3, 26.5, 22.5, 14.0 ppm; 

GC-MS m/z = 204 (M+).1H and 13C NMR spectral data are in good 

agreement with the literature data.4 
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Data for Table 3.3, Compound 7e: 1H NMR (400 MHz, CDCl3) 2.33-1.92 (m, 

5H), 1.85-1.65 (m, 2H), 1.56-1.15 (m, 4H), 0.89 (t, J = 7.2 Hz, 3H) ppm; 13C NMR (400 

MHz, CDCl3) δ 221.2, 48.7, 37.9, 31.7, 29.4, 20.6, 20.5, 13.8 ppm; GC-MS m/z = 126 

(M+).1H and 13C NMR spectral data are in good agreement with the literature data.5 

Data for Table 3.3, Compound 7f: 1H NMR (400 MHz, 

CDCl3) 2.39 (dddd, J = 13.5, 4.4, 4.3, 1.4 Hz, 1H), 2.23-2.33 (m, 2H), 

2.06-2.14 (m, 1H), 1.96-2.06 (m, 1H), 1.81-1.89 (m, 1H), 1.59-1.81 

(m, 3H), 1.34-1.44 (m, 1H), 1.24-1.35 (m, 2H), 1.13-1.24 (m, 1H), 

0.89 (t, J = 7.2 Hz, 3H) ppm; 13C NMR (400 MHz, CDCl3) δ 213.6, 

50.4, 41.8, 33.7, 31.4, 27.9, 24.7, 20.2, 14.1 ppm; GC-MS m/z = 140 

(M+).1H and 13C NMR spectral data are in good agreement with the 

literature data.6 

Data for Table 3.3, Compound 7g: 1H NMR (400 MHz, CDCl3) trans-7g: 2.56 (ddd, 

J = 10.0, 6.5, 5.2 Hz, 1H), 2.24-2.52 (m, 1H), 1.60-2.10 (m, 6H), 1.16-1.56 (m, 4H), 1.05 

(d, J = 6.5 Hz, 3H), 0.89 (t, J = 6.5 Hz, 3H). cis-7g: 2.42 (ddd, J = 12.8, 6.0, 5.6 Hz, 1 H), 

2.24 (m, 1H), 2.03-2.38 (2H, m), 1.62-1.92 (m, 3H), 1.06-1.48 (m, 5H), 1.00 (d, J = 6.0 

Hz, 3H), 0.89 (J = 6.5 Hz, 3H) ppm; 13C NMR (400 MHz, CDCl3) δ 213.5, 47.4. 41.0, 

34.2, 31.0, 27.4, 24.5, 20.0, 14.1 ppm; GC-MS m/z = 154 (M+).1H and 13C NMR spectral 

data are in good agreement with the literature data.7 

Data for Table 3.3, Compound 7h: 1H NMR (400 

MHz, CDCl3) δ 7.93 (d, J = 8.8Hz, 2H), 6.92 (δ 7.93d, J = 

8.8Hz, 2H), 3.86 (s, 3H), 2.76 (d, J = 6.8 Hz, 2H), 1.99-1.64 

(m, 6H), 1.32-0.96 (m, 5H) ppm; 13C NMR (400 MHz, CDCl3) δ 198.9,163.2, 130.6, 130.4, 
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113.6, 55.4, 45.9, 34.8, 33.4, 26.2, 26.1  ppm; GC-MS m/z = 232 (M+). 1H and 13C NMR 

spectral data are in good agreement with the literature data.8  

Data for Table 3.3, Compound 7i : 1H NMR (400 MHz, 

CDCl3) δ 7.16-7.30 (m, 5H) 2.90 (t, J = 7.6 Hz, 2H), 2.71 (t, J = 7.6 

Hz, 2H), 2.36 (t, J = 7.5 Hz, 2H), 1.56 (sextet, J = 7.5 Hz, 2H), 0.88 

(t, J = 7.5 Hz, 3H) ppm;13C NMR (400 MHz, CDCl3) 210.51, 141.3, 128.5, 127.9, 125.5, 

45.0, 44.4, 29.9, 17.3, 3.8 ppm; GC-MS m/z = 192 (M+);1H and 13C NMR spectral data are 

in good agreement with the literature data.9  

Data for Table 3.3, Compound 7j: 1H NMR (400 MHz, 

CDCl3) δ 7.95 (d, J = 6.9 Hz, 2H), 7.56 (t, J = 7.3 Hz, 1H), 7.46 

(t, J = 7.3 Hz, 2H), 7.20-7.32 (m, 5H), 3.31 (m, 2H), 3.08 (m, 

2H) ppm; 13C NMR (400 MHz, CDCl3) 199.4, 141.4, 137.0, 133.2, 128.7, 128.7, 128.6, 

128.2,  126.3, 40.6, 30.3 ppm; GC-MS m/z = 240 (M+); 1H and 13C NMR spectral data are 

in good agreement with the literature data.10 

Data for Table 3.3, Compound 7k: 1H-NMR (CDCl3, 

400MHz), δ 7.17-7.22 (m, 1H), 6.73-6.78 (m, 3H), 3.79 (s, 3H), 2.87 

(t, J = 7.6 Hz, 2H), 2.75 (t, J = 7.6 Hz, 2H), 2.14 (s, 3H) ppm; GC-

MS m/z = 178 (M+); 1H and 13C NMR spectral data are in good 

agreement with the literature data.11  

Data for Table 3.3, Compound 7l: 1H NMR (400 

MHz, CDCl3) δ 7.16-7.22 (m, 1H), 6.70-6.79 (m, 3H), 3.78 

(s, 3H), 2.86 (t, J = 7.9 Hz, 2H), 2.72 (t, J = 8.0 Hz, 2H), 2.38 

(t, J = 7.6 Hz, 2H), 1.54 (p, J= 7.5 Hz, 2H), 1.28 (sextet, J= 
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7.5 Hz, 2H), 0.88 (t, J = 7.5 Hz, 1H) ppm; 13C NMR (400 MHz, CDCl3) δ 210.4, 159.7, 

142.8, 129.5, 120.7, 114.1, 111.3, 55.1, 44.2, 42.8, 29.8, 25.9, 22.3, 13.9 ppm; GC-MS m/z 

= 220 (M+); Anal. Calcd for C14H20O2: C, 76.33; H, 9.15. Found: C, 76.10; H, 8.98. 

Data for Table 3.3, Compound 7m: 1H NMR (400 MHz, 

CDCl3) δ 7.94-7.98 (m, 2H), 7.56 (tt, J= 7.5, 2.0 Hz, 1H), 7.45 

(tt, J= 7.9, 1.3 Hz, 2H), 7.22 (t, J= 8.2 Hz, 1H),  6.74-6.88 (m, 

3H), 3.79 (s, 3H), 3.30 (t, J = 8.3 Hz, 2H), 3.05 (t, J = 8.3 Hz, 2H) ppm; 13C NMR (400 

MHz, CDCl3) δ 199.2, 159.7, 142.9, 136.8, 133.1, 129.5, 128.6, 128.0, 120.7, 114.2, 111.4, 

55.2, 40.3, 30.1 ppm; GC-MS m/z = 240 (M+);1H and 13C NMR spectral data are in good 

agreement with the literature data.12  

Data for Table 3.3, Compound 7n: 1H NMR (400 MHz, 

CDCl3) δ 7.00-7.40 (m, 5H), 3.18 (dd, J = 13.5, 3.5 Hz, 1H), 1.2-

2.7(m, 8H) ppm; 13C NMR (400 MHz, CDCl3) δ 207.4, 159.4, 128.9, 

127.9, 126.1, 51.1, 39.8, 32.6, 25.2, 20.5 ppm; GC-MS m/z = 174 (M+);1H and 13C NMR 

spectral data are in good agreement with the literature data.13  

Data for Table 3.3, Compound 7o: 1H NMR (400 MHz, 

CDCl3) δ 7.02-7.23 (m, 5H), 3.16 (dd, J = 13.6, 5.1 Hz, 1H), 2.43-

2.55 (m, 1H), 2.32-2.41 (m, 2H), 2.20-2.32 (m, 1H), 1.90-2.06 (m, 

2H), 1.69-1.80 (m, 1H), 1.57-1.68 (m, 1H), 1.46-1.58 (m, 1H), 1.17-1.33 (m, 1H) ppm; 13C 

NMR (400 MHz, CDCl3) δ 201.6, 140.3, 129.1, 128.2, 125.9, 52.4, 42.1, 35.4, 33.4, 28.0, 

25.0 ppm; GC-MS m/z = 188 (M+);1H and 13C NMR spectral data are in good agreement 

with the literature data.14 
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Data for Table 3.3, Compound 7p: 1H NMR (400 MHz, 

CDCl3) δ 7.17 (t, J = 7.3 Hz, 1H), 6.67-6.77 (m, 3H), 3.78 (s, 3H), 

3.05 (dd, J = 14.0, 5.6 Hz, 1H), 2.76-2.88 (m, 1H), 2.52 (dd, J = 

14.0, 5.6 Hz, 1H), 2.42-2.48 (m, 2H), 1.70-1.90 (m, 4H), 1.55-1.70 

(m, 1H), 1.22-1.40(m, 3H) ppm; 13C NMR (400 MHz, CDCl3) δ 215.7, 159.5, 141.6, 129.2, 

121.5, 114.9, 111.2, 55.1, 53.4, 43.2, 37.8, 30.3, 29.3, 28.6, 24.2 ppm; GC-MS m/z = 232 

(M+);1H and 13C NMR spectral data are in good agreement with the literature data.15 

 Data for Table 3.3, Compound 7q: 1H NMR (400 MHz, 

CDCl3) δ 7.14-7.40 (m, 5H), 2.96-3.04 (m, 1H), 2.73 (dd, J = 

13.3, 8.0 Hz, 1H), 2.56 (dd, J = 13.4, 7.0 Hz, 2H), 2.30 (ddd, J 

= 16.3, 9.4, 3.1 Hz, 1H), 1.96 (2.30 (ddd, J = 16.3, 8.8, 3.1 Hz, 1H), 1.10-1.90 (m, 13H) 

ppm; 13C NMR (400 MHz, CDCl3) δ 203.5, 139.6, 128.7, 128.1, 126.8, 57.9, 54.3, 42.7, 

40.6, 30.9, 25.3, 25.2, 25.1, 24.1, 23.7, 23.1 ppm; GC-MS m/z = 244 (M+);1H and 13C NMR 

spectral data are in good agreement with the literature data.16  

Data for Table 3.3, Compound ±7r: 1H NMR (400 MHz, 

CDCl3) δ  7.16−7.22 (m, 1H), 6.70-6.79 (m, 3H), 3.78 (s, 3H), 3.20 

(dd, J= 13.9, 5.0 Hz, 1H), 2.49-2.60 (m, 1H), 2.40-2.48 (m, 1H), 

2.36 (dd, J= 13.9, 8.6, 1H),  2.00-2.14 (m, 2H), 1.60-1.90 (m, 1H), 1.20-1.50 (m, 2H), 1.02 

(d, J= 6.5 Hz, 3H) ppm; 13C NMR (400 MHz, CDCl3) δ213.7, 159.5, 142.4, 129.2, 121.6, 

112.0, 111.0, 55.1, 52.5, 45.6, 35.5, 34.7, 25.4, 14.6 ppm; GC-MS m/z = 232 (M+); Anal. 

Calcd for C15H20O2: C, 77.55; H, 8.68. Found: C, 77.35; H, 8.89. 
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Data for Table 3.3, Compound 7s: 1H NMR (400 MHz, 

CDCl3) δ 7.16−7.22 (m, 1H), 6.70-6.79 (m, 3H), 3.78 (s, 3H), 2.78 

(t, J = 8.0 Hz, 2H), 2.72 (t, J = 8.0 Hz, 2H), 2.41 (q, J= 7.3 Hz, 

2H), 1.04 (t, J = 7.3 Hz, 1H) ppm; 13C NMR (400 MHz, CDCl3) δ 

210.7, 159.7, 142.8, 129.5, 120.6, 114.1, 111.3, 55.1, 43.8, 36.1, 29.9, 7.8 ppm; GC-MS 

m/z = 192 (M+); 192 (M+);1H and 13C NMR spectral data are in good agreement with the 

literature data.16  

Data for Table 3.3, Compound 7u: 1H NMR (400 MHz, 

CDCl3) δ 6.33 (d, J = 2.3 Hz, 2H), 6.30 (t, J = 2.4 Hz, 1H), 

3.77 (s, 6H), 2.84 (t, J = 8.2 Hz, 2H), 2.71 (t, J = 8.2 Hz, 2H), 

2.41 (q, J= 7.5 Hz, 2H), 1.04 (t, J = 7.3 Hz, 1H) ppm; 13C NMR (400 MHz, CDCl3) δ 

210.7, 160.8, 143.6, 106.3, 98.0, 55.3, 43.7, 36.1, 30. 1, 7.8 ppm; GC-MS m/z = 222 (M+); 

1H and 13C NMR spectral data are in good agreement with the literature data.17  

Data for Table 3.3, Compound 7v: 1H NMR (400 

MHz, CDCl3) 

δ 7.96 (m, 2Η), 7.53−7.58 (m, 1Η),  7.41−7.48 (m, 2H), 

6.41 (d, J= 2.3 Hz, 2H), 6.32 (t, J = 2.4 Hz, 1H), 3.77 (s, 

6H), 3.29 (t, J = 8.2 Hz, 2H), 3.00 (t, J = 8.2 Hz, 2H), ppm; 13C NMR (400 MHz, CDCl3) 

δ 199.2, 160.9, 143.7, 136.8, 143.8, 133.1, 128.6, 128.0, 106.4, 98.0 55.3, 40.3, 30.4 ppm; 

GC-MS m/z = 270 (M+); 1H and 13C NMR spectral data are in good agreement with the 

literature data.18  

Data for Table 3.3, Compound 7w.: 1H NMR (400 MHz, CDCl3) δ 7.01 (s, 1H), 
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6.29 (s, 2H), 3.84 (s, 3H), 3.76 (s, 3H), 2.91 (dd, J = 13.1, 

7.3 Hz, 2H), 2.81 (sextet, 2H), 2.47 (dd, J = 13.1, 7.3 Hz, 

1H), 2.45−2.20 (m, 2H), 1.53 (sextet, J = 7.6 Hz, 2H), 1.07 

(d, J = 6.8 Hz, 3H) 0.85 (t, J = 8.0 Hz, 3H) ppm; 13C NMR 

(400 MHz, CDCl3) δ 214.2,191.9, 160.7, 142.3, 106.9, 98.1, 55.6, 55.2, 47.8, 43.8, 39.3, 

16.9, 16.5, 13.7 ppm; GC-MS m/z = 250 (M+); Anal. Calcd for C15H22O3: C, 71.97; H, 

8.86. Found: C, 71.48; H, 8.62. 

Data for Table 3.3, Compound 7x: 1H NMR (400 

MHz, CDCl3) δ 7.96 (m, 2H), 7.53-7.58 (m, 1H), 7.41-

7.48 (m, 2H), 6.4 (d, J= 2.3 Hz, 2H), 6.32 (t, J = 2.4 Hz, 

1H), 3.77 (s, 6H), 3.10 (dd, J = 13.9, 6.5 Hz, 2H), 2.62 

(dd, J = 13.7, 8.0 Hz, 2H), 1.20 (d, 3H) ppm; 13C NMR (400 MHz, CDCl3) δ 199.2, 160.9, 

143.7, 136.8, 143.8, 133.1, 128.6, 128.0, 106.4, 98.0, 55.3, 40.3, 30.4 ppm; GC-MS m/z = 

284 (M+);1H and 13C NMR spectral data are in good agreement with the literature data.19 

Data for Table 3.3, Compound 7y: 1H NMR (400 

MHz, CDCl3) δ 7.77 (d, J = 7.7 Hz, 1H), 7.57 (td, J = 7.3, 

1.2 Hz, 1H), 7.34-7.42 (m, 2H), 6.4 (m, 2H), 6.32 (m, 1H), 

3.77 (s, 6H), 3.34 (dd, J= 13.7, 4.2 Hz, 1H), 3.18 (dd, J= 17.0, 7.8 Hz, 1H) , 2.98 (dddd, J 

= 11.8, 10.5, 8.2, 4.1 Hz, 1H), 2.86 (dd, J = 17.3, 4.2 Hz, 1H) , 2.58 (dd, J= 13.7, 10.4 Hz, 

1H) ppm; 13C NMR (400 MHz, CDCl3) δ 207.8, 160.8, 153.7, 142.0, 136.5, 134.8, 127.4, 

126.6, 124.0, 106.9, 98.2, 55.3, 48.8, 37.3, 32.2 ppm; GC-MS m/z = 282 (M+);1H and 13C 

NMR spectral data are in good agreement with the literature data.20  
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Data for Table 3.3, Compound 7z: 1H NMR (400 

MHz, CDCl3) δ 8.08 (d, J =7.8 Hz, 1H), 7.76-7.86 (m, 

1H), 7.41-7.49 (m, 1H), 7.28-7.36 (m, 1H), 6.39 (m, 2H), 

6.33 (m, 1H), 3.78 (s, 6H), 3.45 (dd, J=13.8, 3.8 Hz, 1H), 

2.88-2.97 (m, 2H), 2.75 (m, 1H), 2.55 (dd, J= 13.8, 10.0 Hz, 1H), 2.12 (m, 1H), 1.80 (m, 

2H) ppm; 13C NMR (400 MHz, CDCl3) δ 201.7, 163.4, 133.3, 128.7, 127.5, 126.6, 107.2, 

107.1, 105.5, 55.7, 49.5, 35.7, 28.6, 27.6 ppm; GC-MS m/z = 236 (M+);1H and 13C NMR 

spectral data are in good agreement with the literature data.21 

Data for Table 3.3, Compound 7aa: 1H NMR 

(400 MHz, CDCl3) δ  6.82-7.13 (m, 1H), 6.39-6.75 (m, 

3H), 3.72 (m, 3H), 2.54 (t, J = 7.4 Hz, 2 H), 2.33 (t, J 

= 6.3 Hz, 2H), 2.02 (s, 3H), 1.65-2.13 (m, 2H), ppm; 

13C NMR (400 MHz, CDCl3) δ 200.1, 160.8, 139.1, 136.8, 133.2, 129.9, 128.8, 128.7, 

120.5, 112.2, 55.9, 38.4, 35.8, 24.5, 11.6ppm; Anal. Calcd for C17H18O2: C, 80.28; H, 7.13. 

Found: C, 79.02; H, 7.22.; 1H and 13C NMR spectral data are in good agreement with the 

literature data.22 

Data for Table 3.3, Compound 7ab: 1H NMR (400 MHz, 

CDCl3) δ 7.17 (t, J = 7.3 Hz, 1H), 6.70–6.81 (m, 3H), 3.78 (s, 

3H), 2.57-2.75 (m, 2H), 2.00-2.35 (m, 2H), 2.06-2.18 (m, 2H), 

1.96-2.06 (m, 2H), 1.70-1.82(m, 1H) 1.48-1.59 (m, 2H) ppm; 13C 

NMR (400 MHz, CDCl3) δ 221.3, 159.6, 143.2, 129.3, 120.8, 114.1, 111.2, 55.1, 48.3, 

38.1, 33.6, 31.2, 29.7, 20.7 ppm; GC-MS m/z = 218 (M+); Anal. Calcd for C14H18O2: C, 

77.03; H, 8.31. Found: C, 77.48; H, 8.42. 
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Data for Table 3.3, Compound 7ac.: 1H NMR (400 

MHz, CDCl3) δ 7.20 (t, J = 7.7 Hz, 1H), 6.79-6.70 (m, 3H), 

3.79 (s, 3H), 2.59 (t, J = 7.8 Hz, 2H), 2.44−2.36 (m, 4H), 

1.91 (p, J = 7.8 Hz, 2H) 1.04 (t, J = 7.3 Hz, 3H) ppm; 13C NMR (400 MHz, CDCl3) δ 211.8, 

159.9, 143.6, 129.6, 121.1, 114.4, 111.5, 55.4, 41.7, 36.2, 35.4, 25.4, 8.1 ppm; GC-MS m/z 

= 206 (M+); Anal. Calcd for C13H18O2: C, 75.69; H, 8.80. Found: C, 75.48; H, 8.61. 

Data for Table 3.4, Compound 8a: 1H NMR (400 

MHz, CDCl3) δ 7.94 (d, J = 9.0 Hz, 2H), 7.32-7.18 (m, 5H), 

6.92 (d, J = 9.0 Hz, 2H), 3.86 (s, 3H), 3.27-3.23 (m, 2H), 3.06 

(t, J = 7.8 Hz, 2H); 13C NMR (400 MHz, CDCl3) δ 198.2, 163.6, 141.9, 130.7, 130.4, 128.9, 

128.8, 126.5, 114.1, 55.9, 40.5, 30.7 ppm; GC-MS m/z = 240 (M+). 1H and 13C NMR 

spectral data are in good agreement with the literature data.23 

Data for Table 3.4, Compound 8b: 1H NMR (400 

MHz, CDCl3) δ 7.92 (d, J = 8.9 Hz, 2H), 7.32-7.26 (m, 

4H), 7.21-7.17 (m, 1H), 6.91 (d, J = 8.9 Hz, 2H), 3.86 (s, 

3H), 3.53-3.45 (m, 1H), 3.24 (dd, J = 16.2, 5.7 Hz, 1H), 3.13 (dd, J = 16.2, 8.4 Hz, 1H), 

1.33 (d, J = 7.0 Hz, 3H); 13C NMR (400 MHz, CDCl3) δ 198.1, 163.8, 147.1, 130.8, 

130.7, 128.9, 127.3, 126.6, 114.1, 55.9, 47.1, 36.2, 22.3 ppm; GC-MS m/z = 254 (M+); 

1H and 13C NMR spectral data are in good agreement with the literature data.24  

Data for Table 3.4, Compound 8c 3:2 diastereomeric mixture (Major): 1H NMR 

(400 MHz, CDCl3) δ 8.06 (t, J = 9.3 Hz, 1H), 7.80  (t, J = 9.3 Hz, 1H), 7.66 (t, J = 7.2 Hz, 

1H), , 7.29-7.37 (m, 2H), 7.14-7.24 (m, 2H), 3.62 (t, J = 7.0 Hz, 1H), 3.32-3.40 (m, 1H), 
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2.49-2.53 (m, 2H), 2.27 (ddd, J = 13.9, 7.9, 6.4 Hz, 1H), 2.20 (ddd, 

J = 13.9, 9.1, 6.2 Hz, 1H), 2.04 (ddd, J = 13.9, 9.3, 5.7 Hz, 1H), 

1.37 (t, J = 7.0 Hz, 3H). GC-MS m/z = 286 (M+); Minor 

diastereomer : 7.90 (d, J = 6.7 Hz, 1H),7.84 (d, J = 7.2 Hz, 1H), 

7.70 (d, J = 7.6 Hz, 1H), 7.58 (t, J = 7.2 Hz, 1H), 7.29-7.37 (m, 2H), 7.14-7.24 (m, 2H), 

3.57 (dd, J = 9.3, 4.9 Hz, 1H), 3.22-3.31 (m, 1H), 2.49-2.53 (m, 2H), 2.20 (ddd, J = 13.9, 

9.1,  6.2 Hz, 1H), 2.04 (ddd, J = 13.9, 9.3, 5.7 Hz, 1H), 1.31 (t, J = 7.0 Hz, 3H) ppm; GC-

MS m/z = 286 (M+); 1H and 13C NMR spectral data are in good agreement with the literature 

data.25 

Data for Table 3.4, Compound 8d (10:1 diastereomer 

mixture): Major diastereomer 1H NMR (400 MHz, CDCl3) 

δ 7.08-7.24 (m, 5H), 2.61-2.72 (m, 1H), 1.80-2.40 (m, 5H), 1.40-

1.80 (m, 4H), 1.20 (d, J = 7.0 Hz, 3H) , 1.17 (d, J = 6.8 Hz, 3H) ppm; 13C NMR (400 MHz, 

CDCl3) δ 221.4, 159.6, 143.3, 129.3, 120.8, 114.1, 111.2, 55.1, 48.4, 38.2, 33.7, 31.3, 29.7, 

20.7 ppm; GC-MS m/z = 218 (M+); Anal. Calcd for C14H18O: C, 83.12; H, 8.97. Found: C, 

83.40; H, 8.62. 

Data for Table 3.4, Compound 8e: 1H NMR (400 MHz, 

CDCl3) δ 7.24-7.30 (m, 3H), 7.15-7.22 (m, 3H), 2.91-2.96 (m, 

1H), 2.87 (t, J = 7.9 Hz, 2H), 2.75 (t, J = 7.9 Hz, 2H),2.17-2.36 

(m, 2H), 1.70-1.87 (m, 4H), 1.56-1.69 (m. 2H), 1.10-1.40 (m, 5H) ppm; 13C NMR (400 

MHz, CDCl3) δ 213.1, 141.5, 128.4, 128.4, 126.0, 51.0, 42.2, 29.7, 28.4, 25.8, 25.6 ppm; 

GC-MS m/z = 216 (M+); 1H and 13C NMR spectral data are in good agreement with the 

literature data.26 
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Data for Table 3.4, Compound 8f, Major 

diastereomer(α): 1H NMR (400 MHz, CDCl3) δ 

7.14-7.20 (m, 1H), 6.67-6.75 (m, 3H), 5.08 (s, 

1H), 3.78 (s, 3H), 3.36 (dd, J = 14.2, 5.6 Hz, 1H), 

2.56-2.68 (m, 1H), 2.44-2.53 (m, 3H), 2.26-2.40 (m, 3H), 2.09 (s, 3H), 1.00-2.05 (brm, 

12H), 0.97(s, 3H), 0.6-0.95 (brm, 4H), 0.58 (s, 3H) ppm; 13C NMR (400 MHz, CDCl3) δ 

211.9, 209.6, 159.5, 142.1, 129.2, 121.4, 114.8, 111.0, 63.7, 56.4, 55.1, 53.7, 48.2, 48.0, 

45.8, 44.9, 44.2, 38.9, 36.4, 35.3, 35.2, 31.6, 31.5, 28.5, 24.4, 22.8, 21.5, 13.4, 12.4 ppm; 

GC-MS m/z = 433 (M+); Anal. Calcd for C29H38O3: C, 80.14; H, 8.81. Found: C, 80.40; H, 

8.62; Minor diastereomer (2β): 1H NMR (400 MHz, CDCl3) δ 7.14-7.20 (m, 1H), 6.67-

6.75 (m, 3H), 5.73 (s, 1H), 3.78 (s, 3H), 3.42 (dd, J = 13.4, 3.6 Hz, 1H), 2.45-2.74 (m, 6H), 

2.25-2.44 (m, 5H), 2.09 (s, 3H), 1.00-2.05 (brm, 12H), 1.01 (s, 3H), 0.6-0.95 (brm, 4H),  

0.61 (s, 3H) ppm; 13C NMR (400 MHz, CDCl3) δ 211.9, 209.6, 159.5, 142.1, 129.2, 121.4, 

114.8, 111.0, 63.7, 56.4, 55.1, 53.7, 48.2, 48.0, 45.8, 44.9, 44.2, 38.9, 36.4, 35.3, 35.2, 31.6, 

31.5, 28.5, 24.4, 22.8, 21.5, 13.4, 12.4 ppm; GC-MS m/z = 433 (M+); Anal. Calcd for 

C29H38O3: C, 80.14; H, 8.81. Found: C, 80.40; H, 8.62 

Data for Table 3.4, Compound 8g 

(16α:16β 2:1 Diastereomeric mixture):Major 

Diastereomer 16α : 1H NMR (400 MHz, 

CDCl3) δ 7.20 (t,  J = 7.9 Hz, 1H), 7.14 (t, J = 

8.4 Hz, 1H), 6.72-6.80 (m, 3H), 6.60-6.66 (m, 

1H), 6.54-6.60 (m, 1H), 4.96 (bs, 1H), 3.79 (s, 3H), 3.12 (dd, J =  13.9, 4.1 Hz, 1H), 2.77-

2.90 (m, 2H), 3.12 (dd, J = 13.6, 10.2 Hz, 1H), 1.22-2.44 (brm, 14H), 0.95(s, 3H) ppm; 13C 
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NMR (400 MHz, CDCl3) δ 229.1, 168.6, 162.5, 150.9, 147.0, 140.8, 138.1, 135.2, 130.1, 

123.9, 123.4, 121.4, 120.3 ppm; (rest of the carbons not assigned) GC-MS m/z = 390 (M+); 

Minor Diastereomer 16β: 1H NMR (400 MHz, CDCl3) δ 7.20 (t,  J = 7.9 Hz, 1H), 7.14 (t, 

J = 8.4 Hz, 1H), 6.72-6.80 (m, 3H), 6.60-6.66 (m, 1H), 6.54-6.60 (m, 1H), 4.96 (bs, 1H), 

3.79 (s, 3H), 3.21 (dd, J = 13.4, 3.9 Hz, 1H), 2.60 (dd, J = 13.5, 10 Hz, 1H), 1.22-2.44 

(brm, 14H), 0.91 (s, 3H) ppm; δ 229.1, 168.6, 162.5, 150.9, 147.0, 140.8, 138.1, 135.2, 

130.1, 123.9, 123.4, 121.4, 120.3 ppm(rest of the carbons not assigned) GC-MS m/z = 390 

(M+);1H and 13C NMR spectral data are in good agreement with the literature data.27 

Data for Table 3.4, Compound 8h: 1H NMR (400 MHz, CDCl3) δ 7.30-7.10 (m, 

5H), 5.73 (d, J = 2.0 Hz, 1H), 3.46 (dd, J = 14.2, 4.0 Hz, 1H), 2.60 (dddd, J = 13.4, 9.1, 

4.7, 3.8 Hz, 1H), 2.42 (dd, J = 14.0, 9.1 Hz, 

1H), 2.35-2.20 (m, 2H), 2.10-1.93 (m, 3H), 

1.90 (dd, J = 13.2, 4.7 Hz, 1H), 1.85-0.80 

(br m, 19H), 1.06 (s, 3H), 0.86 (s, 3H), 0.85 

(s, 3H), 0.65 (s, 3H) ppm; 13C{1H} NMR (400 MHz, CDCl3) δ 200.3, 170.6, 140.3, 129.1, 

128.3, 125.8, 123.4, 56.1, 55.8, 54.1, 43.7, 42.2, 41.3, 39.5, 39.1, 36.1, 35.7, 35.4, 35.0, 

32.5, 31.9, 28.1, 28.0, 24.1, 23.8, 22.8, 22.6, 20.8, 18.6, 17.3, 11.9 ppm; GC-MS m/z = 474 

(M+); [α]20
D = +10.8 (c = 2 in CH2Cl2); Anal. Calcd for C34H50O: C, 86.01; H, 10.62. Found: 

C, 86.51; H, 10.12. 
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Data for Table 3.4, Compound 8i: 

1H NMR (600 MHz, CDCl3) δ 7.41-6.99 

(m, 10H), 5.02 (d, J = 6.6 Hz, 2H), 3.79 (s, 

1H), 3.15 (dd, J = 14.1, 4.2 Hz, 1H), 2.72 

(t, J = 13.4 Hz, 1H), 2.64 (dddd, J = 13.9, 

9.1, 4.4, 4.4 Hz, 1H), 2.38-2.28 (m, 2H), 2.26-2.11 (m, 3H), 2.00 (dd, J = 14.2, 4.2 Hz, 

1H), 1.89-0.91 (br m, 19H), 0.87 (d, J = 6.0 Hz, 3H), 0.83 (s, 3H), 0.54 (s, 3H) ppm; 

13C{1H} NMR (400 MHz, CDCl3) δ 213.3, 174.0, 140.5, 136.1, 129.0, 128.5, 128.3, 128.2, 

126.0, 66.1, 48.1, 47.2, 46.9, 46.4, 45.8, 43.5, 42.9, 35.6, 35.2, 35.0, 34.7, 34.4, 31.3, 30.8, 

28.9, 27.4, 26.5, 23.5, 22.3, 17.4, 12.7 ppm; muldi m/z = 570 (M+); [α]20
D = +12.8 (c = 2 

in CH2Cl2); Anal. Calcd for C38H50O4: C, 79.96; H, 8.83. Found: C, 79.37; H, 8.57. 

