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ABSTRACT 

TARGETS IDENTIFICATION AND CHARACTERIZATION OF TRAMP 

COMPLEX IN MOUSE 

 

Fengchao Wang, B.S 

 

Marquette University, 2015 

 

 

RNA surveillance and degradation play an important role in the development and 

growth of organisms by eliminating RNA that contains errors, or that is no longer 

needed by the cell. In some processes, RNAs designated to be degraded are first 

labeled and then specifically recognized by the exosome, which performs the final 

degradation. One of the key labeling factors in yeast is the TRAMP complex, a 

three-subunit complex composed of Air2, Trf4 and Mtr4. Air2 facilitates TRAMP 

binding of RNA, Trf4 appends a 3′ end polyA tail and Mtr4 regulates the rate of 

adenylation and modifies RNA structures for ease of degradation through its RNA 

helicase activity. Though TRAMP has been studied extensively in yeast and its 

biochemistry and RNA recognition functions well delineated, the recent identification 

of TRAMP in mammals has made it possible for work to characterize mammalian 

TRAMP function in tissue culture cells.  

The mammalian transcriptome is much more complex and diverse compared to 

yeast in that a large portion is consisted of non-coding RNAs such as lncRNA, 

snoRNA, miRNA and so on. To understand the role of TRAMP complex in gene 

expression regulation, we knockdown the SKIV2L2 (mouse Mtr4) subunit and 

performed a polyA sequencing. With bioinformatics tools such as Bowtie, F-Seqq, 

MEDIPS, miRCompare, we constructed a data pipeline and identified several 

categories of targets including snoRNA, rRNA, miRNA and long-noncoding RNA in 

mouse cells. 

These data suggests that the targets of TRAMP are widely spread along the 

genome, and these targets involve a myriad of regulatory pathways. Understanding 

the relationship between the targets will help reveal the function and effect of this 

complex. Also, a more accurate and comprehensive target identification method 

remains to be developed.  
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I. Introduction 

A. TRAMP complex in yeast 

In the yeast Saccharomyces ceresvisiae, the Trf4/Air2p/Mtr4p polyadenylation 

complex (TRAMP) recognizes and targets a diverse set of RNAs for 

exosome-mediated RNA degradation or processing by appending a 3′ oligoadenylate 

tract [1-3]. TRAMP complex consists of the polyA polymerase, Trf4p, the 

zinc-knuckle domain protein, Air2, and the RNA-dependent ATPase, SKIV2L2p. 

Studies on Air2 show only two of its five zinc-knuckle domains are required for full 

TRAMP activity in vitro and in vivo [4], and this is likely because of a failure of 

Air2p to bind or position the RNA substrate so Trf4p can polymerize addition of the 3′ 

adenylate tract [4]. Trf4p/Pap2p is a nucleotidyltransferase with preference for 

polymerizing adenylates [5, 6], but it is unable to polyadenylate RNA substrates in the 

absence of Air2p [7, 8] which suggests Air2p might bind RNA substrates for Trf4p, 

which Trf4p needs given it has no recognizable RNA-binding domain like the 

canonical polyA polymerase, Pap1p [8]. After adenylation of RNA substrates by 

Trf4p, SKIV2L2p removes RNA secondary structure through ATP-hydrolysis and 

facilitates exosome degradation or processing by a yet unknown mechanism. Recent 

research suggests the exosome RNA binding protein complex Nrd1p/Nab3p/Sen1p 

(NNS) triggers transcription termination of RNA PolII and deliver the free 3’ end to 

TRAMP [9, 10]. 
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Mammalian cells are more complex and sophisticated than yeast in RNA types 

and regulation pathways [11]. Some non-coding RNA exist in mammalian cells but 

are not present in yeast, such as miRNA and some long non-coding RNA. The diverse 

cellular behavior like differentiation and apoptosis demand delicate control of RNA 

synthesis and decay. This complexity potentially requires additional functionality of 

the exosome as well as its targeting complexes. The function advancement in 

mammalian cells comes with changes in structure and composition compared to their 

yeast counterpart. The move of investigation from yeast to mammalian cells may 

reveal more targets of TRAMP and provide a broader and thorough insight into the 

function and mechanism of TRAMP-induced RNA degradation pathway. Elucidating 

the function of RNA degradation pathways may bring deeper understanding of critical 

pathologies. Investigating the targeting preference and pattern in mammalian cells 

may exert a great impact on disease diagnostics and treatment. It’s already known that 

the targets of yeast TRAMP include hypomodified pre-tRNA, aberrant 5SrRNA and 

7S pre 5.8S rRNAs, SRP RNAs and cryptic unstable transcripts (CUTs) (Allmang, 

Mitchell et al. 2000, Kadaba, Krueger et al. 2004, Wyers, Rougemaille et al. 2005). 

The increasing number and diversity of TRAMP RNA targets in yeast coupled with 

the pervasive transcription in mammals, underscores the importance of uncovering 

mouse SKIV2L2 (SKIV2L2) targets in mammals. 
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B. TRAMP in mammalian cells 

A TRAMP-like RNA degradation and processing complex has been identified 

and characterized in human. The composition of human TRAMP complexes (Lubas, 

Christensen et al. 2011) is similar to TRAMP complexes in yeast [12], and contains 

human Trf4p/5p homolog hTRF4-2, ZCCHC7 (Air1p/2p homolog) and SKIV2L2 

(Mtr4 homolog) [12]. Human SKIV2L2 is not limited to TRAMP but also have been 

found in novel Nuclear Exosome Targeting (NEXT) complexes [12]. NEXT works in 

parallel with TRAMP, but it appears a division of labor is accomplished by restricting 

NEXT to the nucleoplasm and TRAMP mostly in the nucleolus [12]. Recent research 

reported that NEXT complex is loaded to newly synthesized RNAs including 

snoRNAs via RBM7 and a cap-binding protein complex (CBP) [13].  

Non-coding RNAs, including small and long non-coding RNAs, account for a 

large portion of transcriptome (Mattick and Makunin 2006). It has been reported that 

98% of the genome output is ncRNAs, and almost all regions of a genome are 

expressed as non-coding RNAs resulting from what has been termed pervasive 

transcription (Huttenhofer, Schattner et al. 2005, Hangauer, Vaughn et al. 2013). 

Non-coding RNAs are being recognized important as more ncRNAs are directly 

implicated playing critical roles in various cellular pathways and processes. For 

example, miRNAs are involved in a series of developmental processes and function in 

regulating gene expression (PILLAI 2005). Long non-coding RNAs are linked to X 

chromosome inactivation, imprinting, and control of pluripotency (Wan and 
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Bartolomei 2008, Lee 2011). In addition, ncRNAs can serve in signal transduction, 

and structural scaffolding (Fatica and Bozzoni 2014). In spite of the undeniable 

importance of ncRNAs, the biogenesis, maturation, processing and degradation of 

most non-coding RNAs remains uncharacterized. 

On the other hand, dysfunction of exosome degradation pathway and abnormal 

targeting may cause serious diseases and disorder including cancer, neurological 

disorders and liver diseases [14-16]. For example, C-Myc is a cell proliferation and 

differentiation regulating protein that is also considered as an oncogene. The 

regulation of C-Myc is primarily through posttranscriptional RNA decay [17, 18]. 

Von Hippel-Lindau (VHL) tumor, a clear-cell renal carcinoma is caused by the 

dysregulation of VHL tumor suppressor which regulates the decay of a growth-factor 

encoding transcript. 

C. rRNA processing and maturation 

Ribosomal RNA is a critical component of ribosome, and is required for protein 

synthesis. Eukaryotic ribosome composes of three rRNAs: 18S, 5.8S and 28S. These 

rRNAs are produced form the 45kb rRNA complete repeat sequence that is distributed 

across the genome. Biogenesis of rRNA is a lengthy and diverged process that 

requires the participation of a series of endoribonucleases and exoribonucleases as 

well as some long and small non-coding RNAs [19]. In general, 10 cleavage events 

occurs during the maturation process (Fig.I-1). The 5′ external transcribed spacer 
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(ETS) have two cleavage events. One at 600bp from the 5′ end, named A′, the primary 

cleavage. Another at 1600bp downstream from the 5′ end, named A0. This cleavage is 

critical for the maturation of 18S rRNA. The processing event produces the 5′-A′ and 

A′-A0 fragments which are both degraded rapidly by exosome [20, 21]. The 

maturation of 5.8S rRNA happens after the cleavage of A0. Two forms of cleavage 

occurs at the 5′ of 5.8S rRNA: one cleaves the complete internal transcribed spacer 1 

(ITS1) (short form) and another leave a trunk of nucleotides at the 5′ end (long form). 

After this, the cleavage in ITS2 produces the pre-28S rRNA and 12S (7S in yeast) 

rRNA, the precursor of 5.8S, with an extended 3’ tail. This tail is trimmed by 

exosome in yeast to form the mature 5.8S rRNA. [22] 

 

Figure I-1 Structure of rRNA gene and clevage events of eukaryotic rRNA maturation 

pathway. Arrows indicate cleavage sites. Picture from [19] 

Our lab has reported that the 5′ ETS of 45s rRNA has been targeted by the mouse 

SKIV2L2 subunit [23]. Based on the role that TRAMP promotes the maturation of 

5.8S rRNA in yeast [24], it is reasonable to speculate that TRAMP plays a more 

pervasive role in addition to the processing of 5′ ETS fragments. The maturation of 
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5.8S rRNA involves the cleavage at the 5′ end which splits it from the 18S rRNA, and 

the cleavage at the 3′ end that forms the 7S rRNA (precursor 5.8S). TRAMP is 

required for the removal of the 3′ end of the 7S rRNA that forms the matura 5.8S 

rRNA in yeast.[20, 24, 25]. The maturation process is elusive and requires 

exploration. 

D. miRNA processing and maturation 

 miRNA is a small non-coding RNA that is involved in expression regulation 

and gene silencing. miRNA biogenesis have two intermediates: pri-miRNA and 

pre-miRNA. The miRNA primary transcript forms a stem-loop structure. In the first 

step, the Drosha clevaes the 5′and 3′end of precursor hairpin miRNA (pri-miRNA), 

and produces the pre-miRNA (Fig. I-2). The pre-miRNA are processed by Dicer and 

then forms RISC to degrade and silence mRNAs [26-28]. It is believed that the 5’ and 

3’ fragments after Drosha cleavage have been degraded. How and where are they 

degraded remain elusive.  
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Figure I-2. Maturation process of miRNA. Picture from [26] 

Transcription in the mouse is comparable to other mammals and is known to be 

quite pervasive, highlighting the need to eliminate processing byproducts, aberrant 

RNAs and RNAs with no functional significance. The human NEXT complex 

facilitates degradation of a class of antisense promoter-associated transcripts termed 

PROMPTS that may inhibit normal transcription of the cognate gene if allowed to 

accumulate [12]. Proteomic and protein interactome studies have shown that 

hSKIV2L2 copurifies with ARS2, a protein that is linked to miRNA biogenesis 

(Lubas, Christensen et al. 2011). This observation suggests a potential role of 

TRAMP in miRNA biogenesis.  
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E. snoRNA processing and maturation 

Small nucleolar RNA (snoRNA) is a category of small RNA that participates 

rRNA, snRNA and tRNA modification and processing [29-32]. snoRNA can be 

categorized into two groups: C/D Box and H/ACA Box snoRNA according to their 

unique sequence motif. The C/D box snoRNA is related to methylation while H/ACA 

box to pseudouridylation [33, 34]. In general, snoRNA forms snoRNP with 

associating proteins, and its special sequence guided itself to the target rRNA for 

modification. Each snoRNA/snoRNP has its own modification location and type [35]. 

