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ABSTRACT 
SOFTWARE TOOLS AND ANALYSIS METHODS FOR THE USE 

 OF ELECTROMAGNETIC ARTICULOGRAPHY DATA 
 IN SPEECH RESEARCH 

 
 

Andrew J. Kolb, B.S. 
 

Marquette University, 2015 
 
 

Recent work with Electromagnetic Articulography (EMA) has shown it to be an 
excellent tool for characterizing speech kinematics.  By tracking the position and 
orientation of sensors placed on the jaws, lips, teeth and tongue as they move in 
an electromagnetic field, information about movement and coordination of the 
articulators can be obtained with great time resolution.  This technique has far-
reaching applications for advancing fields related to speech articulation, 
including recognition, synthesis, motor learning, and clinical assessments. 
 
As more EMA data becomes widely available, a growing need exists for software 
that performs basic processing and analysis functions.  The objective of this work 
is to create and demonstrate the use of new software tools that make full use of 
the information provided in EMA datasets, with a goal of maximizing the impact 
of EMA research.  A new method for biteplate-correcting orientation data is 
presented, allowing orientation data to be used for articulatory analysis.  Two 
examples of applications using orientation data are presented: a tool for jaw-
angle measurement using a single EMA sensor, and a tongue interpolation tool 
based on three EMA sensors attached to the tongue.  The results demonstrate 
that combined position and orientation data give a more complete picture of 
articulation than position data alone, and that orientation data should be 
incorporated in future work with EMA. 
 
A new standalone, GUI-based software tool is also presented for visualization of 
EMA data.  It includes simultaneous real-time playback of kinematic and acoustic 
data, as well as basic analysis capabilities for both types of data.  A comparison 
of the visualization tool to existing EMA software shows that it provides superior 
visualization and comparable analysis features to existing software.  The tool will 
be included with the Marquette University EMA-MAE database to aid 
researchers working with this dataset.   
 
In providing tools for increased research productivity, solutions to complex 
questions in speech production can be found more quickly, with major benefits 
for individuals requiring speech training and rehabilitation.
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1. INTRODUCTION AND RESEARCH OBJECTIVES 
 
 
1.1 General Background 

 
Over the past few decades, electromagnetic articulography (EMA) has emerged as a 

valuable tool in speech research applications, ranging from speech modeling and synthesis to 

recognition and motor learning [1-4].  EMA operates by attaching sensors to the organs used in 

articulation (tongue, lips, jaw, teeth, etc.), and tracking them in a small electromagnetic field 

that surrounds an individual’s head.  At a basic level, EMA provides a means for acquiring 

kinematic information about these organs, including position, speed, acceleration, and range of 

motion [5, 6].  

This type of information makes EMA ideally suited for several applications, both in and 

out of the speech clinic.  Clinically, EMA presents an opportunity for the creation of objective 

measurements in assessments of motor speech disorders.  Replacing subjective acoustic 

assessments with objective kinematic measurements from EMA would result in increased 

accuracy and precision in diagnoses, as well as improve the ability of clinicians to assess degrees 

of disorder.  This principle could also be applied to non-speech related movements, like those in 

chewing. 

Similarly, EMA data provides a means of determining differences in articulation between 

native and non-native speakers in a population.  These differences can be quantified and used to 

inform pronunciation training for non-native speakers to increase the naturalness of their 

speech and improve intelligibility.   

Though largely experimental at present, EMA also shows promise in speech 

rehabilitation.  The Marquette University Speech and Swallowing Lab is currently experimenting 

with an EMA-driven speech synthesizer, with a goal of using a virtual vocal tract for speech 
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motor rehabilitation.  The system would be useful in a clinical setting for helping retrain 

speakers with dysarthria, including survivors of traumatic brain injury. 

Given the utility of EMA for understanding and improving articulation, several large 

datasets have been collected from various speaker populations [7-9].  One of the most recently 

released databases is the Marquette University Electromagnetic Articulography Mandarin 

Accented English (EMA-MAE) corpus, collected by Ji, Berry and Johnson [10].  The corpus 

consists of 40 speakers, with 10 representatives each from native English-speaking males, native 

English-speaking females, native Chinese-speaking males, and native Chinese-speaking females.  

All subjects were recorded for roughly 30 minutes of speech, performing various speech tasks in 

English.  The tasks included individual word repetitions, individual sentences, and full 

paragraphs and passages.   

The final corpus includes the resulting kinematic data, acoustic data, phonetic 

transcriptions of all speech, pause labels, and associated kinematic data needed for subject-

specific calibration.  This comprehensive collection of data associated with subject speech is the 

database’s greatest strength, as it facilitates research in a diverse group of areas related to 

accents and word pronunciation. 

However, because of its comprehensive nature, the EMA-MAE database is also large 

(50+ gigabytes) and creates a challenge for many researchers to extract and analyze the data 

that is relevant to their work.  The large group of speech researchers who could benefit from the 

data come from widely varying backgrounds and have differing levels of technical skill.  There is 

thus a great challenge to make the database accessible to researchers of varying technical 

abilities and interests. 

The complexities of EMA processing are not just a problem for the EMA-MAE database, 

but for EMA data generally.  After acquisition, a series of complicated post-processing tasks are 
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required to make the data more physiologically meaningful.  Segments of speech that are 

relevant to a research question (often only hundreds of milliseconds) must be precisely labeled 

and extracted from entire records (usually minutes long).  Analyses require at least a basic 

knowledge of computer programming.  This process makes EMA-based research complicated 

and challenging, especially for those without software proficiency. 

1.2 Objective of Research 

 
The objective of this thesis is to create and demonstrate the use of new software tools 

that make full use of the information provided in EMA datasets.  Using EMA data to its fullest 

extent includes the development of new methods for analyzing or visualizing EMA data.  The 

tools created as part of this work aid in the post-processing of EMA data, use EMA data in new 

articulatory representations, and allow for simple visualization and data processing.  These tools 

will be released along with the EMA-MAE database so researchers who use the database will 

have the ability to process and analyze a large amount of data in an efficient manner. 

In addition to developing and distributing software tools, the thesis introduces and 

demonstrates the utility of orientation data in EMA.  Alongside basic position data, modern EMA 

systems provide information about the orientation of a sensor in the electromagnetic field.  In a 

typical speech kinematic study, the position data are used to support the research findings, but 

the orientation data are not included in any meaningful way.  One reason this might be is that 

orientation data are presented in an unfamiliar format, using quaternion notation.  To facilitate 

more work with the orientation data, quaternions are elucidated with a brief tutorial and put to 

use in several applications.  It is demonstrated that orientation data can be used in tandem with 

the position data to give a more complete characterization of articulation than through position 

data alone. 
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1.3 Organization of Thesis 

 
The thesis consists of five chapters and two appendices.  Chapter 2 provides an 

overview of EMA systems, including the operating principle behind EMA, a brief history of EMA 

technologies, and a description of the data that EMA sensors provide.  It also includes some of 

the basic details of EMA data post-processing (including biteplate correction), while introducing 

a new method for correcting quaternion orientation data.  Chapter 3 provides two applications 

that use EMA position and orientation data for articulatory representations.  Section 1 of 

Chapter 3 demonstrates EMA’s utility in jaw-angle tracking, and Section 2 details the creation of 

a tongue mesh using three EMA sensors.  Chapter 4 presents a new software tool for visualizing 

and analyzing EMA data.  This includes a complete feature description, as well as comparisons to 

existing EMA processing tools.  Chapter 5 summarizes the thesis and places the results of each 

of the chapters in a broader context.  The appendices contain a description of the code used for 

implementing each of the software tools, and give a description of other related tools that are 

used in MU Speechlab experiments with EMA data.  
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2.  OVERVIEW OF EMA SYSTEMS AND DATA STRUCTURE 

 
2.1   EMA Systems Overview 

 
Electromagnetic articulography (EMA) provides a method of tracking the movement and 

orientation of sensors in 3-dimensions as they move through an electromagnetic field.  To study 

positioning and coordination of movements during speech, these sensors can be rigidly attached 

to the articulators and their position and orientation can be reported over time.   

2.1.1 EMA History 

 
In its original form, EMA provided data comparable to earlier, existing x-ray microbeam 

systems [11], which utilized gold pellets attached to the articulators to provide 2D midsagittal 

position data over time.  By placing a subject’s articulators and the attached pellets between an 

x-ray generator with a pinhole and an x-ray detector, the trajectory of the pellets could be 

tracked by finding local minima in x-ray intensity on the 2D plane [12].  The x-ray microbeam 

system allowed for some of the first large-scale data collection projects (e.g. Westbury [13]), 

which provided speech kinematic information across a wide variety of speakers and speech 

contexts.  However, because the method required exposure to x-ray radiation, there were risks 

to subject health that had to be weighed against the benefits of the research.  Because EMA 

poses no proven risk from radiation, it emerged after x-ray microbeam as the best, most similar 

alternative for articulatory position tracking. 

One of the first major EMA systems developed and described in the literature is the 

EMMA (ElectroMagnetic Midsagittal Articulometer) system, created by Perkell et al.[14] at 

Massachusetts Institute of Technology.  The apparatus consisted of three magnetic-field 

transmitter coils capable of tracking solenoidal receiver coils placed along the midsagittal plane 

of the vocal tract.  With the subject’s head fixed in place and the receiver coils oriented parallel 
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to the transmitter coils, the induced voltage in a given coil varies inversely with the cubed-root 

of the distance between the transmitter and receiver [14].  This system was capable of 

resolutions of between 0.5 and 1 mm, but had major limitations, as the sensors had to be placed 

and oriented carefully in the midsagittal plane to avoid rotational misalignment, which caused 

faulty position measurements.  This problem in turn meant any movement by the subject’s 

articulators perpendicular to the midsagittal plane resulted in erroneous positional 

measurements.  The system was also large, complicated and immobile, making it difficult to 

emulate experiments with a large number of subjects, or in other laboratories.  