Data for Table 3.4, Compound 8j: 1H NMR (400 

MHz, CDCl3) δ 7.95 (d, J = 8.8 Hz, 2H), 7.30 (dd, J = 1.8, 

0.7 Hz, 1H), δ 6.93 (d, J = 8.8 Hz, 2H), 6.27 (dd, J = 3.1, 

1.8 Hz, 1H), 6.04 (dd, J= 3.1, 0.7 Hz, 1H), 3.86 (s, 3H), 3.28 

(t, J = 7.9 Hz, 2H), 3.07 (t, J = 7.9 Hz, 2H) ppm; 13C NMR (400 MHz, CDCl3) δ 197.2, 

163.4, 154.9, 141.0, 130.3, 129.8, 113.7, 110.2, 105.2, 55.4, 36.5, 22.6  ppm; GC-MS m/z 

= 230 (M+).1H and 13C NMR spectral data are in good agreement with the literature data.28 

Data for Table 3.4, Compound 8k: 1H NMR (400 MHz, 

CDCl3) δ 7.56 (dd, J = 1.7, 0.7 Hz, 1H), 7.18-7.32 (m,  5H), 7.17 

(dd, J = 3.5, 0.7 Hz, 1H), 6.51 (dd, J = 3.5, 1.7 Hz, 1H), 3.15 (t, 

J = 7.5 Hz, 2H), 3.04 (t, J = 7.5 Hz, 2H) ppm; 13C NMR (400 

MHz, CDCl3) δ 188.6, 152.6, 146.5, 141.0, 128.6, 128.5, 126.2, 117.2, 112.3, 40.2, 20.0 
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ppm; GC-MS m/z = 200 (M+); Anal. Calcd for C13H12O2: C, 77.98; H, 6.04. Found: C, 

77.80; H, 6.02. 

Data for Table 3.4, Compound 8l: 1H NMR (400 MHz, CDCl3) δ 8.54−8.48 (m, 

1H ) 7.64−7.55 (m, 2H), 7.51-7.48 (m, 1H),7.34 (t, J = 8.1 Hz , 

1H), 7.29−7.25 (m, 1H), 7.14−7.06 (m, 2H), 3.83 (s, 3H), 3.50 

(t, J = 7.3 Hz, 2H), 3.23 (t, J = 7.3 Hz, 2H) ppm; 13C NMR (400 

MHz, CDCl3) δ 199.0, 160.5, 159.7, 148.8, 138.1, 136.6, 129.5, 

123.5, 121.3, 120.7, 119.6, 112.0, 55.3, 37.9, 31.8 ppm; GC-MS m/z = 241 (M+); Anal. 

Calcd for C15H15NO2: C, 74.67; H, 6.27. Found: C, 74.20; H, 6.52. 

6.2 Synthesis and Mechanistic studies of Decarboxylative and Deaminative Coupling 
Reactions of Amino Acids with Ketones 

 
6.2.1 Catalyst Screening for the Alkylation of 4-methoxyacetophenone with L-
leucine. 
 

 In a glove box, 4-methoxyacetophenone (150 mg, 1.0 mmol), L-leucine (157 mg, 

1.2 mmol), cyclopentene (7 mg, 10 mol %) and a catalyst (3 mol %) were dissolved in 

toluene (2 mL) in a 25 mL Schlenk tube equipped with a Teflon stopcock and a magnetic 

stirring bar. The tube was brought out of the glove box, and was stirred in an oil bath set at 

120 °C for 8 h. The reaction tube was taken out of the oil bath, and cooled to room 

temperature. After filtering through a short silica gel column (280-400 mesh; CH2Cl2, 10 

mL), the resulting solution was analyzed by GC and GC-MS. The results are summarized 

in Table 3.9. 

6.2.2. General Procedure for the Coupling Reaction of an Amino Acid with a 
Ketone. 
 

 In a glove box, an amino acid (1.2 mmol), a ketone (1.0 mmol), cyclopentene (0.1 

mmol) and complex 1 (17 mg, 3 mol %) were dissolved in toluene (2 mL) in a 25 mL 
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Schlenk tube equipped with a Teflon stopcock and a magnetic stirring bar. The tube was 

brought out of the glove box, and was stirred in an oil bath set at 120 °C for 6-12 h. The 

reaction tube was taken out of the oil bath, and was cooled to room temperature. After the 

tube was open to air, the solution was filtered through a short silica gel column by eluting 

with CH2Cl2 (10 mL), and the filtrate was analyzed by GC and GC-MS. Analytically pure 

product was isolated by a simple column chromatography on silica gel (280-400 mesh, 

hexanes/EtOAc = 40:1 to 1:1). The products were completely characterized by NMR and 

GC-MS spectroscopic methods. 

6.2.3. H/D Exchange Reaction of Acetophenone-d8 with (S)-Leucine.  
 

In a glove box, C6D5COCD3 (1.0 mmol), (S)-leucine (1.2 mmol), cyclopentene (0.1 

mmol) and complex 1 (18 mg, 3 mol %) were dissolved in toluene (2 mL) in a 25 mL 

Schlenk tube equipped with a Teflon stopcock and a magnetic stirring bar. The tube was 

brought out of the glove box, and was stirred in an oil bath set at 120 °C for 8 h. The 

reaction tube was taken out of the oil bath, and was immediately cooled in a dry ice/acetone 

bath. After the tube was open to air, the solution was filtered through a short silica gel 

column by eluting with CH2Cl2 (10 mL), and the filtrate was analyzed by GC and GC-MS. 

Analytically pure product 14m-d and unreacted acetophenone substrate were isolated by a 

simple column chromatography on silica gel (280-400 mesh, hexanes/EtOAc = 40:1). The 

1H and 2H NMR of 14m-d showed extensive H/D exchange at ortho-arene C-H (δ 7.95) as 

well as α-CH2 (δ 2.93) and β-CH2 (δ 1.24) positions (Figure 3.6). 

6.2.4  Carbon Isotope Effect Study. 
 

In a glove box, acetophenone (1.5 g, 10 mmol), (S)-leucine (1.6 g, 12 mmol), 

cyclopentene (70 mg, 1 mmol) and complex 1 (180 mg, 3 mol %) were dissolved in toluene 
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(20 mL) in a 100 mL Schlenk tubes equipped with a Teflon screw cap stopcock and a 

magnetic stirring bar. The tube was brought out of the box, and were stirred for 4 h (4.5 h 

and 5 h for the repeated runs), in an oil bath which was set at 120 °C. The product 1-(4-

methoxyphenyl)-5-methyl-1-hexanone (14m) was isolated by a column chromatography 

on silica gel (hexanes/EtOAc = 40:1 to 10:1). The product conversion was determined 

separately by GC after filtering the crude mixture through a short silica gel column and 

eluting with CH2Cl2 (20 mL) (15, 18 and 20% conversions).  

The 13C{1H} NMR analysis of the isolated product 14m was performed by 

following Singleton’s NMR method.S1 The sample was prepared identically by dissolving 

100 mg of the isolated 14m in CDCl3 (0.5 mL) in a 5 mm high precision NMR tube. The 

13C{1H} NMR spectra were recorded with H-decoupling and 45 degree pulses. A 60 s delay 

between pulses was imposed to minimize T1 variations (d1 = 60 s, at = 5.0 s, np = 245098, 

nt = 704). The data are summarized in Table 3.12 

 

6.2.5 . Hammett Study.  

In a glove box, p-X-C6H4COCH3 (X = NH2, CH3, H, Cl, Br, CN) (0.25 mmol), (S)-

leucine (0.30 mmol), cyclopentene (10 mol %) and complex 1 (5 mg, 3 mol %) were 

dissolved in toluene-d8 (0.5 mL) in six separate J-Young NMR tubes, each equipped with 

a Teflon screw cap stopcock. The tubes were brought out of the box, and immersed in an 

oil bath preset at 120 °C. The reaction rate was measured by monitoring the appearance of 

product signals on 1H NMR, which were normalized against the internal standard (C6Me6) 

in 30 min intervals for 2-4 h of the reaction time. The kobs was determined from a first-
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order plot of -ln([p-X-C6H4COCH3]t/[p-X-C6H4COCH3]0) vs time. The Hammett plot of 

log(kX/kH) versus σρ is shown in Figure 3.4. 

6.2.6 . Characterization Data of the Products. 
 

Data for 14a: 1H NMR (400 MHz, CDCl3) δ 7.31-7.28 (m, 

2H), 7.20-7.17 (m, 3H),  2.92 (t, J = 7.6 Hz, 2H), 2.73 (t, J = 7.6 

Hz, 2H), 2.40 (q, J = 7.5 Hz, 2H), 1.06 (t, J = 7.5 Hz, 3H) ppm; 13C{1H} NMR (400 MHz, 

CDCl3) δ 208.0, 134.3, 129.3, 128.4, 126.7, 35.9, 31.9, 30.6, 22.7 ppm; GC-MS m/z = 162 

(M+). The 1H and 13C spectroscopic data are in good agreement with the literature data.24 

Data for 14b: 1H NMR (400 MHz, CDCl3) 

δ 7.22−7.02 (m, 5H), 2.79 (t, J = 8.1 Hz, 2H), 2.62 (t, J = 8.1 

Hz, 2H), 2.28 (t, J = 7.5 Hz, 2H), 1.44 (p, J = 7.5 Hz, 2H), 

1.18 (sextet, J = 7.5 Hz, 2H), 0.78 (t, J = 7.5 Hz, 1H) ppm; 13C{1H} NMR (400 MHz, 

CDCl3) δ 210.7, 141.6, 128.9, 128.8, 126.5, 44.7, 43.2, 30.2, 26.3, 22.8, 14.3 ppm; GC-MS 

m/z = 190 (M+). The 1H and 13C spectroscopic data are in good agreement with the literature 

data.24 

Data for 14c: 1H NMR (400 MHz, CDCl3) δ 7.95 (d, J 

= 7.9 Hz, 2H), 7.55 (t, J = 7.4 Hz, 1H), 7.45 (t, J = 7.7 Hz, 2H), 

7.31-7.18 (m, 5H), 3.30 (t, J = 7.7 Hz, 2H), 3.07 (t, J = 7.7 Hz, 

2H) ppm; 13C{1H} NMR (400 MHz, CDCl3) δ 196.9, 138.8, 134.3, 130.7, 126.2, 126.1, 

126.0, 125.6, 123.7, 27.6, 27.5 ppm; GC-MS m/z = 210 (M+). The 1H and 13C spectroscopic 

data are in good agreement with the literature data.25 
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Table 3.9 Compound  14d: 1H NMR (400 MHz, 

CDCl3) δ 7.88 (d, J = 9.0 Hz, 2H), 7.26-7.11 (m, 5H), 6.86 

(d, J = 9.0 Hz, 2H), 3.79 (s, 3H), 3.30 (t, J = 8.0 Hz, 2H), 

2.99 (t, J = 8.0 Hz, 2H) ppm; 13C{1H} NMR (400 MHz, CDCl3) δ 197.8, 163.4, 141.5, 

130.3, 129.9, 128.5, 128.4, 126.1, 113.7, 55.5, 40.1, 30.3 ppm; GC-MS m/z = 240 (M+); 

The 1H and 13C spectroscopic data are in good agreement with the literature data.26  

Table 3.9 Compound  14e: 1H NMR (400 MHz, 

CDCl3) δ 7.92 (d, J = 8.9 Hz, 2H), 7.31-7.14 (m, 5H), 6.91 

(d, J = 8.9 Hz, 2H), 3.86 (s, 3H), 3.75-3.65 (m, 1H), 3.15 

(dd, J = 13.7, 6.5 Hz, 1H), 2.68 (dd, J = 13.7, 6.5 Hz, 1H), 

1.19 (d, J = 6.7 Hz, 3H) ppm; 13C{1H} NMR (400 MHz, CDCl3) δ 202.2, 163.3, 140.1, 

130.6, 129.3, 129.0, 128.3, 126.1, 113.7, 55.5, 42.3, 39.4, 17.6 ppm; GC-MS m/z = 254 

(M+). The 1H and 13C spectroscopic data are in good agreement with the literature data.26  

Table 3.9 Compound  14f: 1H NMR (400 MHz, CDCl3) δ 

7.85-7.30 (m, 6H), 7.21-6.96 (m, 9H), 4.73 (t, J = 7.4 Hz, 1H), 3.49 

(dd, J = 13.8, 7.8 Hz, 1H), 2.99 (dd, J = 13.8, 7.8 Hz, 1H) ppm; 

13C{1H} NMR (400 MHz, CDCl3) δ 199.3, 139.7, 139.0, 132.8, 

129.1, 129.0, 128.8, 128.6, 128.4, 128.2, 128.2, 127.1, 126.1, 55.9, 

40.1 ppm; GC-MS m/z = 286 (M+). The 1H and 13C spectroscopic 

data are in good agreement with the literature data.27 
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Table 3.9 Compound  7g: 1H NMR (400 MHz, CDCl3) 

δ 7.79 (d, J =7.7 Hz, 1H), 7.42-7.27 (m, 7H), 3.41 (dd, J = 14.0, 

4.4 Hz, 1H), 3.17 (dd, J = 17.2, 7.7 Hz, 1H), 3.01 (dddd, J = 

10.5, 7.7, 4.4, 4.0 Hz, 1H), 2.86 (dd, J = 17.2, 4.0 Hz, 1H) , 2.66 

(dd, J = 14.0, 10.5 Hz, 1H) ppm; 13C{1H} NMR (400 MHz, CDCl3) δ 207.8, 153.6, 139.6, 

136.5, 134.8, 128.9, 128.5, 127.4, 126.6, 126.3, 124.0, 48.9, 37.0, 32.1 ppm; GC-MS m/z 

= 222 (M+). The 1H and 13C spectroscopic data are in good agreement with the literature 

data.28 

Table 3.9 Compound  14h: 1H NMR (400 MHz, CDCl3) 

δ 8.05 (d, J =7.8 Hz, 1H), 7.45 (dt, J = 7.1, 1.2 Hz, 1H), 7.32-

7.19 (m, 7H), 3.48 (dd, J = 13.4, 3.7 Hz, 1H),  2.95-2.89 (m, 

2H), 2.74-2.59 (m, 1H), 2.62 (dd, J = 13.4, 9.6 Hz, 1H), 2.09 (dq, J = 13.4, 4.4  Hz, 1H), 

1.84-1.70 (m, 1H) ppm; 13C NMR (400 MHz, CDCl3) δ 201,7, 144.0, 140.1, 133.2, 129.7, 

128.7, 128.4, 127.5, 126.5, 126.1, 103.6, 49.5, 35.7, 28.6, 27.6 ppm; GC-MS m/z = 236 

(M+). The 1H and 13C spectroscopic data are in good agreement with the literature data.28 

Table 3.9 Compound  14i: 1H NMR (600 MHz, CDCl3) δ 

7.30-7.23 (m, 2H), 7.21-7.13 (m, 3H), 3.23 (dd, J = 13.9, 5.0 Hz, 

1H), 2.55 (ddddd, J = 13.9, 12.9, 8.6, 5.1, 5.0, 1.3 Hz, 1H), 2.48-

2.35 (m, 2H), 1.84-1.75 (m, 1H), 1.66 (qt, J = 13.8, 3.8 Hz, 1H), 

1.34 (pt, J = 12.9, 3.8 Hz, 2H), 1.03 (d, J = 6.3 Hz, 3H) ppm; 13C{1H} NMR (600 MHz, 

CDCl3) δ 213.8, 140.8, 129.1, 128.2, 125.9, 52.7, 45.7, 37.4, 35.5, 34.7, 25.6, 25.5 ppm; 

GC-MS m/z = 202 (M+). The 1H and 13C spectroscopic data are in good agreement with the 

literature data.29,30 
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Table 3.9 Compound  14j: 1H NMR (600 MHz, CDCl3) δ 

7.30-7.23 (m, 2H), 7.21-7.13 (m, 3H), 3.24 (dd, J = 14.0, 4.6 Hz, 

1H), 2.47 (ddddd, J = 12.9, 9.0, 4.6, 1.4, 1.3 Hz, 1H), 2.43-2.33 

(m, 2H), 2.09-1.96 (m, 1H), 1.93-1.76 (m, 1H), 1.38-1.22 (m, 2H), 

1.01 (d, J = 6.3 Hz, 3H) ppm; 13C{1H} NMR (400 MHz, CDCl3) δ 212.0, 140.5, 129.1, 

128.2, 125.9, 51.6, 50.5, 35.7, 35.2, 33.9, 32.4, 22.3 ppm; GC-MS m/z = 202 (M+). The 1H 

and 13C spectroscopic data are in good agreement with the literature data.31 

Table 3.9 Compound  14k: 1H NMR (400 MHz, 

CDCl3) δ 7.94 (d, J = 9.0 Hz, 2H), 6.93 (d, J = 9.0 Hz, 2H), 

3.86 (s, 3H), 2.88 (t, J = 7.6 Hz, 2H), 1.76-1.66 (m, 2H), 

1.62-1.52 (m, 1H), 1.30-1.21 (m, 2H), 0.89 (d, J = 6.5 Hz, 6H) ppm; 13C{1H} NMR (400 

MHz, CDCl3) δ 199.2, 163.2, 130.3, 130.1, 113.6, 55.4, 38.6, 38.5, 27.9, 22.5, 22.4 ppm; 

GC-MS m/z = 220 (M+); Anal. Calcd for C14H20O2: C, 76.33; H, 9.15. Found: C, 76.70; H, 

9.38. 

Table 3.9 Compound  14l: 1H NMR (400 MHz, 

CDCl3) δ 7.94 (d, J = 9.0 Hz, 2H), 6.93 (d, J = 9.0 Hz, 2H), 

3.86 (s, 3H), 3.47-3.31 (m, 1H), 1.61-1.35 (m, 5H), 1.17 (d, 

J = 6.6 Hz, 3H), 0.86 (d, J = 6.6 Hz, 3H), 0.84 (d, J = 6.6 Hz, 3H) ppm; 13C{1H} NMR 

(400 MHz, CDCl3) δ 203.2, 163.3, 130.5, 128.9, 113.7, 55.4, 40.4, 36.7, 31.7, 22.6, 22.4, 

17.5 ppm; GC-MS m/z = 234 (M+); Anal. Calcd for C15H22O2: C, 76.88; H, 9.46. Found: 

C, 76.58; H, 9.04. 

 

O
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 Table 3.9 Compound  14m: 1H NMR (400 MHz, 

CDCl3) δ 7.96 (dd, J = 8.3, 1.4 Hz, 2H), 7.54 (t, J = 7.3 Hz, 

1H), 7.46 (t, J = 7.4 Hz, 2H), 2.95 (t, J = 7.3 Hz, 2H), 1.80-

1.70 (m, 2H), 1.64-1.54 (m, 1H), 1.33-1.23 (m, 2H), 0.80 (t, J = 6.4 Hz, 6H); 13C{1H} 

NMR (400 MHz, CDCl3) δ 200.8, 137.2, 133.0, 128.7, 128.2, 39.0, 38.8, 28.1, 22.7, 22.4 

ppm; GC-MS m/z = 190 (M+). The 1H and 13C spectroscopic data are in good agreement 

with the literature data.24 

 Table 3.9 Compound  14n: 1H NMR (400 MHz, 

CDCl3) δ 7.89 (d, J = 8.7 Hz, 2H), 7.42 (d, J = 8.7 Hz, 2H), 

2.91 (t, J = 7.4 Hz, 2H), 1.58 (septet, J = 7.0 Hz, 1H), 1.28- 

1.21 (m, 2H), 0.89 (d, J = 6.6 Hz, 6H) ppm; 13C{1H} NMR 

(400 MHz, CDCl3) δ 199.3, 139.2, 135.3, 129.5, 128.9, 38.8, 38.5, 27.9, 22.5, 22.1 ppm; 

GC-MS m/z = 224 (M+); Anal. Calcd for C13H17ClO: C, 69.48; H, 7.62. Found: C, 69.07; 

H, 7.20. 

Table 3.9 Compound  14o: 1H NMR (400 MHz, 

CDCl3) δ 8.03 (d, J = 8.8 Hz, 2H), 7.76 (d, J = 8.8 Hz, 2H), 

3.0 (t, J = 7.2 Hz, 2H), 1.79-1.68 (m, 2H), 1.64-1.53 (m, 

1H), 1.30-1.21 (m, 2H), 0.88 (d, J = 6.7 Hz, 6H) ppm; 13C{1H} NMR (400 MHz, CDCl3) 

δ 199.1, 134.0, 132.5, 128.4, 118.0, 116.2, 39.1, 38.4, 27.9, 22.5, 21.9 ppm; GC-MS m/z = 

215 (M+); Anal. Calcd for C14H17NO: C, 78.10; H, 7.96. Found: C, 77.79; H, 8.03. 

Table 3.9 Compound  14p: 1H NMR (400 MHz, 

CDCl3) δ 7.81 (d, J = 8.8 Hz, 2H), 6.64 (d, J = 8.8 Hz, 

2H), 4.10 (br s, 1H) 2.83 (t, J = 7.5 Hz, 2H), 1.75-1.51 (m, 
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3H), 1.28-1.19 (m, 2H), 0.88 (d, J = 3.5 Hz, 6H) ppm; 13C{1H} NMR (400 MHz, CDCl3) 

δ 199.0, 150.9, 130.5, 127.7, 113.8, 38.7, 38.2, 27.9, 22.7, 22.6 ppm; GC-MS m/z = 205 

(M+); Anal. Calcd for C13H19NO: C, 76.06; H, 9.33. Found: C, 75.72; H, 8.99. 

Table 3.9 Compound  14q: 1H NMR (400 

MHz, CDCl3) δ 7.89 (d, J = 9.0 Hz, 2H), 6.86 (d, J = 

9.0 Hz, 2H), 3.84 (t, J = 5.0 Hz, 4H), 3.29 (t, J = 5.0 

Hz, 4H), 2.85 (t, J = 7.7 Hz, 2H), 1.75-1.65 (m, 2H), 

1.57 (nonet, J = 6.8 Hz, 1H), 1.28-1.20 (m, 2H), 0.88 (d, J = 6.8 Hz, 6H) ppm; 13C{1H} 

NMR (400 MHz, CDCl3) δ 199.1, 154.1, 130.1, 120.0, 113.3, 66.6, 47.6, 38.7, 38.3, 27.9, 

22.7, 22.6 ppm; GC-MS m/z = 275 (M+); Anal. Calcd for C17H25NO2: C, 74.14; H, 9.15. 

Found: C, 74.59; H, 8.79. 

Table 3.9 Compound  14r: 1H NMR (400 MHz, 

CDCl3) δ 7.74 (d, J = 8.3 Hz, 1H), 7.57 (t, J = 7.5 Hz, 1H), 

7.44 (d, J = 7.6 Hz, 1H), 7.35 (t, J = 7.6 Hz, 1H), 3.31 (dd, J 

= 17.2, 7.9 Hz, 1H), 2.80 (dd, J = 17.2, 3.9 Hz, 1H), 2.62 

(dddd, J = 11.0, 8.0, 4.5, 4.0 Hz, 1H), 1.96 (dddd, J = 13.2, 10.0, 7.0, 4.4 Hz, 1H), 1.56 

(septet, J = 6.6 Hz, 1H), 1.43 (dddd, J = 13.2, 10.0, 8.8, 5.7 Hz, 1H), 1.29 (m, 2H), 0.90 (d, 

J = 6.0 Hz, 3H), 0.88 (d, J = 6.3 Hz, 3H) ppm; 13C{1H} NMR (400 MHz, CDCl3) δ 209.1, 

153.8, 136.9, 134.6, 127.3, 126.5, 123.9, 47.6, 36.6, 32.9, 29.3, 28.2, 22.7, 22.5 ppm; GC-

MS m/z = 202 (M+). The 1H and 13C spectroscopic data are in good agreement with the 

literature data.23 
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Table 3.9 Compound  14s: 1H NMR (400 MHz, 

CDCl3) δ 7.68 (d, J = 8.4 Hz, 1H), 6.91-6.81 (m, 2H), 

3.88 (s, 3H), 3.25 (dd, J = 17.3, 7.8 Hz, 1H), 2.74 (dd, J 

= 17.3, 3.9 Hz, 1H), 2.61 (dddd, J = 11.8, 9.4, 7.9, 3.9 Hz, 1H), 1.94 (dddd, J = 13.2, 10.0, 

7.0, 4.2 Hz, 1H), 1.48-1.35 (m, 1H), 1.32-1.22 (dddd, J = 15.0, 13.2, 10.1, 4.2 Hz, 1H), 

0.90 (d, J = 6.0 Hz, 3H), 0.88 (t, J = 6.4 Hz, 3H)  ppm; 13C{1H} NMR (400 MHz, CDCl3) 

δ 207.3, 165.2, 156.7, 130.1, 125.5, 115.2, 109.6, 55.6, 47.7, 36.5, 32.9, 29.5, 28.1, 22.6, 

22.5 ppm; GC-MS m/z = 232 (M+); Anal. Calcd for C15H20O2: C, 77.55; H, 8.68. Found: 

C, 77.77; H, 8.86. 

Table 3.9 Compound  14t: 1H NMR (400 MHz, CDCl3) 

δ 8.10 (dd, J = 7.5, 1.6 Hz, 1H), 7.57 (td, J = 7.4, 1.6 Hz, 1H), 

7.33 (td, J = 7.5, 1.6 Hz, 1H), 7.25-7.21 (m, 1H), 3.33 (dd, J = 

17.2, 8.0 Hz, 1H), 2.79 (dd, J = 17.2, 4.6 Hz, 1H), 2.74-2.65 (m, 

1H), 1.90-1.74 (m, 2H), 1.37-1.23 (m, 1H), 0.97 (d, J = 6.4 Hz, 6H) ppm; 13C{1H} NMR 

(400 MHz, CDCl3) δ 209.4, 153.7, 136.7, 134.6, 127.3, 126.5, 123.9, 45.5, 40.6, 33.3, 26.6, 

23.5, 21.7 ppm; GC-MS m/z = 216 (M+); Anal. Calcd for C15H20O: C, 83.28; H, 9.32. 