For example, snoRNA U3 functions in the preribosomal RNA processing, specifically 

the 5’ ETS [36]. In mammalian cells, snoRNA reside in introns of coding and 

non-coding genes [37], and is released via splicing events [38]. 

It is intriguing to unveil the role TRAMP played in mammalian cells. This thesis 

addressed the following questions and tasks: 

1. Evaluate the degradation effect of SKIV2L2 on coding genes. 

2. Identify targets of SKIV2L2 

3. Understand the behavior and mechanism of SKIV2L2-mediated RNA 

surveillance in mammalian cells.  
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II. Results 

A. PolyA sequencing information and internal (A) filtration 

The increasing understanding that ncRNA have functions in regulating gene 

expression on a micro and macro genomic scale underscores the need to fully 

understand the steady-state expression of ncRNAs. The establishment of TRAMP in 

targeting a wide variety of RNAs in yeast and mammals, prompted us to interrogate 

the mouse transcriptome for changes in polyadenylated RNA levels after depleting the 

TRAMP subunit, SKIV2L2. We used poly-A Seq, a derivative of RNA-Seq, to 

address the question of how depletion of SKIV2L2 from mouse cell lines affects RNA 

degradation and processing by identifying polyA+ RNAs that accumulate upon 

SKIV2L2 depletion. The library was constructed as described [39] and paired-end 

sequencing using an Illumina Hi-Seq 2000 platform was performed. RNA fragmented 

to ~200bp were reverse transcribed using an special oligo-d(T) primer generating 

cDNAs bearing bar-coded sequences for identification of the 3′ and 5′ ends. cDNA 

sequencing reads from N2A cells (75%) depleted of SKIV2L2 were digitalized and 

stored in text files as raw reads, which contains the read quality score and the 

sequence for each read. Bowtie2 was used to map the raw reads to genomic position 

in the UCSC mm10 mouse genome assembly [40]. A total of two sequencing runs 

were done independently, and throughout this thesis they are called original and 
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replicate or sample 1 or 2. All samples were mapped with an 80% or greater mapping 

rate. The mapping information of the four samples is shown in Table II-1. 

 Control1 Control2 SKIV2L21 SKIV2L22 

Total Reads 18,248,934  32,697,560  15,990,484  30,270,156  

Mapped Reads 15,318,665  27,516,039  11,567,908  25,526,134  

Mapping Rate 0.84  0.84  0.72  0.84  

5′ Reads 7,882,519  13,916,229  5,827,590  12,972,682  

3′ Reads 7,436,146  13,599,810  5,740,318  12,553,452  

Table II-1 Summary of read number and mapping rate. Four samples were sequenced 

and the sample name consists the sample type and batch. The original sequencing 

batch have roughly half sequencing depth compared to the second batch. There out of 

four samples have the mapping rate at 84% except for SKIV2L21. Number of 5′ reads 

are slightly greater than that of 3′ reads in all samples. 

We used Oligo-d(T) to select and reverse transcribe RNAs that have a 

polyadenylated tail. While cleaning the mapped data to remove duplicate reads, a 

random sample of reads mapping to introns were visualized at the nucleotide level. It 

was discovered that distributed across the genome there are reads in the library with 3′ 

ends that represent genomically encoded oligo-A tracts that do not reflect bonafide 

posttranscriptional polyadenylation. Instead of eliminating these transcripts 

experimentally, we designed a read quality assurance program to address this problem 

in a more efficient and computationally economical way. Every 3′ end read was 

searched for the presence of either 5 contiguous adenosines, or 15 adenosine 

interspersed upstream or downstream within 20 nucleotides of the first nucleotide of 
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the 3′ read. If the sequence reveals either of these criteria, the read was removed from 

further analyses. On average, 18.2% of the 3′ reads were identified as internally 

primed, which if left in during analysis would have reported a significant number of 

false positives. 

B. Mouse SKIV2L2 knockdown does not result in the accumulation of protein 

coding mRNAs 

The role SKIV2L2 plays in mouse RNA surveillance is predictable but was to an 

extent unconfirmed. A series of papers have been published on yeast TRAMP and 

SKIV2L2 (yeast SKIV2L2) substrates and biochemical function [3, 7, 41], and a few 

papers on how human SKIV2L2 impacts RNA turnover [12]. We fully expected to 

find that SKIV2L2 is required for RNA turnover in mouse, but the limited targets so 

far reported is much smaller than would be predicted. Interestingly, research in fungi 

and mammals has been suggestive that there are both common RNA substrates 

between these diverse eukaryotes, as well as substrates unique to each. As the first 

step toward data analysis, we collected reads at the 3′ end of each RefSeq coding 

genes and compared the number of reads each pair of control experimental samples to 

understand the effect SKIV2L2 exerts on protein coding genes.  

The ~85% depletion of Skiv2l2 in N2A cells was confirmed by q-RT PCR and 

western blotting [26]. Considering the limited role of TRAMP in mediating mRNA 

processing and degradation [42], a prediction was tested that the number of 

sequencing reads from the annotated 3′ end of protein coding genes would not change 
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between control knockdown and SKIV2L2 knockdown. The initial analysis of 

SKIV2L2 knockdown was focused on identification and characterization of all 

mRNAs that accumulate upon depletion of SKIV2L2 relative to a control knockdown. 

We designed a data pipeline that transform the read count data to address this question. 

An overview of the analysis workflow is shown in Fig. II-1: 
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Figure II-1 Overview of the workflow of differential polyadenylation analysis. 

Analysis steps are represented by rectangles with the step name inside. Arrows 

indicates the analysis sequence. Samples were first knockdown by siRNA, and the 

sequencing library were constructed. PolyA-Seq, polyadenylation sequencing were 

conducted to sequence transcripts with a polyA tail. The result were mapped to UCSC 

mm10 genome assembly. Due to the aberrant annealing of oligo d(T) primers, some 

sequencing artifact   were removed from the results. The sequencing reads were 

mapped to coding Refseq genes based on the genomic location. Identical procedures 

were used to process all the samples before normalizing with FPKM method and 

comparison between same Refseq entries. Data was visualized in histogram and subject 

to further analysis by MEDIPS and miRCompare (discussed below).  
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Control and SKIV2L2 knockdown from replicate sequencing were used to compute 

the number of reads at each genomic location. The polyadenylation level at each 

nucleotide across the genome was calculated by counting the number of reads that 

ends at that location, then all data normalized to allow direct comparisons of read 

abundance between samples. To normalize the number of reads at each nucleotide of 

all samples, fragments per kilobase per million mapped reads (FPKM) was calculated 

as described [43].  

To compare the read abundance of each sample to the protein-coding RefSeq 

gene annotations, first, reads at the 3′ annotated end of each RefSeq protein coding 

gene were collected. Taking into account the mapping accuracy of Refseq annotation 

and the resolution of polyA-seq, it was decided to collect all reads 50bp 

up/downstream of the 3′ end of the transcript. This is a lenient range since the target 

transcript is supposed to reside right at the 3′ end with only a few nucleotides offset. 

This setting tolerates the inaccurate mapping and ensured all the potential reads for a 

given RefSeq would be counted. A script (shown in supplementary data) was written 

to transform the primitive RefSeq data to the customized RefSeq data containing the 

101 base pair search window. The Galaxy bioinformatics platform was deployed for 

joining the coding Refseq genes into sample sequencing reads [44]. The ratio of 

SKIV2L2 replicate knockdown read count to that of control was calculated using the 

formula below to indicate the difference between the replicate control and SKIV2L2 

knockdown samples (Control knockdown replicate and SKIL2L2 knockdown 

replicate): 
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f(i)=log2(SKIV2L2(i)/control(i)) i=RefSeq genes 

Based on the transformed differential polyA reads value, a histogram graph was 

plotted to demonstrate the trend of change (Figure II-2) 
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Figure II-2 Fold change distribution of coding RefSeq genes for SKIV2L2 knockdown. 

X-axis represent fold change in base 2 logarithm. The bin size is 0.4, the number below each 

bar shows the median of the bin. 0 means SKIV2L2 and control have equal level of 

polyadenylation. Positive value indicates SKIV2L2 is higher than control. Negative value 

indicates control over SKIV2L2. Value 2 means 4 times fold change. Y-axis denotes the 

number of RefSeq genes. 
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The fold change distribution of the RefSeq genes roughly follows normal 

distribution, only slightly biased toward SKIV2L2 knockdown, suggesting that 

knockdown of SKIV2L2 does not dramatically affect mRNA levels that are subject to 

polyadenylation by the canonical polyadenylation machinery. We cannot rule out that 

this slightly biased shift toward an increase/decrease in gene expression found in N2A 

cells depleted of SKIV2L2 may have indicate changes in gene expression that are 

dependent upon either degradation of an RNA that influences mRNA expression, or a 

failure to participate in the turnover of a small subset of mRNAs. 

C. SKIV2L2 subunit targets a wider range of ncRNAs than in yeast 

In the previous section, we performed a genome wide analysis to evaluate the 

effect of SKIV2L2 knockdown on ncRNA abundance. This analysis requires 

annotation and only showed a highly extracted summary of the sequencing data. To 

probe deeper and gain a more detailed picture of regions across the genome that 

exhibit differential RNA expression it was decided to perform an annotation 

independent analysis to highlight all regions of the genome. After evaluating various 

free toolkits such as Cufflinks, Crossbow, EdgeR, DESeq and MEDIPS, it was 

decided to proceed with MEDIPS for its high-performance and ease of operation.  

We further performed genome-wide differential polyadenylation profiling with 

MEDIPS to identify genomic regions that show a statistically significant increase in 

the accumulation of reads across the genome. MEDIPS is a statistical analysis tool 
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designed for Chip-Seq analysis and can be used for identifying differential gene 

expression [45]. For each sample, the genome was divided into a series of 100 bp 

regions, and the number of reads were counted within each region of the genome. A 

statistical calculation was performed for each defined region to identify those regions 

that show differences in RNA abundance between the control and SKIV2L2 

knockdown. All four samples (Control Knockdown original and replicate, SKIV2L2 

knockdown original and replicate) were used to increase statistical confidence. 