2.1.2 Modern (3D) EMA 

 
However, the experiments done with the EMMA system laid the groundwork for future 

development of modern day 3D EMA.  To move from a 2D system to a 3D system, Zierdt, Hoole 

and Tillmann created a setup with 6 transmitter coils positioned on a sphere around a subject’s 

head [15].  The total induced voltage in a single receiver coil is a function of its x, y, and z 

position, as well as its 2D orientation (as shown with rotational misalignment error), with 

respect to each transmitter.  The result is 6 equations (one for each transmitter) and 5 

unknowns (one for each position/orientation variable of the receiver), which can be solved 

numerically to determine the position and orientation of the sensor in the field.  Thus, in moving 

from 2D positional data to 3D positional data, two additional rotational degrees of freedom 

were added to the known information about the receivers.  The transmitters-on-a-sphere 

technique formed the basis for the creation of one of the two major EMA systems widely used 

today, the Carstens AG-series of articulographs (Carstens Medizinelectronik, Lenglern, 

Germany).   

Modern commercial EMA systems include the NDI Wave Speech Research System (NDI; 

Waterloo, Ontario, Canada) and the Carstens AG500 and AG501 (Carsens Medizinelectronik, 
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Lenglern, Germany).  As described, both systems are capable of reporting positional data in 3 

dimensions, as well as rotation about the transverse axis and anterior-posterior axis.  The 

Carstens AG-500 system (described and characterized in detail by Yunusova et al. [16]) is a 

project whose design and measurement principles are publicly available.  The system consists of 

6 transmitter coils attached along the edges of plexiglass cube, with the subject and receiver 

coils positioned inside of the cube during data collection.  The Carstens AG500 system can track 

up to 12 sensors at 200 Hz. 

The NDI Wave, in contrast to the Carstens system, is a proprietary EMA system (detailed 

and characterized more completely in Berry [17]) consisting of a data collection unit and a small 

box containing the transmitter coils.  The standard unit allows for tracking of 8 sensors in one of 

two available electromagnetic field sizes (300 mm3 or 500 mm3) at 100 Hz.  The Wave 

specifications state that it is accurate within 0.5 mm, which is within the acceptable tolerance 

for meaningful analysis of speech kinematics [18]. The standard unit can be upgraded to 

increase the sampling rate to up to 400 Hz, along with a second data collection unit capable of 

obtaining data from an additional 8 sensors. The NDI Wave with this upgrade is the EMA unit 

used by the Marquette University Speech and Swallowing Lab. 

2.2 EMA Data Format and Quaternions 

 
As described, when data are reported from the Wave, each sensor provides information 

about its position in 3D space, as well as its 2D orientation.  The position data comes in a familiar 

X, Y, Z format, but the orientation is given in the form of a quaternion.  Because quaternions are 

a rarely used data type outside of computer graphics, aviation and controls, few speech 

researchers are familiar with what they are and how to adequately make use of them.  The 

result is a dearth of papers and findings relating how orientation can be used to more 

completely characterize articulator movements.  Hoole, Zierdt and Geng [19] noted that using 
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two tongue sensors that provide orientation and position data provides the equivalent amount 

of information as four sensors reporting only 2D (x and y) position data.  This means in many 

cases where orientation data is neglected, researchers are discarding a significant portion of the 

information provided by each sensor.  With this in mind, a tutorial to gain a basic understanding 

of quaternions is provided.  For a more detailed, rigorous description (including proofs for a 

number of the equations presented), see Hamilton’s original work on quaternions [20],or [21].  

2.2.1 Quaternions Explained 

 
 Quaternions are 4-dimensional numbers used to represent rotations and orientations, 

often used because of their compactness compared to Euler matrices and avoidance of gimbal 

lock [22].  Quaternions, along with their discoverer, Sir William Rowan Hamilton, have a 

fascinating history, described in [23] and in great detail in [24].  In the 1830’s, Hamilton began 

working with complex numbers and in particular their applications toward vector algebra.  At 

this time, vectors in the modern sense did not exist, and it was actually in Hamilton’s 

quaternion-product formulation that dot products and cross products were first described. 

By the early 1840’s, Hamilton believed he found a method for multiplying and dividing 

vectors using quaternions.  His original discovery, however, was filled with misconceptions and 

errors about how quaternions represented and operated on vectors, a problem which helped 

guide quaternions into their modern mathematical obscurity.  Another mathematician at the 

time, Olinde Rodrigues, arrived at a similar (and actually more conceptually correct) formulation 

of quaternions almost simultaneously with Hamilton, but his work was largely ignored by 

mathematicians at the time. 

Before diving into quaternions, a brief mathematical review of complex numbers is 

required.  A complex number in algebra is any number: 

 c a b  i   (2.2.1) 



 9 
 

 

where, a and b  are real numbers and 1i = .  Graphically, complex numbers are often 

represented in the complex plane.  The example of 3 4c   i  is plotted in Figure 2.1. 

 

 
Figure 2.1- Representation of a complex number in the complex plane. 

 
Complex numbers behave intuitively for addition and subtraction: 

 ( ) ( ) ( ) ( )a b c d a c b d      i i i   (2.2.2) 

And follow distributive laws for multiplication: 

 ( )( ) ( ) ( )a b c d ac bd ad bc     i i i   (2.2.3) 

The conjugate of a complex number is found by simply changing the sign of the imaginary 

component: 

 *c a b  i   (2.2.4) 

The notion of rotors in the complex plane provides a simple introduction to the idea of using 

complex numbers to rotate vectors, as is done with quaternions.  A rotor is a complex number 

that rotates another complex number in the complex plane by an angle   about the origin.  It is 

represented generally as: 

 cos( ) sin( )r    i   (2.2.5) 

As an example, imagine the complex number plotted in Figure 2.1 as a vector pointing 

from the origin to the point 3 4 i .  This vector can be rotated counter-clockwise 30 degrees by 

multiplying by: 
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3 1

cos(30) sin(30)
2 2

 i = i   (2.2.6) 

yielding: 

 
3 1

(3 4 )( ) 0.60 4.96
2 2

   i i i   (2.2.7) 

Plotting the two vectors demonstrates the 30 degree rotation: 

 

 
Figure 2.2- Demonstration of 30 degree rotation by a rotor. 

 
With this basic understanding of rotations in the complex plane, the same concept can 

be generalized to higher dimensions, leading to the development of the quaternion. 

Formally defined, a quaternion is a complex number of the form: 

 q w x y z   i j k   (2.2.8) 

where , ,w x y  and z are real numbers, and i  , j  and k  are  imaginary numbers satisfying the 

equation: 

 2 2 2 1    i j k ijk   (2.2.9) 

The parallel to ordinary complex numbers and rotors in the complex plane can be seen 

clearly in this form.  The large difference is that quaternions add two extra imaginary 

dimensions, allowing for rotation in 3D space and increasing the complexity of their behavior. 

Another way of conceptualizing quaternions is as an ordered pair, consisting of a real 

number portion and a vector portion, as follows: 

 [ , ]q w v   (2.2.10) 
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where w  is the real portion and v  is a vector with i , j , and k  components.  This conception is 

useful when thinking about rotations.  Similar to rotors in the complex plane, a quaternion can 

be viewed as an angle-axis pair, where the imaginary quaternion components define an axis 

about which another vector or point will be rotated.  Specifically, the equation is: 

 [cos( ),sin( )( )]
2 2

q x y z
 

  i j k   (2.2.11) 

where   is the angle of desired rotation, and ,x y  and z  define the axis about which to rotate.  

Before establishing how the rotation is done, however, quaternion mathematics must be further 

explained. 

Quaternions add and subtract in the same way as ordinary complex numbers, but there 

is a major difference when it comes to quaternion multiplication.  First, quaternion 

multiplication is not commutative; when multiplying out quaternion components, order 

matters.  The quaternion multiplication rules are shown below: 

  

 

ij k

jk i

ki j

ji k

kj i

ik j







 

 

 

  (2.2.12) 

It should be noted that these rules are the same as the vector cross product, which is 

often used when working with vectors.  Using these same rules, distributing over all parts of the 

quaternion, and rearranging to combine components, the quaternion product can be defined as 

follows: 

 1 2 1 2 1 2 1 2 2 1 1 2[ , ]q q w w w w     v v v v v v   (2.2.13) 

Beyond addition, subtraction and multiplication, three other basic calculations are 

required for working with quaternions, the conjugate, the norm, and the inverse.    A quaternion 
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conjugate is similar to the conjugate of an ordinary complex number.  However, instead of 

negating only a single imaginary number, all three imaginary components must be negated: 

 *q w x y z   i  j k   (2.2.14) 

Another important definition is the norm of a quaternion.  The norm is calculated in the 

same way as the 2L  norm for any 4-dimensional vector, as follows: 

 2 2 2 2( )norm q w x y z      (2.2.15) 

It is desirable to work with normalized quaternions, as they have many characteristics 

that make them easy to work with.  As an example, here is the definition of the inverse of a 

quaternion: 

 1 *

( )

q
q

norm q

    (2.2.16) 

For a normalized quaternion, the norm is magnitude 1, and the quaternion inverse is the same 

as the quaternion conjugate [22].  Because quaternion inverses are ubiquitous when doing 

rotation calculations, working with normalized quaternions reduces computational complexity 

to a large degree.  Also, when rotating a vector, the magnitude of the vector being rotated 

should be maintained after rotation by a quaternion.  Using a unit-length (normalized) 

quaternion ensures that vector magnitude is left untouched during the rotation.  As a rule, 

normalized quaternions should be used exclusively to do rotations.  