Found: C, 83.00; H, 8.95. 

Table 3.9 Compound  14u: 1H NMR (400 MHz, 

CDCl3) δ 7.94 (d, J = 9.2 Hz, 2H), 6.93 (d, J = 9.2 Hz, 2H), 

3.86 (s, 3H), 2.99-2.83 (m, 2H), 1.80-1.70 (m, 1H), 1.58-

1.47 (m, 1H), 1.47-1.33 (m, 2H), 1.27-1.13 (m, 1H), 1.92 

(d, J = 6.5 Hz, 3H), 0.89 (t, J = 7.2 Hz, 3H) ppm; 13C{1H} NMR (400 MHz, CDCl3) δ 

201.6, 163.3, 130.3, 130.1, 113.7, 55.5, 36.1, 31.2, 29.3, 19.1, 11.4 ppm; GC-MS m/z = 

 

O
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220 (M+). The 1H and 13C spectroscopic data are in good agreement with the literature 

data.33 

Table 3.9 Compound  14v: 1H NMR (400 MHz, CDCl3) δ 7.74 

(dsextet, J = 7.7, 0.6 Hz, 1H), 7.58 (td, J = 7.7, 1.3 Hz, 1H), 7.46 (dp, 

J = 7.7, 1.0 Hz, 1H), 7.35 (tq, J = 7.3, 1.0 Hz, 1H), 3.32 (dd, J = 17.3, 

7.8 Hz, 1H), 2.82 (dd, J = 17.3, 4.0 Hz, 1H), 2.62 (dddd, J = 9.0, 7.8, 4.4, 4.0 Hz, 1H), 1.97 

(ddq, J = 16.5, 9.0, 7.4 Hz, 1H), 1.54 (ddq, J = 16.5, 7.6, 7.4 Hz 1H), 0.94 (t, J = 7.4, 3H) 

ppm; 13C{1H} NMR (400 MHz, CDCl3) δ 209.1, 153.8, 136.8, 134.6, 127.3, 126.6, 123.8, 

48.7, 32.3, 24.5, 11.6 ppm; GC-MS m/z = 160 (M+). The 1H and 13C spectroscopic data are 

in good agreement with the literature data.34 

Table 3.9 Compound  14w: 1H NMR (400 MHz, CDCl3) δ 

7.75 (dq, J = 7.7, 0.8 Hz, 1H), 7.57 (td, J = 7.4, 1.2 Hz, 1H), 7.45 

(dp, J = 7.7, 1.2 Hz, 1H), 7.36 (tq, J = 7.4, 0.8 Hz, 1H) 3.33 (dd, J 

= 17.2, 8.0 Hz, 1H), 2.79 (dd, J = 17.2, 4.0 Hz, 1H), 2.70 (dddd, J = 9.0, 8.1, 8.0, 4.0 Hz, 

1H), 1.90-1.74 (m, 2H), 1.31 (dd, J = 10.8, 8.1 Hz, 1H), 0.97 (d, J = 6.4, 6H) ppm; 13C 

NMR (400 MHz, CDCl3) δ 209.4, 153.7, 136.7, 134.6, 127.3, 126.5, 123.9, 45.5, 40.6, 

33.3, 26.6, 23.5, 21.8 ppm; GC-MS m/z = 188 (M+). The 1H and 13C spectroscopic data are 

in good agreement with the literature data.32 

Table 3.9 Compound  14x: 1H NMR (400 MHz, 

CDCl3) δ 7.68 (d, J = 8.1 Hz, 1H), 7.33-7.15 (m, 5H), 

6.91-6.87 (m, 2H), 3.88 (s, 3H), 3.28 (dd, J = 17.3, 7.8 

Hz, 1H), 2.85-2.70 (m, 3H), 2.66 (dddd, J = 12.5, 8.2, 

7.8, 3.6 Hz, 1H), 2.28 (dddd, J = 13.4, 9.7, 6.9, 4.6 Hz, 1H), 1.75 (dddd, J = 13.4, 9.7, 9.3, 
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5.7 Hz, 1H) ppm; 13C{1H} NMR (400 MHz, CDCl3) δ 206.9, 165.3, 156.5, 141.6, 130.1, 

128.5, 128.4, 126.0, 125.5, 115.3, 109.6, 55.6, 46.8, 33.6, 33.4, 33.0 ppm; GC-MS m/z = 

266 (M+); Anal. Calcd for C18H18O2: C, 81.17; H, 6.81. Found: C, 81.61; H, 7.60. 

Table 3.9 Compound  14y: 1H NMR (400 

MHz, CDCl3) δ 7.66-7.59 (m, 1H), 7.25-7.08 (m, 

5H), 6.85-6.79 (m, 1H), 6.75 (m, 1H), 3.81 (s, 2H), 

3.79 (s, 3H), 3.38 (dd, J = 14.0, 4.2 Hz, 1H), 3.26 (dd, J = 17.6, 7.9 Hz, 1H), 3.10 (dd, J = 

17.3, 7.9 Hz, 1H), 2.99 (dddd, J = 10.3, 7.9, 7.9, 3.9 Hz, 1H), 2.84-2.73 (m, 1H), 2.57 (dd, 

J = 14.0, 10.7 Hz, 1H), 1.96 (dddd, J = 13.6, 12.0, 7.5, 4.4 Hz, 1H), 1.49-1.30 (m, 1H) 

ppm; 13C{1H} NMR (400 MHz, CDCl3) δ 206.0, 165.4, 139.8, 129.8, 128.9, 128.5, 126.3, 

125.7, 125.5, 115.3, 109.6, 55.6, 49.0, 48.9, 37.2, 32.4, 32.2 ppm; GC-MS m/z = 296 (M+); 

Anal. Calcd for C19H20O3: C, 77.00; H, 6.80. Found: C, 77.28; H, 7.04. 

Table 3.9 Compound  14z: 1H NMR (400 MHz, CDCl3) 

δ 8.22 (d, J = 7.9 Hz, 1H), 7.72 (t, J = 7.4 Hz, 1H), 7.57 (d, J = 

7.9 Hz, 1H), 7.45 (t, J = 7.4 Hz, 1H), 3.66 (s, 3H), 3.34 (dd, J 

= 17.3, 7.9 Hz, 1H), 2.84 (dd, J = 17.3, 4.1 Hz, 1H), 2.72-2.62 

(m, 1H), 2.45-2.30 (m, 2H), 2.02-1.91 (m, 1H), 1.82-1.72 (m, 1H), 1.56-1.43 (m, 2H) ppm; 

13C{1H} NMR (400 MHz, CDCl3) δ 208.4, 173.8, 153.6, 143.5, 134.8, 127.4, 126.6, 123.9, 

51.6, 47.1, 32.8, 30.8, 26.1, 22.8 ppm; GC-MS m/z = 232 (M+); Anal. Calcd for C14H16O3: 

C, 72.39; H, 6.94. Found: C, 72.20; H, 6.87. 

Table 3.9 Compound  14aa: 1H NMR (400 MHz, 

CDCl3) δ 7.68 (d, J = 7.6 Hz, 1H), 7.50 (t, J =7.4 Hz, 1H), 

7.38 (d, J = 7.8 Hz, 1H), 7.28 (t, J = 7.5 Hz, 1H), 3.24 (dd, J 

O

O

O 14y
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= 17.2, 8.0 Hz, 1H), 2.72 (dd, J = 17.3, 3.6 Hz, 1H), 2.50 (dddd, J = 12.7, 8.2, 3.7, 3.7 Hz, 

1H) 2.00-0.80 (m, 15H) ppm; 13C{1H} NMR (400 MHz, CDCl3) δ 209.2, 153.8, 136.9, 

134.6, 127.3, 126.5, 123.9, 47.7, 37.7, 35.1, 33.4, 33.1, 32.8, 28.8, 26.6, 26.4, 26.3 ppm; 

GC-MS m/z = 242 (M+); Anal. Calcd for C17H22O: C, 84.25; H, 9.15. Found: C, 84.26; H, 

8.65. 

Table 3.10 Compound  15a: 1H NMR (400 MHz, CDCl3) 

δ 7.98-7.92 (m, 2H), 7.58-7.51 (m, 1H), 7.47-7.41 (m, 2H),  2.96 

(t, J = 7.6 Hz, 2H), 1.71 (p, J = 7.6 Hz, 2H), 1.41 (sextet, J = 7.5 

Hz, 2H), 0.95 (t, J = 7.5 Hz, 3H); 13C{1H} NMR (400 MHz, 

CDCl3) δ 199.5, 163.7, 130.7, 130.6, 114.1, 55.8, 40.6, 18.4, 14.3 ppm; GC-MS m/z = 148; 

Anal. Calcd for C11H14O2: C, 74.13; H, 7.92. Found: C, 74.44; H, 8.09. The 1H and 13C 

spectroscopic data are in good agreement with the literature data.24 

Table 3.10 Compound  15b: 1H NMR (400 MHz, 

CDCl3) δ 7.94 (d, J = 9.3 Hz, 2H), 6.93 (d, J = 9.0 Hz, 2H), 

3.86 (s, 3H), 2.91 (t, J = 7.6 Hz, 2H), 1.70 (p, J = 7.4 Hz, 2H), 

1.40 (sextet, J = 7.7 Hz, 2H), 0.94 (t, J = 7.4 Hz, 3H) ppm; 

13C{1H} NMR (400 MHz, CDCl3) δ 201.7, 163.3, 130.3, 130.2, 113.6, 55.4, 38.0, 26.7, 

22.5, 13.9 ppm; GC-MS m/z = 192 (M+). The 1H and 13C spectroscopic data are in good 

agreement with the literature data.24 

Table 3.10 Compound  15c: 1H NMR (400 MHz, CDCl3) 

δ 7.96 (m, 2H), 7.55 (m, 1H), 7.46 (m, 2H), 3.49 (sextet, J = 6.9 

Hz, 1H), 1.78 (m, 1H), 1.36 (m, 3H), 1.19 (d, J = 6.9 Hz, 3H), 0.90 

(d, J = 7.2 Hz, 3H) ppm; 13C{1H} NMR (400 MHz, CDCl3) δ 
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204.8, 136.7, 133.0, 128.8, 128.5, 40.5, 36.1, 20.8, 17.4, 14.4 ppm; GC-MS m/z = 176 

(M+). The 1H and 13C spectroscopic data are in good agreement with the literature data.35 

Table 3.10 Compound  15d: 1H NMR (400 MHz, CDCl3) 

δ 7.92 (m, 2H), 7.54-7.22 (m, 8H), 4.56 (t, J = 7.3 Hz, 1H), 2.15 

(dddd, J = 13.5, 9.9, 7.3, 6.0 Hz, 1H), 1.28 (dddd, J = 13.4, 10.0, 

7.3, 5.6 Hz, 1H), 0.92 (t, J = 7.4 Hz, 3H) ppm; 13C{1H} NMR (400 

MHz, CDCl3) δ 200.1, 139.8, 137.0, 132.8, 128.8, 128.6, 128.4, 128.2, 127.0, 53.4, 36.2, 

20.9, 14.1 ppm; GC-MS m/z = 238 (M+). The 1H and 13C spectroscopic data are in good 

agreement with the literature data.36 

Compund 15e: 1H NMR (400 MHz, CDCl3) δ 7.74 (d, J = 

7.8 Hz, 1H), 7.57 (t, J = 7.4 Hz, 1H), 7.45 (d, J = 7.8 Hz, 1H), 7.36 

(t, J = 7.4 Hz, 1H), 3.32 (dd, J = 17.4, 8.0 Hz, 1H), 2.81 (dd, J = 

17.4, 4.0 Hz, 1H), 2.67 (dddd, J = 8.0, 7.9, 4.0, 2.7 Hz, 1H), 1.98-1.85 (m, 1H), 1.55-1.37 

(m, 3H), 0.95 (t, J = 7.2 Hz, 3H) ppm; 13C{1H} NMR (400 MHz, CDCl3) δ 201.6, 134.6, 

127.3, 160.4, 136.6, 126.5, 123.8, 47.3, 33.6, 32.9, 20.7, 14.1 ppm; GC-MS m/z = 266 

(M+). The 1H and 13C spectroscopic data are in good agreement with the literature data.37 

Table 3.10 Compound  15f: 1H NMR (400 MHz, CDCl3) δ 

8.04 (dd, J = 7.7, 1.2 Hz, 1H), 7.46 (ddd, J = 7.4, 7.4, 1.5 Hz, 1H), 

7.32 (dd, J = 8.0, 7.7 Hz, 1H), 7.24 (d, J = 7.6 Hz, 1H), 3.03-2.98 

(m, 2H), 2.49-2.35 (m, 1H), 2.26 (ddd, J = 13.2, 9.5, 4.6 Hz, 1H), 

2.06-1.84 (m, 2H), 1.54-1.33 (m, 3H), 0.96 (t, J = 7.5 Hz, 3H) ppm; 13C{1H} NMR (400 

MHz, CDCl3) δ 200.4, 143.9, 133.0, 132.5, 128.6, 127.4, 126.5, 47.2, 31.5, 28.2, 28.1, 20.2, 
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14.2 ppm; GC-MS m/z = 188 (M+). The 1H and 13C spectroscopic data are in good 

agreement with the literature data.38 

Table 3.10 Compound  15g(cis) : 1H NMR (400 MHz, 

CDCl3) δ 7.49-7.06 (m, 5H), 3.77 (dd, J = 8.5, 5.6 Hz, 1H), 2.52-

2.44 (m, 1H), 2.32-2.20 (m, 1H), 2.20-2.10 (m, 1H), 2.04-1.95 

(m, 1H), 1.94-1.68 (m, 4H), 1.45-1.20 (m, 3H), 0.90 (t, J = 7.2 

Hz, 3H) ppm; 13C{1H} NMR (400 MHz, CDCl3)  δ 213.6, 138.5, 128.5, 127.9, 126.7, 54.0, 

49.1, 33.1, 32.9, 32.7, 21.1, 20.4, 14.1 ppm; GC-MS m/z = 216(M+); Anal. Calcd for 

C15H20O: C, 83.28; H, 9.32. Found: C, 83.11; H, 9.66. 

Table 3.10 Compound  15h Major Diastereomer (Cis): 

1H NMR (400 MHz, CDCl3) δ 3.77 (dd, J = 8.3, 5.6 Hz, 1H), 0.90 

(t, J = 7.5 Hz, 3H) ppm; 13C{1H} NMR (400 MHz, CDCl3) δ 213.5, 

138.5, 128.5, 127.9, 126.7, 54.0, 51.0, 33.1, 32.5, 23.5, 21.1, 11.7 

ppm; GC-MS m/z = 216 (M+). 15h Minor Diastereomer (Trans): 1H NMR (400 MHz, 

CDCl3) δ 3.62 (dd, J = 12.5, 4.8 Hz, 1H), 0.89 (t, J = 7.4 Hz, 3H) ppm; 13C{1H} NMR (400 

MHz, CDCl3) δ 211.0, 138.7, 128.7, 128.2, 126.8, 58.0, 52.9, 36.7, 34.8, 25.8, 22.3, 11.8 

ppm. The 1H and 13C spectroscopic data are in good agreement with the literature data.39 

Table 3.10 Compound  15j: 1H NMR (400 MHz, 

CDCl3) δ 7.94 (d, J = 9.0 Hz, 2H), 6.92, 7.17-7.34 (m, 5H), 

(d, J = 9.0 Hz, 2H), 3.86 (s, 3H), 3.44 (m, 1H), 3.25 (dd, J = 

16.4, 5.9 Hz, 1H), 3.14 (dd, J = 16.4, 8.5 Hz, 1H), 1.34 (d, J = 6.9 Hz, 3H) ppm; 13C{1H} 

NMR (400 MHz, CDCl3) δ 197.7, 163.4, 146.7, 130.4, 130.3, 128.6, 126.9, 126.2, 113.6, 
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55.6, 46.7, 35.7, 21.9 ppm; GC-MS m/z = 254 (M+). The 1H and 13C spectroscopic data are 

in good agreement with the literature data.40 

Table 3.10 Compound  15k: 1H NMR (400 MHz, CDCl3) 

δ 7.88 (m, 2H), 7.50 (m, 1H), 7.40 (t, 2H, J = 7.6 Hz), 7.27-7.21 

(m, 4H), 7.15 (m, 1H), 3.49-3.44 (m, 1H), 3.26 (dd, J = 16.5, 5.5 

Hz, 1H), 3.17-3.13 (m, 1H), 1.31 (d, 3H, J = 6.9 Hz) ppm; 13C{1H} NMR (400 MHz, 

CDCl3) δ 199.0, 146.6, 137.3, 132.9, 128.5, 128.5, 128.1, 126.8, 126.3, 47.0, 35.6, 21.8 

ppm; GC-MS m/z = 224 (M+). The 1H and 13C spectroscopic data are in good agreement 

with the literature data.41 

Table 3.10 Compound  15l: 1H NMR (400 MHz, CDCl3) δ 7.73 

(dsextet, J = 7.8, 0.6 Hz, 1H), 7.57 (td, J = 7.6, 1.3 Hz, 1H), 7.47 (td, 

J = 7.6, 0.9 Hz, 1H), 7.35 (dt, J = 7.6, 0.8 Hz, 1H), 3.14 (dd, J = 17.4, 

8.0 Hz, 1H), 2.93 (dd, J = 17.4, 4.0 Hz, 1H), 2.67 (ddd, J = 8.3, 4.3, 4.0 Hz, 1H), 2.42 

(dseptet, J = 7.0, 4.3 Hz, 1H), 1.05 (d, J = 7.0 Hz, 3H), 0.78 (d, J = 6.8 Hz, 3H) ppm; 

13C{1H} NMR (400 MHz, CDCl3) δ 208.9, 154.2, 137.9, 134.5, 127.2, 126.5, 123.6, 53.1, 

29.0, 28.2, 20.9, 17.3 ppm; GC-MS m/z = 174 (M+). The 1H and 13C spectroscopic data are 

in good agreement with the literature data.42 

Table 3.11 Compound  16a: 1H 

NMR (400 MHz, CDCl3) δ 7.30-7.10 

(m, 5H), 5.73 (d, J = 2.0 Hz, 1H), 3.46 

(dd, J = 14.2, 4.0 Hz, 1H), 2.60 (dddd, J 

= 13.4, 9.1, 4.7, 3.8 Hz, 1H), 2.42 (dd, J 

= 14.0, 9.1 Hz, 1H), 2.35-2.20 (m, 2H), 
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2.10-1.93 (m, 3H), 1.90 (dd, J = 13.2, 4.7 Hz, 1H), 1.85-0.80 (br m, 19H), 1.06 (s, 3H), 

0.86 (s, 3H), 0.85 (s, 3H), 0.65 (s, 3H) ppm; 13C{1H} NMR (400 MHz, CDCl3) δ 200.3, 

170.6, 140.3, 129.1, 128.3, 125.8, 123.4, 56.1, 55.8, 54.1, 43.7, 42.2, 41.3, 39.5, 39.1, 36.1, 

35.7, 35.4, 35.0, 32.5, 31.9, 28.1, 28.0, 24.1, 23.8, 22.8, 22.6, 20.8, 18.6, 17.3, 11.9 ppm; 

GC-MS m/z = 474 (M+); [α]20
D = +10.8 (c = 2 in CH2Cl2); Anal. Calcd for C34H50O: C, 

86.01; H, 10.62. Found: C, 86.51; H, 10.12. 

Table 3.11 Compound  16b (2β): 1H NMR (400 

MHz, CDCl3) δ 7.38-7.10 (m, 5H), 3.31 (dd, J = 14.2, 

5.0 Hz, 1H), 2.68-2.56 (m, 1H), 2.44 (dd, J = 18.7, 8.1 

Hz, 1H), 2.39-2.31 (m, 2H), 2.15 (dd, J = 14.0, 3.9 Hz, 

1H), 1.74-2.10 (br m, 6H), 1.00-1.63 (br m, 14H), 1.01 (s, 3H), 0.84 (s, 3H) ppm; 13C{1H} 

NMR (400 MHz, CDCl3) δ 221.0, 211.6, 140.4, 129.0, 126.9, 125.9, 53.9, 53.1, 51.1, 48.2, 

47.7, 45.7, 44.9, 36.6, 35.8, 35.2, 34.7, 31.4, 30.6, 28.4, 21.8, 20.8, 13.8, 12.4 ppm; GC-

MS m/z = 378 (M+); [α]20
D = +36.0 (c = 2 in CH2Cl2); Anal. Calcd for C26H34O2: C, 82.49; 

H, 9.05. Found: C, 82.20; H, 9.07.  

Table 3.11 Compound  16c: 1H 

NMR (600 MHz, CDCl3) δ 7.41-6.99 

(m, 10H), 5.02 (d, J = 6.6 Hz, 2H), 3.79 

(s, 1H), 3.15 (dd, J = 14.1, 4.2 Hz, 1H), 

2.72 (t, J = 13.4 Hz, 1H), 2.64 (dddd, J 

= 13.9, 9.1, 4.4, 4.4 Hz, 1H), 2.38-2.28 

(m, 2H), 2.26-2.11 (m, 3H), 2.00 (dd, J = 14.2, 4.2 Hz, 1H), 1.89-0.91 (br m, 19H), 0.87 

(d, J = 6.0 Hz, 3H), 0.83 (s, 3H), 0.54 (s, 3H) ppm; 13C{1H} NMR (400 MHz, CDCl3) δ 
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213.3, 174.0, 140.5, 136.1, 129.0, 128.5, 128.3, 128.2, 126.0, 66.1, 48.1, 47.2, 46.9, 46.4, 

45.8, 43.5, 42.9, 35.6, 35.2, 35.0, 34.7, 34.4, 31.3, 30.8, 28.9, 27.4, 26.5, 23.5, 22.3, 17.4, 

12.7 ppm; muldi m/z = 570 (M+); [α]20
D = +12.8 (c = 2 in CH2Cl2); Anal. Calcd for 

C38H50O4: C, 79.96; H, 8.83. Found: C, 79.37; H, 8.57. 

Table 3.11 Compound  16d (2:1 diatereomeric mixture) 

Major isomer: 1H NMR (400 MHz, CDCl3) δ 7.95 (d, J = 8.0 Hz, 

1H), 7.57 (t, J = 7.4 Hz, 1H), 7.45 (d, J = 8.0 Hz, 1H), 7.36 (t, J = 

7.4 Hz, 1H), 3.39-3.27 (m, 1H), 2.95-2.87 (m, 2H), 2.85-2.67 (m, 2H), 1.96 (ddd, J = 12.7, 

8.0, 4.8 Hz, 1H), 1.78 (ddd, J = 13.7, 10.0, 4.0 Hz, 1H), 1.70-1.10 (m, 4H), 0.95 (t, J = 6.3 

Hz, 3H), 0.90 (d, J = 8.2 Hz, 3H) ppm; 13C{1H} NMR (400 MHz, CDCl3) δ 201.6, 134.6, 

127.3, 127.2, 126.5, 126.4, 123.8, 45.6, 38.3, 33.2, 30.3, 28.5, 18.5, 11.5 ppm; GC-MS m/z 

= 202 (M+); Anal. Calcd for C14H18O: C, 83.12; H, 8.97. Found: C, 83.50; H, 8.46. Minor 

isomer: 1H NMR (400 MHz, CDCl3) δ 7.95 (d, J = 8.0 Hz, 1H), 7.57 (t, J = 7.4 Hz, 1H), 

7.45 (d, J = 8.0 Hz, 1H), 7.36 (t, J = 7.4 Hz, 1H), 3.34 (dd, J = 16.7, 7.9 Hz, 1H), 2.80 (dd, 

J = 16.7, 4.1 Hz,  1H), 2.67-2.85 (m, 1H), 1.96 (ddd, J = 13.7, 7.9, 4.7 Hz, 1H), 1.70-1.58 

(m, 1H), 1.43-1.10 (m, 4H), 0.95 (d, J = 6.3 Hz, 3H), 0.91 (t, J = 8.2 Hz, 3H) ppm; 13C{1H} 

NMR (400 MHz, CDCl3) δ 209.4, 153.7, 136.6, 134.6, 127.2, 126.4, 123.8, 45.7, 38.8, 

33.7, 32.8, 28.5, 19.8, 11.2 ppm; GC-MS m/z = 202 (M+). 

Table 3.11 Compound  16e: 1H NMR (400 MHz, 

CDCl3) δ 7.77-7.08 (m,  5H), 2.83 (t, J = 7.5 Hz, 2H), 2.64 

(t, J = 7.5 Hz, 2H), 2.36 (t, J = 9.4 Hz, 2H), 2.16 (t, J = 9.4 

Hz, 2H), 1.80 (t, J = 6.2 Hz, 2H), 1.50 (m, 2H), 1.31 (t, J = 

6.2 Hz, 2H), 0.99 (s, 3H), 0.87 (s, 6H) ppm; 13C{1H} NMR 
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(400 MHz, CDCl3) δ 210.4, 141.1, 128.9, 128.5, 128.3, 127.1, 126.1, 43.8, 39.9, 39.7, 35.0, 

32.7, 28.7, 22.2, 20.0, 19.7, 19.6, 19.4 ppm; GC-MS m/z = 266 (M+); Anal. Calcd for 

C18H18O2: C, 81.17; H, 6.81. Found: C, 81.69; H, 6.57.  

Table 3.11 Compound  16f: 1H NMR (400 MHz, 

CDCl3) δ 7.34 (d, J = 8.4 Hz, 1H), 7.26 (t, J = 8.4 Hz, 4H), 

7.17 (t, J = 7.4 Hz, 1H), 7.05 (t, J = 7.2 Hz, 1H), 6.70 (d, J 

= 9.0 Hz, 1H), 6.81-6.70 (m, 2H), 6.20-6.13 (m, 1H), 4.18 

(t, J = 8.1 Hz, 3H), 3.84 (s, 3H), 3.06 (t, J = 8.1 Hz, 3H) ppm; 13C{1H} NMR (400 MHz, 

CDCl3) δ 201.7, 163.0, 130.4, 127.1, 122.0, 121.9, 121.4, 119.3, 118.5, 113.7, 112.5, 111.1, 

108.2, 107.6, 55.3, 47.7, 27.6 ppm; GC-MS m/z = 291 (M+); Anal. Calcd for C19H17NO2: 

C, 78.33; H, 5.88; Found: C, 78.68; H, 5.61. 

Table 3.9 Compound  17: 1H NMR (400 MHz, 

CDCl3) δ 9.20 (s, 1H), 7.08 (dt, J = 7.4, 1.8 Hz, 1H), 

7.03 (dd, J = 7.5, 1.7 Hz, 1H), 6.89 (dd, J = 8.0, 1.2 Hz, 

1H), 6.81 (dt, J = 7.4, 1.4 Hz, 1H),6.16 (t, 5.7 Hz, 1H), 

3.24 - 3.16 (m, 2H), 2.89 (t, J = 6.6 Hz, 2H), 2.58 (t, J = 

6.6 Hz, 2H), 1.49 (septet, J = 6.8 Hz, 1H), 1.23 (q, J = 7.5 Hz, 2H), 0.78 (d, J = 6.6Hz, 

6H) ppm; 13C{1H} NMR (400 MHz, CDCl3)  δ 174.1, 154.7, 130.4, 127.8, 127.7, 120.1, 

117.2, 38.0, 37.9, 36.8, 25.5, 25.0, 22.2 ppm; GC-MS m/z = 216(M+); Anal. Calcd for 

C14H21NO2: C, 71.46; H, 8.99. Found: C, 71.55; H, 8.47. 
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6.3. Scope and Mechanistic Analysis for Chemoselective Hydrogenolysis of Carbonyl 
Compounds Catalyzed by a Cationic Ruthenium-Hydride Complex with Tunable 
Phenol Ligands 
 
6.3.1. Experimental Procedures. 
 
 

General Procedure for the Hydrogenolysis. Method A: In a glove box, carbonyl 

substrate (1.0 mmol), complex 1 (18 mg, 3 mol %) and phenol (10 mg, 10 mol %) were 

dissolved in 1,4-dioxane (2 mL) in a 25 mL Schlenk tube equipped with a Teflon stopcock 

and a magnetic stirring bar. The tube was brought out of the glove box, and cooled in a 

liquid N2 bath and evacuated in vacuo. [Alternative Procedure for the In-situ 

Generation of the Active Ru-H Catalyst 8. Complex 4 (17 mg, 1 mol %) and phenol (4 

mg, 4 mol %) were dissolved in CH2Cl2 (1 mL) in a 25 mL Schlenk tube equipped with a 

Teflon stopcock and a magnetic stirring bar. HBF4·OEt2 (7 µL, 4 mol %) was added under 

a stream of N2 gas. The mixture was stirred about 15 min at room temperature.] The tube 

was filled with H2 (2 atm) via a vacuum line. The tube was stirred in an oil bath set at 130 

°C for 8-16 h. The reaction tube was taken out of the oil bath, and was cooled to room 

temperature. After the tube was open to air, the solution was filtered through a short silica 

gel column by eluting with CH2Cl2 (10 mL), and the filtrate was analyzed by GC-MS. 