Parameters were set to default unless otherwise noted. With the 100bp window and a 

90% probablility (P<= 0.1), we identified eleven genomic regions that exhibited 

statistically significant increases in the abundance of reads in SKIV2L2 knockdown 

when compared to the Control knockdown. The result of MEDIPS analysis is listed in 

table II-2: 

Regions that have more reads in SKIV2L2 knockdown 

Gene symbol Location Adjusted 

p-value 

Type 

Gas5 chr1:161033166-161040537 0.0592 lncRNA 

Vgf chr5:137032601-137032700 0.0031 mRNA 

Rpsa chr9:120129101-120129200 0.0123 mRNA 

Mir-138-1 chr9:122682701-122682800 0.0512 miRNA 

Unannotated chr10:7977001-7977100 0.0023 NA 

Tex14 (U3) chr11:87443601-87443700 0.0382 snoRNA 

Mir-17 chr14:115043414-115043783 0.0059 miRNA 

Unannotated chr15:85702925-85703233 0.0640 NA 

let7c-2 chr15:85706501-85706600 0.0015 miRNA 

let7-b  chr15:85707201-85707300 0.0088 miRNA 

Rn45s chr17:39843001-39843100 0.0008 rRNA 

Table II-2 Result of MEDIPS analysis on Skiv2l2KD’s differential polyadenylated regions 

of MEDIPS analysis. The MEDIPS reported 11 genes (regions) as significant under 0.1 

false discovery rate. 
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One prominent target in the list is Growth Arrest-Specific 5 (GAS5) gene at 

chr1:161033166-161040537 with p-value 0.0592 encompassing two positions from 

this gene (Fig. II-3). One of the peaks is located at the 3′ end of the Gas5 full 

transcript (Fig. II-3). The 3′ end of sequencing reads aligns neatly to the last 

nucleotide of the Gas5 transcript, suggesting that these reads may represent a 

processed fragment at the 3′ end of the transcript destined for degradation, or more 

likely this accumulation of reads in both samples represent the full length transcript of 

Gas5 that has been polyadenylated by the canonical polyA polymerase Pap1p. The 

abundance of reads in the two samples from this region is 855 Control knockdown, 

584 SKIV2L2 knockdown, higher than overall genomic level. The Control replicate 

sample have 855 reads, higher than the SKIV2L22 which have 584. This difference is 

unconventional since most transcripts affected by SKIV2L2 knockdown accumulates 

in SKIV2L2 knockdown sample, not in Control. In spite of this, the analysis provides 

us insight into the expression level of this Gas5 gene, and that SKIV2L2 controls the 

level of Gas5 transcript. Gas5 is a long-noncoding RNA that accumulates in cell 

growth arrest and plays a role in apoptosis and prostate cancer [46, 47]. It is also 

known as a host gene for several snoRNAs that reside in 9 out of the 12 introns (U47, 

U74, U75, U76, U77, U78, U79, U80 and U81) [48]. The second differential peak of 

reads is located at 580bp downstream of the annotated Gas5 transcription start site 

(chr1:161,035,750), which is the 3′ end of the first intron that hosts the putative 

snoRNA U74 (Fig. II-4). In SKIV2L22 sample, the majority of reads aligns to the 

intron end, and the rest aligns upstream by 1 to 30 nucleotides. The length of the read 
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pairs range from 100 to 300 bp, covering from the 3′ end of the intron to two third of 

the intron (Fig. II-5). The putative snoRNA is within the range of most of the reads in 

SKIV2L22 sample. This is a strong evidence suggesting that these reads comes from 

cleaved introns, rather than the snoRNA processing by-product. The SKIV2L2 

knockdown 2 has 45 reads that is much greater than 1 read in Control knockdown2 

sample. The difference in read abundance indicates that SKIV2L2 efficiently 

degrades this Gas5-derived transcript. The distribution and abundance information 

implies the regulation function of SKIV2L2 on snoRNA maturation and processing. 

 

Figure II-3 The location and abundance of the two peaks found in Gas5. Top track: 

Control knockdown replicate. Bottom track: SKIV2L2 knockdown. The peak at the 

end of Gas5 transcript (Referred as “first peak”) have high expression abundance. The 

peak at the end of the first intron is relatively lower and less consistent in its location. 

This peak also showed a greater abundance in SKIV2L2 knockdown compared to 

control knockdown.  

Peak near intron 

Peak at the end 
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Fig. II-4 Location and abundance of the two peaks found in Gas5. Top track: Control 

knockdown replicate. Bottom track: SKIV2L2 knockdown. The peak is located at the 

end of 1st intron (as shown by the arrow). Large amounts of reads accumulates in 

SKIV2L2 knockdown compared to control. 

  

End of intron 
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Fig. II-5 Location and abundance of the two peaks found in Gas5. Top track: Control 

knockdown replicate. Bottom track: SKIV2L2 knockdown. Second Peak have slightly 

greater reads in Control knockdown. All 3′ reads consistently aligned to the end of the 

Gas5 transcript. 

  



22 

 

Similar pattern is also found in RPSA gene. We identified differential 

polyadenylation peaks at the end of the second intron in RPSA gene (Fig. II-6). RPSA 

is a ribosomal protein coding gene whose product is involved in the assembly of the 

40S ribosomal subunit, and in the maturation of the 20S rRNA precursor [49]. RPSA 

also works as a cell surface receptor for laminin, functions in cell adhesion and signal 

transduction [49]. The peak of different abundance locates at the end of the second 

intron (chr9:120,129,151) with the ratio of 1: 20 (Control knockdown: SKIV2L2 

knockdown). All of the reads in this peak aligned to the 3′ end of intron 2, and the 

read pairs ranged from 100 to 250 bp, coverd upstream up to 300 bp from this point 

(Fig. II-7). This intron contained snoRNA6 in human and was predicted to contain its 

homolog in mouse [50, 51]. As in Gas5, the location and abundance of reads suggests 

that SKIV2L2 is involved in the metabolism of snoRNA, or at least the degradation of 

processing by-product. The next peak resides within the third intron 

(chr9:120,129,553), coincidentally have the same coordinate with the putative 

snoRNA 73 (Fig. II-8). The read abundance in SKIV2L2 knockdown is slightly 

greater than Control. It is difficult to determine whether this difference is caused by 

SKIV2L2’s regulation or just expression fluctuation by itself. However when taking 

other snoRNA spots into consideration, this event is possibly caused by SKIV2L2 

knockdown. The third peak is located within the fifth intron (chr9:120,130,566), at the 

3′ end of snora62 (chr9:120,130,572) (Fig. VI-7). Though statistically this peak is not 

considered different, based on the distribution of reads it is safe to consider it as ‘real’ 

and can still provide some insight into the processing events in this intron. The 
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SKIV2L2 knockdown sample have 6 reads while the Control knockdown have 0, 

suggests that the snoRNA62 is very likely to be a target of SKIV2L2.  
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Figure II-6 Overall view polyadenylation status of RPSA. Top figure: Sequencing 

read view; Bottom figure: read density view. In both view, the top track shows control 

knockdown, the bottom track shows SKIV2L2 knockdown. This convention applies 

to all figures in this article. Three major peaks were found in RpsA gene.  
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Figure II-7 Differential reads found at the second intron of RPSA, this intron contains 

putative snoRNA6. Reads accumulates in SKIV2L2 knockdown significantly. The red 

circle indicates the differential snoRNA6 hosting intron.   
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Figure II-8 Reads near snoRNA73. The polyadenylation level is relatively low in both 

samples, but traces of reads can still be detected at the snoRNA73 and the SKIV2L2 

knockdown had more reads than control knockdown. 

  

snoRNA 73 
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Figure II-9 Reads near snoRNA 62. Similar to snoRNA73, read abundance is low in 

SKIV2L2 knockdown and no reads had been found in control.   

snoRNA 62 
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Another identified snoRNA-containing target was Tex14 (Testis Expressed 14) 

(Fig II-10). Tex14 is required for spermatogenesis, and more importantly is the host 

gene of snoRNA U3. The identified region (chr11:87443601-87443700) had 0 read 

pairs in Control knockdown and 3 read pairs in SKIV2L2 knockdown. The identity of 

this transcript remains unclear due to limited annotation. We previously reported that 

snoRNA U3 is processed by SKIV2L2 in mammalian cells [26]. This analysis 

confirmed our discovery and brought in more information on SKIV2L2 and snoRNA. 

All three copies of U3 snoRNA that reside in Tex14 (chr11:87462286-87462500, 

chr11:87471368-87471582, chr11:96032678-96032892) have been found in our 

sample (Fig. II-11, 12, 13). The first two share similar patterns of read distribution 

and abundance. All the 3′ end of 3′ reads align exactly to the 3′ end of U3, and the 5′ 

read pair have a varying location from 40 to 200 upstream of the 3′ end. The longest 

read pair fits to the full length of U3 snoRNA (Fig II-11). In both loci, the SKIV2L2 

knockdown have slightly greater abundance than Control knockdown. The third locus 

is different in that the read is not paired, but only have the 5′ piece. Even though, the 

SKIV2L2 knockdown still have more reads in the third locus. We believe that these 

U3 spots as valid SKIV2L2 target because of the read distribution pattern and 

experiment verification. More importantly, the U3 snoRNA read distribution pattern 

serves as a model for identifying other snoRNAs that are processed by SKIV2L2.  

 

http://genome.ucsc.edu/cgi-bin/hgTracks?position=chr11:87471368-87471582&hgsid=406998835_lVXqCoa1KaBpMOlGfhLajgex1Nh5&wgEncodeGencodeCompVM2=pack&wgEncodeGencodeCompVM2_sel=1&wgEncodeGencodeVM2ViewGenes_sel=1&hgFind.matches=U3,
http://genome.ucsc.edu/cgi-bin/hgTracks?position=chr11:96032678-96032892&hgsid=406998835_lVXqCoa1KaBpMOlGfhLajgex1Nh5&wgEncodeGencodeCompVM2=pack&wgEncodeGencodeCompVM2_sel=1&wgEncodeGencodeVM2ViewGenes_sel=1&hgFind.matches=U3,
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Figure II-10 Global overview of Tex14 gene. This gene is 14kb long that the browser 

can barely display its full length. 8 peaks were found in Tex14 and most of them have 

equal abundance. Tex14 also hosts 3 copies of the snoRNA U3.  
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Figure II-11 The first U3 copy have rich expression and different abundance. The 

number of reads in control knockdown is less than SKIV2L2 knockdown. The bottom 

density graph showed a similar density due to different scale (see upper left corner of 

each lane).  
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Figure II-12 The first U3 copy have rich expression and different abundance. The 

number of reads in control knockdown is less than SKIV2L2 knockdown. 
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Figure II-13 The third copy of U3 are poorly expressed compared to other U3 copies 

in Tex14. This U3 copy showed a different polyadenylation pattern compared to 

others.  
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Several miRNAs were found as target in MEDIPS analysis. miR-138-1, mir-17, 

let7c-2 and let7b were identified as differentially polyadenylated with high confident 

level (Fig VI-11, 12, 13, 14). These miRNAs roughly shared a similar reads 

distribution and abundance pattern. The 3′end of 3′ read pair aligned consistently to 

the nucleotide 20bp downstream of the pre-miRNA’s 5′ end, which is the Drosha 

cleavage site. The SKIV2L2 knockdown sample had greater number of reads than 

Control knockdown. These two patterns were found in all four miRNAs, which 

inspiered us to conduct further investigation on whether all miRNA’s 5′ leader 

sequence is targeted by SKIV2L2.  
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Figure II-13 Read distribution and abundance near mir-138-1. From left to right, the 

first group of reads represent the 5′ leader sequence of miR-138. The second group 

represent the end of the host transcript. Large amount of reads accumulate in 

SKIV2L2 knockdown at the Drosha cleavage site.  

Cleavage site 
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Figure II-14 Read distribution and abundance near mir-17, which have a typical read 

distribution of a SKIV2L2 mediated miRNA. The Drosha accumulation is shown at 

the center of the view as pointed.  

Cleavage site 
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Figure II-15 Read distribution and abundance near let7c-2. This miRNA demonstrated 

a similar pattern to miR-138. 5’ leader sequence was found for this miRNA.  

Cleavage site 
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Figure II-16 Read distribution and abundance near let7b. This miRNA demonstrated a 

similar pattern to miR-138. 5’ leader sequence was found for this miRNA.  

Clevage site 
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A special target is RN45S gene, a copy of the ribosomal DNA. There are 30 to 

40 copies of rDNA spreading along the genome, and the RN45S gene is a 

representation of this rDNA gene in mm10 assembly. Also because of duplication, all 

RN45S rRNA was mapped to this single loci, producing a very high expression level 

and density (Fig. II-17). It’s hard to interpret the read distribution and abundance by 

just reading the highly intensive alignment graph. To address this, we introduced a 

density estimation tool, F-seq, to extract and summarize this data for easier 

interpretation and analysis (Figure II-17) .   
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Figure II-17 Read distribution and abundance near RN45S. This graph shows all the 

rRNA reads that mapped to RN45s. Due to the high copy number the read looks very 

dense and is unreadable. The bottom density graph showed a summarized view.  
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Lastly, we found differential peaks in VGF gene (chr5:137032601-137032700). 