2.2.2 Quaternion Rotation Example 

 
With the basic tools for quaternion rotation in place, the mechanism for quaternion 

rotation of vectors can be shown through an illustrative example.  Imagine a unit-vector that 

points directly down the x-axis, [1,0,0] .  To rotate to the y-axis, [0,1,0] , a positive 90 degree 

rotation is required about the positive z-axis.  Recall that to build a quaternion that will rotate a 

vector by   about an axis requires: 
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90 90 2 2

[cos( ),sin( )(0 0 1 )] [ , ]
2 2 2 2

q    i j k k   (2.2.17) 

To rotate a vector, a quaternion must be multiplied by the vector, using the sandwich 

product: 

 1

rotated q qv v   (2.2.18) 

where q is the quaternion representing the desired rotation, 1q is the quaternion inverse, and 

v is the vector represented as a pure quaternion.  Representing a vector as a pure quaternion 

requires that the vector’s ,x y  and z components are represented as the quaternion  i  , j  and 

k  components.  Using the previous example, the sandwich product becomes: 

 
2 2 2 2

[ , ][0,1 0 0 ][ , ]
2 2 2 2

[0,1,0]

rotated

rotated

   



v k i j k k

v

  (2.2.19) 

Note how the vector being rotated is shown as a pure quaternion, and how the inverse 

of the quaternion was simply formed by taking the conjugate of the original quaternion.  There 

are, however, a few nuances of the quaternion rotation that merit further explanation.  First, 

the rotation from one vector to another is not unique.  In the example shown, the x-axis was 

rotated to the y-axis using a 90-degree rotation.  A 270-degree rotation in the opposite direction 

would have resulted in the same net rotation, as would a 180-degree rotation about the axis

[1,1,1] .  In fact, there are an infinite number of ways to represent the rotation between two 

points.  Secondly, the rotation from this example is called a point rotation.  In this kind of 

rotation, the axes of the coordinate system, or the frame of the coordinate space, remain 

stationary and the vector rotates from one orientation to another.  If the quaternions in the 

sandwich product are switched, the result is a frame rotation:  

 1

rotated q qv v   (2.2.20) 
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2 2 2 2

[ , ][0,1 0 0 ][ , ]
2 2 2 2

[0, 1,0]

rotated

rotated

   

 

v k i j k k

v

  (2.2.21) 

 
The effect is a rotation in the opposite direction, which acts as if the vector was held still 

while the frame of the coordinate space rotated around it.  This can be a useful tool for rotating 

coordinate axes. 

2.2.3 Quaternions to Represent Orientations 

 
The use of quaternions in representing the orientation of an EMA sensor can now be 

better understood.  Quaternions, as demonstrated, represent rotations between two vectors.  

As such, a quaternion on its own cannot represent an absolute orientation of a sensor.  Using 

quaternions to represent sensor orientation means they actually represent the rotation required 

to produce a given sensor’s current orientation from a baseline orientation. 

In data provided by the NDI Wave, the quaternion data represent the rotation required 

to rotate a vector that is normal to the XY plane (pointing along the positive z-axis), to the 

current sensor norm vector orientation.  Thus, by taking the vector [0,0,1]  and using the 

sandwich product to multiply it by the sensor’s quaternion data, the current sensor norm vector 

orientation can be found (Figure 2.3).   

 
Figure 2.3- Illustration representing the orientation of the [1, 1, 0] vector via a quaternion.  The 
[0, 0, 1] vector is used as a baseline in data provided by the NDI Wave.  Multiplying q by [0, 0, 1] 

results in the direction given by [1, 1, 0]. 
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2.3 EMA Data Post-Processing 

 
While providing the position and quaternion data, the Wave provides two different 

reference spaces for the data to be presented in. The first is in a global coordinate system, 

where the ,x y and z position are provided with respect to the face of the transmitter box.  The 

origin of the space is located at the center of the transmitter box, with the x direction pointing 

up, the y direction pointing forward, and the z direction going into the transmitter.  A data 

record is first collected with sensors reporting positions and orientations in these global 

coordinates (see Figure 2.3). 

 

 

Figure 2.4- Depiction of the global coordinate space for the NDI Wave.  The red arrow represents 
the x-direction, and the green arrow represents the y-direction.  Note the 6-DOF sensor present 

in the space to set the origin for the head-corrected space. 

 
Generally, global coordinates are not useful for speech analysis, and the data must be 

transformed into a head-corrected space.  If a subject’s head nods up and down during a data 

recording, their tongue is moving along with the head, but not in a way that is pertinent to their 
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speech.  Thus, by attaching a 6-DOF (degree of freedom) reference sensor to a fixed point on the 

subject’s head, any head movement can be calculated using the following equation: 

 ( , ,z, t) ( , , , ) ( , , , )HC ABS REFP x y P x y z t P x y z t    (2.3.1) 

where 
HCP is the head corrected position of a given sensor, 

ABSP is the absolute position of the 

same sensor, and 
REFP  is the position of the 6-DOF reference sensor.  A 6-DOF sensor is formed 

by combining two 5-DOF sensors so that rotations about the inferior-superior axis can be 

measured, in addition to rotation about the two other axes.  This reference sensor establishes a 

new origin and new axes for all of the other sensors throughout the record.  In the EMA-MAE 

data collection protocol, the reference sensor is placed on the bridge of a pair of glasses worn by 

a subject to maintain a consistent set of head corrected axes throughout a given recording 

session (Figure 2.5). 

 

 

Figure 2.5- A subject with sensors attached to the lips and tongue. 
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After head correcting a given data record, the data are in a more useful form than when 

in the global coordinate space.  However, a head corrected coordinate space with an origin 

between the subject’s eyes, coupled with axes that do not point in a well-defined direction, still 

does not allow for intuitive interpretation of the collected data.  The distance of a sensor from 

the point directly between a subject’s eyes has no physiological meaning, and provides a poor 

landmark with respect to the articulators.  Distances to the tongue surface, lips or hard palate 

from this point vary across subjects, meaning little comparison of speech kinematics can be 

done across subjects using the head corrected data.  For these reasons, it is necessary to convert 

the data from the head corrected reference space to a spatially normalized coordinate space 

that controls for variations in subject anatomy.  This coordinate transformation is called 

biteplate correction. 

2.3.1 Biteplate Correction of Position Data 

 
Biteplate correction has been widely used to aid in the analysis of speech data in both x-

ray microbeam[13] and EMA [25] datasets.  Biteplate correction requires a new choice of origin 

and axes for the data, as well as a method to convert the data from the old coordinate space to 

the new one.  The choice of origin and axes used for the EMA data produced in the MU 

Speechlab emulates the maxillary reference frame described in Perkell et al. and the reference 

space used in the X-ray microbeam speech production database [25, 26]  This reference frame 

places the origin of the biteplate-corrected space at the intersection of the maxillary occlusal 

plane and midsagittal plane, just anterior to central maxillary incisors.  The x-axis points in the 

anterior direction along the midsagittal plane, with the y-axis pointing superior and the z-axis to 

the subject’s right. Thus the goal of the biteplate correction process is to find and implement the 

necessary translation and rotation components that will move the origin to the central maxillary 

incisors and orient the space so that the X-Y plane is the midsagittal plane and the X-Z plane is 
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the maxillary occlusal plane.Biteplate correction is so-named because it requires the placement 

of a plate in the subject’s jaws to bite down on during a recording.  An example of the type of 

biteplate used in the EMA-MAE database is shown in Figure 2.6.   

 

 
Figure 2.6- Biteplate for a sample subject.  The OS sensor defines the new origin of the space, 

and the line from MS toward OS defines the positive x-axis. 

 
In this version of biteplate correction, two sensors are placed along the midsagittal line 

on the biteplate, OS and MS (with the REF sensor placed between the subject’s eyes, as is 

typical).  When the biteplate is put into the subject’s mouth, the OS sensor rests just anterior to 

the central maxillary incisors and defines the new origin for the biteplate corrected coordinate 

space.  The OS and MS sensors together are used to define the x-axis of the new coordinate 

space, with the perpendicular component of the line from the REF sensor to the OS sensor 

defining the y-axis.  The z-axis is found from the cross product of these two vectors. 

Transforming from the head-corrected coordinate space to the biteplate-corrected 

space can be described in terms of an axes switch, a translation and a rotation (Figure 2.7).  In 

the head-corrected space, the superior direction is the x-axis, and the anterior direction is the y-

axis.  These two must be swapped to obtain the desired axes for the biteplate-corrected space, 

which also requires that the z-axis be negated (to maintain a right-handed coordinate system).  

The translation is then simple, as each sensor can be corrected with respect to the origin by 
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subtracting off the value of the OS sensor during the biteplate record from all other sensor 

values in a given record, much like head-correction by Equation(2.3.1).  Table 2.1 gives a 

description of each of the four coordinate spaces described. 