Analytically pure product was isolated by a simple column chromatography on silica gel 

(280-400 mesh, hexanes/EtOAc). 

Method B: In a glove box, carbonyl substrate (1.0 mmol), complex 1 (18 mg, 3 

mol %) and phenol (10 mg, 10 mol %) were dissolved in 2-propanol/1,4-dioxane (2 mL, 

1:1 v/v) in a 25 mL Schlenk tube equipped with a Teflon stopcock and a magnetic stirring 

bar. The tube was brought out of the glove box, and stirred in an oil bath set at 130 °C for 
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8-16 h. The reaction tube was taken out of the oil bath, and was cooled to room temperature. 

After the tube was open to air, the solution was filtered through a short silica gel column 

by eluting with CH2Cl2 (10 mL), and the filtrate was analyzed by GC-MS. Analytically 

pure product was isolated by a simple column chromatography on silica gel (280-400 mesh, 

hexanes/EtOAc). 

 

6.3.2 Ligand Screening and Optimization Study. 
 

In a glove box, 4-methoxyacetophenone (160 mg, 1 mmol), complex 1 (18 mg, 3 

mol %) and ligand (10 mol %) were dissolved in 1,4-dioxane (2 mL) in a 25 mL Schlenk 

tube equipped with a Teflon stopcock and a magnetic stirring bar. The tube was brought 

out of the glove box, cooled in liquid N2 bath and degased under a high vacuum. The tube 

was filled with H2 (2 atm) via a vacuum line. The tube was stirred in an oil bath set at 130 

°C for 8-16 h. The reaction tube was taken out of the oil bath, and was cooled to room 

temperature. After the tube was open to air, the solution was filtered through a short silica 

gel column by eluting with CH2Cl2 (10 mL), and the filtrate was analyzed by 1H NMR. 
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Table 6.1: Ligand Screening for the Hydrogenolysis Reaction of 4-
Methoxyacetophenone.a 

 Catalyst Ligand Solvent Yield 

1 5 phenol dioxane >95 

2 5 phenol PhCl 89 

3 5 aniline PhCl <5 

4 5 2-NH2PhCOMe PhCl 35 

5 5 benzamide PhCl <5 

6 5 1,2-catechol toluene 73 

7 5 1,1’-BINOL toluene 54 

8 5 1,2-C6H4(NH2)2 toluene <5 

9   4 phenol dioxane <5 

10 4/H+ phenol dioxane 95 

11 [Ru(cod)Cl2]x phenol dioxane 0 

12 RuCl3·3H2O phenol dioxane 0 

13 Ru3(CO)12 phenol dioxane 0 

14 (PPh3)3(CO)RuH2 phenol dioxane 0 

15 [(PCy3)2(CO)(CH3CN)2RuH]BF4 phenol dioxane 30 

a Reaction conditions: 4-methoxyacetophenone (160 mg, 1 mmol), solvent (2 mL), catalyst 
(3 mol  %), ligand (10 mol  %), H2 (2 atm), 130 °C, 12 h. b The product yield of 12 was 
determined by 1H NMR using methyl benzoate as an internal standard.  
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H3C
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1, (1 mol %), HBF4.OEt2 (4 mol %)

dioxane, 130oC

1.0 mmol

H2 (~2 atm)

OH

X

X = H, Me, tBu, Et, Cl, F, CF3, OMe

+ (4.5)

HH

 

6.3.2  Hammett Study 
 
 In a glove box, complex 4 (40 mg, 1 mol %) and p-X-C6H4OH (4 mol %) were 

dissolved in CH2Cl2 (2 mL) in 25 mL Schlenk tube equipped with a Teflon screw cap 

stopcock. The tubes were brought out of the box, and HBF4·OEt2 (15 µL, 4 mol %) was 

added under a nitrogen stream. After the mixture was stirred 15 min at room temperature, 

the solvent was removed in vacuo. 4-Methoxyacetophenone (240 mg) was added, and the 

residue was dissolved in 1,4-dioxane (8 mL). The resulting solution was divided into four 

equal portions, and each portion was transferred to a 25 mL Schlenk tube. The tubes were 

cooled in liquid N2 bath, evacuated under high vacuum, and were filled with H2 (1 atm) via 

a vacuum line. The tubes were stirred in an oil bath set at 130 °C. Each tube was taken out 

from the oil bath at 30 min intervals. The tube was cooled in ice water bath, and the solvent 

was removed under low vacuum. Methyl benzoate (10 mg, internal standard) in CDCl3 (1 

mL) was added, and the conversion of ketone to methylene was analyzed by 1H NMR 

spectroscopy. The reaction rate was measured by monitoring the appearance of the product 

signals on 1H NMR, which was normalized against the internal standard peak. The kobs was 

determined from a first-order plot of -ln[(4-methoxyacetophenone)t/(4-

methoxyacetophenone)0] vs time. The Hammett plot of log(kX/kH) vs σp is shown in Figure 

6.2. 
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Figure 6.1. Hammett Plot of 4-Methoxyacetophenone with p-X-C6H4OH (X = OMe, t-Bu, 

Me, Et, H, F, Cl, CF3).  

6.3.3 Deuterium Isotope Effect Study. 

 In a glove box, 4 (50 mg, 1 mol %) and p-X-C6H4OH (4 mol %) (X = OMe, Et, Cl, 

CF3) were dissolved in CH2Cl2 (2 mL) 25 mL Schlenk tubes equipped with a Teflon screw 

cap stopcock. The tubes were brought out of the box, and HBF4·OEt2 (20 µL, 4 mol %) 

was added under nitrogen stream. The mixture was stirred about 15 min at room 

temperature, and solvent was remove under high vacuum. The tube was brought into the 

glove box, and 4-methoxyacetophenone (300 mg) was dissolved in dioxane (8 mL). The 

resulting solution was divided into five equal portions, and placed into five separate 25 mL 

Schlenk tubes.   
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Figure 6.2. First Order Plots from the Hydrogenolysis Reaction of 4-
Methoxyacetophenone with H2 (triagle) and D2 (circle) Catalyzed by 4/4-X-C6H4OH (X = 
OMe, Et, Cl, H, F, CF3).  
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mixture was dissolved in CDCl3 (1 mL), and was analyzed by 1H NMR and 2H NMR. The 

reaction rate was measured by monitoring the appearance of the product signals on 1H 

NMR, which were normalized against an internal standard (methyl benzoate). The kobs was 

determined from a first-order plot of -ln[(4-methoxyacetophenone)t/(4-

methoxyacetophenone)0] vs time. Using the plot of -ln[(4-methoxyacetophenone)t/(4-

methoxyacetophenone)0] vs time kH/kD was calculated for each phenol ligands (Figure 6.2). 

O

MeO
O

2
34, (1 mol %), HBF4.Et2O 4 mol %)

dioxane, 130oC10.0 mmol

H2 (~2 atm)

OH

X

X =  CF3, OMe

5

4
1

6j

(4.8)

 

6.3.4 Carbon Isotope Effect Study.  
 
In a glove box, 4 (400 mg, 1 mol %) and p-X-C6H4OH (4 mol %), (X = OMe or 

CF3) were dissolved in CH2Cl2 (5 mL) in a 100 mL Schlenk tube equipped with a Teflon 

screw cap stopcock. The tube was brought out of the box, and HBF4·OEt2 (60 µL, 4 mol 

%) was added under nitrogen stream. After the mixture was stirred 15 min at room 

temperature, the solvent was removed under high vacuum. The tube was brought into the 

glove box, 6-methoxy-1-tetralone (1.76 g, 10 mmol) was added and the mixture was 

dissolved in dioxane (8 mL). After the tube was brought out of the glove box, it was cooled 

in liquid nitrogen and was degased under high vacuum. The tube was filled with H2 (1 atm) 

via a vacuum line. The tube was stirred in an oil bath set at 130 °C for 2 h (2.5 h and 3 h 

for the repeated runs). The conversion was determined separately by GC after filtering a 

small sample of the crude mixture through a short silica gel column and eluting with 

CH2Cl2 (20 mL) (15, 18 and 20 % conversions). The product 6j was isolated by a column 
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chromatography on silica gel (hexaness/Et2O = 40:1).  

 

Table 6.2: Average 13C Integration of the Product 6j at High Conversion (Virgin, R0; 96 
% conversion), at Low Conversion (R; avg 18 % conversion) and the Calculated 13C KIE 
using 4-OMeC6H4OH as the ligand. 
  OMe C1 C2 C3 C4 

R0 1.0000 1.0051 0.9968 1.0000 1.0223 

R 1 1.0000 0.9991 0.9868 0.9999 0.9801 

R 2 1.0000 1.0050 0.9980 1.0006 0.9811 

R 3 1.0000 1.0050 0.9979 1.0005 0.9811 

R 1.0000 1.0030 0.9942 1.0004 0.9807 

R0/R 1.0000 1.0021 1.0026 0.9996 1.0424 

 

 

 

Table 6.3: Average 13C Integration of the Product 6j at High Conversion (Virgin, R0; 96 
% conversion), at Low Conversion (R; avg 18 % conversion) and the Calculated 13C KIE 
using 4-CF3-C6H4OH as the ligand 

 

 OMe C1 C2 C3 C4 

R0 1.0000 1.0051 0.9968 1.0000 1.0223 

R 1 1.0000 0.9989 0.9972 0.9990 0.9615 

R 2 1.0000 0.9999 0.9969 0.9996 0.9617 

R 3 1.0000 0.9990 0.9970 0.9998 0.9627 

R 1.0000 0.9993 0.9971 0.9995 0.9620 

R0/R 1.0000 1.0058 0.9997 1.0005 1.0627 
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The 13C{1H} NMR analysis of the isolated product 6j was performed by following 

Singleton’s NMR method.22 The sample was prepared identically by dissolving 200 mg of 

the isolated 6j in CDCl3 (0.5 mL) in a 5 mm high precision NMR tube. The 13C{1H} NMR 

spectra were recorded with H-decoupling and 45 degree pulses. A 120 s delay between 

pulses was imposed to minimize T1 variations (d1 = 120 s, at = 5.0 s, np = 245098, nt = 

736). The data are summarized in Table 6.2 and 6.3. 

 

6.3.5 Deuterium Labeling Study.  

In a glove box, complex 4 (17 mg, 1 mol %) and 4-trifluoromethylphenol (8 mg, 4 

mol %) were dissolved in CH2Cl2 (1 mL) in a 25 mL Schlenk tube equipped with a Teflon 

stopcock and a magnetic stirring bar. The tube was brought out of the glove box, and 

HBF4·OEt2 (6.6 µL, 4 mol %) was added via a syringe under stream of N2. After the 

mixture was stirred for 15 min at room temperature, the solvent was removed under 

vacuum. The tube was brought into the glove box, and 4-methoxyacetophenone (150 mg, 

1.0 mmol) and dioxane (2 mL) were added. The tube was brought out of the glove box, 

was cooled in liquid nitrogen, and was evacuated under high vacuum. The tube was filled 

with D2 (2 atm) via a vacuum line. The tube was stirred in an oil bath set at 130 °C for 4 h. 

The reaction tube was taken out of the oil bath, and was cooled to room temperature. After 

the tube was open to air, the solution was filtered through a short silica gel column by 

eluting with CH2Cl2 (10 mL), and the analytically pure product was isolated by a simple 

column chromatography on silica gel (280-400 mesh, hexanes/EtOAc = 100:1). The 

products were completely characterized by 1H NMR and 2H NMR spectroscopic methods 

(Figure 6.3).  
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Figure 6.3. 1H and 2H NMR spectra for the Hydrogenolysis of 4-Methoxyacetophenone 
with D2 Catalyzed by 4/4-CF3C6H4OH.  

 

Figure 6.4. 1H and 2H NMR spectra for the Hydrogenolysis of 1-(4-
Methoxyphenyl)ethanol with D2 Catalyzed by 4/4-CF3C6H4OH.  
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Figure 6.5. 1H and 2H NMR spectra for the Hydrogenolysis of 4-Methoxyacetophenone 
with D2 Catalyzed by 4/4-OMeC6H4OH.  

 

Figure 6.6. 1H and 2H NMR spectra for the Hydrogenolysis of 1-(4-
Methoxyphenyl)ethanol with D2 Catalyzed by 4/4-OMeC6H4OH.  

The same procedure was used for: the hydrogenolysis of 1-(4-

methoxyphenyl)ethanol with D2 using 4/4-CF3-C6H4OH (Figure 6.4), the hydrogenolysis 
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of 4-methoxyacetophenone with D2 using 4/4-OMe-C6H4OH (Figure 6.5), and for the 

hydrogenolysis of 1-(4-methoxyphenyl)ethanol with D2 using 4/4-OMe-C6H4OH (Figure 

6.6). 

6.3.6 Empirical Rate Measurements: Catalyst Concentration Dependence. 
 
 In a glove box, 4 (20 mg, 0.01 mmol) and p-X-C6H4OH (4.0 equivalance, X = CF3, 

OMe) were dissolved in CH2Cl2 (2.0 mL) in a 25 mL Schlenk tubes equipped with a Teflon 

screw cap stopcock. The tubes were brought out of the box, and HBF4
.OEt2 (15 µL, 4 

equiv) was added under nitrogen stream. The mixture was stirred about 15 min at room 

temperature and solvent was remove under vacuum and filled with nitrogen. Solvent 

removed under vacuum and 300 mg of 4-methoxyacetophenone was added. The mixture 

was dissolve in 4 mL of 1,4-dioxane and  transferred into 4 different 25 mL Schlenk tubes 

each contained equal portions. Tubes were cooled in liquid nitrogen and degased under 

vacuum. The tube was filled with hydrogen gas connected to vacuumed line. The tube was 

tightly closed when hydrogen gas bubbles through the mercury manometer. This was 

stirred in an oil bath set at 130 °C. Each tube was taken out from the oil bath at 20 min 

intervals. Cooled with liq. nitrogen and remove solvent under low vacuum and methyl 

benzoate (internal standard, 10 µL) and CDCl3 (1 mL) was added and the conversion of 

ketone to methylene was analyzed by 1H NMR spectroscopy. The reaction rate was 

measured by monitoring the appearance of the product signals on 1H NMR, which were 

normalized against the internal standard methylbenzoate. The initial rate of the reaction 

was determined from a first-order plot of [1-Ethyl-4-metoxybenzene] vs time. This 

procedure were repeated for 5 different concentration of catalyst. The plot of catalytic 

concentration vs initial rate of the reaction is shown in Figure 6.7-6.10. 
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Figure 6.7: The Formation of 1-Ethyl-4-metoxybenzene vs Time at Different Catalyst 
Concentrations of 4/HBF4·OEt2/4-OMe-C6H4OH. 

 

Figure 6.8: Initial Rate of the Formation 1-Ethyl-4-metoxybenzene vs Catalyst 
Concentration of 4/HBF4·OEt2/4-OMe-C6H4OH. 
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Figure 6.9: The Formation of 1-Ethyl-4-metoxybenzene vs Time at Different Catalyst 
Concentrations of 4/HBF4·OEt2/4-CF3-C6H4OH. 

 

 

Figure 6.10: Initial Rate of the Formation 1-Ethyl-4-metoxybenzene vs Catalyst 
Concentration of 4/HBF4·OEt2/4-CF3-C6H4OH. 
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6.3.7 Catalyst Dependence Study.  

 
In a glove box, complex 10 (20 mg, 16 µmol) and 2’-hydroxyacetophenone (136 

mg, 1 mmol) were dissolved in 1,4-dioxane (4 mL) in a vial equipped with a screw cap and 

a magnetic stirring bar. After the solution was stirred for 10 min at room temperature, it 

was divided into four equal portions and each portion was transferred into four separate 25 

mL Schlenk tubes. The tubes were brought out of the glove box, were cooled in liquid 

nitrogen bath, and were evacuated under vacuum. The tube was filled with H2 (2 atm) via 

vacuum line. The tubes were stirred in an oil bath set at 130 °C. Each tube was taken out 

from the oil bath at 20 min intervals. Cooled in a liquid nitrogen bath, and the solvent was 

removed in vacuo. Methyl benzoate (10 µL, internal standard) in CDCl3 (1 mL) was added, 

and the product conversion was analyzed by 1H NMR spectroscopy. The initial rate of the 

reaction was determined from a first-order plot of [2’-hydroxyacetophenone] vs time. The 

procedure was repeated for 8 different concentration of the catalyst (4 µM-16 µM). The 

plot of catalytic concentration vs initial rate of the reaction is shown in Figure 6.11-6.12. 

 

Figure 6.11: The Formation of 2’-hydroxyethylbenzene vs Time at Different Catalyst 
Concentrations of 10 (4µM-16µM). 
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Figure 6.12: Initial Rate of the Formation 2’-Hydroxyethylbenzene Vs Catalyst 
Concentration of 10. 

6.3.8 Ketone Substrate Dependence Study.  
 
The same experimental procedure was used for the hydrogenolysis of 4-

methoxyacetophenone at different concentrations of 4-methoxyacetophenone (0.33M-2M) 

at 0.04 mM catalyst concentartion. The data obtained are shown in following Fig. 6.13. 

 

Figure 6.13: The Formation of 1-Ethyl-4-Metoxybenzene Vs Time at Different 
Concentration of 4-Methoxyacetophenone for the Catalyst 4/HBF4·OEt2/4-OMe-C6H4OH. 
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Figure 6.14: Initial Rate of Formation 1-Ethyl-4-Metoxybenzene Vs Concentration of 4-
Methoxyacetophenone for the Catalyst 4/HBF4·OEt2/4-OMe-C6H4OH. 

 

Figure 6.15: The Formation of 1-Ethyl-4-Metoxybenzene Vs Time at Different 
Concentration of 4-Methoxyacetophenone for the Catalyst 4/HBF4·OEt2/4-CF3-C6H4OH. 
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Figure 6.16: Initial Rate of Formation 1-Ethyl-4-Metoxybenzene Vs Concentration of 4-
Methoxyacetophenone for the Catalyst 4/HBF4·OEt2/4-CF3-C6H4OH. 
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product conversion of ketone was analyzed by 1H NMR spectroscopy. The initial rate of 

the reaction was determined from a first-order plot of pressue of H2 vs time as shown in 

Figure 6.17-6.22. 

 

 

Figure 6.17: The Formation of 1-Ethyl-4-Metoxybenzene Vs Time at Different Hydrogen 
Pressure for the Catalyst 4/HBF4·OEt2/4-OMe-C6H4OH. 

 

 

Figure 6.18: Initial Rate of the Formation 1-Ethyl-4-Metoxybenzene vs Time at Different 
Hydrogen Pressure for the Catalyst 4/HBF4·OEt2/4-OMe-C6H4OH. 
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Figure 6.19: Initial Rate of the Formation 1-Ethyl-4-Metoxybenzene (1/ Ν0) vs Time at 
Different Hydrogen Pressure for the Catalyst 4/HBF4·OEt2/4-OMe-C6H4OH. 

 

Figure 6.20: (A) Plot of Initial Rate of Formation 1-Ethyl-4-Metoxybenzene Vs Time at 
Different Hydrogen Pressure when 4-Methoxyphenol is used. (Inset) (1/ ν0) Vs Time at 
Different Hydrogen Pressure for the Catalyst 4/HBF4·OEt2/4-OMe-C6H4OH 
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Figure 6.21: The Formation of 1-Ethyl-4-metoxybenzene vs Time at different hydrogen 
pressure for the catalyst 4/HBF4·OEt2/4-CF3-C6H4OH. 

 

Figure 6.22: Initial Rate of the Formation 1-Ethyl-4-metoxybenzene vs time at different 
hydrogen pressure for the catalyst 4/HBF4·OEt2/4-CF3-C6H4OH. 
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6.3.10 Isolation and Characterization of Catalytically Relevant Ruthenium 
Complexes.  
 

 The treatment of 5 with phenol in a NMR tube in CD2Cl2 was followed by 1H and 

31P{1H} NMR. After 2 h of heating at 80 °C, a 1:1 ratio of cationic Ru-H complex 1 and 

phenol-coordinated complex 8, as evidenced by the appearance of new peaks at δ -10.87 

and 70.8 ppm by 1H and 31P{1H} NMR, respectively. The formation of free benzene 

molecule at δ = 7.4 ppm was also observed by 1H NMR. A series of substituted phenol-

coordinated complexes are conveniently synthesized from the reaction of the tetranuclear 

Ru complex 4, with phenol and HBF4·Et2O. The structure of these phenol-coordinated 

complexes is readily determined by spectroscopic methods, and the solid state structures 

of 8a and 8c were also determined by X-ray crystallography (Figure 4.16-4.17).  
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8

  

6.3.10.1 Synthesis of phenol Coordinated Complexes: 

In a glove box, tetrameric complex 4, 100 mg 1 mol% and phenol 4 mol % were 

dissolved in CH2Cl2 (1 mL) in a 25 mL Schlenk tube equipped with a Teflon stopcock and 

a magnetic stirring bar. HBF4.OEt2 (38 µL, 4 mol %) was added under stream of nitrogen. 

The mixture was stirred about 15 min at room temperature and solvent was remove under 

vacuum and filled with nitrogen. The schlenk tube was brought into glove box and solvent 

(Acetone or CH2Cl2) (2 mL) was added. Recrystallized by adding hexanes and the resultant 
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solid was filtered to obtain the pure phenol coordinated ruthenium complex in 70-95% 

yeild. 

To syntheses pure complex 9, also prepared from the analogous treatment of 4 with 

2-acetylphenol and HBF4·Et2O. Crude 1H NMR shows > 95 % complex 9.  

Our attempt to crystallize the complex 9 led to a stable dimeric complex 10 which was 

recrystallized from CH2Cl2/n-pentane solvent (scheme 4.5). It is isolated analytically pure 

complex 10 in 90 % yield. Structure of complex 10 also characterized by spectroscopic 

methods. The X-ray structure of complex 10 is shown in Fig. 6.23. Bridging Ru-H 

resonance was appeared at -28.30 ppm as triplet on 1H NMR spectrum. Ru-P resonance on 

31P{H} NMR spectra found at 70.7 ppm.  

6.3.10.2 Synthesis of Binuclear Bridging Hydroxyl Coordinated Ru complex 10 

100 mg of binuclear Ru-H complex 10 dissolved in 1 mL of wet 1,4-dioxane in 

inert atmosphere. The red colour solution was crystallized from hexanes to obtained pure 

binclear Ru-hydroxo complex 11 in >95 % yield. The complex 11 was characterized using 

spectroscopic techniques. Bridging Ru-(μ-OH) resonance was appeared at -3.18 (s, 1H) 

ppm on 1H NMR spectrum. Ru-P resonance on 31P{H} NMR spectra found at 66.5 ppm. 

The structure of complex 11 was unambiguously characterized by single crystal X-ray 

diffraction (Figure 4.19).  

Synthesis of Neutral Ru complex 14; 

Route 1: In a J-Young tube cationic ruthenium hydride complex 1 (20 mg), mixed with 2 

eqivalence of PCy3 (19 mg) in CH2Cl2 at 80 ˚C neutral Ru-H species 14 was formed in >95 

% yield and at the same time 1 equivalence of H+PCy3.  
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Route 2: 20 mg of complex 10 was mixed with 1 equivalence of PCy3 in CH2Cl2 

exclusively produces complex 14 without dimerization.  

We were able to characterized the complex 14 by X-ray diffraction techniques and also by 

1H NMR and 31P{H} NMR technique. 

Route 3: 20 mg of copund 2, chapter 3 was mixed with 1 quivalce of 2-acetylphenolate in 

dioxane solvents and heated at 80 ˚C for1h. The resultand uspension was filter under 

nitrogen atmosphere and the filtrate was crystalized with hexanes to obtained the complex 

14 in >95 % yield as an orange crystals. 

6.3.11 X-Ray Crystallographic Determination of 8a, 8a’, 8c, 8e, 10 and 11.  

For 8a: Colorless single crystals of 8a were grown in acetone/n-pentane at room 

temperature. A suitable crystal with the dimension of 0.376 × 0.2569 × 0.1911 mm3 was 

selected and mounted on an Oxford SuperNova diffractometer equipped with dual 

microfocus Cu/Mo X-ray sources, X-ray mirror optics, and Atlas CCD area detector. A 

total of 35933 reflection data were collected by using MoKα (λ = 0.71073) radiation while 

the crystal sample was cooled at 100.00(10 K) K during the data collection. Using Olex2, 

the molecular structure was solved with the ShelXS structure solution program by using 

Direct Methods, and the data was refined with the XL refinement package using Least 

Squares minimization. The molecular structure of 8a is shown in Figure 6.22. 

For 8a’: Colorless single crystals of 8a’ were grown in acetone/n-pentane at room 

temperature. A suitable crystal with the dimension of 0.4122 × 0. 143 × 0.1397 mm3 was 

selected and mounted on an Oxford SuperNova diffractometer equipped with dual 

microfocus Cu/Mo X-ray sources, X-ray mirror optics, and Atlas CCD area detector. A 

total of 13359 reflection data were collected by using MoKα (λ = 0.71073) radiation while 



267 

 
the crystal sample was cooled at 100.00(10 K) K during the data collection. Using Olex2, 

the molecular structure was solved with the ShelXS structure solution program by using 

Direct Methods, and the data was refined with the XL refinement package using Least 

Squares minimization. The molecular structure of 8a’ is shown in Figure 6.23. 

For 8c: Colorless single crystals of 8c were grown in acetone/n-pentane at room 

temperature. A suitable crystal with the dimension of 0.2975 × 0.1164 × 0.0395 mm3 was 

selected and mounted on an Oxford SuperNova diffractometer equipped with dual 

microfocus Cu/Mo X-ray sources, X-ray mirror optics, and Atlas CCD area detector. A 

total of 30380 reflection data were collected by using MoKα (λ = 0.71073) radiation while 

the crystal sample was cooled at 100.00(10 K) K during the data collection. Using Olex2, 

the molecular structure was solved with the ShelXS structure solution program by using 

Direct Methods, and the data was refined with the XL refinement package using Least 

Squares minimization. The molecular structure of 8c is shown in Figure 6.24. 

For 8e: Colorless single crystals of 8e were grown in acetone/n-pentane at room 

temperature. A suitable crystal with the dimension of 0.3138 × 0.2705 × 0.1982 mm3 was 

selected and mounted on an Oxford SuperNova diffractometer equipped with dual 

microfocus Cu/Mo X-ray sources, X-ray mirror optics, and Atlas CCD area detector. A 

total of 30380 reflection data were collected by using CuKα (λ = 1.54184) radiation while 

the crystal sample was cooled at 100.00(10 K) K during the data collection. Using Olex2, 

the molecular structure was solved with the ShelXS structure solution program by using 

Direct Methods, and the data was refined with the XL refinement package using Least 

Squares minimization. The molecular structure of 8e is shown in Figure 6.25. 
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For 10: Colorless single crystals of 10 were grown in acetone/n-pentane at room 

temperature. A suitable crystal with the dimension of 0.6545 × 0.082 × 0.0667mm3 was 

selected and mounted on an Oxford SuperNova diffractometer equipped with dual 

microfocus Cu/Mo X-ray sources, X-ray mirror optics, and Atlas CCD area detector. A 

total of 32469 reflection data were collected by using MoKα (λ = 0.71073) radiation while 

the crystal sample was cooled at 100.00(10 K) K during the data collection. Using Olex2, 

the molecular structure was solved with the ShelXS structure solution program by using 

Direct Methods, and the data was refined with the XL refinement package using Least 

Squares minimization. The molecular structure of 10 is shown in Figure 6.26. 

For 11: Colorless single crystals of 11 were grown in acetone/n-pentane at room 

temperature. A suitable crystal with the dimension of 0.2265 × 0.1198 × 0.0692 mm3 was 

selected and mounted on an Oxford SuperNova diffractometer equipped with dual 

microfocus Cu/Mo X-ray sources, X-ray mirror optics, and Atlas CCD area detector. A 

total of 22228 reflection data were collected by using MoKα (λ = 0.71073) radiation while 

the crystal sample was cooled at 100.00(10 K) K during the data collection. Using Olex2, 

the molecular structure was solved with the ShelXS structure solution program by using 

Direct Methods, and the data was refined with the XL refinement package using Least 

Squares minimization. The molecular structure of 11 is shown in Figure 6.25. 