Nerve growth factor inducible (VGF) is a pro-protein from which a few neuropeptides 

are derived from that regulate energy homeostasis and nutrition [52]. PolyA RNAs 

were identified near the annotated transcript 3′-end as well as in the last of total 8 

exons. The amount of pA-seq reads at or near the 3′end of the transcript did not vary 

significantly between control and SKIV2L2 knockdown, suggesting that the primary 

transcript of VGF is not affected by SKIV2L2 knockdown. The differential 

polyadenylated cluster lay in the middle of the transcript, at an exon. As with other 

two loci, it is unclear that what kind of transcript it represents, and what role 

SKIV2L2 plays in regulating this transcript. 

MEDIPS profiling analysis revealed the complexity and variety of SKIV2L2’s 

targets. mRNA, miRNA, snoRNA, rRNA and their processing derivatives were found 

to be processed or degraded by SKIV2L2. The diversified read-pair distribution in 

differential polyadenylated loci implied the different mechanism with which 

SKIV2L2 participates these processing events. This analysis provides us a high-level 

glimpse of the data and pointed out the most critical spots that needs attention. 

D.Ribosomal RNA is subject to processing by mTRAMP 

In MEDIPS analysis, the 45S Ribosomal RNA transcript region was identified as 

a target of SKIV2L2. A fine mapping is needed to articulate the processing events of 

the 45S rRNA and the role SKIV2L2 played in these processes. The 14kb rRNA 
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primary transcript sequence serves as a genome assembly, and then the polyA-Seq 

data was mapped against it. Due to the high copy number of rRNA, the number of 

reads in this region was too high and covers every region of the rRNA primary 

transcript. A peak-calling step is required to summarize the reads abundance 

information to the intensity of polyadenylation signals. 

We used F-Seq as an abundance density estimator to summarize the 

high-intensity data and generated a polyadenylation signal intensity graph (Fig. II-18).   
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Figure II-18 Polyadenylation peaks in primary rRNA region. Reads inside the rRNA 

regions were removed. Blue indicates Control. Red, Skiv2l2 knockdown. Height of 

peaks reflect the polyadenylation intensity. The peak in 5’ external transcribed spacer 

had a huge peak at 1600bp. This suggests that SKIV2L2 is responsible for the processin 

g of the A’-A0 fragment. The one at the internal transcribed spacer is the intermediate of 

5.8S rRNA called 12S rRNA. The processing of 12S was blocked by the SKIV2L2 

knockdown and caused the accumulation of 12S. 



43 

 

Seven strong polyadenylation peaks were found in primary rRNA transcript. The 

one in the 5′ ETS is located at about 1600bp from the 5′ end, and the abundance in 

SKIV2L2 knockdown is almost five times greater than control. The location of this 

peak matches the A0 cleavage site that is critical to 18S rRNA maturation. This 

cleavage follows the primary cleavage at A’ site and produces an A’-A0 fragment 

[20]. The polyA-Seq data strongly suggests that this fragment was a substrate of 

SKIV2L2.  

The second peak appears right after the 18S rRNA. The SKIV2L2 knockdown 

and control have similar amount of polyadenylation signal. It has been reported that 

mammalian ribosomal RNAs are pervasively polyadenylated especially at the 3′ end 

of the 18S rRNA[53]. This indicates that aberrant 18S rRNA go through a degradation 

pathway independent of mTRAMP. 

Several broad and intense peaks clustered in the internal transcribed spacer 1 

(ITS1), and the intensity equals between SKIV2L2 knockdown and control. Its 

already known that at least four cleavage events happens in ITS1 region, including the 

cleavage at the 3′ end of 18S and 5′ end of 5.8S rRNA [25, 54]. It seems that these 

cleavage fragments are polyadenylated and then degraded by a non-mTRAMP 

pathway. Theoretically, only two cleavage peaks should be identified within ITS1 

region, while the data demonstrates a continuous polyadenylation ‘band’. One 

possibility is that nascent ITS1 fragments are first degraded by 3′-5′ exonuclease until 

a dimensional structure prevents the proceeding of the exonuclease. The degradation 
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pause causes the polyadenylation of these fragments and finally degraded by an 

alternative pathway. 

Two peaks were found in ITS2 region. The one immediately adjacent to the 3′ 

end of 5.8S rRNA has a huge peak in control compared to SKIV2L2 knockdown, 

while the one close to the 5′ end of 28S rRNA have a greater peak in SKIV2L2 

knockdown. The location of the second peak is close to the cleavage site called 4b, 

which is required for 5.8S rRNA maturation. The 4b cleavage produces a 12S rRNA 

that is the precursor 5.8s rRNA except a tail at the 3′ end [20]. It is likely that the 

removal of the 3′ tail requires the mTRAMP. The SKIV2L2 knockdown caused 

accumulation of polyadenylated 12S rRNA, which could not be processed to mature 

5.8S rRNA. The 5.8S rRNA is subsequently decreased in SKIV2L2 knockdown. 

Two peaks were found in the 3′ ETS. The first one appears immediately after the 

28S rRNA end, and the other in the middle of the 3′ ETS. Both have a stronger signal 

in SKIV2L2 knockdown. It was reported that 28S rRNA went through some 

polyadenylation at the 3′ end, as well as in the transcript body. The stronger signal in 

SKIV2L2 knockdown implies that the degradation of the 28S rRNA is subject to 

TRAMP pathway. Not much is known about the 3′ETS processing, and the signal in 

the middle of this region strongly suggesting an unknown cleavage event happens in 

3′ETS. 

An internal-A priming peak at the 5′ ETS drew us attention. This peak stem from 

the negative strand and have almost equal abundance in Control2 and SKIV2L22. 
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This implied transcription activities presents in this area on the negative strand, and 

the equal abundance excludes SKIV2L2’s role in regulating this transcript.  

 

Figure II-19 Peaks in 5′ ETS due to internal-A priming. The red stretch in sequence 

indicates continuous, repetitive adenosine at the 5′ ETS, causing oligodT priming and 

result in the reads at the location. 

E. 5′ leader sequence of miRNA is a common target of mTRAMP 

Several miRNA-derived transcripts were identified in MEDIPS analysis as well 

as in our previous publication[26]. The frequent appearance of miRNA and its 

derivatives in SKIV2L2 target list prompted us to investigate whether they constitute 

a target category. The high affinity between SKIV2L2 and ARS2, a RNA cap-binding 

complex that is involved in miRNA biogenesis, further directed us to explore the 

regulation function of SKIV2L2 on miRNAs. To understand whether there miRNAs 

Internal A-derived peak 

Internal A 
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are just rare cases or miRNA 5′ leader sequence are pervasively subject to TRAMP 

processing, we designed miRCompare, a read abundance calculation and feature 

identification tool to compare the read abundance of miRNA related regions. 

3′ sequencing reads within 20bps flanking the Drosha cleavage site were counted, 

and the distance between cleavage site and 3′ read end was calculated. The output was 

shown in table A-1. 

Of all 859 miRNAs that were analyzed, 59 were found to have at least one read 

in either of the two samples and 54 were found to have a greater number of reads in 

SKIV2L2 knockdown than Control. The distance between cleavage site and 3′ of 

reads are very close, usually within 2 nucleotides, confirming the mapping accuracy 

of these reads. The result was achieved by directly comparing the raw reads since the 

mapping rate of the control and SKIV2L2 is almost identical (84%). Direct 

comparison could prevent bias from FPKM normalization. A large portion of miRNA 

in the result list have only 1 or 2 reads due to inadequate sequencing depth. Though 

statistically insignificant, they are ‘real’ cleavage products when taking the distance in 

to consideration. All the reads consistently aligns to the Drosha cleavage site (shown 

in the distance column), which indirectly implies that these reads are the 5′ leader 

sequencing of miRNA. It very unlikely that they were just random transcription 

‘noises’. This massive miRNA profiling provides evidence that SKIV2L2 is involved 

in degrading the 5′ leader sequence. 
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We also observed higher read abundance at the end of mir-322 in SKIV2L2 

knockdown. Due to the limitation of polyA-Seq, it’s unclear where it originates. It 

could possibly came from aberrant full length pre-miRNA, or from 3′ piece after 

cleavage. Either of these suggests that SKIV2L2 knockdown potentially degrades the 

miRNA processing by-products.  

III. Discussion and Conclusion 

Poly-A Seq enabled us to gather information of the transcriptome and gain 

insight into the activity of SKIV2L2 on the genomic scale. In our experimental design, 

we selectively picked the isolated PolyA-tailed transcripts and only sequenced the last 

200bp with paired-end sequencing. This design is efficient and computationally 

friendly because only a 3′ trunk of the full transcript was sequenced. The data 

produced will be much less than the full length RNA-Seq, leaving much less pressure 

on downstream analysis procedures especially for some computing intensive steps 

such as intersecting the reads with Refseq. However, this design makes it harder to 

interpret the reads and identify to the transcript it is derived from, as well as to collect 

information regarding the length of the transcript. PolyA-Seq is ideal for a general 

profiling of transcriptome and in future studies, RNA-Seq analysis on full length 

transcripts will reveal more information about the transcripts that is usually degraded. 

Our analysis showed a high rate of internal-A priming in our sample (18.2% 

average). This high rate greatly affected the accuracy of the downstream analysis 
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procedures. For example, the miRCompare generated a more accurate average 

distance between the read end and Drosha cleavage site after removing the internally 

primed reads. Removing these false signal greatly improved the quality and efficiency 

of the differential analysis. 

On the other hand, the internal-A priming provides extra information about the 

transcription activities in some cases. A polyA signal from internal oligo-d(T) priming 

is an indirect evidence of active transcription at this genome location. By design, a 

transcript that does not have a poly-A tail will not be reported. However, if the A-rich 

motif present in the transcript, it will be primed and generate a polyA signal, though 

the reported location is not the 3′end of that transcript. This trait complements the 

limitation that only the last 200bp of a transcript were sequenced, and act as a hint for 

inferring the length of the transcript. For example, a 600bp long transcript can only be 

sequence for its last 200bp. If a poly a signal exists in 200bp location, there will be a 

polyadenylation signal which indicates this transcript exists in the 200bp location. 

A. Mouse SKIV2L2 targets a wide spectrum of non-coding RNAs 

RNA processing and degradation have been well studied in yeast compared to in 

mammals. In order to elucidate the targets of mouse TRAMP complex, specifically 

the targets of SKIV2L2, we knock down the SKIV2L2 levels with siRNA in mouse 

N2A cells, and transformed the transcriptome with PolyA-Seq [26]. In this work, a 

more extensive bioinformatics analysis on the PolyA-Seq data was described using 
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differential calling algorithms MEDIPS and F-Seq and miRNA feature recognition 

algorithm that was developed herein named miRCompare. The MEDIPS statistical 

analysis discovered 17 additional differential polyadenylated locations under 0.1 FDR 

(False Discovery Rate), and 14 of these are consider novel SKIV2L2 RNA targets. In 

addition to TRAMP targets previously identified in yeast, this analysis identified 

miRNA 5′ leader sequence, snoRNA derivatives and some long non-coding RNAs as 

SKIV2L2 targets. Our analysis also confirmed that mouse SKIV2L2 is involved in the 

5.8S rRNA maturation process. These evidence strongly suggests that SKIV2L2 

possesses a wider spectrum of RNA targets than yeast and the TRAMP complex. 