SPACE NAME ACHIEVED BY… POSITIVE X-
DIRECTION 

POSITIVE Y-
DIRECTION 

POSITIVE Z-
DIRECTION 

 
GLOBAL 
COORDINATE 
SPACE 
 

 
Default NDI 
Wave data 
recording 

 
Up 

 
Forward 

 
Into the face of 
the transmitter 

 
HEAD 
CORRECTED 
SPACE 
 

 
Equation (2.6.1) 
applied to 
Global 
Coordinate 
Space 
 

 
REF’s x-axis 
direction, 
roughly anterior 

 
REF’s y-axis 
direction, 
roughly superior 

 
REF’s z-axis 
direction, 
roughly 
subject’s left 

 
AXES-FLIPPED 
SPACE 

 
Swapping x and 
y axes, negating 
z-axis in Head 
Corrected Space 
 

 
REF’s y-axis 
direction, 
roughly anterior 

 
REF’s x-axis 
direction, 
roughly  
superior 

 
REF’s negative z-
axis direction, 
roughly 
subject’s right 

 
BITEPLATE-
CORRECTED 
SPACE 
 

 
Translating and 
rotating Axes-
Flipped Space 

 
Intersection of 
maxillary 
occlusal plane 
and midsagittal 
plane, pointing 
anterior 
 

 
Perpendicular to 
maxillary 
occlusal plane, 
pointing 
superior 

 
Perpendicular to 
midsagittal 
plane, pointing 
to the subject’s 
right 

Table 2.1- Description of each of the coordinate spaces used with the NDI Wave data 
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Figure 2.7- Two steps describing positional biteplate correction.  The axes are translated to the 

OS location, and then rotated such that the REF-OS-MS triangle defines the midsagittal (X-Y) 
plane. 

The rotation to transform the orientation of the axes-flipped space to the orientation of 

the biteplate-corrected space following translation can be described using a quaternion.  

Determining the quaternion required to rotate the head-corrected coordinate space into the 

biteplate corrected space requires selecting an axis of rotation and an angle to rotate about the 

selected axis.  As previously noted, the rotation between two vectors can be described by an 

infinite number of quaternion rotations.  This makes finding the required quaternion somewhat 

complicated.   

Because several sensor positions are involved however, these can be used to constrain 

the set of possible rotations.  Recall from Equation (2.2.11) that any quaternion can be thought 

of as an angle-axis pair.  Using the non-rotated position of the REF and MS sensors and their 

rotated counterparts, all possible rotation axes about which each sensor can be possibly rotated 

lie on two separate planes.  Finding these planes and using the cross-product of their normal 

vectors defines a single rotation axis suitable for rotating both sensors from their non-rotated 

position, to the final rotated position.  Once the axis is defined, geometry can be used to find 

the angle between the non-rotate and final positions.  Plugging these values into Equation 
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(2.2.11) yields a quaternion which will rotate the old sensor position values into the biteplate-

corrected coordinate system. 

In theory the derived translation and rotation derived to implement bite-plate 

correction apply to both the sensor position data and the sensor orientation data. For the 

position data, the implementation of this is straightforward, in that the translation is applied 

first as a direct subtraction, and then the rotation around the origin is applied to the translated 

point to compute the final position value of the sensor in the bite-plate corrected space. 

However, due to the way in which the orientation data are encoded, as a quaternion rotation 

with respect to a baseline spatial orientation, correction of the orientation component of the 

sensor data is slightly more complex, as described in more detail in the next section. 

2.3.2 New Method for Biteplate Correction of Quaternion Orientation Data 

 
While the process for positional biteplate correction has been implemented in many 

studies in the literature, there has been no process described for biteplate correction of the 

orientation data.  Because the quaternions are referenced to the positive z-axis in the head-

corrected coordinate space, if they remain unchanged when the position data is moved to the 

biteplate corrected space, the orientation represented by the quaternions will be ambiguous.  

By “correcting” the quaternions, they can be re-referenced to the biteplate-corrected positive z-

axis and used to accurately represent sensor orientations in the biteplate corrected coordinate  

The goal is to make the quaternion data represent the same relative sensor orientation 

in both the head-corrected and biteplate-corrected coordinate spaces.  Because the quaternion 

data represents the rotation required to obtain a sensor’s norm vector from a baseline norm 

vector, the process of biteplate-correcting the quaternions amounts to re-referencing them to 

the biteplate-corrected z-axis from the head-corrected z-axis.  Choosing the biteplate-corrected 
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z-axis as the new baseline norm vector makes the quaternions represent information in a similar 

manner as in the head-corrected space. 

As with the position data, correcting the quaternions begins with swapping the x and y 

components and negating the z component.  A quaternion [ 0, , , ]q q qx qy qz  becomes: 

 [ 0, , , ]q q qy qx qz    (2.4.1) 

Because the quaternion can be thought of as an angle/axis pair, when switching the 

head-corrected axes, the quaternion’s axis in the angle/axis pair must be represented 

differently.  In this case, when the axes are flipped, flipping the axis representation in the 

quaternion results in representing the same rotation before and after the change of axes.  The 

angle thus remains the same. 

Following the axes switch, the quaternions need to be re-referenced to the biteplate 

corrected z-axis.  This re-referencing is a three step process: 

1.   Calculate the current sensor norm vector orientation represented in the axes-flipped 

coordinate space.   

2. Represent the biteplate-corrected z-axis in the axes-flipped coordinate space. 

3. Get the new quaternion value as the rotation required to achieve the current sensor 

norm vector orientation from the biteplate-corrected z-axis. 

In step one, the current sensor norm vector can be calculated easily using Equation 

2.4.18: 

 ( ) *current zv q v q    (2.4.2) 

where the head-corrected quaternion value ( rotatedv ) is used to rotate the head-corrected z-axis, 

zv  (the vector[0,0, 1] ).  The z-value of the head-corrected z-axis is negative because of the 

axes switch from Equation(2.4.1). This means the quaternion baseline orientation is zv . 
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In step two, the biteplate-corrected z-axis is more difficult to represent in the axes-

flipped space.  Beginning with the axes-flipped z-axis (following the axes switch, [0,0,1] ), the 

biteplate-corrected z-axis can be found through a frame rotation.  The amount of rotation is the 

same amount used to achieve the biteplate-corrected axes from the head-corrected axes (which 

is determined during positional biteplate correction).  A frame rotation is used instead of a point 

rotation because the axis is being rotated (the frame of the coordinate space), rather than a 

point (like a sensor position value).  Mathematically, this involves the use of Equation(2.2.20): 

 *( )BPC HCq qz z   (2.4.3) 

where 
BPCz  is the biteplate-corrected z-axis, 

HCz is the head-corrected z-axis, and q  is the 

quaternion used to rotate from the axes-flipped space to the biteplate-corrected space. 

With both the current sensor norm vector and biteplate-corrected z-axis calculated, all 

that remains is to determine the rotation required to produce the former from the latter, as in 

step three.  Getting the quaternion q  between two vectors 
initv  and finalv  requires the following 

equation [20]: 

 2 2

[w, ]

norm( ) norm( )

cross( )

init final init final

init final

q

w



 

v

v v + v v

v = v ,v

  (2.4.4) 

While there is no unique rotation between the two vectors, this equation gives a simple 

way of calculating one such rotation.  Note that Equation (2.4.4) fails when the two vectors are 

exactly 180 degrees apart (yielding [0,0,0,0]q  ), so a special exception must be made.  See 

Appendix A for the code which handles the exception.  In practice, this is rarely a problem, since 

vectors are rarely exactly 180 degrees apart. 

Substituting BPCz  and currentv  for initv and finalv in Equation (2.4.4) gives the new quaternion 

which will accurately represent the sensor orientation in the biteplate-corrected space. 
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2.3.3 Methods for Incorporating Orientation Data in Interpolation 

 
Sensor orientation data represents valuable additional information about articulator 

position that is often under-utilized.  In addition to providing directly relevant articulatory 

measures, such as jaw angle or tongue blade surface orientation, the orientation data can be 

combined with position data to more precisely interpolate additional articulatory position 

points, increasing the limited spatial resolution of the EMA modality.  This will be illustrated 

using a tongue interpolation tool presented in Chapter 3.  Some introductory background on 

interpolation methods that integrate both location and orientation information are presented 

here. For simplicity, the methods presented here are 2D methods of interpolation, but these can 

be generalized easily to three dimensions. 

Hermite interpolation makes use of Hermite basis polynomials to interpolate between 

two points.  Hermite interpolation makes use of both position and first derivative information, 

similar to that provided by EMA sensors.  It has been used to interpolate missing data points in 

EMA data previously [27], and is a natural choice for the type of data provided in EMA.  The four 

Hermite basis polynomials are: 
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  (2.5.1) 

The first two polynomials are applied to the points that require interpolation, and the 

second two polynomials are applied to the normal vectors.  In matrix form, interpolating a point 

R between two points 
1p  and 

2p  with tangent vectors 
1t  and 

2t  is:  
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  (2.5.2) 
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Thus, provided 
1C  data, Hermite interpolation produces 

0C  continuous curves.  It is 

somewhat computationally expensive because it requires N  interpolation calculations for N  

points. 

Bezier curves are another form of interpolation, often used in graphic design tools.  

They work very similarly to Hermite interpolation, with the exception that the derivative 

constraints are implicitly defined, rather than explicitly defined.  Control points are used to 

define the curvature of the interpolation between the two points, as shown in Figure 2.8. 

 
Figure 2.8- Depiction of implicit control points used in Bezier interpolation. 

 
The basis polynomials for Bezier curves on the range [0, 1] are: 
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  (2.5.3) 

The quaternion data can be used in a manner similar to Hermite interpolation to define 

the control points and interpolate between two points.  Bezier surfaces are used in three 

dimensions to complete the Clough-Tocher algorithm for surface interpolation, an element of 

which is used in Chapter 3.  