For 14: Colorless single crystals of 14 were grown in CH2Cl2/n-pentane at room 

temperature. A suitable crystal with the dimension of 0.1903 × 0.0959 × 0.044 mm3 was 

selected and mounted on an Oxford SuperNova diffractometer equipped with dual 

microfocus Cu/Mo X-ray sources, X-ray mirror optics, and Atlas CCD area detector. A 

total of 32322 reflection data were collected by using CuKα (λ = 1.54184) radiation while 
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the crystal sample was cooled at 100.00(10 K) K during the data collection. Using Olex2, 

the molecular structure was solved with the ShelXS structure solution program by using 

Direct Methods, and the data was refined with the XL refinement package using Least 

Squares minimization. The molecular structure of 14 is shown in Figure 6.27. 

 

Figure 6.23. Molecular Structure of 8a. 

 

Figure 6.24: X-ray Structure of Complex 8a’ 
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Figure 6.25. Molecular Structure of 8c. 

 

Figure 6.26. Molecular Structure of 8e. 

 

Figure 6.27. Molecular Structure of 10. 
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Figure 6.28. Molecular Structure of 11. 

 

Figure 6.29: X-ray structure of complex 14  
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6.3.12  Characterization Data of the Products. 

 
Table 4.2, Compound 6a: Method A at 130 °C for 12 h. 

Analytically pure product 6a was isolated by a column chromatography 

on silica gel (hexanes/EtOAc = 100:1). Yield: 97 mg, 90 %. Data for 6a: 

1H NMR (400 MHz, CDCl3) δ 7.02 (d, J = 7.9 Hz, 2H), 6.72 (d, J = 7.9 

Hz, 2H), 5.0 (br s, 1H), 2.31 (s, 3H) ppm; 13C{1H} NMR (100 MHz, 

CDCl3) δ 153.2, 130.2, 130.1, 115.2, 20.6 ppm; GC-MS m/z = 108 (M+); 1H and 13C NMR 

spectral data are in good agreement with the literature data.43   

Table 4.2, Compound 6b. Method A at 130 °C for 12 h. 

Analytically pure product 6b was isolated by a column chromatography 

on silica gel (hexanes/EtOAc = 100:1). Yield: 131 mg, 95 %. Data for 

6b: 1H NMR (400 MHz, CDCl3) δ 6.85 (d, J = 7.4 Hz, 1H), 6.77-6.62 

(m, 2H), 5.55 (s, 1H), 3.84 (s, 3H), 2.34 (s, 3H) ppm; 13C{1H} NMR 

(100 MHz, CDCl3) δ 146.2, 143.3, 129.6, 121.5, 114.2, 111.7, 55.8, 21.0 ppm; GC-MS m/z 

= 138 (M+); 1H and 13C NMR spectral data are in good agreement with the literature data.44  

 Table 4.2, Compound 6c. Method A at 130 °C for 8 h. Analytically pure product 

6c was isolated by a column chromatography on silica gel 

(hexanes/EtOAc = 100:1). Yield: 169 mg, 92 %. Data for 6c: 1H 

NMR (400 MHz, CDCl3) δ 7.33 (dd, J = 8.5, 7.3 Hz, 2H), 7.21 

(dd, J = 7.8, 7.6 Hz, 1H), 7.09 (t, J = 7.3 Hz, 1H), 7.00 (d, J = 8.5 

Hz, 2H), 6.92 (d, J = 7.6 Hz, 1H), 6.83 (s, 1H), 6.81 (d, J = 7.8 

Hz, 1H), 2.33 (s, 3H) ppm; 13C{1H} NMR (100 MHz, CDCl3) 157.6, 157.4, 140.2, 129.9, 
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129.7, 124.3, 123.3, 119.8, 119.1, 116.1, 21.6 ppm; GC-MS m/z = 184 (M+); 1H and 13C 

NMR spectral data are in good agreement with the literature data.45 

Table 4.2 Compound 6d. Method A at 130 °C for 

12 h. Analytically pure product 6d was isolated by a 

column chromatography on silica gel (hexanes). Yield: 

161 mg, 72 %. Data for 6d: 1H NMR (400 MHz, CDCl3) 

δ 5.58-5.27 (m, 2H), 2.12-1.89 (m, 4H), 1.31-1.22 (m, 

20H), 0.89 (t, J = 7.0 Hz, 6H) ppm; 13C{1H} NMR (100 MHz, CDCl3) δ 130.4, 129.9, 77.4, 

32.6, 32.3, 31.9, 31.6, 29.72, 29.71, 29.5, 29.4, 29.2, 29.2, 29.1, 22.7, 14.1 ppm; GC-MS 

m/z = 224 (M+); 1H and 13C NMR spectral data are in good agreement with the literature 

data.46 

 Table 4.2 Compound 6e. Method A at 120 °C for 8 h. 

Analytically pure product 6e was isolated by a column 

chromatography on silica gel (hexanes/EtOAc = 100:1). Yield: 122 

mg, 94 %. Data for 6e: 1H NMR (400 MHz, CDCl3) δ 7.14 (d, J = 7.2 

Hz, 1H), 7.83 (t, J = 7.9 Hz, 1H), 6.89 (t, J = 7.6 Hz, 1H), 6.76 (d, J = 

7.6 Hz, 1H), 4.76 (br s, 1H), 2.75 (q, J = 7.2 Hz, 2H), 1.25 (t, J = 7.2 Hz, 3H) ppm; 13C{1H} 

NMR (100 MHz, CDCl3) δ 129.4, 127.1, 121.0, 115.2, 23.0, 14.1 ppm; GC-MS m/z = 122 

(M+); 1H and 13C NMR spectral data are in good agreement with the literature data.47 
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Table 4.2 Compound 6f. Method A at 130 °C for 8 h. 

Analytically pure product 6f was isolated by a column 

chromatography on silica gel (hexanes/EtOAc = 10:1). Yield: 151 

mg, 91 %. Data for 6f: 1H NMR (400 MHz, CDCl3) δ 1.08 (t, J = 

9.0 Hz, 3H), 1.70-1.82 (m, 2H), 2.71 (m, 2H), 5.73 (s, 1H), 6.84-

7.24 (m, 4H) ppm; 13C{1H} NMR (100 MHz, CDCl3) δ 154.0, 130.8, 129.2, 127.5, 115.8, 

121.1, 32.5, 23.4, 14.5 ppm; GC-MS m/z = 136 (M+); 1H and 13C NMR spectral data are in 

good agreement with the literature data.48  

Table 4.2 Compound 6g. Method A at 130 °C for 

8 h. Analytically pure product 6g was isolated by a 

column chromatography on silica gel (hexanes/EtOAc = 

20:1). Yield: 196 mg, 92 %. Data for 6g: 1H NMR (400 

MHz, CDCl3) δ 7.28-7.19 (m, 3H), 7.38-7.28 (m, 2H), 

7.19-7.09 (m, 2H), 6.95-6.87 (m, 1H), 6.77 (d, J = 8.2 Hz, 1H), 4.82 (s, 1H), 2.71 (dt, J = 

15.7, 7.8 Hz, 4H), 2.00 (quintet, J = 7.8 Hz, 2H) ppm; 13C{1H} NMR (100 MHz, CDCl3) 

δ 153.4, 142.2, 130.1, 128.4, 128.3, 128.1, 127.1, 125.7, 120.7, 115.2, 35.5, 31.2, 29.4 ppm; 

GC-MS m/z = 214 (M+); 1H and 13C NMR spectral data are in good agreement with the 

literature data.49  

Table 4.2 Compound 6h. Method A at 130 °C for 8 h. 

Analytically pure product 6h was isolated by a column 

chromatography on silica gel (hexanes/EtOAc = 20:1). Yield: 

140 mg, 91 %. Data for 6h: 1H NMR (400 MHz, CDCl3) δ 6.86-

6.67 (m, 3H), 5.18 (s, 1H), 2.53 (t, J = 7.7 Hz, 2H), 1.62 (m, 2H), 
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0.92 (t, J = 7.4 Hz, 3H) ppm; 13C{1H} NMR (100 MHz, CDCl3) δ 157.2 (d, JC-F = 236.0 

Hz), 149.5, 130.3 (d, JC-F = 7.6 Hz), 116.4 (d, JC-F = 22.9 Hz), 115.7 (d, JC-F = 25.0 Hz), 

112.9 (d, JC-F = 25.0 Hz), 32.0, 22.7, 13.9 ppm; GC-MS m/z = 154 (M+); 1H and 13C NMR 

spectral data are in good agreement with the literature data.50 

Table 4.2 Compound 6i Method A at 130 °C for 16 h. 

Analytically pure product 6i was isolated by a column 

chromatography on silica gel (hexanes). Yield: 165 mg, 90 %. Data 

for 6i: 1H NMR (400 MHz, CDCl3) δ 7.29-7.24 (m, 2H), 7.18-7.15 

(m, 2H), 2.95 (t, J = 7.5 Hz, 4H), 2.10 (quintet, J = 7.4 Hz, 2H) ppm; 

13C{1H} NMR (100 MHz, CDCl3) δ 144.1, 125.9, 124.3, 32.8, 25.3 

ppm; GC-MS m/z = 106 (M+); 1H and 13C NMR spectral data are in good agreement with 

the literature data.51  

Table 4.2 Compound 6j. Method A at 120 °C for 16 h. 

Analytically pure product 6j was isolated by a column 

chromatography on silica gel (hexanes/diethylether = 100:1). Yield: 

150 mg, 93 %. Data for 6j: 1H NMR (400 MHz, CDCl3) δ 6.98 (d, J 

= 8.4 Hz, 1H), 6.68 (dd, J = 8.4, 2.8 Hz, 1H), 6.61 (d, J = 2.8 Hz, 

1H), 3.75 (s, 3H), 2.68 - 2.78 (m, 4H), 1.76-1.80 (m, 4H) ppm; 13C{1H} NMR (100 MHz, 

CDCl3) δ 157.5, 138.3, 130.1, 129.4, 113.8, 111.9, 55.4, 29.9, 28.7, 23.6, 23.3 ppm; GC-

MS m/z = 162 (M+); 1H and 13C NMR spectral data are in good agreement with the literature 

data.52  

 Table 4.2 Compound 6k. Method A at 130 °C for 12 h. 

Analytically pure product 6k was isolated by a column chromatography 
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on silica gel (hexanes). Yield: 101 mg, 79 %. Data for 6k: 1H NMR (400 MHz, CDCl3) δ 

7.24-7.27 (m, 2H), 7.13-7.18 (m, 3H), 2.60-2.65 (q, 2H), 1.20-1.24 (t, 3H) ppm; 13C{1H} 

NMR (100 MHz, CDCl3) δ 144.4, 128.4, 128.0, 125.7, 29.0,16.0 ppm; GC-MS m/z = 128 

(M+). 1H and 13C NMR spectral data are in good agreement with the literature data.53  

Table 4.2 Compound 6l. Method A at 130 °C for 12 h. 

Analytically pure product 6l was isolated by a column 

chromatography on silica gel (hexanes/EtOAc = 100:1). Yield: 113 

mg, 82 %. Data for 6l: 1H NMR (400 MHz, CDCl3) δ 7.25 (d, J = 8.8 Hz, 2H), 7.13 (d, J 

= 8.6 Hz, 2H), 2.63 (q, J = 7.6 Hz, 2H), 1.23 (t, J = 7.6 Hz, 3H); 13C{1H} NMR (100 MHz, 

CDCl3) δ 142.7, 131.3, 129.8, 128.5, 28.4, 15.7 ppm; GC-MS m/z = 140 (M+). 1H and 13C 

NMR spectral data are in good agreement with the literature data.54  

Table 4.2 Compound 6m. Method A 130 °C for 12 h. 

Analytically pure product 6m was isolated by a column 

chromatography on silica gel (hexanes/Et2O = 100:1); Yield: 110 

mg, 92 %. Data for 6m: 1H NMR (400 MHz, CDCl3) δ 7.08-6.98 (m, 4H); 3.40 (q, J = 7.0 

Hz, 2H), 2.15 (s, 3H), 1.13 (t, J = 7.0 Hz, 3H) ppm; 13C{1H} NMR (100 MHz, CDCl3) δ 

141.2, 138.1, 131.2, 127.4, 29.1, 21.2, 16.9 ppm; GC-MS m/z = 120 (M+). 1H and 13C NMR 

spectral data are in good agreement with the literature data.55   

Table 4.2 Compound 6n. Method A and B at 130 °C for 12 

h. Analytically pure product 6n was isolated by a column 

chromatography on silica gel (hexanes/EtOAc = 40:1). Yield: 132 

mg, 95 %. Data for 6n: 1H NMR (400 MHz, CDCl3) δ 7.14 (d, J = 8.7 Hz, 2H), 6.85 

(d, J = 8.7 Hz, 2H), 3.81 (s, 3H), 2.61 (q, J = 7.5 Hz, 2H), 1.23 (t, J = 7.5 Hz, 3H) ppm; 
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13C{1H} NMR (100 MHz, CDCl3) δ 157.5, 136.3, 128.7, 113.7, 55.2, 27.9, 15.9 ppm; GC-

MS m/z = 136 (M+). 1H and 13C NMR spectral data are in good agreement with the literature 

data.56   

Table 4.2 Compound 6o. Method A at 130 °C for 24 h. 

Analytically pure product 6o was isolated by a column 

chromatography on silica gel (hexanes). Yield: 65 % (GC). Data for 

6o: 1H NMR (400 MHz, CDCl3) δ 1.21-1.44 (m, 18H), 0.91 (t, J = 6.8 Hz, 6H) ppm; 

13C{1H} NMR (100 MHz, CDCl3) δ 32.0, 29.8, 29.8, 29.47, 22.8, 14.1 ppm; GC-MS m/z 

= 156 (M+). 1H and 13C NMR spectral data are in good agreement with the literature data.57   

Table 4.2 Compound 6p. Method A at 130 °C for 24 h. 

Analytically pure product 6p was isolated by a column 

chromatography on silica gel (hexanes/EtOAc = 20:1). Yield: 94 mg, 

54 %. Data for 6p: 1H NMR (400 MHz, CDCl3) δ 7.26-7.20 ( m, 3H), 7.05-6.92 (m, 2H), 

2.39 (d, J = 6.2 Hz, 2H), 1.80-1.66 (m, 5H), 1.46-1.33 (m, 1H), 1.21-1.12 (m, 3H), 0.88-

0.71 (m, 2H) ppm; 13C{1H} NMR (100 MHz, CDCl3) δ 138.7, 128.6, 128.2, 126.0, 41.0, 

38.9, 33.2, 28.3, 25.8 ppm; GC-MS m/z = 174 (M+);1H and 13C NMR spectral data are in 

good agreement with the literature data.58   

Table 4.2 Compound 6q. Method A at 130 °C for 12 h. 

Analytically pure product 6q was isolated by a column 

chromatography on silica gel (hexanes/EtOAc = 20:1). Colorless 

liquid; Yield: 144 mg, 95 %. Data for 6q: 1H NMR (400 MHz, CDCl3) 

δ 7.48 (m, 1H), 7.40 (m, 1H), 7.18 (m, 2H), 6.37 (d, J = 1.2 Hz, 1H), 2.81 (q, J = 7.6 Hz, 

2H), 1.34 (t, J = 7.6 Hz, 3H) ppm; 13C{1H} NMR (100 MHz, CDCl3) δ 158.5, 154.9, 129.0, 

6p
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123.0, 122.3, 120.2, 110.7, 101.1, 21.9, 11.9 ppm; GC-MS m/z = 146 (M+);1H and 13C 

NMR spectral data are in good agreement with the literature data.59  

Table 4.2 Compound  6r Method B at 130 °C for 

24 h. Analytically pure product 6r was isolated by a 

column chromatography on silica gel (hexanes/EtOAc = 

100:1). Yield: 212 mg, 85 %; Data for 6r: 1H NMR (400 MHz, CDCl3) δ 7.18-7.10 (m, 

3H), 7.10-7.07 (m, 2H), 7.00 (d, J = 7.0 Hz, 1H), 6.85 (d, J = 8.7 Hz, 2H), 6.25 (s, 1H), 

3.81 (s, 3H) 3.46 (s, 1H), 2.78 (t, J = 8.2 Hz, 2H), 2.19 (t, J = 8.2 Hz, 2H) ppm; 13C{1H} 

NMR (100 MHz, CDCl3) δ 158.1, 141.2, 134.8, 134.4, 131.4, 130.0, 127.2, 126.4, 126.3, 

125.6, 123.6, 113.8, 55.3, 42.9, 28.2, 27.0 ppm; GC-MS m/z = 250 (M+); Anal. Calcd for 

C18H18O: C, 86.36; H, 7.25. Found: C, 86.29; H, 7.19. 

Table 4.2 Compound 6s. Method A at 130 °C for 24 h. 

Analytically pure product 6s was isolated by a column 

chromatography on silica gel (hexanes/EtOAc = 20:1). Yield: 94 mg, 

55 %. Data for 6s: 1H NMR (400 MHz, CDCl3) δ 7.66 (br s, 1H), 7.46 

(d, J = 7.0 Hz, 1H), 7.29-7.27 (m, 1H), 7.13-7.05 (m, 2H), 2.75-2.70 

(m, 4H), 1.95-1.84 (m, 4H) ppm; 13C{1H} NMR (100 MHz, CDCl3) δ 

135.6, 134.0, 127.8, 120.9, 119.1, 117.7, 110.3 (2C), 23.3, 23.2, 23.2, 20.9 ppm; GC-MS 

m/z = 171 (M+). 1H and 13C NMR spectral data are in good agreement with the literature 

data.60  

Table 4.2 Compound 6t. Method A at 130 °C for 12 h. 

Analytically pure product 6t was isolated by a column 

chromatography on silica gel (hexanes/EtOAc = 20:1; Yield: 147 
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mg, 90 %. Data for 6t: 1H NMR (400 MHz, CDCl3) δ 6.81-6.67 (m, 1H), 6.74-6.66 (m, 

2H), 4.25 (s, 4H), 2.56 (q, J = 7.6 Hz, 2H), 1.21 (t, J = 7.6 Hz, 3H) ppm; 13C{1H} NMR 

(100 MHz, CDCl3) δ 143.2, 141.4, 137.6, 120.1, 116.9, 116.4, 64.4, 64.3, 28.1, 15.7 ppm; 

GC-MS m/z = 164 (M+); Anal. Calcd for C10H12O2: C, 73.15; H, 7.37. Found: C, 73.20; H, 

7.34. 

Table 4.2 Compound 7a. Method B at 130 °C 

for 12 h. Analytically pure product 7a was isolated 

by a column chromatography on silica gel 

(hexanes/EtOAc = 100:1). Yield: 215 mg, 56 %. 

Data for 7a: 1H NMR (400 MHz, CDCl3) δ 5.30-5.28 (m, 1Η), 2.32-2.18 (m, 1H), 2.10-

1.93 (m, 3H), 1.90-1.81 (m, 2H), 1.79-1.69 (m, 1H), 1.63-0.92 (m, 23H), 1.00 (s, 3H), 0.92 

(d, J = 6.4 Hz, 3H), 0.90 (d, J = 1.3 Hz, 3H), 0.88 (d, J = 1.3 Hz, 3H), 0.70 (s, 3H) ppm; 

13C{1H} NMR (100 MHz, CDCl3) δ 143.7, 119.0, 56.8, 56.1, 50.6, 42.31, 39.9, 39.8, 39.5, 

37.5, 36.2, 35.8, 32.9, 31.9, 31.8, 28.2, 28.0, 28.0, 24.3, 23.8, 22.8, 22.5, 20.7, 19.5, 18.7, 

11.8 ppm; GC-MS m/z = 370 (M+); 1H and 13C NMR spectral data are in good agreement 

with the literature data.61 

Table 4.2 Compound 7b. Method A at 130 °C for 

24 h. Analytically pure product 7b was isolated by a 

column chromatography on silica gel (CH2Cl2/methanol 

= 100:1). Orange solid; Yield: 151 mg, 67%. Data for 7b: 

1H NMR (400 MHz, CDCl3) δ 12.76 (s, 1H), 7.99 (dd, J = 8.0, 1.2 Hz, 1H), 7.22-7.40 (m, 

1H), 7.06-7.21 (m, 2H), 6.87 (d, J = 8.0 Hz, 2H), 6.53 (dt, J = 8.2, 1.1 Hz, 2H), 5.41 (br.s, 

1H), 3.97 (s, 2H) ppm; 13C{1H} NMR (100 MHz, CDCl3) δ 190.1, 149.3, 142.8, 142.6, 
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133.7, 133.5, 132.2, 130.8, 128.5, 127.0, 120.7, 118.2, 31.8 ppm; GC-MS m/z = 226 (M+). 

1H and 13C NMR spectral data are in good agreement with the literature data.63  

Table 4.2 Compound 7c. Method B at 150 °C for 

12 h. Analytically pure product 7c was isolated by a 

column chromatography on silica gel (hexanes/EtOAc = 

4:1). Yield: 137 mg, 45%. Data for 7c: 1H NMR (400 

MHz, CDCl3) δ 8.13 (d, J = 8.5 Hz, 2H), 7.50 (d, J = 8.8 Hz, 2H), 7.03 (d, J = 9.0 Hz, 1H), 

5.74 (s, 1H), 5.26 (t, J = 3.3 Hz, 1H), 4.22 (tdd, J = 8.4, 8.4, 5.2, 2.9 Hz, 1H), 3.73 (dd, J 

= 11.1, 8.0 Hz, 1H), 3.57-3.51 (m, 2H)) ppm; 13C{1H} NMR (100 MHz, CDCl3) δ 164.4, 

147.7, 126.7, 126.7, 123.7, 70.3, 65.9, 56.5, 42.7 ppm; GC-MS m/z = 306 (M+); 1H and 13C 

NMR spectral data are in good agreement with the literature data.62 

 

Table 4.2 Compound 7d. Method B at 150 

°C for 12 h. Analytically pure product  7d was 

isolated by a column chromatography on silica 

gel (hexanes/EtOAc = 4:1). White solid; Yield: 

382 mg, 84 %. Data for  7d: 1H NMR (400 MHz, CDCl3) δ 7.31-7.11 (m, 12H), 7.02 (d, J 

= 8.1 Hz, 2H), 5.44 (s, 1H), 3.40-3.29 (m, 1H), 2.70-2.59 (m, 2H), 2.50 (t, J = 7.5 Hz, 2H), 

2.27-2.18 (m, 2H), 2.09-1.93 (m, 2H), 1.86-1.74 (m, 2H), 1.71-1.59 (m, 2H), 1.57-1.37 (m, 

5H), 1.25-1.19 (m, 9H) ppm; 13C{1H} NMR (100 MHz, CDCl3) δ 148.3, 142.8, 139.4, 

128.3, 128.0, 127.2, 127.1, 125.1, 79.9, 58.6, 51.19, 51.18, 51.17, 35.2, 34.3, 31.4, 29.5, 

26.9 ppm; GC-MS m/z = 455 (M+); HRMS (ESI) Calcd for [M+H]+ C32H41NO:.456.3251 

Found: 456.3266. 
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Table 4.2 Compound 7e. Method B at 

150 °C for 12 h. Analytically pure product  7e 

was isolated by a column chromatography on 

silica gel (CH2Cl2/MeOH = 80:1). White 

solid; Yield: 220 mg, 68 %. Data for  7e: 1H NMR (400 MHz, CDCl3) δ  6.76-7.03 (m, 

8H), 3.43 - 3.47 (m, 1H), 2.67-2.80 (m, 2H), 2.27-2.39 (m, 2H), 2.10-2.23 (m, 1H), 2.02-

2.10 (m, 2H), 1.64-1.76 (m, 2H), 1.39-1.57 (m, 3H), 1.18-1.39 (m, 4H) ppm; 13C{1H} NMR 

(100 MHz, CDCl3) δ 144.8(d, JC-F = 249 Hz), 129.6 (d, JC-F = 7.8 Hz), 128.4 (d, JC-F = 6.9 

Hz), 128.2 (d, JC-F = 5.9 Hz), 126.8, 125.6, 115.0, 114.8, 58.9, 54.3, 42.1, 35.8, 33.4, 29.5, 

26.9 ppm; GC-MS m/z = 361 (M+); HRMS (ESI) Calcd for [M+H]+ 

C21H25ClFNO:.362.8934 Found: 362.8938 

Table 4.2 Compound 7f. Method B at 130 °C for 12 h. 

Analytically pure product was isolated by The product 7f was 

isolated by a column chromatography on silica gel 

(hexanes/EtOAc = 100:1). White solid; Yield: 156 mg, 52 

%.(two isomer were not separated assign by comparing literature 

data) Data for 7f: 1H NMR (400 MHz, CDCl3) δ 5.28 (br. s, 1H), 

5.24 (dt, J = 5.4, 1.9 Hz, 1H), 2.51 (td, J = 8.9, 6.5 Hz, 2H), 2.11-2.26 (m, 4H), 2.09 (s, 

6H), 1.05-2.04 (m, 40 H), 0.90 (s, 3H), 0.76 (d, J = 0.4 Hz, 3H), 0.57 (s, 3H), 0.56 (s, 3H) 

ppm; 13C{1H} NMR (100 MHz, CDCl3) δ 209.6, 209.6, 144.5, 143.5, 119.2, 118.6, 63.9, 

63.8, 56.8, 56.77, 54.5, 46.9, 44.3, 43.5, 40.4, 39.3, 39.1, 38.6, 37.5, 36.2, 35.8, 35.4, 32.0, 

28.9, 28.8, 27.3, 27.1, 26.9, 26.7, 26.5, 24.4, 24.3, 24.1, 22.8, 22.6, 22.1, 21.2, 20.7, 20.75, 
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13.4, 13.36, 12.1 ppm; GC-MS m/z = 300 (M+); 1H and 13C NMR spectral data are in good 

agreement with the literature data.61 

Table 4.2 Compound 7g. Method B at 

130 °C for 12 h. Analytically pure product was 

isolated by The product 7g was isolated by a 

column chromatography on silica gel 

(hexanes/EtOAc = 100:1). White solid; Yield: 249 mg, 72 %. Data for 7g: 1H NMR (400 

MHz, CDCl3) δ 6.90-6.97 (m, 2H), 6.76-6.81 (m, 2H), 6.68-6.74 (m, 2H), 6.45-6.53 (m, 

2H), 4.78 (spt, J = 6.90 Hz, 1H), 3.57 (s, 2H), 1.28 (s, 6H), 0.92 (d, J = 6.28 Hz, 6H) ppm; 

13C{1H} NMR (100 MHz, CDCl3) δ  173.7,154.0, 139.8, 134.0, 131.8, 130.2, 129.4, 128.5, 

119.1, 79.1, 68.9, 40.4, 25.4, 21.6 ppm; GC-MS m/z = 346 (M+); HRMS (ESI) Calcd for 

[M+H]+ C20H24ClO3:.347.1414 Found: 347.1412. 

 Synthesis of Complex 8a. Same procedure as 8c was 

repeated using 4-methoxyphenol (60 mg, 0.48 mmol) as the 

phenol ligand. Kept in glove box for 3 days for crystallization 

and filtered the resulting solid through a fritted funnel yielded 

the product as a white crystals (198 mg, ca. 76 % yield). 

Single crystals of 8a suitable for X-ray crystallography were obtained from acetone/n-

pentane solution. Data for 8a: 1H NMR (400 MHz, CDCl3) δ 6.44 (dd, J = 7.2, 2.3 Hz, 1H), 

6.36 (dd, J = 7.4, 2.6 Hz, 1H), 3.79 (s, 3H) 6.00-6.15 (m, 2H), 1.79-2.06 (m, 15H), 2.18 (s, 

2H), 1.63-1.79 (m, 3H), 1.22-1.51 (m, 16H), -10.61 (d, JPH = 27.0 Hz, 1H) ppm; 13C{1H} 

NMR (100 MHz, CDCl3) δ 198.6 (d, JC-P = 18.8 Hz) 87.6, 87.5,85.0, 84.2, 57.8, 37.7, 37.5, 

30.8, 30.1, 27.9, 27.8, 26.7 ppm; FT-IR (Solid) νCO = 1963 cm-1; 31P{1H} NMR (400 MHz, 
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CDCl3) δ 71.38 ppm; HRMS (ESI) Calcd for [M]+ C26H42O3PRu: 535.1912 Found: 

535.1917. 