SKIV2L2 associates with multiple complexes in mammalian cells and plays a 

central role in regulating the metabolism of RNAs. The yeast SKIV2L2 functions 

independently or in a complex with RBM7 and ZCCHC8. SKIV2L2 associates with 

RBM7 and ZCCHC8 to form the NEXT complex, and with ARS2 and Cap Binding 

Complex (CBC) to form an RNA binding complex that regulates the PROMPTs 

degradation [55]. In mouse ES cells, SKIV2L2 copurifies with NANOG, a 

pluripotency regulating and programming protein [56] suggesting that SKIV2L2 is a 

co-transcriptional modification protein that couples transcription, quality control and 

degradation of a wide range of RNAs. This observation also provided a clue on the 

cellular compartmentalization of SKIV2L2. The diverse association of SKIV2L2 with 

nuclear and cytoplasm complexes indicates a more diverse behavior. The diversity of 

SKIV2L2 targets and the presence in various cellular locations strongly suggests 
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SKIV2L2 as a central component of the polyadenylation-dependent RNA quality 

assurance system. 

B. SKIV2L2 regulates apoptosis and cell differentiation by adjusting the 

abundance of Gas5 via miR-21 

We identified Gas5 as one of the targets in MEDIPS analysis. Generally two 

peaks were found within Gas5, one for a snoRNA in intron and another for the Gas5 

transcript. It has been reported that pro-apoptosis activity of Gas5 reside within the 

mature form of Gas5, which suggests that the two peaks have distinct function and 

impacts [47]. The peak at the end of the transcript have slightly higher reads in control 

compared to SKIV2L2, contrary to our expectation that knockdown will result in the 

accumulation of reads as happened in most cases. This reversed abundance inspired 

us to thinks about indirect regulation between SKIV2L2 and Gas5. A potential link 

between SKIV2L2 and Gas5 is miR-21. It is a Gas5 repressor that decreases the 

abundance of Gas5 [57]. Our miRNA data indicates the miR-21 as a target of 

SKIV2L2, since accumulation was found in knockdown sample. SKIV2L2 

knockdown caused the accumulation of miR-21, which repressed the abundance of 

Gas5.  

Gas5 is a long non-coding RNA ~700bp long that serves as the host gene for 11 

snoRNAs [48]. It was reported that Gas5 promotes cell apoptosis by acting as a ligand 

of glucocorticoid receptor [58]. Cell apoptosis and differentiation are highly similar 

cellular processes [59], and glucocorticoid attenuates differentiation [60]. In our 
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preliminary experiment, the SKIV2L2 knockdown cells were more prone to 

differentiation rather than apoptosis when induced. It is likely that decreased level of 

Gas5 promoted glucocorticoid for receptors and stimulated differentiation.  

The function of Gas5 is believed to be regulated by NMD pathways [46]. Our 

data revealed one more quality assurance pathway that regulate mTRAMP and 

SKIV2L2. This novel discovery will greatly deepen the significance of SKIV2L2 in 

regulating cellular processes and expand the role of SKIV2L2 from a surveillance 

component to a RNA metabolism regulator. 

C. SKIV2L2 facilitates snoRNA maturation and quality control. 

We found several instances that SKIV2L2 affects the abundance of snoRNA as 

well as pre-snoRNA. We identified pre-snoRNA 74 in Gas5, snoRNA 6, 62, 73 in 

RPSA as well as U3. The targeted snoRNAs possesses diversed properties. Some of 

them belongs to C/D box snoRNA and some H/ACA box snoRNA, and U3 have its 

own promotor while snoRNA 74 relies on the host gene. The heterogeneous of this 

sample implied the regulation function of SKIV2L2 is possibly universal in 

mammalian cells as it is in yeast. It has been reported that snoRNA maturation and 

degradation in yeast relies on TRAMP [1, 61], and TRAMP helps the snoRNA 

transcription termination, intermediate transcript polyadenylation, as well as aberrant 

snoRNA degradation [62]. There are two types of peak in our datasets, one have peak 

at the end of intron, the other at the end of the actual snoRNA. Gas5 is type 1, which 
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could result from a transcription termination that is induced by mTRAMP, or 

polyadenylation for endonucleases processing. Further research is required to 

determine the mechanism. snoRNA 62 belongs to type 2, which is more likely a 

snoRNA turnover due to erroneous transcription. 

Our data suggests that like in yeast, a similar process occurs in mouse cells. It is 

likely that in addition to the typical aberrant transcript turnover function, SKIV2L2 

also participates the maturation of snoRNA by facilitating the transcription 

termination and removal of 3′ extended nucleotides. 

 

D. 5.8S rRNA maturation requires SKIV2L2. 

We reported that the 5′ ETS of pre-rRNA are processed by SKIV2L2, which 

mediates its degradation at A0 cleavage site [23]. To fully characterize the function of 

SKIV2L2 in rRNA maturation, we further character the polyadenylation level of the 

45Kb rRNA complete repeat sequence. After data filtration and processing, a major 

peak was found in ITS2 in non-overlapping positions in control and SKIV2L2 

knockdown. The sequencing reads accumulating in the control are located near the 3′ 

end of the 5.8S rRNA, and the peak in SKIV2L2 knockdown is located near the 

predicted C2 cleavage site. Eukaryotic rRNA maturation is a complicated series of 

processes that requires multiple endo/exonucleases in various cellular compartments 

[24]. The 7S rRNA is generated after cleavage at C2 site in the middle of ITS2, and 

B1 sites in ITS1 [30]. The 7S rRNA is then processed to 5.8S+30nt form, and further 
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to 5.8S+5~8nt form (6S rRNA) [63]. The sequencing reads in the control sample is 

near the 3′ end of 6S rRNA while the signal in SKIV2L2 knockdown is close to the 

beginning of 28S. This observation suggests that SKIV2L2 is required for the 

processing of 7S rRNA to form the 5.8S+30 and that SKIV2L2 knockdown blocked 

the further processing of 7S rRNA. This result is consistent with the yeast model, that 

the 3′ trimming of pre-5.8S rRNA requires the participation of TRAMP. The 

knockdown of SKIV2L2 did not completely block the formation of 6S rRNA, but 

evidently reduced the amount. There might be an alternative processing pathway, or 

the polyadenylation of the 7S rRNA greatly accelerated the processing speed. This 

result also indicates that RNA Pol I products could also be targeted by mTRAMP. It 

was reported that two TRAMP-like complexes exists in mammalian cells [12] with 

different cellular compartmentalization. The maturation process of 5.8 rRNA is 

probably a joint processing event of the two in both the nucleus and cytoplasm. We 

also observed transcription activity at the 5′ ETS region on the negative strand. It is 

believed that this event is involved in controlling the promotor of rDNA [64], and in 

turn the formation of rRNAs. 

E. SKIV2L2 participates in the maturation of miRNAs.  

The 5′ leader sequence of few miRNAs was reported as a novel target of 

mTRAMP in our last publication. To confirm this result and evaluate the universality, 

a transcriptome data profiler was developed to estimate the read abundance of all 

miRNAs. Our data shows the majority of miRNA 5′ leader sequence are targeted by 
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mTRAMP by demonstrating the abundance difference between the control and 

knockdown and the location match of sequencing reads at the Drosha cleavage site. 

The limitation in sequencing technology leads to inadequate sensitivity to lowly 

expressed RNAs. A portion of miRNA have a relatively low read abundance and not 

suitable for statistical tests. The location match indirectly proved the robustness and 

supports our proposition. The involvement of SKIV2L2 in miRNA biogenesis is also 

supported by the fact that SKIV2L2 co-immunoprecipitates with ARS2 [12]. ARS2 is 

a multi-functional RNA silencing regulator that stimulates miRNA processing. ARS2 

plays an indispensable in RNAi gene silencing and co-purified with Drosha but not 

dicer [65]. These facts links SKIV2L2 to the RNAi gene silencing pathway and the 

biogenesis of miRNAs. 

Out of 713 mouse miRNAs listed in miR-database, we found 59 miRNA in our 

sample. Since we use oligo-d (T) to prime transcripts with poly-A tail, it is possible 

that there are some miRNAs whose 5’ leader sequence is not polyadenylated. Our 

current experiment design cannot detect such transcripts. To address this issue, we did 

a new set of sequencing with RNA-Seq instead of polyA-Seq. The random priming 

will capture any transcripts and may provide a more comprehensive results in our new 

analysis. 

Our analysis identified snoRNA hosting introns, snoRNA, rRNA 5’ ETS, rRNA 

ITS2, as well as miRNA 5’ leader sequence as targets of mouse TRAMP. The 

unprecedented depth and breadth of TRAMP’s involvement in ncRNA processing 
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drives us to mine deeper into the dataset and extract the association status with 

external datasets.  

IV. Materials and Methods 

Cell Culture Techniques 

N2a cell line was cultured in DMEM (GIBCO, CA) with 10%FBS (GIBCO, CA), 

and transferred with TEDTA in all the analysis in this article. Cells were plated at 

500,000 count/cm3 in P60 plates and continued growing for 48 hrs. in 37 °C CO2 

incubator. Lipofectamine (Life Technologies, CA) were incubated with SiRNA 

(Ambion, Life Technologies, CA) and OPTI.MEM (GIBCO, Life Technologies, CA), 

respectively, and then added to the plates. The cells were harvested 24 hrs later with 

Trizol Reagent (Invitrogen, Carlsbad, CA). Total RNA and total protein was isolated 

following the standard Trizol protocol in the manual. 

RNA Techniques 

Reverse Transcription 

Reverse transcription was performed with Oligo-dT and gene specific primers 

(GSP, shown in sup. table), respectively. Total RNA was reverse transcribed with 

M-MLV reverse transcriptase (Promega) as described in the manual. 
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Quantitative PCR 

To measure the quantity of the miRNA 5′ leader sequence, equal amounts of 

cDNA were synthesized using the M-MLV reverse transcriptase (described above). 

The product was mixed with SYBR® Green Supermixes (BIO-RAD, Hercules, CA) 

together with 10 pM primer sets. Cyclophillin B was set as the reference gene. qPCR 

reactions was performed at 55 °C for 3min, 95 °C for 10min, 40 cycles of 95 °C for 

30s and 55 °C for 2min. 

Protein Techniques 

Western Blot 

Equal amounts of protein was loaded onto 10% SDS-PAGE gel and ran for 2hr 

under 80V. Gel was transferred to a nitrocellulose membrane in 25V for 2.5 hr at 4 °C 

transfer buffer, using NuPage Novex Gel System (Invitrogen). Blot was rinsed in PBS 

(pH 7.5) containing 0.1% NP-40, and blocked in 5% milk for 1hr at room temperature 

(RT). SKIV2L2 and bActin antibodies were added in 1:5000 ratio, and the blot was 

incubated overnight at 4°C. After rinsing, the blot was developed with ECL reagents 

and exposed to films for 1s, 10s, and 1min in dark. 

Reagents formula for western blot 

10X Tris-Glycine 

Transfer Buffer 

288 g Glycine, 

60.4 g Tris base 

1.8 L ddH2O 

Add 200ml methanol when using 

ECL reagents I 1.875 M Tris-Cl, pH 8.8 265µl 



57 

 

Luminol (44mg/ml DMSO)     50µl 

ρ-coumaric acid (15mg/ml DMSO)    22µl 

d2H2O     4.66ml 

ECL reagents II 1.875 M Tris-Cl, pH 8.8    265µl 

H2O2 30% solution         3µl 

d2H2O     4.73ml 

Table A-1 

Computational Techniques 

Computing Platform 

All the analysis was conducted on Ubuntu Linux 13.04 or Microsoft Windows 

8.1. All the packages and sources ran well on Python 2.7.1, JRE 1.7u45, R package 

3.0.1. 