2.4 Summary 

 
When both the position data and quaternion data have been biteplate corrected, the 

data are in a physiologically meaningful coordinate space and can be more easily interpreted 

across subjects.  The process begins with data collection in the global coordinate space, where 
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data are referenced to the face of the electromagnetic field generator.  The data are then 

converted into the head-corrected space through the use of a reference sensor placed at a fixed 

point on a subject, on the bridge of the nose in the EMA-MAE protocol.  Following the head 

correction process, the data must be transferred to the biteplate-corrected coordinate space 

through use of a biteplate record and the biteplate correction method. 

While the biteplate correction method has been previously implemented for changing 

the position data on a per-subject basis, no method previously existed for correcting the 

quaternion orientation data.  To facilitate an understanding of the quaternion data and 

quaternion manipulations, a brief introduction to quaternions was given.  Then, a process was 

presented for changing the quaternion data such that the orientations given in the head 

corrected space could be re-expressed in the biteplate-corrected space.  Software 

implementations of each of these portions of the biteplate correction process have been 

created and are given in Appendix A. 

Given the complexity of EMA data pre-processing, the software tools for biteplate 

correction stand as an important contribution toward expediting future data collection and 

analysis.  Providing these tools and methods along with the EMA-MAE database give an easily 

usable, standardized method for processing the data, making EMA data generally more 

accessible for a broader group of speech researchers.  
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3. USE OF QUATERNION ORIENTATION DATA FOR ARTICULATORY 
REPRESENTATIONS 

 
 

When both the position and orientation data are properly corrected and set in the 

subject’s biteplate-corrected reference space, the two components can be used in concert to 

provide a more complete picture of articulator movement than position data alone.  One 

example of this is in jaw movement, where a single, well-placed sensor’s orientation data can 

provide the same information as two sensors’ position data.  Similarly, though a tongue sensor 

might remain relatively stationary for a portion of speech, the added orientation data can 

provide information about how tongue concavity changes over time [19].  With these ideas in 

mind, a pair of tools –one for jaw movement analysis, one for tongue movement analysis—is 

presented to demonstrate how added orientation data might be utilized in articulatory 

representations. 

3.1 Single Sensor Jaw Tracking 

 
3.1.1 Experimental Setup and Data Collection 

 
To demonstrate and evaluate the use of quaternions in jaw tracking, existing EMA 

sensor data were used in an experimental analysis, where position-derived and orientation-

derived jaw angles were compared for their correlation and noise levels.  The EMA data were 

collected using the NDI Wave Speech Research System.  As described in Chapter 2, a single 6-

DOF (Degree of Freedom) sensor was attached to glasses worn by the subject for head 

correction purposes.  In addition, two 5-DOF sensors were attached to the subject: one to the 

buccal surface of the right second molars (MM) and one to the labial surface of the junction of 

the lower incisors (MI).  Sensors were attached at the gum line (using an oral surgery adhesive), 

since adhesion was poor at the dental surface alone.  The sensor placement is shown in Figure 
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3.1.  A biteplate record (see Chapter 2) was also taken so the data could be transformed into the 

articulatory workspace during post-processing. 

 

Figure 3.1- Subject sensor placements (REF, MI and MM) during the jaw sensor tracking 
experiment. 

 
Sixteen normal-functioning, American English-speaking, female subjects repeated two 

speaking tasks, “buttercup” and “oo-ee-ow-ee” (in ARPABET, [UWIYAOIY]) as quickly as possible, 

for as long as possible.  All data were collected at a sample frequency of 100 Hz.  All procedures 

and documentation were approved by the Institutional Review Board of Marquette University 

A separate recording was also taken to assess the amount of noise introduced into the 

jaw angle measurement.  This recording was taken from a skull model with the REF, MI and MM 

sensors attached.  The skull’s jaw was kept still during the recording, so no change in jaw angle 

would occur.  Because there is no actual movement, any variance in the angle measurements 

would be due exclusively to measurement error and noise, thus allowing for direct comparison 

of the orientation and position based jaw angle computation. 

3.1.2 Jaw Angle Measurement Method # 1: Two-Sensor Position Method 

 
Using the 5-DOF kinematic data acquired from the subject, the jaw angle can be 

calculated in two ways, one from positional data and one from orientation data.  The first is 
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using a simple angle calculation between the X-axis (the [1 0] vector) and the vector pointing 

from the MM sensor to the MI sensor,
MI MMv 

.  Because the angle of interest is defined in the XY-

plane, all vectors were projected onto the XY-plane.  The X-axis vector represents the upper jaw, 

and remains fixed at all times during the experiment.  The vector 
MI MMv 

 represents the 

movement of the lower jaw, and will vary as the subject’s mandible moves up and down (Figure 

3.2). 

 

Figure 3.2- Positional method of jaw-angle calculation. 

 
Using the two vectors, and defining opening of the jaws as a negative angle, the angle 

can be calculated as follows: 

 1cos ( )
|| |||| ||

MI MM

MI MM

x v

x v
  



    (3.1.1) 

where x  is the X-axis vector, and 𝜃 is the jaw-opening angle.  Because the MM and MI sensors 

were difficult to place exactly parallel to the X-Z plane, the “zero” jaw angle would actually be 

registered as a small offset from zero.  To correct for the offset and report an absolute jaw 

angle, the position-derived angles were corrected using: 

 ' max( )p p p      (3.1.2) 
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where 'p  is the absolute jaw angle. This method assumes that at some point during the record 

the subject closed their jaws completely.  If the subject did not close their jaws during the 

record, the final jaw angle would be an underestimate of the true jaw angle. 

3.1.3 Jaw Angle Measurement Method 2:  Single-Sensor Quaternion Method 

 
The second method of calculating the jaw angle for a subject requires only one sensor, 

MI.  Using the MI quaternion data, the orientation of the MI sensor can be used to track the 

changes in the jaw angle over time.  The same upper jaw vector (the [1 0] vector), is used as in 

the first method, but the lower jaw vector is calculated differently.  It is obtained using (2.2.18)

along with the quaternion data from the MI sensor: 

 *

L MI b MIv q v q   (3.2.1) 

where 
Lv  is the lower jaw vector, 

MIq  is the quaternion obtained from the MI sensor, and 
bv  is 

baseline orientation vector.  During biteplate correction, the baseline orientation vector is 

enforced to be along the z-axis ([0 0 1], or pointing toward the subject’s right side).  Using 

(2.3.1), the lower jaw vector is calculated, and the final jaw angle is solved for using: 

 1cos ( )
|| |||| ||

L

L

x v

x v
     (3.2.2) 

Ideally, if the sensor is affixed such that its orientation norm vector is perpendicular to 

the lower incisors, the lower jaw vector produced by quaternion multiplication will exactly 

match the vector of the lower jaw.  However, in practice, affixing a sensor this precisely is not 

feasible, and therefore subtracting a baseline offset (similar to the two-sensor method) from the 

quaternion data becomes necessary.  

As done with the position-derived angles, the orientation-derived angle offset was 

chosen to be the greatest recorded angle in a given record.  The new angles were: 

 ' max( )o o o      (3.2.3) 
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where 'o  represents the absolute jaw angle.  

3.1.4 Results:  Angle Comparison 

 
Figure 3.3 depicts a speech record for a single female subject repeating “oo-ee-ow-ee” 

for 10 seconds.  The position- and orientation-derived measurements produce similar values 

over the course of the speech sample, with only a slight offset between them. 

Correlation between the orientation-derived and position-derived jaw angle calculation 

for the record in Figure 3 is 0.995.  Over all 16 subjects, the mean correlation value was 0.981, 

with a standard deviation of 0.019.  The high correlation values indicate strong agreement 

between the two methods, and validate that reasonably similar information can be obtained 

from one or two sensors. 
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Figure 3.3-Plot of subject saying “oo-ee-ow-ee” repeatedly from 4-10 seconds.  The sound at 0-2 
seconds is the test administrator prompting the subject.  Note the similar shape of the position- 

and orientation-derived angle measurements, with a slight offset between the two. 

 
There are, however, several noticeable differences between the orientation and 

position-derived angle values. There are several sources for these differences. There may be a 

slight constant offset since the max jaw angles are necessarily based on two different 

computation methods; however, the similarity during non-speaking periods (e.g. during the 

prompt period in the first few seconds), suggests this is minimal. Additional sources of 

difference include possible sensor movement in any of the three sensors. Although all three 

sensors are rigidly attached, poor adhesion can sometimes cause slight movements.  

Specifically, poor adhesion of the MM sensor to the molar (an occasional problem during data 

collection) can cause it to rock and change position with the cheek tissue sliding across it, which 
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can artificially inflate jaw angles, as the MM position vector would be at a greater y-position.  

The MI sensor tended to be more well-adhered to the teeth (as the front of the mouth is much 

easier to access), and thus is less likely to suffer from the same problem.  Note that sensor 

movement has differential impact on position-derived and orientation-derived computation 

methods, with potential for much higher impact on the orientation-derived angle. 

3.1.5 Results: Variance Comparison 

 
Figure 3.4 shows the calculated angles for a rigid jaw model, along with measurement 

variance.  The position-derived angles show a variance that is an order of magnitude larger than 

the orientation-derived angles.  The higher variance for position-derived calculation was also 

indicated by the speech record shown previously in Figure 3.3. 