 Synthesis of Complex 8c. In a glove box, the tetrameric 

ruthenium complex {[(PCy3)(CO)RuH]4(μ-O)(μ-OH)2} (4) (200 

mg, 0.12 mmol) and Phenol (44 mg, 0.48 mmol) were dissolved in 

CH2Cl2 (5 mL) in a 25 mL Schlenk tube equipped with a teflon 

screw cap stopcock and a magnetic stirring bar. The tube was brought out of the box, and 

HBF4·OEt2 (64 μL, 0.48 mmol) was added under N2 stream. The color of the solution was 

changed from dark red to light yellow immediately. After stirring for 1 h at room 

temperature, the solvent was removed under vacuum, and the residue was transferred to 

glove box. Then the residue washed with hexanes and dried. It was dissolved in acetone (2 

mL) and layered with n-pentane (2 mL). Kept in glove box for 3 days for crystallization 

and filtered the resulting solid through a fritted funnel yielded the product as a white 

crystals (210 mg, ca. 76 % yield). Single crystals of 8c suitable for X-ray crystallography 

were obtained from acetone/n-pentane solution. Data for 8c: 1H NMR (400 MHz, CDCl3) 

δ 9.11 (br. s, 1H), 6.62-6.70 (m, 1H), 6.54-6.62 (m, 1H), 6.33 (d, J = 7.0 Hz, 1H), 5.91 (d, 

J = 5.5 Hz, 1H), 5.69 (t, J = 5.9 Hz, 1H), 0.76-2.45 (m, 33H), -10.86 (d, JPH = 27.1 Hz, 1H) 

ppm; 13C{1H} NMR (100 MHz, CDCl3) δ 197.6 (d, JC-P = 18.1 Hz), 148.8,103.8, 103.6, 

88.1, 85.4, 84.8, 38.3, 37.9, 30.7, 30.1, 30.1, 27.9, 27.7, 26. 7 ppm; 31P{1H} NMR (400 

MHz, CDCl3) δ 70.78 ppm; FT-IR (Solid) νCO = 1973 cm-1; HRMS (ESI) Calcd for [M]+ 

C25H40O2PRu: 505.1902 Found: 505.1911. 
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 Synthesis of Complex 8e. Same procedure as 8a was 

repeated using 4-chlorophenol (60 mg, 0.48 mmol) as the 

phenol ligand. Crushed out with hexane and the solid filterfed 

the resulting solid through a fritted funnel yielded the product 

as a white solid (180 mg, ca. 72 % yield). Growing single 

crystal was unsuccesful. Data for 8e: 1H NMR (400 MHz, CDCl3) δ 6.75-6.85 (m, 1H), 

6.68 (d, J = 7.00 Hz, 1H), 6.17 (d, J = 5.44 Hz, 1H), 5.98 (d, J = 6.70 Hz, 1H), 0.98 - 2.04 

(m, 33H), -10.40 (d, J = 27.4 Hz, 1H) ppm; FT-IR (Solid) νCO = 1983 cm-1; 13C{1H} NMR 

(100 MHz, CDCl3) δ 196.2 (d, JCP = 18.0 Hz) 104.1, 101.8, 85.7, 82.9,  37.9, 37.6, 30.6, 

39.9, 27.8, 27.6, 26.5 ppm;31P{1H} NMR (400 MHz, CDCl3) δ 71.86 ppm; HRMS (ESI) 

Calcd for [M]+ C25H39ClO2PRu: 539.1420 Found: 539.1417. 

 

 Synthesis of Complex 8f. Same procedure as 8a was 

repeated using 4-(trifluoromethyl)phenol (78 mg, 0.48 mmol) 

as the phenol ligand. Crushed out with hexane and the solid 

filterfed the resulting solid through a fritted funnel yielded 

the product as a white solid (198 mg, ca. 76 % yield). 

Growing single crystal was unsuccesful. Data for 8f: 1H NMR (400 MHz, CDCl3) δ 9.68 

(br.s., 1H), 7.01 (d, J = 6.60 Hz, 1H), 6.81 (d, J = 6.97 Hz, 1H), 6.64 (d, J = 6.24 Hz, 1H), 

5.64 (d, J=6.60 Hz, 1H), 1.76-1.95 (m, 22H), 1.17-1.32 (m, 18H), -10.55 (d, J = 26.00 Hz, 

1 H) ppm; FT-IR (Solid) νCO = 1947 cm-1; 31P{1H} NMR (400 MHz, CDCl3) δ 71.38 ppm;  

Synthesis of 9. In a glove box, the tetrameric ruthenium complex 

{[(PCy3)(CO)RuH]4(μ-O)(μ-OH)2} (4) (200 mg, 0.12 mmol) and 2-hydroxyacetophenone 

Ru
HOC

Cy3P

OH

Cl

8e
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(64 mg, 0.48 mmol) were dissolved in CH2Cl2 (5 mL) in a 25 

mL Schlenk tube equipped with a teflon screw cap stopcock and 

a magnetic stirring bar. The tube was brought out of the box, 

and HBF4·OEt2 (64 μL, 0.48 mmol) was added under N2 stream. 

The color of the solution was changed from dark red to light red 

immediately. After stirring for 1 h at room temperature, the solvent was removed under 

vacuum, and n-hexane (10 mL) was added to the residue. The resulting solid was filtered 

through a fritted funnel. Then the residue washed with hexanes and dried to yield the 

product as an orange residue (281 mg, 82% yield). The product was analyzed by NMR. 

Spectroscopic Data for 9: 1H NMR (400 MHz, CDCl3) δ 8.98 (br. s, 1H), 6.57 (t, J = 6.4 

Hz, 1H), 6.23 (d, J = 6.6 Hz, 1H), 5.91 (d, J = 6.1 Hz, 1H), 5.68 (t, J = 5.9 Hz, 1H), 2.07-

1.61 (m, 20H), 1.46-1.14 (m, 17H), -10.87 (d, JPH = 26.8 Hz, 1H) ppm; 13C{1H} NMR (100 

MHz, CDCl3) this compound is not stable at 13C acquisition time scale; 31P{1H} NMR 

(400 MHz, CDCl3) δ 70.8 ppm; 

 Synthesis of Complex 10.  The product 4 (200 mg, 

0.27 mmol) was dissolved in CH2Cl2 (2 mL) and layered with 

n-pentane (2 mL). Kept in glove box for 3 days for 

crystallization and filtered the resulting solid through a fritted 

funnel yielded the product as a bright orange crystals (160 mg, ca. 90 % yield). Single 

crystals of 10 suitable for X-ray crystallography were obtained from CH2Cl2/n-pentane 

solution. Data for 10: 1H NMR (400 MHz, CDCl3) δ 7.16-7.30 (m, 4H), 6.45-6.56 (m, 4H), 

5.12-5.21 (m, 1H), 2.40 (s, 6H), 0.90-1.92 (m, 112H), -28.30 (t, JPH = 9.54 Hz, 1H) ppm; 

selected 13C{1H} NMR (100 MHz, CDCl3) δ 201.1 (d, JC-P = 17.1 Hz), 204.5; 31P{1H} 
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NMR (400 MHz, CDCl3) δ 70.7 ppm; FT-IR (Solid) νCO = 1929 cm-1

,  1944 cm-1. HRMS 

(ESI) Calcd for [M]+ C54H81O6P2Ru2:.1091.3595 Found: 1091.3605. 

 Synthesis of Complex 11.  The product 11 (20 mg, 

0.027 mmol) was dissolved in dioxane (2 mL) and H2O (5 µL, 

0.027 mmol). The resulting solution was heated to 80 ˚C about 

an hour. Kept in glove box for 1 days for crystallization a bright 

orange crystals was obtained. Single crystals of 11 suitable for X-ray crystallography were 

obtained from diocxane/n-pentane solution. Data for 11: 1H NMR (400 MHz, CDCl3) δ 

7.40-7.30 (m, 4H), 7.00 (dd, J = 8.7, 1.1 Hz, 2H), 6.71-6.62 (m, 2H), 2.17-2.05 (m, 6H), 

1.84-1.50 (m, 33H), 1.28-0.92 (m, 33H), -3.18 (s, 1H) ppm; selected 13C{1H} NMR (100 

MHz, CDCl3) δ 205.9 (d, JC-P = 17.8 Hz), 205.2; 31P{1H} NMR (400 MHz, CDCl3) δ 66.5 

ppm; HRMS (ESI) Calcd for [M]+ C54H81O7P2Ru2:.1107.3539 Found: 1107.3530.  

 Synthesis of Complex 14. In a glove box, Complex 

1 (100 mg, 0.2 mmol), 2-hydroxyacetophenone (23 mg, 0.2 

mmol) and PCy3 (100mg, 0.4 mmol)) was diisolved in 1,4-

dioxane ( 3 mL) in 25 mL Schlenk tube. The tube was taken 

out and heat about 1h at 80 ˚C.The resultand orange color solution was crushed out with 

hexane and the resulting solid filtered through a fritted funnel yielded the product as a 

orange solid (129 mg, ca. 90 % yield). Growing single crystal was unsuccesful. Data for 

14: 1H NMR (400 MHz, CD2Cl2) δ 6.90-7.01 (m, 1H), 6.44 (dd, J = 8.7, 1.1 Hz, 1H), 6.17 

(ddd, J = 8.2, 6.7, 1.2 Hz, 1H), 5.24-5.38 (m, 1H), 2.41 (s, 3H), 0.96-2.11 (m, 66H), -15.73 

(t, J = 20.5 Hz, 1H) ppm; 31P{1H} NMR (400 MHz, CDCl3) δ 44.07 ppm.  
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6.3.13 X-Ray Data: 

Table 6.4: Crystal data and structure refinement for 8a. 

Identification code 8a 

Empirical formula C29H50BO4F4PRu 

Formula weight 681.54 

Temperature/K 100.00(10) 

Crystal system monoclinic 

Space group P21/n 

a/Å 10.51406(15) 

b/Å 12.03200(16) 

c/Å 24.8572(3) 

α/° 90.00 

β/° 92.3407(12) 

γ/° 90.00 

Volume/Å3 3141.94(7) 

Z 4 

ρcalcmg/mm3 1.441 

m/mm-1 0.606 

F(000) 1424.0 

Crystal size/mm3 0.376 × 0.2569 × 0.1911 

Radiation MoKα (λ = 0.71073) 

2Θ range for data collection 5.98 to 58.98° 

Index ranges -13 ≤ h ≤ 14, -16 ≤ k ≤ 15, -33 ≤ l ≤ 33 

Reflections collected 35933 

Independent reflections 7944 [Rint = 0.0327, Rsigma = 0.0301] 

Data/restraints/parameters 7944/0/376 

Goodness-of-fit on F2 1.056 

Final R indexes [I>=2σ (I)] R1 = 0.0283, wR2 = 0.0606 

Final R indexes [all data] R1 = 0.0359, wR2 = 0.0643 

Largest diff. peak/hole / e Å-3 1.07/-0.54 
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Table 6.5: Crystal data and structure refinement for 8a’ 

Identification code 8a’ 

Empirical formula C26H42BF4O3PRu 

Formula weight 621.45 

Temperature/K 100.00(10) 

Crystal system monoclinic 

Space group Pn 

a/Å 10.2651(3) 

b/Å 13.2515(3) 

c/Å 10.5887(3) 

α/° 90.00 

β/° 104.080(3) 

γ/° 90.00 

Volume/Å3 1397.09(7) 

Z 2 

ρcalcg/cm3 1.477 

μ/mm-1 0.671 

F(000) 644.0 

Crystal size/mm3 0.4122 × 0. 143 × 0.1397 

Radiation MoKα (λ = 0.71073) 

2Θ range for data collection/° 6.14 to 58.92 

Index ranges -13 ≤ h ≤ 13, -18 ≤ k ≤ 17, -13 ≤ l ≤ 13 

Reflections collected 13359 

Independent reflections 13359 [Rint = 0.0000, Rsigma = 0.0470] 

Data/restraints/parameters 13359/2/335 

Goodness-of-fit on F2 0.995 

Final R indexes [I>=2σ (I)] R1 = 0.0499, wR2 = 0.1265 

Final R indexes [all data] R1 = 0.0609, wR2 = 0.1313 

Largest diff. peak/hole / e Å-3 1.56/-1.15 

Flack parameter -0.01(3) 
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Table 6.6: Crystal data and structure refinement for 8c. 

Identification code 8c 

Empirical formula C28H48BF4O3PRu 

Formula weight 651.51 

Temperature/K 100.00(10) 

Crystal system orthorhombic 

Space group Pbca 

a/Å 10.29093(13) 

b/Å 18.5770(3) 

c/Å 31.9420(4) 

α/° 90.00 

β/° 90.00 

γ/° 90.00 

Volume/Å3 6106.51(14) 

Z 8 

ρcalcmg/mm3 1.417 

m/mm-1 5.093 

F(000) 2720.0 

Crystal size/mm3 0.2975 × 0.1164 × 0.0395 

Radiation CuKα (λ = 1.54184) 

2Θ range for data collection 9.52 to 147.3° 

Index ranges -12 ≤ h ≤ 12, -22 ≤ k ≤ 15, -38 ≤ l ≤ 38 

Reflections collected 30380 

Independent reflections 6048 [Rint = 0.0287, Rsigma = 0.0198] 

Data/restraints/parameters 6048/0/357 

Goodness-of-fit on F2 1.093 

Final R indexes [I>=2σ (I)] R1 = 0.0404, wR2 = 0.0943 

Final R indexes [all data] R1 = 0.0443, wR2 = 0.0966 

Largest diff. peak/hole / e Å-3 1.14/-0.69 
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Table 6.7:Crystal data and structure refinement for 8e. 

Identification code 8e 

Empirical formula C25H39BClF4O2PRu 

Formula weight 625.86 

Temperature/K 100.00(10) 

Crystal system monoclinic 

Space group P21 

a/Å 10.38368(11) 

b/Å 11.82238(9) 

c/Å 23.1436(2) 

α/° 90.00 

β/° 102.7232(10) 

γ/° 90.00 

Volume/Å3 2771.34(4) 

Z 4 

ρcalcg/cm3 1.500 

μ/mm-1 6.428 

F(000) 1288.0 

Crystal size/mm3 0.3138 × 0.2705 × 0.1982 

Radiation CuKα (λ = 1.54184) 

2Θ range for data collection/° 7.84 to 148.04 

Index ranges -12 ≤ h ≤ 11, -14 ≤ k ≤ 14, -27 ≤ l ≤ 28 

Reflections collected 27608 

Independent reflections 10695 [Rint = 0.0213, Rsigma = 0.0240] 

Data/restraints/parameters 10695/1/663 

Goodness-of-fit on F2 1.037 

Final R indexes [I>=2σ (I)] R1 = 0.0217, wR2 = 0.0540 

Final R indexes [all data] R1 = 0.0222, wR2 = 0.0544 
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Largest diff. peak/hole / e Å-3 0.47/-0.51 

Flack parameter 0.000(5) 

 

Table 6.8: Crystal data and structure refinement for 10. 

Identification code 10 

Empirical formula C54H81BF4O6P2Ru2 

Formula weight 1177.13 

Temperature/K 100.00(10) 

Crystal system monoclinic 

Space group C2/c 

a/Å 19.8500(4) 

b/Å 17.9759(3) 

c/Å 16.6953(3) 

α/° 90.00 

β/° 107.1132(19) 

γ/° 90.00 

Volume/Å3 5693.49(17) 

Z 4 

ρcalcmg/mm3 1.451 

m/mm-1 0.720 

F(000) 49.0 

Crystal size/mm3 0.6545 × 0.082 × 0.0667 

Radiation MoKα (λ = 0.71073) 

2Θ range for data collection 5.62 to 58.94° 

Index ranges -26 ≤ h ≤ 25, -23 ≤ k ≤ 23, -23 ≤ l ≤ 21 

Reflections collected 32469 

Independent reflections 7101 [Rint = 0.0353, Rsigma = 0.0322] 

Data/restraints/parameters 7101/24/389 

Goodness-of-fit on F2 1.090 

Final R indexes [I>=2σ (I)] R1 = 0.0324, wR2 = 0.0730 

Final R indexes [all data] R1 = 0.0401, wR2 = 0.0766 
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Largest diff. peak/hole / e Å-3 0.85/-0.60 

 

Table 6.9: Crystal data and structure refinement for 11. 

Identification code 11 

Empirical formula C54H81O7BF4P2Ru2 

Formula weight 1193.13 

Temperature/K 100.00(10) 

Crystal system triclinic 

Space group P-1 

a/Å 11.44999(18) 

b/Å 11.75213(19) 

c/Å 23.6747(2) 

α/° 96.5819(10) 

β/° 100.9333(10) 

γ/° 111.4618(15) 

Volume/Å3  141.36(7) 

Z 2 

ρcalcmg/mm3 1.491 

m/mm-1 5.387 

F(000) 1334.0 

Crystal size/mm3 0.2265 × 0.1198 × 0.0692 

Radiation CuKα (λ = 1.54184) 

2Θ range for data collection 7.76 to 147.42° 

Index ranges -14 ≤ h ≤ 14, -14 ≤ k ≤ 14, -29 ≤ l ≤ 29 

Reflections collected 22228 

Independent reflections 22228 [Rint = 0.0000, Rsigma = 0.0144] 

Data/restraints/parameters 22228/0/688 

Goodness-of-fit on F2 1.080 

Final R indexes [I>=2σ (I)] R1 = 0.0433, wR2 = 0.1299 

Final R indexes [all data] R1 = 0.0470, wR2 = 0.1342 

Largest diff. peak/hole / e Å-3 1.04/-0.92 
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Table 6.10: Crystal data and structure refinement for 14. 

Empirical formula C47H78O4P2Ru 

Formula weight 870.10 

Temperature/K 100.00(10) 

Crystal system monoclinic 

Space group C2/c 

a/Å 37.7836(5) 

b/Å 9.91950(11) 

c/Å 24.3603(3) 

α/° 90.00 

β/° 90.9411(11) 

γ/° 90.00 

Volume/Å3 9128.90(18) 

Z 8 

ρcalcg/cm3 1.266 

μ/mm-1 3.747 

F(000) 3728.0 

Crystal size/mm3 0.1903 × 0.0959 × 0.044 

Radiation CuKα (λ = 1.54184) 

2Θ range for data collection/° 7.26 to 147.28 

Index ranges -46 ≤ h ≤ 46, -12 ≤ k ≤ 10, -30 ≤ l ≤ 30 

Reflections collected 32322 

Independent reflections 9049 [Rint = 0.0309, Rsigma = 0.0278] 

Data/restraints/parameters 9049/0/492 

Goodness-of-fit on F2 1.033 

Final R indexes [I>=2σ (I)] R1 = 0.0367, wR2 = 0.0940 

Final R indexes [all data] R1 = 0.0421, wR2 = 0.0980 

Largest diff. peak/hole / e Å-3 1.54/-0.87 
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6.4 Synthetic and Mechanistic Studies of Ruthenium Catalyzed Reductive 

Etherification of Carbonyl Compounds and Alcohols 
 

6.4.2 Experimental Procedures 
 
General Procedure for the Catalytic Reaction. Method A: In a glove box, 

complex 1 (17 mg, 3 mol %), carbonyl compound (1.0 mmol) and an alcohol (2.5 mmol) 

were dissolved in C6H5Cl (1 mL) in a 25 mL Schlenk tube equipped with a Teflon stopcock 

and a magnetic stirring bar. The tube was brought out of the box, and was stirred for 8-16 

h in an oil bath which was preset at 110 °C. The reaction tube was taken out of the oil bath, 

and was cooled to room temperature. After the tube was open to air, the solution was 

filtered through a short silica gel column (CH2Cl2), and the filtrate was analyzed by GC 

and GC-MS. Analytically pure product was isolated by a simple column chromatography 

on silica gel (280-400 mesh, hexanes/Et2O or hexanes/EtOAc). 

Method B: In a glove box, complex 1 (17 mg, 3 mol %), carbonyl compound (1.0 

mmol) and an alcohol (1.3 mmol) were added into a 25 mL Schlenk tube equipped with a 

Teflon stopcock and a magnetic stirring bar. The tube was brought out of the box, and H2O 

(1 mL) was added (0.5 mL of toluene was added for water insoluble substrates). N2 gas 

was removed under vacuum, was filled with H2 (1 atm) and the tube was stirred for 8-16 h 

in an oil bath which was preset at 110 °C. The reaction tube was taken out of the oil bath, 

and was cooled to room temperature. After the tube was open to air, the solution was 

filtered through a short silica gel column (CH2Cl2), and the filtrate was analyzed by GC 

and GC-MS. Analytically pure product was isolated by a simple column chromatography 

on silica gel (280-400 mesh, hexanes/Et2O or hexanes/EtOAc). 
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6.4.3 Catalyst Screening Study.  

Table 6.11. Catalyst Survey for the Coupling Reaction of 4-Methoxybenzaldehyde with 1-
Butanol.a 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

aReaction conditions: 4-methoxybenzaldehyde (1.0 mmol), 1-butanol (2.5 mmol), catalyst 
(2 mol %), additive (1.0 equiv to catalyst), toluene/H2O (1 mL, 1:1), 12 h, 110 °C. The 
product yield was determined by GC and GC-MS.  
 
 
 

In a glove box, 4-methoxybenzaldehyde (136 mg, 1.0 mmol), 1-butanol (185 mg, 

2.5 mmol) and a catalyst (2 mol %) were dissolved in toluene/H2O (1:1, 1 mL) in a 25 mL 

Schlenk tube equipped with a Teflon stopcock and a magnetic stirring bar. The tube was 

brought out of the box, and was stirred for 12 h in an oil bath which was preset at 110 °C. 

Entry Catalyst  Additive Yield (%) 

1 [(C6H6)(PCy3)(CO)RuH]BF4 (4)  95 

2 [RuH(CO)(PCy3)]4(O)(OH)2  0 

3 [RuH(CO)(PCy3)]4(O)(OH)2 HBF4·OEt2 72 

4 RuCl3·3H2O HBF4·OEt2 0 

5 RuCl2(PPh3)3 HBF4·OEt2 trace 

6 RuH2(CO)(PPh3)3  3 

7 RuH2(CO)(PPh3)3 HBF4·OEt2 10 

8 [RuCl2(COD)]x HBF4·OEt2 0 

9 [RuH(CO)(PCy3)2(CH3CN)2]+BF4
-  20 

10 [(COD)RuCl2]x HBF4·OEt2 0 

11 Ru3(CO)12 NH4PF6 0 

12 Cy3PH+BF4
-  trace 

13 BF3·OEt2  trace 

14 AlCl3  7 

15 FeCl3·H2O  trace 

16 HBF4·OEt2  6 

17 CF3SO3H  trace 
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The reaction tube was taken out of the oil bath and the solution mixture was analyzed by 

GC and GC-MS. The results are summarized in Table 6.10. 

 

6.4.4 Determination of TON.  
 
In a glove box, 4-methoxybenzaldehyde (2.72 g, 20 mmol), 2-butanol (1.48 g, 23 

mmol) and the ruthenium catalyst 1 (0.2 µg, 1.7 x 10-3 mol %) were dissolved in water (3 

mL) in a 100 mL Fisher-Porter pressure tube. The reaction tube was brought out of the box, 

and H2 (20 psi) was added. The tube was stirred in an oil bath at 110 °C. A small liquot 

was drwan from the reaction mixture after 1 h and after 18 h, and was analyzed by GC and 

NMR spectroscopic methods. 

X

O +

1.0 mmol 1.2 mmol

1 (3 mol%)

C5H8 10 mol%
Toluene-d8, 110 C

X

O

(X = OMe, CH3, H, F, Cl)

= 1.6 ± 0.2

OH
H

(5.4)

 

6.4.5 Hammett Study.  
 
In a glove box, para-substituted benzaldehyde p-X-C6H5CHO (X = OCH3, CH3, H, 

Cl, F) (0.25 mmol), 2-butanol (0.75 mmol), H2O (0.05 mmol) and complex 1 (3 mol %) 

were dissolved in toluene-d8 (0.5 mL) in six separate J-Young NMR tubes. The tubes were 

brought out of the box, and stirred in an oil bath set at 110 °C. Each reaction tube was taken 

out of the oil bath in 20 min intervals, was immediately cooled in in an ice water bath, and 

was analyzed by 1H NMR. The kobs was determined from a first-order plot of -ln([p-X-

C6H5CHO]t/p-X-C6H5CHO]0) vs. time. 
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Figure 6.30: Hammett Plot from the Reaction of p-X-C6H4CHO (X = OMe, Me, H, F, Cl) 
with 2-Butanol. Rearrange Y-axis 
 
 
 
6.4.6 Solvent Isotope Effect Study. 

 In a glove box, 4-methoxybenzaldehyde (340 mg, 1.5 mmol), 2-butanol (463 mg, 

6.6 mmol) and complex 1 (40 mg, 2 mol %) were mixed in a vial and divided into five 

separate 25 mL Schelenk tubes equiped with magnetic stiring bar. After adding H2O (0.5 

mL), each tube was evacuated, and refilled with N2 gas. The tubes were stirred in an oil 

bath set at 110 °C. Each reaction tube was taken out of the oil bath in 15 min intervals, was 

immediately cooled in liquid N2 bath, and hexamethylbenzene (10 mg, internal standard) 

dissolved in CDCl3 (1 mL) was added. After shaking the reaction tube for 5 min, CDCl3 

layer was separated and was analyzed by 1H NMR. The kH2O was determined from a first-

order plot of -ln([p-OMe-C6H5CHO]t/p-OMe-C6H5CHO]0) vs. time. The kD2O was 

determined from the experiment using D2O as the solvent. The kH2O/kD2O was calculated 

from the ratio of slopes (Figure 6.31). 

OMe

Me

H

F

Cl
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Figure 6.31: First Order Plot of the 4-Methoxybenzaldehyde with 2-Butanol in H2O 
(triangle) and in D2O (circle). 
 
 
 

In a glove box, 4-methoxybenzaldehyde (340 mg, 1.5 mmol), 2-propanol (0.5 mL) 

and complex 1 (50 mg, 2 mol %) were mixed in a vial and divided into five separate 25 

mL Schelenk tubes equiped with magnetic stiring bar. The tubes were degassed under 

vacuum line and filled with N2 gas. The tubes were stirred in an oil bath set at 110 °C. Each 

reaction tube was taken out of the oil bath in 15 min intervals, was immediately cooled in 

liquid N2 and hexamethylbenzene (10 mg, internal standard) was dissolved in benzene-d6 

(0.5 mL) and analysed by 1H NMR. The kPrOH was determined from a first-order plot of -

ln([p-OMe-C6H5CHO]t/p-OMe-C6H5CHO]0) vs. time. The same experiment was repeated 

by using 2-propanol-d as the solvent to determine kPrOD. The kPrOH/kPrOD was calculated 

from the ratio of slopes. 
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Figure 6.32. First Order Plot of the 4-Methoxybenzaldehyde with 2-Propanol (triangle) 
and in 2-Propanol-d1 (circle). 
 
 
 
6.4.7 H/D Exchange Reaction of 4-Methoxybenzaldehyde with 1-Butanol in D2O. 

In a glove box, complex 1 (17 mg, 3 mol %) was placed into a 25 mL Schlenk tube 

equipped with a Teflon stopcock and a magnetic stirring bar. The tube was brought out of 

the glove box, and 4-methoxybenzaldehyde (0.136 g, 1.0 mmol), 1-butanol (0.185 g, 2.5 

mmol) and D2O (99% D, 1 mL) were added to the tube. The tube was filled with N2, and 

was stirred in an oil bath set at 110 °C for 12 h. The reaction tube was taken out of the oil 

bath, and was cooled to room temperature. After the tube was open to air, CH2Cl2 (2 mL) 

was added and the organic layer was extracted. The organic layer was filtered through a 

short silica gel column by eluting with CH2Cl2 (10 mL), and the filtrate was analyzed by 

GC and GC-MS. Analytically pure product was isolated by a simple column 

chromatography on silica gel (280-400 mesh, hexanes/Et2O = 40:1). The deuterium content 

of the product 2f was detemined by 1H and 2H NMR spectroscopic methods (Figure 6.33). 
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O

H

MeO
+ HO

5, 2 mol %

D2O, 110 °C, 6h

O

MeO

56 % D 6 % D

(5.5)

 

 

Figure 6.33: 1H and 2H NMR Spectra of the Product 2f Isolated from the Reaction of 4-
Methoxybenzaldehyde with 1-Butanol in D2O.  
 
6.4.8 Carbon Isotope Effect Study. 

 
 In a glove box, complex 1 (170 mg, 3 mol %) was placed into a 100 mL Schlenk 

tube equipped with a Teflon stopcock and a magnetic stirring bar. The tube was brought 

out of the glove box, and 4-Methoxybenzaldehyde (1.36 g, 10 mmol), 1-hexanol (0.255 g, 

2.5 mmol), H2O (10 mL) and toluene (5 mL) were added to the tube. Three samples were 

prepared separately and each tube was degassed under vacumm, filled with nitrogen, and 

was stirred in an oil bath set at 110 °C for 2 h, 2.5 h, and 3 h respectively. Compound 2k 

was isolated by a column chromatography on silica gel (hexanes/EtOAc = 40:1) separately 

after filtering through a short silica gel column eluting with CH2Cl2 (20 mL), and each 

solution was analyzed by GC (15 % conversion). The experiment was repeated two more 
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times, and the product was isolated after 2.5 h, and 3 h of the reaction time (18 and 20 % 

conversion). 

Table 6.12. Calculated Average 13C KIE from Virgin (Ro) and Recovered (R) Samples of 
2k. 