Datasets, Sequence alignment and preparation 

Raw reads of all samples were stored in FASTQ format. Two replicates were 

used in mapping, and each replicate had three conditions. Of each condition, the 5′ 

and 3′ reads were stored in a text file, respectively. The code of samples in this article 

are shown below: 
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 Control SKIV2L2 

Knockdown 

Rrp6 Knockdown 

Original Control1 SKIV2L21 Rrp61 

Replicate Control2 SKIV2L22 Rrp62 

 

Mapping was performed with Bowtie 2.1.0 [40], a short read alignment tool. 

GRCm38/mm10 mouse genome assembly and rRNA complete repeat unit (GenBank: 

BK000964.3) was used as the reference genome. Bowtie2 index was generated by the 

index generation tool in the bowtie2 package with the command below:  

$BT2_HOME/bowtie2-build $BT2_HOME/reference/assembly genome.fa 

genome_version 

Reads mapping was performed with default parameters for paired-end mapping 

except for the multi-thread function, as shown below: 

$BT2_HOME/bowtie2 –p 8 –x example_assembly -1 $BT2_HOME/example/reads/reads_5p.fq -2 

$BT2_HOME/example/reads/reads_3p.fq -S example_condition.sam 

The output of mapping is a text-based SAM file. To achieve a better performance 

in downstream analysis and visualization, SAMtools (0.1.19) [66] were used to 

convert SAM to BAM, the compressed binary version of SAM. The BAM file was 

also sorted during the conversion. 

samtools view -bS file.sam | samtools sort - file_sorted 

BAM files were converted to a BED file under certain circumstances. To produce a high 

quality BED file, reads that were not mapped need to be filtered from the BAM file.  

samtools view -h -F 4 -b blah.bam > blah_only_mapped.bam 
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Conversion from BAM to BED is conducted with BEDTools 2.19.0[67]: 

 bamToBed -i reads.bam > reads.bed 

Internal-A identification 

Sequence reads originate from internally primed oligod (T) was filtered from 

alignment files to a separate file. This process was achieved through IAFilter, a 

genetic sequence pattern identification and extraction tool designed and implemented 

by me. Alignment files were loaded by IAFilter and every read was subject to a 

property check: whether this is a 3′ read and whether there is a continuous adenosine 

pattern appears after the 3′ end of the read being screened. If both criteria were met, 

the read will be send to the result file used for down streaming analysis. 

A Python (2.7.1) script was written to identify potential internal-A reads from 

BED files. The script takes as input a genome sequence file (FASTA format) and a 

polyA read file (BED format). The output consists of two BED files. One contains 

potential internal-A reads while the other normal reads. A FASTA format genome 

sequence file is a text file recording the full sequence of the genome. Each character 

denotes a base pair in the genome. Conventionally, a FASTA file is further divided 

into sections representing different chromosomes. The beginning location of each 

chromosome had been pre-calculated and hard-coded into the program. The program 

first reads the location of a read from the BED file, fetches a 20bp sequence upstream 

of this location, and examines if there are five continuous ‘A’s at the start of this 

fetched sequence, or if there are more than 15 ‘A’s in this 20bp sequence. If this 
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sequence meets either of these criteria, this read will be considered potential 

internal-A then written into the internal-A result file. Following analysis are based on 

the internal-A-filtered BED read file。 

RefSeq based differential polyadenylation analysis 

Refseq [68] annotation (PubDate 8-10-2011, mm9) was downloaded from UCSC 

table browser in BED format containing chromosome, transcription start/end, 

translation start/end, gene symbol, gene id, and strand. Based on this data, a 100bp 

interval centered at the transcription end site was created for each entry in the Refseq 

data as the reads collection window. The sequence reads was pre-aligned by BWA [69] 

and converted to BED format with internal-A removed. A python script was written to 

count the number of reads at each genomic position, and the result of this count script 

was imported to Galaxy [44, 70, 71] Bioinformatics analysis platform. By executing 

the ‘Join’ function in ‘Operate on Genomic Intervals’ category, and set the minimal 

overlap to 1bp, the Galaxy computation platform returned a table with gene name and 

reads associated with that gene. This result was further imported into MS Excel and 

subtotaled by the gene name. The transcription variants were removed by ‘Remove 

Duplicate’ function to prevent duplicate counting. Both control and SKIV2L2 

samples are subject to this pipeline and a ratio for each gene between control, and 

SKIV2L2 was calculated with the formula below:  

f(i)=log2(SKIV2L2(i)/control(i)) i=RefSeq genes 

A histogram was plotted with the graph tool of MS Excel. 
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F-Seq analysis 

Mus musculus ribosomal DNA complete repeating unit sequence (GenBank: 

BK000964.3) was downloaded from NCBI in FASTA format. The ribosomal RNA 

starts at 1 and ends at 13403. To get a solid result, 1-14000 region was extracted and 

saved as a new FASTA file named rrt.fasta (ribosomal RNA truncated). 

Bowtie2-index was called to generate index files for mapping with default parameters. 

Control1, control2, SKIV2L21, SKIV2L22, rrp61, rrp62 was mapped to this custom 

rDNA sequence and the output SAM files were sorted and converted to a BED file 

following the protocol stated above. For each sample, the BED entries were separated 

by strand. F-Seq [72], a feature density estimator, was employed to generate the 

density signal. The fragment size was set to 0, feature window to 60, and output 

format to wig. Each strand of a sample produced an output wig file, and all the 

samples were processed by this protocol. The wig density files were imported to MS 

Excel and aligned according to their coordinate, and a line chard was plotted based on 

density signal. 

MEDIPS analysis 

R package 3.0.1 was downloaded from the official website. BioConductor [73] 

and MEDIPS packages [45] were installed following the software manual. UCSC 

mm10 reference genome was loaded with the command. For SKIV2L2 knockdown 

and rrp6 knockdown analysis, both sequencing samples were used to improve 

statistical confidence. The parameters for this analysis were slightly adjusted to the 
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read distribution of polyA-seq. The window size of this analysis was the default value, 

100bp. All other parameters were set as recommended by the manual. Three R sets 

were constructed and each of the sets contains original and replicate sequencing data 

for one condition. For the statistical parameters, Bonferroni method was used for 

adjusting the p-value, edgeR package was employed for statistical calculation, poisson 

was the probability model, both MeDIP and CNV was turned off for MEDIPS. 

Regions with a p-value less than 0.1 were reported. 

miRCompare analysis 

The 5′ leader sequence of all mmu miRNA was collected and profiled. 

miRCompare, an read abundance calculation tool was designed and implemented by 

me. A list of miRNA 5′ duplex coordination containing the drosha cleavage site in 

mmu was curated and loaded into miRCompare. The tool collect reads adjacent to the 

drosha cleavage site, calculate abundance, distance to the site, as well as other 

properties provisioned by the designer.  

miRCompare is a general purpose RNA-Seq abundance estimation tool. It scans 

a list of intervals along the genome and report the read count and other information 

for each interval. miRCompare takes a BAM sequence alignment file as input data 

source, and a tab-delimited text file as intervals of interest source. The analysis result 

will be reported in a text file. This Java-based software incorporates Picard 

(http://picard.sourceforge.net), a SAM/BAM manipulation tool, as BAM data access 

implementation. Picard allowed miRCompare to query intervals, iterate sequence 

http://picard.sourceforge.net/
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alignment, and get attributes of the reads. A GFF3 parser was used to iterate the file 

and encapsulate coordinates into BED record objects. miRCompare fetches all the 

reads that fall within (or partially within) the specified interval, and filter out some 

reads according to instruction. Currently, two filtration options are available. One 

option controls whether to report reads of both strands or just report reads mapped to 

the same strand as the inquired RNA. The other option is whether to report the 5′ read 

or just 3′ read. Both of these functions are achieved by calling the methods of 

SAMRecord class imported from Picard. An interval adaptor was designed in the 

query function. It changes the range of the query interval by the number of bps 

supplied by the user. This function conveniences the investigation of upstream and 

downstream regions of an interval, without modifying the original interval file. The 

software stores the returned reads as the value of a hashtable and the name of the 

queried record as the key. This hashtable is kept for further calculation.  

For the specific use of miRNA 5′ leader sequence analysis, several modifications 

were made and functions were added to adapt to the features of miRNA. Sequence 

alignments will be reported if they are 3′ end reads and on the same strand as the 

inquiry. Read count will be calculated by calling the size of the storage array. A 

distance to the start of the inquiry interval will also be calculated. The calculation 

formula differs between positive strand and negative strand.  

Control2 and SKIV2L22 alignment file (BAM) were used as the alignment 

source. The miRNA coordinate list of mouse was obtained from miRBase. 

(ftp://mirbase.org/pub/mirbase/CURRENT/genomes/mmu.gff3) The annotation file 

ftp://mirbase.org/pub/mirbase/CURRENT/genomes/mmu.gff3
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contains ‘primary transcript,’ 5′ and 3′ miRNA. To focus the search on the 5′ ETS 

region, ‘primary transcript,’ 3′ entries was filtered out with GNU GREP. The analysis 

result was exported as single txt files which were further processed with MS Excel for 

numerical calculation and visualization. 
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VII．Appendix 

miRNA Control

2 Ct. 

Control2 

avg. dist. 

SKIV2L22 

Ct. 

Mtr2 avg. 

dist. 

ID=MIMAT0000548;Alias=MIMAT0000548;Name=mmu-miR-322-5p;Deri

ves_from=MI0000590 

4 1.75 256 1.421875 

ID=MIMAT0000150_1;Alias=MIMAT0000150;Name=mmu-miR-138-5p;D

erives_from=MI0000722 

2 2 95 1.33684210

5 

ID=MIMAT0000523;Alias=MIMAT0000523;Name=mmu-let-7c-5p;Derives

_from=MI0000560 

2 2 72 2.01388888

9 

ID=MIMAT0000649;Alias=MIMAT0000649;Name=mmu-miR-17-5p;Deriv

es_from=MI0000687 

2 1.5 40 1.475 

ID=MIMAT0000522;Alias=MIMAT0000522;Name=mmu-let-7b-5p;Derives

_from=MI0000558 

6 2 32 2.15625 

ID=MIMAT0002104;Alias=MIMAT0002104;Name=mmu-miR-463-5p;Deri

ves_from=MI0002398 

0 0 11 1.90909090

9 

ID=MIMAT0000534;Alias=MIMAT0000534;Name=mmu-miR-26b-5p;Deri

ves_from=MI0000575 

0 0 8 2.375 

ID=MIMAT0000383;Alias=MIMAT0000383;Name=mmu-let-7d-5p;Derives 1 1 7 1 
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_from=MI0000405 