From a signal processing perspective, the position-derived angle is based on the 

difference of two vectors to be calculated, acting as a differentiator and amplifying high 

frequency noise.  The quaternion-derived angle does not require such a difference to be 

calculated, although as discussed previously it may be more sensitive to sensor movements 

during the record.  It should also be noted that since EMA data can be collected at 400 Hz, which 

is higher than expected velocities for jaw motion, it would be possible to reduce variance of the 

angle calculation through simple smoothing or other tracking methods, which have not been 

implemented for this evaluation. 
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Figure 3.4- Jaw angles calculated from a record where the sensors were kept completely still 

(relative to one another and the REF sensor). 

 
3.1.6 Conclusions and Future Directions 

 
This experiment demonstrated the use of EMA quaternion orientation data for 

determining articulatory angles, and compared orientation-derived jaw angle measures with 

position-derived jaw measures. Applications of this technique include tongue modeling and 

mesh construction, as well as clinical applications for assessing jaw and speech motor 

kinematics. 

Given the accuracy and ease of attachment of a single sensor, there are numerous 

applications for which single-sensor jaw-angle tracking would be useful.  One use would be in 

articulatory component analysis, where contributions of the jaw need to be separated from 

simultaneous movements of the lower lip and tongue [28].  The method could also allow for 

EMA-based studies on the kinematics of chewing, as the single sensor does not interfere with 

normal chewing or swallowing. 

The method as described also has room for future improvements.  The jaw model used 

here is a simple temporomandibular hinge model assuming a rotational axis perpendicular to 

the midsagittal plane with no joint skewness. A more complex 3-D jaw model reflecting the true 
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dimensionality of jaw movement would also allow measurements of joint looseness or jaw 

movement skewness [29] with correct sensor selection and placement. 

Overall, results indicate that even small measurement variance is magnified by using a 

position-derived angle calculation. Provided that the sensor can be reliably attached, an 

orientation-based method showed more than a factor of ten reduction in computed angle 

variance. 

3.2 Tongue Analysis Tool 

 
Aside from opening and closing of the jaws, tongue positioning and shape have the 

largest impact on acoustic filtering by the vocal tract [30].  With this in mind, using EMA sensors 

to accurately estimate the behavior of the surface of the tongue during speech could have broad 

applications in analysis and synthesis of speech. 

Applying similar principles to those used to calculate the jaw angles, a mesh estimating 

tongue shape and position can be created.  While the tongue sensor positions give some 

information about the tongue shape, on their own they do not provide much insight about what 

is going on at other positions nearby.  Coupling the position data with quaternion orientation 

data provides information about both the tongue at the sensor position, as well as nearby that 

position.  Given this added information, interpolation of tongue fleshpoints can be made more 

accurate. 

3.2.1 Tongue Interpolation Background 

 
Because of the added information given by sensor orientation data, these data have 

proven useful in applications such as head stabilization [31], and jaw angle measurement [28]. 

Orientation data have also been suggested for reconstructing tongue shape in the coronal plane 

[32], and have aided in the control of a skeletal animation of a tongue surface that was 
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extracted from MRI data [33]. Yet no general method currently exists for interpolating tongue 

fleshpoint positions between EMA sensors using combined position and orientation data. 

Other modalities for representation of tongue shape and movement include ultrasound 

[34, 35] at rates as high as 90Hz, and cine-MRI and real-time MRI [36, 37] at rates sample rates 

as high as 33 Hz [38]. EMA offers superior temporal resolution (up to 400 Hz), but somewhat 

lower spatial resolution because of the limited number of EMA sensors attached to the tongue 

surface. While EMA can be combined with MRI data to more completely characterize the 

moving tongue [39], such multi-modality approaches are cost-prohibitive and less practical for 

clinical assessment of tongue movement. Since increasing the number of EMA sensors is almost 

certain to influence movement patterns, reducing the validity of data for kinematic assessment, 

a method for interpolating tongue fleshpoint positions from relatively scant EMA sensor data 

would be very useful for both research and clinical applications. The goal of this work is to 

develop and evaluate such an interpolation method based on data from a three sensor EMA 

configuration. 

3.2.2 Tongue Interpolation Methods 

 
The three points on the tongue used for interpolation in the current experiment 

included: a sensor placed on the tongue blade, about 1 cm back from the tongue tip along the 

midsagittal line (TB); a sensor placed on the tongue dorsum, as far back on the tongue as 

possible along the midsagittal line (TD); and a sensor placed on the left side of the tongue, one 

centimeter from the tongue’s edge at the midpoint between TB and TD (TL). Each of these was a 

5 Degree of Freedom sensor that included 3D position information and 2D orientation 

information that represented the plane of the sensor. With sensors oriented roughly parallel to 

the tongue, the data provided thus includes both position and gradient information at the 

vertices of a triangle on one half of the tongue. 
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Given data that has both position and derivative information, several different existing 

interpolation schemes are possible. The simplest is inverse-distance weighting, which expresses 

each interpolated point as a combination of the other points, weighted by how close the 

interpolated point is to each of the known points [40]. This is computationally simple and 

intuitive, but does not make use of the gradient information provided by the sensors. Other 

methods for surface fitting utilizing derivative information include Bezier patches, Hermite 

surface interpolation, and Clough-Tocher interpolation. A thorough summary of each of these 

techniques can be found in [41].  

To interpolate inside the triangle formed by the sensors, a hybrid technique was chosen, 

drawing from techniques used in both Clough-Tocher interpolation and inverse-distance 

weighting. This approach makes the resulting algorithm computationally easy, while making 

adequate use of the derivative information at each of the known sensor points. 

Prior to introducing the algorithm, there are a few important points to be made about 

the use of orientation data for obtaining gradient data on the tongue surface.  Since sensors are 

initially only roughly positioned, the first step in obtaining accurate derivative information and 

calculating the tongue mesh is to establish a baseline orientation, without which it is not 

possible to infer a gradient from the sensor orientation data.  

There are several techniques that could be used to define the tongue baseline.  A 

natural way is to find some time-point where the tongue is flat, and define the orientation for 

each of the sensors at this point to be completely in the superior direction.  This could be done 

with a bite-plate or tongue depressor to hold the tongue flat in the mouth with the sensors 

attached.  Another means would be to use the recorded sensor position data to determine a 

time-point when the three sensors formed a plane whose normal vector was parallel to a vector 

pointing in the superior direction.  It is very unlikely that the normal vector given by this plane 
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will actually be parallel, so choosing the time-point where the angle between the vector pointing 

in the superior direction and the normal vector to the plane of three sensors is at a minimum is 

the closest approximation.  A final method would include simple averaging of the orientation 

data over a long dataset, on the grounds that the long-term temporal average of tongue 

orientation will be roughly in the superior direction.  Each of these methods has clear strengths 

and weaknesses.  For the current work, the quaternion averaging method and plane definition 

methods (referred to as the positional method) are used to assess the effects of baseline 

quaternion definition on overall accuracy. 

 For each individual record, the average orientation of the sensors was calculated and 

assigned a value that represents the orientation pointing in the superior direction. Because 

orientation data are provided in quaternion format [42], the averaging technique employed the 

eigenanalysis method described in [43].  Defining this average quaternion value as the superior 

direction, an adjustment quaternion to be applied as a correction to all other data can be 

calculated as follows: 

*

adj avg superiorq q q   (3.4.1) 

where *

avg
q  is the conjugate of the average quaternion, and 

superior
q  is the quaternion whose 

orientation represents the superior direction. Right-multiplying the adjustment quaternion with 

all quaternions in a given record results in adjusted orientations that point in a direction roughly 

normal to the tongue surface: 

corrected raw adjq q q   (3.4.2) 

With quaternions that more accurately provide gradient information about the tongue 

surface, virtual positions along the tongue can be calculated from the position and derivatives. 

The method begins by breaking up the macro-triangle formed by TD, TL, and TB into sub-

triangles, in a Clough-Tocher split [44]. This split breaks a single triangle into three new triangles, 
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by connecting the three original vertices to the triangle’s centroid. This process can be repeated 

with the sub-triangles as many times as needed to obtain the desired number of points inside 

the macro-triangle. For the purposes of this description, the triangle points will be described as 

points in the X-Z plane, with the Y-value at each XZ position representing the tongue height that 

needs to be found. 

Using this split, once the Y-position and gradient at the centroid of the macro-triangle 

are found as described in the following sections, the process can be repeated to determine the 

position and gradient values at the centroids of each of the sub-triangles. 

 
 

 

Figure 3.5- First seven points found using a Clough-Tocher split. Point 4 is the centroid of the 
macro-triangle, with points 5, 6, and 7 found from the centroids of the sub-triangles. 

 

Given the point, ( , , )x y zb b b  and normal vector, ' ' '( , , )x y zB B B  represented by sensor TB, an 

equation for a plane can be written, representing a tangent surface on the tongue: 

' ' '( ) ( ) ( ) 0x x y y z zB x b B y b B z b     
  (3.4.3) 

This plane can be used to project the tongue height y at some point in the X-Z plane by 

rearranging and solving for y: 
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' '

'

( ) ( )
( , ) x x z z

B y

y

B x b B z b
y P x z b

B

  
  


 (3.4.4) 

    
This process can be repeated for each of the sensors, resulting in three planes,

( , ), ( , ), ( , )B L DP x z P x z P x z  which are capable of providing projections at some point in the X-Z 

plane (Figure 2.2). 

 

 
Figure 3.6- Planes created from sensor position and orientation, used to project the value at a 

new point N. 
 