Carbon No. Virgin (Ro) 
Recovered (R) 

(18% conv.) 
Ro/R 

13C KIE 

1 (ref) 1.0000 0.9999 1.0001 0.999 

2 1.0068 1.0068 0.9995 1.004 

3 1.0036 1.0024 1.0001 1.001 

4 1.0010 1.0009 1.0001 1.001 

5  1.0029 1.0030 0.9999 1.000 

6 1.0087 0.9992 1.0096 1.010 

7 1.0071 0.9860 1.0021 1.021 

 
 
 
The 13C{1H} NMR analysis of the recovered and virgin samples of 2k was 

performed by following Singleton’s 13C NMR measurement technique. The NMR sample 

of virgin and recovered 13j (100 mg) was prepared identically by dissolving them in CDCl3 

(0.5 mL) in a 5 mm high precision NMR tube. The 13C{1H} NMR spectrum was recorded 

with H-decoupling and 45 degree pulse. A 60 s delay between pulses was imposed to 

minimize T1 variations (d1 = 60 s, at = 5.0 s, np = 245098, nt = 704). The data are 

summarized in Table 6.11. 
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6.4.9 Generation and Synthesis of the Alcohol and Aqua Complexes 7, 8 and 9. 

 In a glove box, complex 1 (40 mg, 0.07 mmol) was dissolved in CD2Cl2 (1 mL) in 

a NMR tube. 1-Butanol (0.052 mg, 10 equiv) was added via syringe and the tube was 

shaken for 10 min at room temperature. The reaction progress was was monitored by 1H 

NMR and 31P NMR at 50 °C. After 10 min, the appearance of new ruthenium hydride 

species and free benzene molecule (δ 7.26 ppm on 1H NMR), as indicated by a new Ru–H 

signal (1H NMR: δ -18.8 (d, J = 31.3 Hz, 1H) ppm) as shown in the Figure 6.34. 

 

Figure 6.34. 1H NMR Sprectra of the Reactionof 5 with 1-Butanol. Indicate Time and 
Temp For Each Spectrum 
 
 
 
Generation of 8: Complex 1 (40 mg) with H2O (13 mg, 10 equiv) at room temperature. 

After 5 min, the appearance of 8 was detected by 1H NMR and 31P NMR. Because the 

complex decomposes within 1 h at room temperature, both 1H NMR and 31P NMR spectra 

were recorded at -10 °C in this case (1H NMR: δ -17.7 (d, JH-P = 30.3 Hz) ppm, 31P NMR: 

δ 73.0 ppm). 
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Synthesis of 9. The analogous treatment of complex 1 (115 mg, 0.2 mmol) with 1,1,1-

tris(hydroxymethyl)ethane (24 mg, 0.2 mmol) in acetone (2 mL), and the mixture was 

stired for 30 min at room temperature. The solution was layered with n-pentane (5 mL) to 

obtain single crystals of 9 as white color crystals in 80 % yield. 

 

6.4.10 X-Ray Crystallographic Determination of 3d, 3e, 3f, 9,10 and 11.  
 
For 3d: Colorless single crystals of 3d were grown in CH2Cl2 at room temperature. 

A suitable crystal with the dimension of 0.6896 × 0.1863 × 0.0598 mm3 was selected and 

mounted on an Oxford SuperNova diffractometer equipped with dual microfocus Cu/Mo 

X-ray sources, X-ray mirror optics, and Atlas CCD area detector. A total 

of  15140  reflection data were collected by using CuKα (λ = 1.54184) radiation while the 

crystal sample was cooled at 100.00 K during the data collection. Using Olex2, the 

molecular structure was solved with the ShelXS structure solution program by using Direct 

Methods, and the data was refined with the XL refinement package using Least Squares 

minimization. The molecular structure of 3d is shown in Figure 6.35. 

For 3e: Colorless single crystals of 3e were grown in CH2Cl2 at room temperature. 

A suitable crystal with the dimension of 0.28 × 0.27 × 0.22 mm3 was selected and mounted 

on an Oxford SuperNova diffractometer equipped with dual microfocus Cu/Mo X-ray 

sources, X-ray mirror optics, and Atlas CCD area detector. A total of  9989  reflection data 

were collected by using CuKα (λ = 1.54184) radiation while the crystal sample was cooled 

at 100.00 K during the data collection. Using Olex2, the molecular structure was solved 

with the ShelXS structure solution program by using Direct Methods, and the data was 
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refined with the XL refinement package using Least Squares minimization. The molecular 

structure of 3e is shown in Figure 6.36. 

For 3f: Colorless single crystals of 3f were grown in CH2Cl2 at room temperature. 

A suitable crystal with the dimension of 0.42 × 0.12 × 0.05 mm3 was selected and mounted 

on an Oxford SuperNova diffractometer equipped with dual microfocus Cu/Mo X-ray 

sources, X-ray mirror optics, and Atlas CCD area detector. A total of  11497  reflection 

data were collected by using MoKα (λ = 1.54184) radiation while the crystal sample was 

cooled at 100.00 K during the data collection. Using Olex2, the molecular structure was 

solved with the ShelXS structure solution program by using Direct Methods, and the data 

was refined with the XL refinement package using Least Squares minimization. The 

molecular structure of 3f is shown in Figure 6.37. 

For 9: Colorless single crystals of 9 were grown in acetone/n-pentane at room 

temperature. A suitable crystal with the dimension of 0.3068 × 0.2254 × 0.0989 mm3 was 

selected and mounted on an Oxford SuperNova diffractometer equipped with dual 

microfocus Cu/Mo X-ray sources, X-ray mirror optics, and Atlas CCD area detector. A 

total of  55980  reflection data were collected by using MoKα (λ = 1.54184) radiation while 

the crystal sample was cooled at 100.00 K during the data collection. Using Olex2, the 

molecular structure was solved with the ShelXS structure solution program by using Direct 

Methods, and the data was refined with the XL refinement package using Least Squares 

minimization. The molecular structure of 9 is shown in Figure 6.38. 

For 10: yellow single crystals of 10 were grown in acetone/n-pentane at room 

temperature. A suitable crystal with the dimension of 0.7044 × 0.0647 × 0.0498mm3 was 

selected and mounted on an Oxford SuperNova diffractometer equipped with dual 
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microfocus Cu/Mo X-ray sources, X-ray mirror optics, and Atlas CCD area detector. A 

total of  66389  reflection data were collected by using MoKα (λ = 0.71073) radiation while 

the crystal sample was cooled at 99.9(2) K during the data collection. Using Olex2, the 

molecular structure was solved with the ShelXS structure solution program by using Direct 

Methods, and the data was refined with the XL refinement package using Least Squares 

minimization. The molecular structure of 10 is shown in Figure 6.39. 

For 11: yellow single crystals of 11 were grown in acetone/n-pentane at room 

temperature. A suitable crystal with the dimension of 0.3672 × 0.3351 × 0.2841 mm3 was 

selected and mounted on an Oxford SuperNova diffractometer equipped with dual 

microfocus Cu/Mo X-ray sources, X-ray mirror optics, and Atlas CCD area detector. A 

total of 40501 reflection data were collected by using MoKα (λ = 0.71073) radiation while 

the crystal sample was cooled at 100.00 K during the data collection. Using Olex2, the 

molecular structure was solved with the ShelXS structure solution program by using Direct 

Methods, and the data was refined with the XL refinement package using Least Squares 

minimization. The molecular structure of 11 is shown in Figure 6.40. 

 

Figure 6.35: X-ray Crystal Structure of 3d. 
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Figure 6.36: X-ray Crystal Structure of 3e. 

 

Figure 6.37: X-ray Crystal Structure of 3f. 

 

Figure 6.38: Molecular Structure of 9. 
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Figure 6.39: X-ray structure of comlex 10 (H atoms removed for clarity) 

 

Figure 6.40: X-ray structure of comlex 11  
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6.4.10 Characterization Data of the Products. 

Data for Table 5.3, Compound 2a: 1H NMR (400 MHz, 

CDCl3) δ 7.77-7.95 (m, 3H), 7.42-7.59 (m, 2H), 4.57 (d, J = 11.9 

Hz, 1H), 4.49 (d, J = 11.9 Hz, 1H), 3.52 (sextet, J = 6.1 Hz, 1H), 

1.63-1.74 (m, 1H), 1.47-1.61 (m, 1H), 1.25 (d, J = 6.1 Hz, 3H), 0.97 (t, J = 7.4 Hz, 3H) 

ppm; 13C{1H} NMR (100 MHz, CDCl3) δ 138.2, 128.4, 127.8, 127.6, 72.1, 70.2, 29.2, 

19.2, 9.8 ppm; GC-MS m/z = 164 (M+). 1H and 13C NMR spectral data are in good 

agreement with the literature data.64  

Data for Table 5.3, Compound 2b: 1H NMR (400 

MHz, CDCl3) δ 7.29 (d, J = 8.3 Hz, 2H), 6.89 (d, J = 8.3 

Hz, 2H), 4.51 (d, J = 11.7 Hz, 1 H), 4.42 (d, J = 11.7 Hz, 1 

H), 3.81 (s, 3H), 3.44 (sextet, J = 7.0 Hz, 1H), 1.61 (dq, J = 14.7, 7.9 Hz, 1H), 1.49 (qd, J 

= 14.0, 7.9 Hz, 1H), 1.19 (d, J = 6.1 Hz, 3H), 0.93 (t, J = 7.9 Hz, 3H) ppm; 13C{1H} NMR 

(100 MHz, CDCl3) δ 158.9, 131.2, 129.1, 113.7, 75.8, 69.9, 55.2, 29.2, 19.2, 9.8 ppm; GC-

MS m/z = 194 (M+). 1H and 13C NMR spectral data are in good agreement with the literature 

data.65  

Data for Table 5.3, Compound 2c: 1H NMR 

(400 MHz, CDCl3) δ 7.27-7.47 (m, 7H), 6.95-6.99 (m, 

2H), 5.09 (s, 2H), 4.52 (d, J = 11.3 Hz, 1H), 4.43 (d, J = 

11.3 Hz, 1H), 3.46 (sextet, J = 5.9 Hz, 1H), 1.58-1.74 (m, 1H), 1.45-1.56 (m, 1H), 1.20 (d, 

J = 6.3 Hz, 3H), 0.94 (t, J = 7.4 Hz, 3H) ppm; 13C{1H} NMR (100 MHz, CDCl3) δ 158.1, 

137.0, 131.5, 129.1, 128.5, 127.8, 127.4, 114.6, 75.9, 69.9, 69.9, 29.2, 19.2, 9.8 ppm; GC-

MS m/z = 16 (M+); Anal. Calcd for C18H22O2: C, 79.96; H, 8.20. Found: C, 79.88; H, 8.31. 
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Data for Table 5.3, Compound 2d: 1H NMR (400 

MHz, CDCl3) δ 7.20-7.23 (m, 4H), 4.45 (d, J = 12.2 Hz, 1H), 

4.36 (d, J = 12.2 Hz, 1H), 3.36 (sextet, J = 6.1 Hz, 1H), 1.51-

1.61 (m, 1H), 1.35-1.47 (m, 1H), 1.11 (d, J = 6.4 Hz, 3H), 0.85 (t, J = 7.5 Hz, 3H) ppm; 

13C{1H} NMR (100 MHz, CDCl3) δ 137.7, 133.0, 128.8, 128.4, 76.4, 69.5, 29.2, 19.1, 9.8 

ppm; GC-MS m/z = 198 (M+); Anal. Calcd for C11H15ClO: C, 66.50; H, 7.61. Found: C, 

66.48; H, 7.52. 

Data for Table 5.3, Compound 2e: 1H NMR (400 

MHz, CDCl3) δ 7.55 (br s, 1H), 7.47 (d, J = 8.61 Hz, 2H), 

7.30 (d, J = 8.2 Hz, 2H), 4.52 (d, J = 11.7 Hz, 1H), 4.43 (d, 

J = 11.7 Hz, 1 H), 3.44 (sextet, J = 6.1 Hz, 1H), 2.16 (s, 3H), 1.61 (ddd, J = 13.7, 7.4, 6.3 

Hz, 1H), 1.48 (ddd, J = 13.7, 7.4, 5.8 Hz, 1H), 1.18 (d, J = 6.3 Hz, 3H), 0.92 (t, J = 7.4 Hz, 

3H) ppm; 13C{1H} NMR (100 MHz, CDCl3) δ 168.4, 137.0, 135.0, 128.3, 199.8, 76.1, 

69.8, 29.1, 24.5, 19.1, 9.8 ppm; GC-MS m/z = 221 (M+); Anal. Calcd for C13H19NO2: C, 

70.56; H, 8.65. Found: C, 70.48; H, 8.61.  

Data for Table 5.3, Compound 2f: 1H NMR 

(400 MHz, CDCl3) δ 7.28 (d, J = 8.5 Hz, 2H), 6.90 (d, 

J = 8.5 Hz, 2H), 4.45 (s, 2H), 3.81 (s, 3H), 3.46 (t, J  = 

6.6 Hz, 2H), 1.60 (quin, J = 6.2 Hz, 2H), 1.41 (sextet, J = 7.4 Hz, 2H), 0.93 (t, J = 7.4 Hz, 

3H) ppm; 13C{1H} NMR (100 MHz, CDCl3) δ 159.0, 130.7, 129.1, 113.6, 72.4, 69.8, 55.1, 

31.8, 19.3, 13.9 ppm; GC-MS m/z = 194 (M+); 1H and 13C NMR spectral data are in good 

agreement with the literature data.65 
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Data for Table 5.3, Compound 2g: 1H NMR (400 

MHz, CDCl3) δ 7.16-7.22 (m, 2H), 6.77-6.82 (m, 2H), 4.33 (s, 

2H), 3.87-3.94 (m, 1H), 3.72 (s, 3H), 1.59-1.71 (m, 6H), 1.39-

1.49 (m, 2H) ppm; 13C{1H} NMR (100 MHz, CDCl3) δ 158.9, 131.0, 129.2, 129.1, 113.7, 

80.5, 70.3, 55.2, 32.3, 23.6, 23.5 ppm; GC-MS m/z = 206 (M+); 1H and 13C NMR spectral 

data are in good agreement with the literature data.66  

Data for Table 5.3, Compound 2h: 1H NMR 

(400 MHz, CDCl3) δ 7.14-7.18 (m, 2H), 6.77-6.81 (m, 

2H), 4.37 (dd, J = 14.0, 12.0 Hz, 2H), 3.71 (s, 3H), 3.60 

(s, 3H), 3.54 (dd, J = 9.0, 7.4 Hz, 1H), 3.37 (dd, J = 9.2, 6.1 Hz, 1H), 2.68 (qt, J = 7.5, 6.1 

Hz, 1H), 1.08 (d, J = 7.0 Hz, 3H) ppm; 13C{1H} NMR (100 MHz, CDCl3) δ 175.2, 159.2, 

130.1, 129.1. 113.6, 72.6, 71.5, 55.1, 51.6, 40.1, 13.9 ppm; GC-MS m/z = 238 (M+); 1H 

and 13C NMR spectral data are in good agreement with the literature data.67 

Data for Table 5.3, Compound 2i: 1H NMR 

(400 MHz, CDCl3) δ 7.24-7.30 (m, 2H), 6.87-6.92 (m, 

2H), 4.49 (s, 2H), 3.81 (s, 3H), 3.49 (dd, J = 9.4, 3.1 Hz, 1H), 3.3 (dd, J = 9.4, 7.8 Hz, 1H), 

2.39 (br s, 1H), 1.26-1.51 (m, 7H), 0.90 (t, J = 7.4 Hz, 3H)ppm; 13C{1H} NMR (100 

MHz, CDCl3) δ 159.2, 130.0, 129.4, 113.8, 74.3, 72.9, 70.4, 55.2, 32.8, 27.7, 22.7, 14.0 

ppm; GC-MS m/z = 238 (M+); 1H and 13C NMR spectral data are in good agreement with 

the literature data.68  

Data for Table 5.3, Compound 2j: 1H 

NMR (400 MHz, CDCl3) δ 7.15-7.21 (m, 2H), 

6.78-6.83 (m, 2H), 4.38 (s, 2H), 3.87-3.96 (m, 

O

MeO 2j

OH
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1H), 3.73 (s, 3 H), 3.50-3.63 (m, 2H), 2.89 (br. s, 1H), 1.58-1.73 (m, 3H), 1.11 (d, J = 6.3 

Hz, 3H)ppm; 13C NMR (400 MHz, CDCl3) δ 159.2, 123.0, 129.3, 113.8, 72.9, 68.8, 67.6, 

55.2, 38.0, 23.3 ppm; GC-MS m/z = 210 (M+); 1H and 13C NMR spectral data are in good 

agreement with the literature data.69  

Data for Table 5.3, Compound 2k: 1H NMR 

(400 MHz, CDCl3) δ 7.23-7.32 (m, 2H), 6.85-6.93 

(m, 2H), 4.44 (s, 2 H), 3.80 (s, 3H), 3.44 (t, J = 6.7 Hz, 2H), 1.55-1.66 (m, 2H), 1.23-1.42 

(m, 6H), 0.89 (t, J = 7.0 Hz, 3H) ppm; 13C{1H} NMR (400 MHz, CDCl3) δ 159.0, 130.7, 

129.1, 113.6, 72.4, 70.2, 55.1, 31.6, 29.7, 25.8, 22.6, 14.0 ppm; GC-MS m/z = 222 (M+); 

1H and 13C NMR spectral data are in good agreement with the literature data.66 

Data for Table 5.3, Compound 2l: 1H NMR (400 

MHz, CDCl3) δ 7.28 (d, J = 8.4 Hz, 2H), 6.90 (d, J = 8.7 Hz, 

2H), 4.45 (s, 2H), 3.82 (s, 3H), 3.49 (t, J = 6.8 Hz, 2H), 1.74 (dt, J = 13.4, 6.7 Hz, 1H), 

1.52 (qd, J = 6.8, 0.9 Hz, 2H), 0.92 (d, J = 7.7 Hz, 6H) ppm; 13C{1H} NMR (100 MHz, 

CDCl3) δ 159.0, 130.7, 129.2, 113.7, 72.5, 68.5, 55.2, 38.5, 22.6 ppm; GC-MS m/z = 194 

(M+); 1H and 13C NMR spectral data are in good agreement with the literature data.70 

Data for Table 5.3, Compound 2m: 1H NMR 

(400 MHz, CDCl3) δ 7.13 (d, J = 8.7 Hz, 2H), 6.9 (d, J = 

8.6 Hz, 2H), 4.47 (s, 2H), 3.80 (s, 3H), 3.29 (d, J = 6.5 Hz, 2H), 1.62-1.95 (m, 5H), 1.15-

1.49 (m, 4H), 0.92-1.05 (m, 2H) ppm; 13C{1H} NMR (100 MHz, CDCl3) δ 157.8, 133.6, 

129.6, 113.7, 75.9, 72.5, 55.1, 55.1, 40.0, 38.0, 30.1, 26.6, 25.8 ppm; GC-MS m/z = 234 

(M+); Anal. Calcd for C15H22O2: C, 76.88; H, 9.46. Found: C, 76.48; H, 9.51.  
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Data for Table 5.3, Compound 2n: 1H NMR 

(400 MHz, CDCl3) δ 7.49-7.30 (m, 7H), 6.99-6.92 (m, 

2H), 4.59 (s, 2H), 4.55 (s, 2H), 3.85 (s, 3H) ppm; 

13C{1H} NMR (100 MHz, CDCl3) δ 159.3, 138.5, 130.4, 129.5, 128.5, 127.9, 127.7, 

113.9, 71.9, 71.8, 55.3 ppm; GC-MS m/z = 228 (M+).1H and 13C NMR spectral data are in 

good agreement with the literature data.71   

 

Data for Table 5.3, Compound 2o: 1H NMR (400 MHz, 

CDCl3) δ 3.37 (t, J = 6.5 Hz, 2H), 3.50 (q, J = 11.9 Hz, 2H), 

1.31-1.51 (m, 8H), 1.10 (t, J = 6.5 Hz, 3H), 0.88 (t, J = 6.5 Hz, 

3H) ppm; 13C{1H} NMR (100 MHz, CDCl3) δ 70.4, 66.6, 31.8, 

30.0, 22.7, 22.6, 15.2, 14.1 ppm; GC-MS m/z = 130 (M+); 1H and 

13C NMR spectral data are in good agreement with the literature data.72 

Data for Table 5.3, Compound 2p: 1H NMR (400 MHz, CDCl3) δ 3.29 (t, J = 6.6 

Hz, 2H), 3.08 (d, J = 6.0 Hz, 2H), 1.52-1.71 (m, 5H), 1.41-1.52 (m, 2H), 1.22-1.34 (m, 

2H), 0.98-1.22 (m, 4H), 0.73-0.89 (m, 5H) ppm; 13C{1H} NMR (100 MHz, CDCl3) δ 76.8, 

70.8, 38.0, 31.8, 30.1, 26.7, 25.9, 19.3, 13.9 ppm; GC-MS m/z = 170 (M+). 1H and 13C 

NMR spectral data are in good agreement with the literature data.72  

Data for Table 5.3, Compound 2q: 1H 

NMR (400 MHz, CDCl3) δ 7.18 - 7.24 (m, 2H), 

6.82 - 6.87 (m, 2H), 4.41 (s, 2H), 3.75 - 3.80 (m, 

2H), 3.55 (t, J = 5.1 Hz, 2H), 3.42 - 3.48 (m, 2H), 2.34 (t, J = 7.8 Hz, 2H), 1.98 (tt, J = 

15.7, 7.8 Hz, 2H) ppm; 13C NMR (400 MHz, CDCl3) δ 175.0, 159.0, 130.0, 129.1, 113.6, 
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72.3, 67.8, 55.1, 48.3, 42.3, 30.8, 17.9 ppm; GC-MS m/z = 249 (M+); Anal. Calcd for 

C14H19NO3: C, 67.45; H, 7.68. Found: C, 75.48; H, 8.61. 

Data for Table 5.3, Compound 2r: 1H NMR (400 MHz, 

CDCl3) δ 8.18 (dquin, J = 4.9, 1.4 Hz, 1H), 7.37 (td, J = 7.8, 1.7 Hz, 

1H), 7.28 (dquin, J = 7.9, 1.1 Hz, 1 H), 6.87 (ddd, J = 8.0, 4.8, 1.3 

Hz, 1H), 5.17 (t, J = 2.3 Hz, 1H), 3.40 (sxt, J = 6.2 Hz, 1H), 1.14 - 1.33 (m, 2H), 0.74 (d, 

J = 6.4 Hz, 3H), 0.60 (t, J = 7.5 Hz, 3H) ppm; 13C NMR (400 MHz, CDCl3) 160.0, 148.2, 

136.7, 123.2, 121.1, 73.9, 73.6, 29.8, 20.0, 9.9 ppm; GC-MS m/z = 165 (M+); Anal. Calcd 

for C10H15NO: C, 72.69; H, 9.15. Found: C, 75.48; H, 8.61. 

Data for Table 5.3, Compound 2s: 1H NMR (400 MHz, 

CDCl3) δ 7.77-7.95 (m, 4H), 7.42-7.59 (m, 3H), 4.72 (dd, J = 

35.6, 12.1 Hz, 2H), 3.52 (sxt, J = 6.1 Hz, 1H), 1.63-1.74 (m, 

1H), 1.47-1.61 (m, 1H), 1.25 (d, J = 6.1 Hz, 3H), 0.97 (t, J = 

7.4 Hz, 3H)ppm; 13C NMR (400 MHz, CDCl3) δ 136.7, 133.3, 132.9, 128.0, 127.8, 127.7, 

126.1, 126.0, 125.87, 125.86, 125.85, 125.7, 76.2, 70.4, 29.3, 19.2, 9.9 ppm; GC-MS m/z 

= 165 (M+); Anal. Calcd for C10H15NO: C, 72.69; H, 9.15. Found: C, 75.48; H, 8.61. 

Data for Table 5.3, Compound 2t: 1H NMR 

(400 MHz, CDCl3) δ 7.14-7.21 (m, 2H), 6.76-6.83 

(m, 2H), 5.18 (ddd, J = 4.3, 2.9, 1.4 Hz, 1H), 4.35 (s, 

2H), 3.71 (s, 3H), 3.33-3.42 (m, 2H), 1.91-2.32 (m, 

9H), 1.15-1.22 (m, 3H), 0.71-0.78 (m, 3H) ppm; 13C NMR (400 MHz, CDCl3) 

δ 159.0,145.1, 130.6, 129.2, 117.7, 113.6, 72.4, 68.5, 55.2, 45.7, 40.7, 37.9, 37.1, 31.6, 

O

MeO
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31.3, 26.3, 21.1 ppm; GC-MS m/z = 286 (M+); 1H and 13C NMR spectral data are in good 

agreement with the literature data.72  

Data for 2u: 1H NMR (400 MHz, CDCl3) δ 6.93 (d, J = 

8.7 Hz, 2H), 6.57 (d, J = 8.8 Hz, 2H), 4.03 (q, J = 6.4 Hz, 1H), 

3.49 (s, 3H), 2.96 (t, J = 6.6 Hz, 2H), 1.18-1.28 (m, 2H), 1.11 

(d, J = 6.4 Hz, 3H), 0.98-1.09 (m, 2H), 0.58 (t, J = 7.4 Hz, 3H) 

ppm; 13C{1H} NMR (100 MHz, CDCl3) δ 158.8, 136.3, 127.2, 113.6, 77.3, 68.1, 55.1, 

32.0, 24.1 19.3, 13.9 ppm; GC-MS m/z = 208 (M+). 1H and 13C NMR spectral data are in 

good agreement with the literature data.73  

Data for 2v: 1H NMR (400 MHz, CDCl3) δ 7.26 (d, J = 

8.4 Hz, 2H), 6.89 (d, J = 8.5 Hz, 2H), 4.43 (q, J = 6.5 Hz, 1H), 

3.82 (s, 3H), 1.41-1.77 (m, 9H), 1.39 (d, J = 6.5 Hz, 3H) ppm; 

13C{1H} NMR (100 MHz, CDCl3) δ 158.7, 136.7, 127.4, 113.6, 

78.3, 74.9, 55.2, 33.0, 31.8, 24.6, 23.5, 23.4 ppm; GC-MS m/z = 220 (M+). 1H and 13C 

NMR spectral data are in good agreement with the literature data.74  

Data for 2w: 1H NMR (400 MHz, CDCl3) δ 7.10-7.33 

(m, 7H), 6.72-6.87 (m, 2H), 4.38 (q, J = 6.5 Hz, 1H), 4.35 (d, 

J = 11.9 Hz, 1H), 4.19 (d, J = 11.9 Hz, 1H), 3.75 (s, 3H), 1.39 

(d, J = 6.5 Hz, 3H) ppm; 13C{1H} NMR (100 MHz, CDCl3) δ 159.0, 138.9, 135.7, 128.3, 

127.7, 127.6, 127.4, 113.8, 76.7, 70.0, 55.3, 24.1 ppm; GC-MS m/z = 242 (M+); 1H and 13C 

NMR spectral data are in good agreement with the literature data.75 

Data for 2x: 1H NMR (400 MHz, CDCl3) δ 7.27-7.48 (m, 

10H), 5.44 (s, 1H), 3.56 (t, J = 6.5 Hz, 2H), 1.69-1.79 (m, 2H), 
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1.48-1.62 (m, 2H), 1.02 (t, J = 7.4 Hz, 3H) ppm; 13C{1H} NMR (100 MHz, CDCl3) δ 142.6, 

128.3, 128.3, 128.2, 128.2, 127.2, 126.9, 126.9, 126.9, 126.8, 83.5, 68.9, 32.0, 19.4, 13.9 

ppm; GC-MS m/z = 240 (M+); 1H and 13C NMR spectral data are in good agreement with 

the literature data.76  

Data for 2y: 1H NMR (400 MHz, CDCl3) δ  7.23-7.52 (m, 

10H), 5.54 (s, 1H), 4.05-4.16 (m, 1H), 1.74-1.96 (m, 6H), 1.54-1.70 

(m, 2H) ppm; 13C{1H} NMR (100 MHz, CDCl3) δ 142.8, 128.2, 

127.2, 127.1, 80.9, 78.9, 32.5, 23.5 ppm; GC-MS m/z = 252 (M+); Anal. Calcd for C18H20O: 

C, 85.67; H, 7.99. Found: C, 75.48; H, 8.61. 