ID=MIMAT0000530;Alias=MIMAT0000530;Name=mmu-miR-21a-5p;Deri

ves_from=MI0000569 

0 0 6 0.5 

ID=MIMAT0000386;Alias=MIMAT0000386;Name=mmu-miR-106b-5p;De

rives_from=MI0000407 

1 2 5 2.4 

ID=MIMAT0004527;Alias=MIMAT0004527;Name=mmu-miR-124-5p;Deri

ves_from=MI0000716 

0 0 5 1.8 

ID=MIMAT0004631;Alias=MIMAT0004631;Name=mmu-miR-29a-5p;Deri

ves_from=MI0000576 

0 0 4 2 

ID=MIMAT0000218;Alias=MIMAT0000218;Name=mmu-miR-24-1-5p;Der

ives_from=MI0000231 

0 0 4 2 

ID=MIMAT0000677;Alias=MIMAT0000677;Name=mmu-miR-7a-5p;Deriv

es_from=MI0000728 

0 0 4 1.75 

ID=MIMAT0004841;Alias=MIMAT0004841;Name=mmu-miR-871-5p;Deri

ves_from=MI0005471 

0 0 4 2 

ID=MIMAT0004523;Alias=MIMAT0004523;Name=mmu-miR-29b-1-5p;D

erives_from=MI0000143 

0 0 4 0.5 

ID=MIMAT0004848;Alias=MIMAT0004848;Name=mmu-miR-883a-5p;Der

ives_from=MI0005476 

0 0 3 -2 

ID=MIMAT0000529;Alias=MIMAT0000529;Name=mmu-miR-20a-5p;Deri

ves_from=MI0000568 

0 0 3 1 

ID=MIMAT0004838;Alias=MIMAT0004838;Name=mmu-miR-742-5p;Deri

ves_from=MI0005206 

0 0 3 0.33333333

3 

ID=MIMAT0000526;Alias=MIMAT0000526;Name=mmu-miR-15a-5p;Deri

ves_from=MI0000564 

0 0 3 2 

ID=MIMAT0003727;Alias=MIMAT0003727;Name=mmu-miR-374b-5p;De

rives_from=MI0004125 

0 0 2 2 

ID=MIMAT0004873_1;Alias=MIMAT0004873;Name=mmu-miR-465c-5p;

Derives_from=MI0005501 

0 0 2 7 

ID=MIMAT0000667;Alias=MIMAT0000667;Name=mmu-miR-33-5p;Deriv

es_from=MI0000707 

0 0 2 2 

ID=MIMAT0000130;Alias=MIMAT0000130;Name=mmu-miR-30b-5p;Deri

ves_from=MI0000145 

0 0 2 1 

ID=MIMAT0000128;Alias=MIMAT0000128;Name=mmu-miR-30a-5p;Deri

ves_from=MI0000144 

0 0 2 0 

ID=MIMAT0000747;Alias=MIMAT0000747;Name=mmu-miR-382-5p;Deri

ves_from=MI0000799 

0 0 2 -0.5 

ID=MIMAT0000221;Alias=MIMAT0000221;Name=mmu-miR-191-5p;Deri

ves_from=MI0000233 

1 2 1 2 

ID=MIMAT0000654;Alias=MIMAT0000654;Name=mmu-miR-32-5p;Deriv

es_from=MI0000691 

1 1 1 -1 

ID=MIMAT0003731;Alias=MIMAT0003731;Name=mmu-miR-671-5p;Deri

ves_from=MI0004133 

1 2 1 2 
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ID=MIMAT0000527;Alias=MIMAT0000527;Name=mmu-miR-16-5p;Deriv

es_from=MI0000565 

0 0 1 2 

ID=MIMAT0029822;Alias=MIMAT0029822;Name=mmu-miR-7658-5p;De

rives_from=MI0024998 

0 0 1 0 

ID=MIMAT0029906;Alias=MIMAT0029906;Name=mmu-miR-7688-5p;De

rives_from=MI0025041 

0 0 1 -10 

ID=MIMAT0004629;Alias=MIMAT0004629;Name=mmu-miR-22-5p;Deriv

es_from=MI0000570 

0 0 1 2 

ID=MIMAT0000525;Alias=MIMAT0000525;Name=mmu-let-7f-5p;Derives

_from=MI0000562 

0 0 1 2 

ID=MIMAT0016980;Alias=MIMAT0016980;Name=mmu-miR-23b-5p;Deri

ves_from=MI0000141 

0 0 1 2 

ID=MIMAT0004884;Alias=MIMAT0004884;Name=mmu-miR-466h-5p;De

rives_from=MI0005511 

0 0 1 2 

ID=MIMAT0004526;Alias=MIMAT0004526;Name=mmu-miR-101a-5p;Der

ives_from=MI0000148 

0 0 1 3 

ID=MIMAT0017172;Alias=MIMAT0017172;Name=mmu-miR-410-5p;Deri

ves_from=MI0001161 

0 0 1 0 

ID=MIMAT0000525_1;Alias=MIMAT0000525;Name=mmu-let-7f-5p;Deriv

es_from=MI0000563 

0 0 1 1 

ID=MIMAT0000132;Alias=MIMAT0000132;Name=mmu-miR-99b-5p;Deri

ves_from=MI0000147 

0 0 1 0 

ID=MIMAT0004522;Alias=MIMAT0004522;Name=mmu-miR-27b-5p;Deri

ves_from=MI0000142 

0 0 1 1 

ID=MIMAT0000215;Alias=MIMAT0000215;Name=mmu-miR-186-5p;Deri

ves_from=MI0000228 

0 0 1 1 

ID=MIMAT0001419;Alias=MIMAT0001419;Name=mmu-miR-433-5p;Deri

ves_from=MI0001525 

0 0 1 2 

ID=MIMAT0004850;Alias=MIMAT0004850;Name=mmu-miR-883b-5p;De

rives_from=MI0005477 

0 0 1 2 

ID=MIMAT0014834;Alias=MIMAT0014834;Name=mmu-miR-3064-5p;De

rives_from=MI0014026 

0 0 1 -6 

ID=MIMAT0017327;Alias=MIMAT0017327;Name=mmu-miR-669f-5p;Der

ives_from=MI0006287 

0 0 1 2 

ID=MIMAT0003740;Alias=MIMAT0003740;Name=mmu-miR-674-5p;Deri

ves_from=MI0004611 

0 0 1 2 

ID=MIMAT0004664;Alias=MIMAT0004664;Name=mmu-miR-214-5p;Deri

ves_from=MI0000698 

0 0 1 3 

ID=MIMAT0001418;Alias=MIMAT0001418;Name=mmu-miR-431-5p;Deri

ves_from=MI0001524 

0 0 1 2 

ID=MIMAT0000663;Alias=MIMAT0000663;Name=mmu-miR-218-5p;Deri

ves_from=MI0000701 

0 0 1 2 

ID=MIMAT0000210;Alias=MIMAT0000210;Name=mmu-miR-181a-5p;Der

ives_from=MI0000697 

0 0 1 2 
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ID=MIMAT0014822;Alias=MIMAT0014822;Name=mmu-miR-3057-5p;De

rives_from=MI0014020 

0 0 1 2 

ID=MIMAT0003128;Alias=MIMAT0003128;Name=mmu-miR-485-5p;Deri

ves_from=MI0003492 

0 0 1 -1 

ID=MIMAT0009441;Alias=MIMAT0009441;Name=mmu-miR-1968-5p;De

rives_from=MI0009965 

0 0 1 0 

ID=MIMAT0017063;Alias=MIMAT0017063;Name=mmu-miR-29b-2-5p;D

erives_from=MI0000712 

2 4.5 0 0 

ID=MIMAT0027343;Alias=MIMAT0027343;Name=mmu-miR-6516-5p;De

rives_from=MI0022266 

1 -7 0 0 

ID=MIMAT0005859;Alias=MIMAT0005859;Name=mmu-miR-1198-5p;De

rives_from=MI0006306 

1 14 0 0 

ID=MIMAT0027770;Alias=MIMAT0027770;Name=mmu-miR-6935-5p;De

rives_from=MI0022782 

1 2 0 0 

ID=MIMAT0017053;Alias=MIMAT0017053;Name=mmu-miR-212-5p;Deri

ves_from=MI0000696 

1 2 0 0 

Table A-1 miRNA 5′ leader sequence abundance and average distance of 

Control2 and SKIV2L22knockdown. Column left to right, miRNA name, read count 

in Control2, average distance of Control2, read count in SKIV2L22knockdown, 

average distance of SKIV2L22knockdown. 

 

 

IAFilter.java 

package edu.marquette.bio.andersonlab.iafilter; 

 

import htsjdk.samtools.SAMFileReader; 

import htsjdk.samtools.SAMFileWriter; 

import htsjdk.samtools.SAMFileWriterFactory; 

import htsjdk.samtools.SAMRecord; 

 

import java.io.File; 

 

 

 

public class InternalAFilter { 

 

 private File inputSAMFile; 

 private File outputSAMFile; 

 private File outputSAMFile2; 

 private File inputFastaFile; 



73 

 

 private File inputFastaIndexFile; 

 FastaDAO fastadao; 

 int contThre; 

 int ratioThre; 

 int ratioRange; 

 

 public InternalAFilter(File insam, File outsam, File outsam2, File infasta, 

   File infastaindex, int conthre, int ratthre, int ratrange) { 

  inputSAMFile = insam; 

  outputSAMFile = outsam; 

  outputSAMFile2 = outsam2; 

  inputFastaFile = infasta; 

   

  inputFastaIndexFile = infastaindex; 

  contThre=conthre; 

  ratioThre=ratthre; 

  ratioRange=ratrange; 

 

  fastadao = new FastaDAO(infasta.toPath(), infastaindex); 

 } 

  

 public static void main(String[] args) { 

   

  File insamfile = new File(args[0]); 

  File outsamfile = new File(args[1]); 

  File outsamfile2 = new File(args[2]); 

  File outsamindex = new File(args[3]); 

  File mm10 = new File(args[4]); 

  File mm10index = new File(args[5]); 

  InternalAFilter iaf = new InternalAFilter(insamfile, outsamfile, outsamfile2,mm10,mm10index, 5, 15,20); 

  long starttime = System.currentTimeMillis(); 

  iaf.scan(); 

  long time = System.currentTimeMillis()-starttime; 

  System.out.println("Time used" + time/1000); 

   

   

 } 

 

 public void scan() { 

  SAMFileReader inputSAM = new SAMFileReader(inputSAMFile); 

  SAMFileWriter outputSAM = new SAMFileWriterFactory().makeBAMWriter( 

    inputSAM.getFileHeader(), true, outputSAMFile); 

  SAMFileWriter outputSAM2 = new SAMFileWriterFactory().makeBAMWriter( 

    inputSAM.getFileHeader(), true, outputSAMFile2); 
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  String str =""; 

 

  long IACount = 0; 

  long TotalCount = 0; 

 

 

  for (SAMRecord samRecord : inputSAM) { 

   str =""; 

 

   if ((!samRecord.getReadUnmappedFlag()) 

     && samRecord.getSecondOfPairFlag()) { 

     //System.out.println(samRecord.getReferenceName()+" "+samRecord.getAlignmentEnd());  

    if(samRecord.getReadNegativeStrandFlag()) 

    str = fastadao.getSequence(samRecord.getReferenceName(),samRecord.getAlignmentEnd(),true);  

    else if(!samRecord.getReadNegativeStrandFlag()){ 

     str = 

fastadao.getSequence(samRecord.getReferenceName(),samRecord.getAlignmentStart(),false);  

    } 

     //System.out.println(str); 

    //str = fastadao.getSequence("chr1", 10024867, true);         

    //System.out.println(str); 

     

   } else { 

    continue; 

   } 

 

   boolean flag = IAcheck(str,contThre, ratioThre,ratioRange,samRecord.getReadNegativeStrandFlag()); 

   if (flag){ 

    IACount++; 

    outputSAM.addAlignment(samRecord); 

    flag = false; 

    //System.out.println(flag);     

   } else { 

    outputSAM2.addAlignment(samRecord); 

   } 

       

   if(TotalCount%200000==0){ 

    System.out.print("."); 

    if (TotalCount%4000000==0) System.out.println(); 