 

Inverse-distance-weighting was used to combine projections for the y-value at the 

centroid from each sensor into a single y estimate, with the weight given to a sensor’s projection 

assigned to be the inverse of the distance between the sensor and the desired point. For 

example, the weight given to a projection from TB is: 

2 2

1
( , )

( ) ( )
B

x z

w x z
b x b z


  

 (3.4.5) 

Others weights are determined similarly. 

Combining equations (4) and (5) for each sensor yields the y-value for a new point ( , , )x y zn n n : 

     
( , ) ( , ) ( , ) ( , ) ( , ) ( , )

( , ) ( , ) ( , )

B x z B x z L x z L x z D x z D x z
y

B x z L x z D x z

w n n P n n w n n P n n w n n P n n
n

w n n w n n w n n

 


 
 (3.4.6) 
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The normal vector for the new point can be calculated analogously, as the inverse-

distance-weighted average of the normal vectors at TB, TL, and TD. 

With the macro-triangle’s centroid position and derivative information calculated, this 

process can be repeated for other sub-triangle centroids on the tongue. It should be noted that 

to complete the interpolation, the calculated tongue heights are reflected across the midsagittal 

plane, which assumes that the tongue behaves approximately symmetrically (generally the case 

for normal speakers). To allow for visualization, the points were connected to form a triangular 

mesh. 

To assess interpolation accuracy,  six sensors were placed on the tongue, with the 

original three (TD, TL, TB) used to create the projected tongue values, and three additional 

sensors (labeled S1, S2, S3) served as ground truth against which the projected tongue values 

could be compared, as shown in Figure 2.3. 

 

 

Figure 3.7-Tongue sensor placement for evaluation 

 
The single subject used to conduct the experiment was a 22-year-old female, whose 

native language was American English. The data were collected at 400 Hz using the NDI Wave 

Speech Research System.  All procedures and documentation were approved by the Institutional 
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Review Board of Marquette University. The data were corrected for head movement using a 

reference sensor attached to glasses worn by the subject throughout all recordings. Bite-plate 

correction was also used to place the data in a physiologically defined coordinate space, with 

the X-Z plane corresponding to the maxillary occlusal plane and the X-Y plane corresponding to 

the midsagittal plane following bite-plate correction. The origin of the space was set at the tip of 

the central maxillary incisors. 

Six speech records were taken from the participant. The caterpillar script [45] was read 

twice, both as an acclimation record and a typical connected speech record. The remaining four 

records consisted of consonant-vowel-consonant (CVC) words or pseudo-words with consonants 

/k/, /t/, and /p/ flanking vowels /i/, /e/, /æ/,/ɚ/, /ʌ/,/u/,/o/, and /ɑ/ (or /IY/, /EY/,/AE/, /ER/, 

/AH/, /UW/, and /OW/ in ARPABET). Three of the records consisted of five repetitions of each 

word or pseudo-word, embedded inside a carrier phrase (for 40 repetitions in each record). The 

carrier phrase used was “It’ll say (/kik/) again.” This allowed for more natural use of the words in 

context, including more natural variability. The other single record was simply all 24 pseudo-

words repeated without the carrier phrase.  For all records, excluding the reading of the 

caterpillar script, the participant was provided a verbal prompt from demonstrating each target 

utterance. 

For each of the six records, a basic error analysis was done to evaluate the predictions 

made by the interpolation method. This analysis included calculations of mean absolute error, 

standard deviation of absolute error, maximum overestimate, and maximum underestimate for 

each sensor. The errors were calculated by measuring the difference between the projected 

tongue height and actual tongue height within a sub-triangle. Additionally, these same metrics 

were calculated within only the vowels in each of the CVC records. Combined, these metrics give 
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a picture of overall errors for the algorithm, as well as errors for a variety of vowels in certain 

consonant contexts. 

3.2.3 Tongue Interpolation Results and Discussion 

 
The results of the evaluation are shown in Tables 3.1 and 3.2.  For this first set of results, 

the quaternion averaging method was used to calculate the quaternion baseline orientation. 

Generally, S3 was the most accurately predicted from the three other points, but all sensors 

showed mean absolute errors below 3 mm, with standard deviations near 1.5 mm. The 

maximum errors averaged across all records for sensors 1, 2 and 3 were 10.09 mm, 12.46 mm, 

and 8.81 mm respectively. The vowel segments in the CVC records did not differ significantly in 

accuracy from all of the records as a whole.  The total accuracy of the EMA sensors is 0.5 mm 

(with an unknown orientation resolution) [46], which places an upper limit on the accuracy 

achievable through interpolation. 

 
Error Table 
(Averaging) 

Mean Error 
(mm) 

Dynamic Range 
(mm) 

S1 2.56 ± 1.72 23.82 

S2 2.28 ± 1.45 28.23 

S3 0.90 ± 0.93 36.29 

Table 3.1-Mean absolute error and standard deviation across recordings for the quaternion 
averaging quaternion correction method, compared to sensor dynamic range. 
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Expanded Sensor Error Table 
(Averaging) 

       

Filename S1 Mean 
Error 

S1 Error 
SD 

 S2 
Error 

S2 Error 
SD 

S3 
Error 

S3 Error 
SD 

KVK 2.56 1.67  2.83 1.42 0.98 0.94 

TVT 2.96 1.66  2.64 1.55 0.92 1.01 

PVP 2.86 1.81  2.13 1.43 1.00 1.00 

Caterpillar 2.56 1.73  2.06 1.43 0.86 0.88 

Caterpillar (acclimation) 2.53 1.81  1.95 1.29 0.76 0.75 

All Words  2.24 1.54  2.13 1.67 0.79 0.80 

Overall 2.65 1.72  2.28 1.45 0.90 0.93 

Vowel Context Data        

Filename        

KVK 1.85 1.76  3.23 1.50 0.98 0.75 

TVT 2.35 1.75  1.88 1.06 0.66 0.45 

PVP 2.78 2.28  1.82 1.17 0.85 0.60 

Overall 2.33 1.93  2.31 1.24 0.83 0.60 

Table 3.2- Expanded results of the error, broken down by file.  The errors were relatively 
consistent across files, including the vowel segments alone. 

 
In a typical case, the interpolation method overestimates the value of S1, while 

underestimating the value of S2 and S3. The larger, overestimated error in S1 is reasonable, as 

by using only linear, first derivative components to interpolate the points, changes in tongue 

concavity near TD on either side of the medial sulcus will be smoothed over.  S2 errors arise 

from only two sensors being used along the medial sulcus, which are inadequate for fully 

capturing midsagittal curvature. S3 was consistently the most accurate. Taken together, the 

accuracy of the sensors suggests that areas with less change in curvature can be more 

accurately interpolated. 

The predictions were accurate enough that estimated gross changes in tongue position 

and shape (e.g. changes in concavity) matched the actual changes when viewed as a mesh.  

However, because the three data points contain only first derivative information, no changes in 

tongue concavity could be predicted within the interpolated area.  A coronal cross-section of the 

interpolated tongue will always appear as a single concave or convex curve (u-or n-shaped), 
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when in reality the tongue surface can contain multiple changes in concavity (allowing for an m-

shape). 

 
Figure 3.8- Estimated and actual smoothed vowel trajectories for an example word (tæt). 

 

 
Figure 3.9- Estimated and actual smoothed vowel trajectories for an example word (kæk). 
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An example of actual versus estimated trajectories for the interpolated tongue points 

are shown in Figures 3.8 and 3.9, for two different consonant contexts.  The trajectories have 

been smoothed using a moving average filter to remove jagged movements in the trajectories 

that are due to sensor noise and do not represent a natural movement.  These trajectories 

illustrate the scale and nature of the interpolation accuracy, showing that the proposed 

interpolation method is able to characterize tongue motion throughout an articulatory 

movement.  While the absolute range and positions show noticeable errors, the paths traced by 

the virtual and actual sensors appear very similar, suggesting measures like speed and distance 

travelled could be obtained via interpolation.  Similarly, the variance in the actual and estimated 

trajectories is close to the natural variance in the real trajectories alone. 

 

 
Figure 3.10- Estimated and actual unsmoothed vowel trajectories for an example word (tæt). 
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Figure 3.11- Estimated and actual unsmoothed vowel trajectories for an example word (kæk). 

 
Unsmoothed trajectories are shown in Figure 3.10 and 3.11.  When compared with 

Figures 3.8 and 3.9, they contain similar information, but appear to be too noisy to be 

considered truly “natural” movement.  Smoothing of articulatory trajectories is common 

practice for this reason, although it might obscure higher-frequency content in the signal.  This 

tactic can be justified, however, as long as the lower frequencies that are important for 

production of a given phoneme are captured. 

 
Error Table 
(Positional) 

Mean Error 
(mm) 

Dynamic 
Range (mm) 

S1 3.68 ± 3.55 23.82 

S2 2.92 ± 5.12 28.23 

S3 1.73 ± 2.48 36.29 

Table 3.3- Mean absolute error and standard deviation across recordings for the positional 
quaternion correction method, compared to sensor dynamic range. 
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The results of using the positional quaternion correction method are shown in Table 3.3.  

These results are clearly inferior to the accuracy provided using the quaternion averaging 

method, suggesting the averaging method more adequately captures the flat-tongue position 

than does the positional method.  From a tongue physiology perspective, the positional method 

falsely assumes that when the tongue dorsum, tongue blade, and lateral portion of the tongue 

form a flat plane, the entire tongue is flat.  One can easily picture a situation where the tongue 

is concave up or concave down, but the three sensor points chosen form a plane that is parallel 

to the X-Z plane. 