Data for 2z: 1H NMR (400 MHz, CDCl3) δ 7.13-7.34 

(m, 12H), 6.78-6.85 (m, 2H), 5.35 (s, 1H), 4.40 (s, 2H), 3.74 

(s, 3H) ppm; 13C{1H} NMR (100 MHz, CDCl3) δ 159.1, 

142.2, 130.4, 129.4, 128.4, 127.4, 127.1, 113.7, 82.0, 70.1, 55.3 ppm; GC-MS m/z = 304 

(M+); 1H and 13C NMR spectral data are in good agreement with the literature data.78 

Data for 2aa: 1H NMR (400 MHz, CDCl3) δ 7.27 (dd, J = 7.6, 

1.8 Hz, 1 H), 7.20 (ddd, J = 8.4, 7.0, 1.8 Hz, 1H), 6.91 (td, J = 7.4, 1.2 

Hz, 1H), 6.85 (dd, J = 8.2, 1.2 Hz, 1H), 4.38 (t, J = 3.7 Hz, 1H), 4.32 

(td, J = 11.0, 3.1 Hz, 1H), 4.25 (dtd, J = 11.0, 4.1, 0.8 Hz, 1H), 3.59 (ttd, 

J = 15.7, 12.9, 6.3 Hz, 2H), 2.10-2.18 (m, 1H), 2.01-2.10 (m, 1H), 1.57-

1.66 (m, 2H), 1.37-1.48 (m, 2H), 0.95 (t, J = 7.4 Hz, 3H) ppm; 13C{1H} NMR (100 MHz, 

CDCl3) δ 154.7, 130.5, 129.4, 122.2, 119.9, 116.8, 70.3, 68.0, 62.2, 32.1, 27.6, 19.4, 13.9 

ppm; GC-MS m/z = 206 (M+); Anal. Calcd for C13H18O2: C, 75.69; H, 8.80. Found: C, 

75.48; H, 8.61. 
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Data for 2ab: 1H NMR (400 MHz, CDCl3) δ 7.24 (dd, J = 1.6, 

7.5 Hz, 1H), 7.17 (dt, J = 1.8, 7.8 Hz, 1H), 6.87-6.92 (m, 1H), 6.79-6.83 

(m, 1H), 4.43 (t, J = 4.0 Hz, 1H), 4.41-4.45 (m, 1H), 4.16-4.36 (m, 2H), 

1.93-2.12 (m, 2H), 1.67-1.67 (m, 1H), 1.63-1.88 (m, 5H), 1.51-1.63 (m, 

2H) ppm; 13C{1H} NMR (100 MHz, CDCl3) δ 154.8, 130.3, 129.2, 122.8, 120.1, 116.8, 

78.5, 68.0, 62.4, 33.0, 32.8, 28.1, 23.6, 23.4  ppm; GC-MS m/z = 192 (M+); Anal. Calcd 

for C12H16O2: C, 74.97; H, 8.39. Found: C, 75.48; H, 8.61. 

Data for 2ac: 1H NMR (400 MHz, CDCl3) δ 7.24-7.27 (m, 1H), 

7.16-7.21 (m, 1H), 6.91 (td, J = 7.43, 1.21 Hz, 1H), 6.81-6.85 (m, 1H), 

4.48 (t, J = 3.9 Hz, 1H), 4.28-4.35 (m, 1H), 4.22-4.28 (m, 1H), 4.16-

4.22 (m, 1H), 3.88 (spt, J = 6.1 Hz, 1H), 2.04-2.08 (m, 2H), 1.27 (d, J 

= 6.0 Hz, 3H), 1.25 (d, J = 6.2 Hz, 3H) ppm; 13C NMR (400 MHz, CDCl3) δ 154.8, 130.2, 

129.2, 122.8, 120.2, 116.8, 68.9, 67.4, 62.3, 28.4, 23.3, 22.4  ppm; GC-MS m/z = 192 (M+); 

Anal. Calcd for C12H16O2: C, 74.97; H, 8.39. Found: C, 74.48; H, 8.41. 

Data for 2ae: 1H NMR (400 MHz, CDCl3) δ 7.24 

(dd, J = 7.5, 1.6 Hz, 1H), 7.17 (td, J = 7.8, 1.8 Hz, 1H), 6.87-

6.92 (m, 1H), 6.79-6.83 (m, 1H), 4.43 (t, J = 4.0 Hz, 1H), 

4.41-4.45 (m, 1H), 4.36-4.16 (m, 4H), 1.93-2.12 (m, 2H), 1.67 (m, 1H), 1.63-1.88 (m, 5H), 

1.51-1.63 (m, 2H) ppm; 13C{1H} NMR (100 MHz, CDCl3) δ 154.8, 130.3, 129.2, 122.8, 

120.1, 116.8, 78.5, 77.4, 68.0, 62.4, 33.0, 32.8, 28.1, 23.6, 23.4 ppm; GC-MS m/z = 218 

(M+); Anal. Calcd for C14H20O2: C, 76.33; H, 9.15. Found: C, 76.38; H, 9.13. 
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Data for 2af: 1H NMR (400 MHz, CDCl3) δ 7.25-7.32 (m, 

2H), 7.17-7.23 (m, 3H), 4.28-4.35 (m, 1H), 3.65 (t, J = 6.8 Hz, 

2H), 2.70 (t, J = 7.7 Hz, 2H), 1.94-2.04 (m, 2H), 1.84-1.93 (m, 2H), 1.68-1.82 (m, 4H), 

1.48-1.65 (m, 2H) ppm; 13C{1H} NMR (100 MHz, CDCl3) δ 141.8, 128.4, 128.4, 128.4, 

128.3, 128.3, 128.3, 125.8, 73.9, 62.1, 35.4, 34.1, 32.0, 23.2 ppm; GC-MS m/z = 234 (M+); 

1H and 13C NMR spectral data are in good agreement with the literature data.80  

 

Data for 2ag: 1H NMR (400 MHz, CDCl3) δ 3.43 (t, J = 

6.7 Hz, 2H), 3.13-3.23 (m, 1H), 1.80-1.95 (m, 3H), 1.66-1.77 (m, 

3H), 1.47-1.57 (m, 3H), 1.31-1.42 (m, 2H), 1.14-1.31 (m, 6H), 

0.91 (t, J = 7.4 Hz, 3H) ppm; 13C{1H} NMR (100 MHz, CDCl3) δ 77.4, 67.5, 32.3, 32.3, 

25.8, 25.8, 24.2, 19.4, 13.9 ppm; GC-MS m/z = 156 (M+); 1H and 13C NMR spectral data 

are in good agreement with the literature data.72  

Data for 2ah: 1H NMR (400 MHz, CDCl3) 7.17-

7.24 (m, 3H), 7.08-7.15 (m, 2H), 3.42 (dt, J = 9.1, 6.4 Hz, 

2H), 3.23-3.31 (m, 2H), 2.63 (td, J = 7.8, 1.8 Hz, 2H), 1.76-

1.85 (m, 2H), 1.39-1.52 (m, 1H), 1.16-1.35 (m, 6H), 1.05 (d, J = 5.9 Hz, 3H), 0.82 (t, J = 

6.8 Hz, 3H) ppm; 13C{1H} NMR (100 MHz, CDCl3) δ 142.2, 128.5, 128.3, 125.7, 75.4, 

67.43, 36.7, 32.5, 32.0, 31.7, 25.3, 22.7, 19.7, 14.1 ppm; GC-MS m/z = 234 (M+); Anal. 

Calcd for C16H26O: C, 81.99; H, 11.18. Found: C, 75.48; H, 8.61. 

Data for 2ai (1:1 diasteromers): Isomer A: 1H 

NMR (400 MHz, CDCl3) δ 7.21 (d, J = 8.8 Hz, 2H), 6.87 

(d, J = 8.8 Hz, 2H), 4.35 (q, J = 6.3 Hz, 1H), 3.80 (s, 3H), 
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3.67 (s, 3H), 3.46 (t, J = 9.3 Hz, 1H), 3.28 (t, J = 6.4 Hz, 1H),  2.78-2.66 (m, 1H), 1.38 (d, 

J = 6.3 Hz, 3H), 1.14 (d, J = 7.0 Hz, 3H) ppm; 13C{1H} NMR (100 MHz, CDCl3) δ 175.5, 

143.7, 128.3, 127.4, 126.1, 78.5, 70.5, 51.7, 40.3, 24.1, 14.0 ppm. Isomer B: 1H NMR (100 

MHz, CDCl3) δ 7.20 (d, J = 8.8 Hz, 2H), 6.87 (d, J = 8.8 Hz, 2H), 4.34 (q, J = 6.3 Hz, 1H), 

3.80 (s, 3H), 3.68 (s, 3H), 3.48 (t, J = 9.3 Hz, 1H), 

3.30 (t, J = 6.4 Hz, 1H), 2.78-2.66 (m, 1H), 1.39 

(d, J = 6.3 Hz, 3H), 1.12 (d, J = 7.0 Hz, 3H) ppm; 

13C{1H} NMR (100 MHz, CDCl3) δ 175.3, 143.7, 

128.4, 127.4, 126.1, 78.2, 70.4, 51.7, 40.3, 24.1, 14.0 ppm; GC-MS m/z = 252 (M+); 1H 

and 13C NMR spectral data are in good agreement with the literature data.81 

Data for 3a: 1H NMR (400 MHz, CDCl3) δ 8.79 (br s, 1H), 7.59 (d, J = 8.1 Hz, 

1H), 7.23 (d, J = 8.9 Hz, 2H), 6.90 (d, J = 8.7 Hz, 2H), 5.96 (d, J = 2.8 Hz, 1H), 5.52 (dd, 

J = 8.1, 2.3 Hz, 1H), 4.81 (dd, J = 6.2, 2.9 Hz, 1H), 4.7 (dd, J = 6.2, 2.8 Hz, 1H), 4.47 (dd, 

J = 14.3, 11.1 Hz, 2H), 4.40 (dd, J = 5.6, 2.9 Hz, 1H), 3.82 (s, 3H), 3.76 (dd, J = 10.5, 2.6 

Hz, 1H), 3.65 (dd, J = 10.5, 3.4 Hz, 1H), 1.59 (s, 3H), 1.35 (s, 3H)  ppm; 13C NMR (100 

MHz, CDCl3) 163.5, 159.4, 150.2, 141.1, 129.5, 129.1, 114.0, 113.8, 102.1, 92.3, 85.5, 

84.9, 80.8, 73.2, 69.7, 55.2, 27.1, 25.2 ppm; HRMS (ESI): calcd for C20H24N2O7 ([M+H]+) 

405.1656, found 405.1658. 1H and 13C NMR spectral data are in good agreement with the 

literature data.82 
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Data for 3b: 1H NMR (400 MHz, CDCl3) δ 7.26-

7.33 (m, 2H), 6.87-6.92 (m, 2H), 4.61 (d, J = 11.0 Hz, 1H), 

4.35 (d, J = 11.0 Hz, 1H), 3.81 (s, 3H), 3.17 (td, J = 10.5, 

4.2 Hz, 1H), 2.31 (m, J = 2.7 Hz, 1H), 2.20 (m, J = 1.7 Hz, 

1H), 1.60-1.71 (m, 2H), 1.39 (s, 2H), 0.95-0.98 (m, 6H), 

0.92 (d, J = 7.1 Hz, 3H), 0.73 (d, J = 6.9 Hz, 3H)  ppm; 

13C{1H} NMR (100 MHz, CDCl3) δ 158.9, 131.2, 129.3, 113.6, 78.3, 70.0, 55.1, 48.2, 40.2, 

34.5, 31.5, 25.4, 23.2, 22.3, 21.0, 14.0 ppm; GC-MS m/z = 276 (M+); 1H and 13C NMR 

spectral data are in good agreement with the literature data.83  

Data for 3c: 1H NMR (400 MHz, CDCl3) δ 7.79-7.86 (m, 2H), 

7.46-7.52 (m, 1H), 7.38-7.45 (m, 2H), 7.17-7.22 (m, 2H), 6.84-6.89 

(m, 3H), 4.87 (dd, J = 9.1, 2.4 Hz, 1H), 4.54 (d, J = 11.5 Hz, 1H), 4.34 

(d, J = 11.5 Hz, 1H), 4.20 (ddd, J = 12.6, 6.3, 2.4 Hz, 1H), 3.78 (d, J 

= 0.4 Hz, 3H), 3.68 (s, 3H), 1.26 (d, J = 6.2 Hz, 3H) ppm; 13C{1H} NMR (100 MHz, 

CDCl3) δ 171.0, 167.5, 159.2, 133.7, 131.6, 129.7, 129.3, 128.4, 127.0, 113.6, 73.7, 70.3, 

56.9, 55.1, 52.2, 16.2 ppm; HRMS (ESI): calcd for C20H23NO5 ([M+Na]+) 380.1668, found 

380.1669. 

 Data for 3d: 1H NMR (400 

MHz, CDCl3) δ 7.27 (d, J = 8.9 Hz, 

2H), 6.87 (d, J = 8.9 Hz, 2H), 5.34 

(d, J = 5.3 Hz, 1H), 4.49 (s, 2H), 

3.80 (s, 3H), 3.26 (tt, J = 11.1, 4.60 

Hz, 1H), 2.40-0.84 (m, 40H), 0.67 (s, 3H) ppm; 13C{1H} NMR (100 MHz, CDCl3) δ 159.0, 
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141.0, 131.1, 129.1, 121.5, 113.8, 78.3, 69.6, 56.8, 56.1, 55.3, 50.2, 42.3, 39.8, 39.5, 39.2, 

37.3, 36.9, 36.2, 35.8, 31.9, 31.9, 28.4, 28.2, 28.0, 24.3, 23.8, 22.8, 22.6, 21.1, 19.4, 18.7, 

11.9 ppm; HRMS (ESI-TOF) m/z = 506.41 (M+); Anal. Calcd for C35H54O2: C, 82.95; H, 

10.74. Found: C, 82.57; H, 10.52.  

Data for 3e: 1H NMR (400 MHz, 

CDCl3) δ 7.22 - 7.27 (m, 2H), 6.82 - 6.88 (m, 

2H), 4.46 (s, 2 H), 3.77 (s, 3H), 3.25 - 3.35 (m, 

1H), 2.41 (dd, J=19.1, 8.6 Hz, 1H), 2.03 (td, J = 

18.3, 8.8 Hz, 1H), 1.90 (ddd, J = 13.7, 8.4, 5.5 

Hz, 2H), 1.59 - 1.81 (m, 5H), 1.15 - 1.58 (m, 10H), 0.86 - 1.11 (m, 3H), 0.83 (d, J= 7.8 Hz, 

6H), 0.66 (td, J = 11.8, 4.3 Hz, 1H) ppm; 13C NMR (400 MHz, CDCl3) 221.1, 158.8, 131.0, 

128.9, 113.5, 77.30, 69.3, 55.1, 54.3, 51.2, 47.6, 44.7, 36.8, 35.8, 35.7, 34.8, 34.6, 31.4, 

30.7, 28.4, 28.0, 21.6, 20.3, 13.6, 12.1 ppm; GC-MS m/z = 276 (M+); Anal. Calcd for 

C27H38O2: C, 78.98; H, 9.33. Found: C, 78.48; H, 9.61.85 

Data for 3f: 1H NMR (400 MHz, 

CDCl3) δ 7.22-7.30 (m, 2H), 6.81-6.90 (m, 

2H), 5.29-5.37 (m, 1H), 4.48 (s, 2H), 3.78 (s, 

3H), 3.19-3.31 (m, 1H), 2.47-2.56 (m, 1H), 

2.35-2.45 (m, 1H), 2.12-2.30 (m, 2H), 2.11 (s, 

3H), 1.77-2.06 (m, 4H), 1.37-1.72 (m, 9H), 1.01 - 1.31 (m, 3H), 1.00 (s, 3H), 0.61 (s, 3H)  

ppm; 13C NMR (100 MHz, CDCl3) 209.4, 58.9,  140.9,  131.0, 129.0, 121.1, 113.7, 78.0, 

69.5, 63.6, 56.8, 55.2, 49.9, 43.9, 39.0, 38.7, 37.2, 36.8, 31.7, 31.7, 31.5, 28.3, 24.4, 22.7, 
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21.0, 19.3, 13.1 ppm; GC-MS m/z = 276. 1H and 13C NMR spectral data are in good 

agreement with the literature data.84  

Data for 3g: 1H NMR (400 MHz, CDCl3) δ 8.02-

8.13 (m, 2 H), 7.42 (d, J = 8.7 Hz, 2H), 7.18 (d, J = 8.7 Hz, 

2H), 7.09 (d, J = 9.0 Hz, 1H), 6.83 (d, J = 8.5 Hz, 2H), 5.70 

(s, 1H), 5.13 (d, J = 2.4 Hz, 1H), 4.44 (s, 2H), 4.12-4.19 (m, 

1H), 3.73 (s, 3H), 3.60-3.69 (m, 3H) ppm; 13C{1H} NMR 

(100 MHz, CDCl3) δ 164.1, 159.6, 147.5, 129.6, 128.7, 126.7, 123.5, 114.0, 73.5, 73.3, 

70.4, 66.1, 55.3, 54.4 ppm; GC-MS m/z = 443 (M+); HRMS (APCI): calcd for 

C19H22Cl2N2O6 ([M+H]+) 443.0777; found. 443.0779.  

 Data for 3h: 1H NMR (400 MHz, CDCl3) δ 8.17-

8.23 (m, 2H), 7.50-7.55 (m, 2H), 7.08 (d, J = 9.7 Hz, 1H), 

5.68 (s, 1H), 5.08-5.13 (m, 1H), 4.88 (t, J = 5.0 Hz, 1H), 

4.32 (dq, J = 9.7, 1.8 Hz, 1H), 4.08-4.20 (m, 3H), 1.76-

1.85 (m, 3H), 1.49-1.61 (m, 2H), 1.01 (t, J = 7.3 Hz, 3H)  

ppm; 13C{1H} NMR (100 MHz, CDCl3) δ 163.5, 147.5, 144.4, 126.4, 126.4, 123.5, 123.4, 

102.9, 78.4, 77.4, 77.3, 76.7, 76.6, 70.2, 65.9, 47.6, 36.7, 17.0, 14.0 ppm; GC-MS m/z = 

379 (M+); HRMS (APCI): calcd for C15H21Cl2N2O5 ([M+H]+) 379.0828; found. 379.0825. 

Data for 3i: 1H NMR (400 MHz, CDCl3) δ 

7.23-7.31 (m, 4H), 7.12-7.20 (m, 2H), 6.77-6.85 

(m, 2H), 5.25 (s, 1H), 5.08 (spt, J = 6.2 Hz, 1H), 

3.60 (dt, J = 9.3, 6.6 Hz, 1H), 1.52-1.66 (m, 9H), 

1.34-1.47 (m, 2H), 1.20 (d, J = 6.5 Hz, 6H), 0.93 

 

 

 



322 

 
(t, J = 7.8 Hz, 3H)  ppm; 13C NMR (100 MHz, CDCl3) 173.6, 154.9, 141.3, 135.4, 128.3, 

128.2, 127.7, 118.6, 102.8, 82.3, 78.9, 68.8, 65.0, 35.5, 31.9, 25.3, 21.4, 19.4, 18.0, 13.8 

ppm; GC-MS m/z = 418; HRMS (APCI): calcd for C24H31ClO4 ([M+H]+) 419.1989, found 

419.1991. 

Data for 3j: 1H NMR (400 MHz, 

CDCl3) δ 7.33-7.42 (m, 5H), 7.30 (d, J 

= 8.9 Hz, 2H), 6.90 (d, J = 7.8 Hz, 2H), 

6.69 (d, J = 7.24 Hz, 1H), 5.65 (d, J = 

6.7 Hz, 1H), 4.50-4.53 (m, 2H), 3.97 (br 

s, 1H), 3.83 (s, 3H), 3.75 (s, 3H), 3.39 

(tt, J = 11.0, 4.4 Hz, 1H), 2.30-2.42 (m, 

1H), 1.04-1.94 (m, 24H), 0.95-1.02 (m, 4H), 0.94 (s, 3H), 0.68 (s, 3H) ppm; 13C{1H} NMR 

(100 MHz, CDCl3) δ 172.8, 171.4, 158.8, 136.5, 131.0, 128.9, 128.8, 128.3, 127.1, 113.6, 

78.1, 72.9, 69.2, 56.12, 55.1, 52.6, 48.0, 46.9, 46.3, 41.9, 35.9, 35.1, 34.9, 34.3, 33.4, 33.0, 

32.8, 31.1, 28.5, 27.3, 27.1, 26.9, 25.9, 23.5, 23.1, 17.2, 12.6 ppm; HRMS (ESI): calcd for 

C41H57NO6 ([M+H]+) 660.4259, found 660.4262. 

Synthesis of Complex 9: In the glove box complex 1 (115 

mg, 0.2 mmol) was mixed with 1,1,1-tris(hydroxymethyl)ethane 

(24 mg, 0.2 mmol) in acetone (2 mL) solvent and stired 30 min at 

room temperature. Crystallization in acetone/n-pentane to obtain 

the complex as white crystals in 80% yield. 1H NMR (400 MHz, 

acetone-d6) δ 3.64 (m, 3H), 3.48-3.55 (m, 6H), 1.17-1.39 (m, 33H), 0.82 (s, 3H), -17.76 (d, 

JPH = 34.2 Hz, 1H)  ppm; 13C{1H} NMR (100 MHz, CDCl3) δ 216.1 (d, JCP = 18.3 Hz), 
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72.0, 65.7, 64.5, 37.5, 30.8, 30.1, 27.9, 27.8, 26.7 ppm; 31P NMR (100 MHz, CDCl3) δ 76.4 

ppm; IR (pure solid) vCO = 1915 cm-1. 

Synthesis of Complex 10: In the glove box complex 1 (50 

mg, 0.1 mmol) was dissolved acetone (1 mL) as solvent and stired 

10 min at room temperature. Crystallization in acetone/n-pentane 

to obtain the complex as yellow crystals in 80% yield. 1H NMR 

(400 MHz, acetone-d6) δ 4.48 (br.s, 2H), 2.63-2.74 (br.s, 12H), 1.17-1.39 (m, 33H), -17.51 

(d, JPH = 31.1 Hz, 1H) ppm; 31P NMR (100 MHz, CDCl3) δ 73.4 ppm. 

Synthesis of Complex 11: In the glove box complex 4 (50 

mg, 0.03 mmol) was dissolved dioxane (1 mL) as solvent and 

HBF4.Et2O (19 μL, 0.12 mmol) was added stired 3 h at room 

temperature. Crystallization in dioxane/n-pentane to obtain the 

complex as yellow crystals in 75 % yield. 1H NMR (400 MHz, 

CD2Cl2) δ 4.48 (br.s, 8H), 0.99-2.15 (m, 33H) ppm; 31P NMR 

(100 MHz, CDCl3) δ 55.09 ppm. 
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6.4.11 X-Ray Data: 

Table 6.13: Crystal data and structure refinement for 9. 

Identification code 9 

Empirical formula C27H52BO5F4PRu 

Formula weight 675.54 

Temperature/K 100.00(10) 

Crystal system monoclinic 

Space group I2/a 

a/Å 16.7775(4) 

b/Å 9.6540(2) 

c/Å 39.1720(11) 

α/° 90.00 

β/° 93.7(2) 

γ/° 90.00 

Volume/Å3 6334.4(3) 

Z 8 

ρcalcg/cm3 1.417 

μ/mm-1 4.975 

F(000) 2832.0 

Crystal size/mm3 0.3068 × 0.2254 × 0.0989 

Radiation CuKα (λ = 1.54184) 

2Θ range for data collection/° 9.04 to 149.48 

Index ranges -20 ≤ h ≤ 20, -11 ≤ k ≤ 11, -48 ≤ l ≤ 48 

Reflections collected 55980 

Independent reflections 6382 [Rint = 0.0867, Rsigma = 0.0312] 

Data/restraints/parameters 6382/0/372 

Goodness-of-fit on F2 1.320 

Final R indexes [I>=2σ (I)] R1 = 0.0927, wR2 = 0.2173 

Final R indexes [all data] R1 = 0.0933, wR2 = 0.2175 

Largest diff. peak/hole / e Å-3 2.01/-3.04 
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Table 6.14: Crystal data and structure refinement for 3e. 

Identification code 3e 

Empirical formula C27H38O3 

Formula weight 410.57 

Temperature/K 100.00(10) 

Crystal system triclinic 

Space group P1 

a/Å 7.0758(5) 

b/Å 9.5647(10) 

c/Å 10.1305(8) 

α/° 63.457(9) 

β/° 69.879(7) 

γ/° 82.885(7) 

Volume/Å3 575.55(8) 

Z 1 

ρcalcmg/mm3 1.185 

m/mm-1 0.585 

F(000) 224.0 

Crystal size/mm3 0.28 × 0.27 × 0.22 

Radiation CuKα (λ = 1.54184) 

2Θ range for data collection 10.32 to 147.22° 

Index ranges -8 ≤ h ≤ 8, -11 ≤ k ≤ 11, -12 ≤ l ≤ 12 

Reflections collected 9989 

Independent reflections 4060 [Rint = 0.0650, Rsigma = 0.0444] 

Data/restraints/parameters 4060/3/274 

Goodness-of-fit on F2 1.037 

Final R indexes [I>=2σ (I)] R1 = 0.0488, wR2 = 0.1352 

Final R indexes [all data] R1 = 0.0510, wR2 = 0.1389 

Largest diff. peak/hole / e Å-3 0.29/-0.23 

Flack parameter -0.1(2) 
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Table 6.15: Crystal data and structure refinement for 3f. 

Identification code 3f 

Empirical formula C29H40O3 

Formula weight 436.61 

Temperature/K 100.00(10) 

Crystal system trigonal 

Space group P32 

a/Å 13.48807(18) 

b/Å 13.48807(18) 

c/Å 11.6705(2) 

α/° 90.00 

β/° 90.00 

γ/° 120.00 

Volume/Å3 1838.73(5) 

Z 3 

ρcalcmg/mm3 1.183 

m/mm-1 0.578 

F(000) 714.0 

Crystal size/mm3 0.42 × 0.12 × 0.05 

Radiation CuKα (λ = 1.54184) 

2Θ range for data collection 7.56 to 147.18° 

Index ranges -16 ≤ h ≤ 16, -16 ≤ k ≤ 16, -10 ≤ l ≤ 14 

Reflections collected 11497 

Independent reflections 4347 [Rint = 0.0231, Rsigma = 0.0230] 

Data/restraints/parameters 4347/274/587 

Goodness-of-fit on F2 1.053 

Final R indexes [I>=2σ (I)] R1 = 0.0281, wR2 = 0.0734 

Final R indexes [all data] R1 = 0.0282, wR2 = 0.0736 

Largest diff. peak/hole / e Å-3 0.08/-0.10 

Flack parameter -0.09(18) 

 

 

 

 



327 

 

Table 6.16: Crystal data and structure refinement for 11. 

Identification code 11 

Empirical formula C23.78H49.78B2Cl2.34F8O7PRu 

Formula weight 836.39 

Temperature/K 99.8(5) 

Crystal system triclinic 

Space group P-1 

a/Å 9.5104(2) 

b/Å 13.8626(3) 

c/Å 14.6984(2) 

α/° 88.4724(15) 

β/° 86.0834(15) 

γ/° 70.824(2) 

Volume/Å3 1826.01(6) 

Z 2 

ρcalcg/cm3 1.521 

μ/mm-1 0.722 

F(000) 858.0 

Crystal size/mm3 0.3672 × 0.3351 × 0.131 

Radiation MoKα (λ = 0.71073) 

2Θ range for data collection/° 5.48 to 59.08 

Index ranges -13 ≤ h ≤ 12, -19 ≤ k ≤ 18, -20 ≤ l ≤ 20 

Reflections collected 40501 

Independent reflections 9261 [Rint = 0.0210, Rsigma = 0.0188] 

Data/restraints/parameters 9261/0/452 

Goodness-of-fit on F2 1.077 

Final R indexes [I>=2σ (I)] R1 = 0.0396, wR2 = 0.1113 

Final R indexes [all data] R1 = 0.0418, wR2 = 0.1129 

Largest diff. peak/hole / e Å-3 2.47/-0.90 
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Table 6.17: Crystal data and structure refinement for 10. 

Identification code 10 

Empirical formula C25H48BF4O4PRu 

Formula weight 631.48 

Temperature/K 99.9(2) 

Crystal system orthorhombic 

Space group Pbca 

a/Å 9.2302(3) 

b/Å 17.0701(4) 

c/Å 37.3811(10) 

α/° 90.00 

β/° 90.00 

γ/° 90.00 

Volume/Å3 5889.8(3) 

Z 8 

ρcalcg/cm3 1.424 

μ/mm-1 0.640 

F(000) 2640.0 

Crystal size/mm3 0.7044 × 0.0647 × 0.0498 

Radiation MoKα (λ = 0.71073) 

2Θ range for data collection/° 5.48 to 59.04 

Index ranges -10 ≤ h ≤ 11, -22 ≤ k ≤ 23, -47 ≤ l ≤ 48 

Reflections collected 66389 

Independent reflections 7652 [Rint = 0.0534, Rsigma = 0.0334] 

Data/restraints/parameters 7652/0/341 

Goodness-of-fit on F2 1.065 

Final R indexes [I>=2σ (I)] R1 = 0.0317, wR2 = 0.0664 

Final R indexes [all data] R1 = 0.0431, wR2 = 0.0725 

Largest diff. peak/hole / e Å-3 0.71/-0.58 
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