   } 

   TotalCount++; 

  } 

 

  System.out.println("IA:" + IACount); 
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  System.out.println("Total 3′ Reads:" + TotalCount); 

 

  inputSAM.close(); 

  outputSAM.close(); 

  outputSAM2.close(); 

  fastadao.close(); 

 } 

 

 /** 

  * @param seq 

  * @param contthre Continuous A threshold 

  * @param ratiothre Ratio threshold 

  * @param ratiorange 

  * @param strand 

  * @return return true if is an internalA; false if not 

  */ 

 public static boolean IAcheck(String seq, int contthre, int ratiothre, 

   int ratiorange, boolean strand) { 

  String feature = ""; 

  if (strand) { 

   feature = "A"; 

  } else if (!strand) { 

   feature = "T"; 

  } 

 

  StringBuilder contbldr = new StringBuilder(); 

  contbldr.append("(?i)^"); 

  contbldr.append(feature); 

  contbldr.append("{"); 

  contbldr.append(contthre); 

  contbldr.append(",}\\w*"); 

 

  StringBuilder ratiobldr = new StringBuilder(); 

  ratiobldr.append(feature); 

  ratiobldr.append(feature.toLowerCase()); 

 

  if (seq.matches(contbldr.toString())) { 

   return true; 

  } else { 

   seq = seq.substring(0, ratiorange); 

   int counter = 0; 

   for (int i = 0; i < seq.length(); i++) { 

    if (ratiobldr.toString() 

      .contains(String.valueOf(seq.charAt(i)))) { 
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     counter++; 

    } 

   } 

   if (counter >= ratiothre) { 

    return true; 

   } else 

    return false; 

  } 

 } 

 

} 

 

MiRCompare.java 

package edu.marquette.biology.andersonlab.miRComp; 

import htsjdk.samtools.SAMFileReader; 

import htsjdk.samtools.SAMRecord; 

 

import java.io.BufferedReader; 

import java.io.File; 

import java.io.FileReader; 

import java.io.FileWriter; 

import java.util.ArrayList; 

import java.util.Hashtable; 

import java.util.Iterator; 

 

import edu.marquette.biology.andersonlab.domain.BedRecord; 

import edu.marquette.biology.andersonlab.logic.QuerySAM; 

import edu.marquette.biology.andersonlab.tabparser.Gff3impl; 

import edu.marquette.biology.andersonlab.tabparser.tabParser; 

 

/** main program for intersecting the BAM data. 

 * @author Fengchao 

 *  

 */ 

public class MiRComp { 

 

 public static void main(String[] args) { 

  // fixed for testing purpose 

  //File resultfile = new File("C:/Users/Fengchao/Desktop/IASearch/control2_20141130_02.txt"); 

  File resultfile = new File("C:/Users/Fengchao/Desktop/IASearch/SKIV2L22_sorted_F_2_20141201.txt"); 

  File bedfile = new File("C:/Users/Fengchao/Desktop/IASearch/mmu_mirbase_5p.gff3"); 

  //File samfile = new File("C:/Users/Fengchao/Desktop/IASearch/control2_sorted_F_2.bam"); 

  File samfile = new File("C:/Users/Fengchao/Desktop/IASearch/SKIV2L22_sorted_F_2_20141201.bam"); 

  try { 
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   miRCompare(samfile, bedfile, resultfile); 

  } catch (Exception e) { 

   // TODO Auto-generated catch block 

   e.printStackTrace(); 

  } finally { 

  } 

 } 

 

 /**  

  * @param samfl SAM/BAM input 

  * @param bedfl BED input 

  * @param resultfl output result file 

  * @throws Exception 

  */ 

 public static void miRCompare(File samfl, File bedfl, File resultfl) 

   throws Exception { 

 

  SAMFileReader samfilereader = new SAMFileReader(samfl); 

  // need to integrate this part into parser 

  FileReader in = new FileReader(bedfl); 

  BufferedReader bedbf = new BufferedReader(in); 

  tabParser gffinput = new Gff3impl(bedbf); 

 

  FileWriter resultoutput = new FileWriter(resultfl); 

 

  Hashtable<String, ArrayList<Double>> resulttbl = new Hashtable<String, ArrayList<Double>>(); 

 

  Hashtable<String, ArrayList<String>> readstbl = new Hashtable<String, ArrayList<String>>(); 

 

  BedRecord bedrecord = null; 

  BedRecord record = new BedRecord(); 

 

  // ArrayList<SAMRecord> arrayl = new ArrayList<SAMRecord>(); 

 

  while ((bedrecord = gffinput.getNextRecord()) != null) { 

 

//    System.out.println(bedrecord.getStart()); 

//    System.out.println(bedrecord.getChrom()); 

//    System.out.println(bedrecord.getName()); 

 

   ArrayList<SAMRecord> arrayl = QuerySAM.querySam(bedrecord, samfilereader, 

     10, 0, true, true); 

   double distance = 0; 

   if (arrayl.size()>0) { 
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    for (SAMRecord samrecord : arrayl) { 

     distance += calcDistance(samrecord, bedrecord); 

     // construct read-miRNA table 

     if (readstbl.containsKey(samrecord.getReadName())) { 

      readstbl.get(samrecord.getReadName()).add( 

        bedrecord.getName()); 

     } else { 

      ArrayList<String> namearrltemp = new ArrayList<String>(); 

      namearrltemp.add(bedrecord.getName()); 

      readstbl.put(samrecord.getReadName(), namearrltemp); 

     } 

    } 

   } 

   //System.out.println(distance); 

 

   if (arrayl.size() != 0) { 

    distance = distance / arrayl.size(); 

   } 

   //prepare result table 

   ArrayList<Double> data = new ArrayList<Double>(); 

   data.add((double) arrayl.size()); 

   data.add(distance); 

   resulttbl.put(bedrecord.getName(), data); 

  } 

  // calculate adjusted miRNA count 

  Iterator<ArrayList<String>> readsit = readstbl.values() 

    .iterator(); 

  while (readsit.hasNext()) { 

   ArrayList<String> namearry = readsit.next(); 

   Iterator<String> mirit = namearry.iterator(); 

   mirit.next(); 

   while (mirit.hasNext()) { 

    String miname = mirit.next(); 

    double counttemp = resulttbl.get(miname).get(0); 

    counttemp = counttemp - 1; 

    resulttbl.get(miname).set(0, counttemp); 

   } 

  } 

  //System.out.print(bedrecord.getName()); 

  // System.out.print(" "); 

  // System.out.println(arrayl.size()); 

  // System.out.print(" "); 

  // System.out.println(distance); 

  // System.out.println("--------------"); 
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  Iterator<String> resultit = resulttbl.keySet().iterator(); 

  while (resultit.hasNext()) { 

   String namekey = resultit.next(); 

   StringBuilder sb = new StringBuilder(); 

   sb.append(namekey); 

   sb.append("\t"); 

   sb.append(resulttbl.get(namekey).get(0)); 

   sb.append("\t"); 

   sb.append(resulttbl.get(namekey).get(1)); 

   sb.append("\r\n"); 

   resultoutput.write(sb.toString()); 

 

  } 

 

  // Test code 

  // record.setChrom("chrX"); 

  // record.setStart(53053755); 

  // record.setEnd(53054349); 

  // record.setStrand("-"); 

  // ArrayList<SAMRecord> arrayl= QuerySAM.querySam(record, saminput, 0, 

  // 0,true,true); 

  // for(SAMRecord samrecord:arrayl){ 

  // System.out.println(samrecord.getReadName()); 

  // } 

  // System.out.print(arrayl.size()); 

  // System.out.print(arrayl.get(1).getFirstOfPairFlag()); 

  // System.out.print(arrayl.get(1).getReadName());  

  resultoutput.close(); 

  bedbf.close(); 

  in.close(); 

 } 

 

 /** 

  * calculate the average distance of each read to the drosha clevage site 

  *  

  * @param samr 

  * @param bedr 

  * @return 

  */ 

 public static int calcDistance(SAMRecord samr, BedRecord bedr) { 

  int dist = 0; 

  if (bedr.getStrand().equals("+")) { 

   dist = samr.getAlignmentEnd() - bedr.getStart(); 
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  } 

  if (bedr.getStrand().equals("-")) { 

   dist = bedr.getEnd() - samr.getAlignmentStart(); 

  } 

  return dist; 

 } 

 

} 

 

QuerySam.java 

package edu.marquette.biology.andersonlab.logic; 

import htsjdk.samtools.SAMFileReader; 

import htsjdk.samtools.SAMRecord; 

import htsjdk.samtools.util.CloseableIterator; 

 

import java.util.ArrayList; 

import java.util.Iterator; 

 

import edu.marquette.biology.andersonlab.domain.BedRecord; 

 

/** 

 * @author Fengchao 

 * An utility class to query the SAM Record.  

 */ 

public class QuerySAM { 

 

 /** 

  * @param record  a BedRecord to provide the coordinates for query 

  * @param samin  input SAM file for query 

  * @param offs  offset bp for the start region. - means upstream and + means downstream 

  * @param offe  offset bp for the end region 

  * @param tpr_flag  three prime reads selection 

  * @param strandFilter_flag   strand specific selection 

  * @return 

  */ 

 public static ArrayList<SAMRecord> querySam(BedRecord bedrcd, SAMFileReader samrdr, int offs, int offe, boolean 

tpr_flag, boolean strand_flag){ 

  CloseableIterator<SAMRecord> iter = null; 

  ArrayList<SAMRecord> samrlist = new ArrayList<SAMRecord>(); 

  SAMRecord samrtemp = null; 

  int newstart=0; 

  int newend=0; 

  //  record.changeStartEnd(offs, offe); disabled due to calculation of distance  
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  //change offset for downstream and upstream query 

//  try { 

//   bedrcd.printall(); 

//  } catch (IllegalArgumentException | IllegalAccessException e) { 

//   // TODO Auto-generated catch block 

//   e.printStackTrace(); 

//  } 

  if(bedrcd.getStrand().equals("+")){ 

   newstart=bedrcd.getStart()-offs; 

   newend=bedrcd.getStart()+offs; 

  }else if (bedrcd.getStrand().equals("-")){  

   newstart=bedrcd.getEnd()-offs; 

   newend=bedrcd.getEnd()+offs; 

  }//this section is really tricky 

 

 

  iter = samrdr.query(bedrcd.getChrom(), newstart, newend, false); //If true, each SAMRecord returned is will have 

its alignment completely contained in the interval of interest. If false, the alignment of the returned SAMRecords need only 

overlap the interval of interest. 

  if (iter.hasNext()) { 

   while (iter.hasNext()) { 

    samrlist.add(iter.next()); 

   } 

   iter.close(); 

 

   if (tpr_flag == true) { 

    Iterator<SAMRecord> it = samrlist.iterator(); 

    while (it.hasNext()) { 

     if (it.next().getFirstOfPairFlag() == true) { 

      it.remove(); 

     } 

    } 

   } 

 

   if(strand_flag==true){ 

    Iterator<SAMRecord> it = samrlist.iterator(); 

    if(bedrcd.getStrand()=="+"){ 

     while(it.hasNext()){ 

      if(it.next().getReadNegativeStrandFlag()==false){ 

       it.remove(); 

      } 

     } 

    } else if(bedrcd.getStrand()=="-"){ 

     while(it.hasNext()){ 
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      if(it.next().getReadNegativeStrandFlag()==true){ 

       it.remove(); 

      } 

     } 

    } 

   } 

 

  } 

  iter.close(); 

  return samrlist; 

 } 
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