Future work includes a number of improvements to increase the accuracy of the 

interpolation method and extend it beyond its current limitations. The development of a more 

reliable baseline-orientation protocol would provide more accurate gradient information.  

Because the quaternion averaging method was shown to be superior to the positional method, 

this method will be used as a point of comparison for future quaternion baseline definition 

algorithms. 

Additionally, it is possible to add more sensors to the tongue that can be used in the 

interpolation, which would add additional information and improve the overall accuracy. Adding 

a sensor outside of the macro-triangle used in the current work would allow for some 

extrapolation outside of the main portion of the tongue body. The current focus was on simple 

tongue configurations used in vowel articulation, but additional sensors could provide 

information about more complicated changes in concavity and curvature seen during liquids and 

consonant clusters.  However, since adding sensors may affect sensor adhesion reliability and 

decrease the naturalness of articulation, increased accuracy must be weighed against these 

considerations.  
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By incorporating both orientation and position data from the EMA sensors, this 

approach substantially increases the overall amount of information and representative 

capability of EMA. In particular, the method provides a mechanism to estimate tongue position 

at untracked locations, both laterally and midsagittally. Combined with additional reference 

information such as palate height, this approach enables the creation of much more accurate 

articulatory features that directly correspond to vocal tract cross-section and shape. 

Applications of this work include clinical assessment of articulation, studies of pronunciation 

variation and accent, as well as speech processing technologies such as acoustic-to-articulatory 

inversion and articulatory audio and audio-video synthesis. 
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4.   EMA VISUALIZATION TOOL 
 

After EMA data have been collected and processed, the data require some validation.  

During recordings, a variety of problems can arise.  Sensors fall off of the articulators, fail to 

report a position sample, become disconnected from the receiver, or break.  Simple, automated 

data validation code can count NaN (not a number) instances and provide some assurance of 

data quality.  However, without actually visualizing the data, there is no way to validate whether 

or not the data represent meaningful information that would be useful for analysis. 

If the data are determined to be useful, analysis can begin utilizing the sensor data in 

combination with the acoustic data.  The analysis will vary widely by discipline, but often 

includes indexing the speech into segments, tracking sensor trajectories, determining sensor 

speeds, and viewing the patterns and coordination between the acoustic and kinematic data.  As 

an aid to individuals making use of the EMA-MAE database, a set of software tools will be 

included to view and process the dataset.  The goal is to include software that provides 

capabilities for both data validation and analysis, while being accessible to the greatest number 

of users possible. 

4.1 Review of Existing EMA Visualization Software 

 
Several pieces of software have been developed to work with EMA data over the past 

few years.  The main examples include EMATOOLS [47], MView [48], and VisArtico [49].  Each of 

these has their strengths and weaknesses, which will be discussed in some detail. 

4.1.1 EMATOOLS 

 
EMATOOLS was developed and distributed by Noël Nguyen from the University of 

Provence in France in 2000.  It is a collection of MATLAB scripts that are capable of displaying 
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and indexing various forms of articulatory data, including EMA, electropalatography (EPG), and 

even x-ray microbeam data.  The scripts can be used together to create user interfaces.  Each of 

the user interface components provides a different display capability, showing either the audio 

and selected 1D kinematic data, the EPG data, or the midsagittal trajectories of the sensors.  The 

scripts and functions can also be pulled out of the package to be used on their own, providing 

the ability to load various file types, calculate sensor velocities and accelerations, and plot the 

variety of data types in many different forms. 

However, for current EMA data visualization and processing, EMATOOLS has serious 

flaws. Because it was developed 15 years ago, EMATOOLS is no longer supported or maintained.  

Any problems with the software cannot be reported or fixed because of this, and the user left to 

make improvements or adjustments as needed.   Also, because it is built as a part of MATLAB, 

the group of researchers who can easily make use of it must have technical skills, familiarity with 

MATLAB, and a MATLAB license (which can be expensive).  Finally, the analysis tools allow for 1D 

or 2D analysis, with no 3D capabilities in the software. Though it has many desirable features, 

EMATOOLS has too many drawbacks to be used as a tool for analysis and visualization of the 

EMA-MAE dataset.  

4.1.2 MView 

 
MView is similar to EMATOOLS in that it is a set of MATLAB scripts developed for the 

purpose of EMA analysis.  MView was created by Mark Tiede at Haskins Laboratories and 

released in 2005.  It is still currently supported and available by contacting the developer for a 

copy of the software.  MView supports viewing EMA sensor trajectories, sensor positions in a 

midsagittal view, and palate data in the midsagittal view.  It also supports viewing the audio file, 

both as an oscillogram and a spectrogram.  Indexing is allowed through any of these views, so 

the dataset can be broken up into meaningful segments and batch processing can be done.  
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One other distinctive feature of MView is its support for finding certain time points 

where a given articulatory gesture occurs.  By defining minimum, maximum and threshold 

values for sensor values, lip opening, lip protrusion, tongue raising, and tongue lowering can be 

found in a dataset loaded into MView.  Similar functions are built in for velocity-based detection 

of articulatory gestures.  Once the relevant time indices are located, they can be saved to the 

MATLAB workspace, and eventually saved to file for future analysis.  Given its broad feature set, 

MView is a very nice tool for EMA analysis, and has been recommended for use by Narayanan et 

al. [27] for use with a recent MRI/EMA database. 

While MView provides excellent functionality for technical users in a MATLAB 

environment, it contains the same drawbacks as EMATOOLS in that users without a MATLAB 

license and significant MATLAB experience will be unable to use it.  It also does not offer full 3D 

visualization of the sensor movements, or any analysis components for the quaternion 

orientation data.  Overall, MView’s analysis capabilities are excellent, but its utility for many 

non-technical speech researchers is limited. 

4.1.3 VisArtico 

 
Of the software tools mentioned, VisArtico represents the only cross-platform solution 

for working with EMA data.  Developed in Java, VisArtico only requires that a user has a Java 

Runtime Environment (JRE) installed on their computer, making it usable for Windows, Mac OSX 

and Linux operating systems.  This makes it an attractive option for researchers without access 

to a MATLAB distribution. 

While providing excellent accessibility, VisArtico features many tools for both 

visualization and analysis of the data.  For visualization, VisArtico contains a 3D spatial view, 

complete with both sensor position and orientation representation.  It also has a 2D midsagittal 

view for traditional data viewing and a 1D trajectory view, which lets the user view the 
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movement of a sensor in a single dimension over time.  All of these can be played back 

synchronously with the audio, allowing for easy data validation. 

VisArtico also has a variety of analysis tools built-in.  On loading EMA data, each sensor 

can be assigned to a certain articulator, and the overall position of the lips and tongue can be 

interpolated given the sensor positions.  The configuration interface is a key step in making the 

EMA data usable for a variety of researchers who may lack the technical skills needed to process 

the data on their own.  VisArtico also supports adding a palate trace file to a set of subject data, 

so the sensor movements relative to the palate can be viewed.  Along with the palate drawn 

into the midsagittal space, sensor trajectories can also be shown for an entire data file.  Lastly, 

like other EMA software tools, VisArtico supports indexing of the kinematic and audio data, as 

well as labeling phonemes for the indexed data.  These analysis features are comprehensive and 

make VisArtico a solid choice for many users for EMA data analysis. 

Unfortunately, VisArtico is currently incompatible with the EMA-MAE dataset.  It was 

originally developed for use with the Carstens EMA system, and thus works well with all 

Carstens generated data.  According to VisArtico’s documentation, the latest version supports 

NDI Wave-produced EMA data, but several attempts to load the data into VisArtico from the 

Wave have resulted in loading errors.  It is thought that problems with audio/kinematic 

synchronization are the problem with the dataset, as there are several issues in the Wave’s 

timestamps when they are written to the kinematic files.  One problem is that the timestamps 

often begin with a non-sense value that is well over one million seconds.  Second, the 

timestamps that follow do not begin exactly at zero, meaning an offset is required when 

beginning playback of the audio.  Lastly, the timestamps are placed in almost exactly 400 Hz 

increments, but in some cases there are slight fluctuations in the sampling rate (less than 1 Hz) 
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throughout the record.  VisArtico likely has not been designed to account for these issues, 

making the EMA-MAE dataset unusable with VisArtico. 

4.2 EMA Software Tool Development 

 
With none of the existing software providing a solution that is completely suitable for 

distribution with the EMA-MAE database, a custom tool has been developed, to provide a piece 

of software that can be used for data validation and simple analyses.  The goal was to create a 

tool that is usable across many different computing platforms, by both technical and non-

technical users.  This goal required creating a standalone executable that could be freely 

distributed, requiring no special software or licenses for use, and utilizing a graphical user 

interface (GUI).  The final product was required to be usable by non-technical users, but provide 

some complex functionality for analysis functions (data exporting, segmenting, etc.). 

The process of developing the tool will be covered in detail.  First, a development 

platform needed to be selected.  This included reviewing various development platforms for 

their capabilities, including speed of development, support for scientific computing and 

visualization, support for GUI development, and ease of distribution.  MATLAB, Java Swing, 

C++/Qt, and PyQt were all considered as it relates to these criteria.  Then, possible libraries for 

data plotting and visualization were reviewed.  The best visualization library was lightweight (did 

not require huge libraries to be included), fast (capable of plotting in real-time with the data), 

and flexible (allowing for both 2D and 3D plotting, with support for representing quaternion 

orientation data).  Using the platform and libraries chosen, the tool will be described from both 

development and user perspectives.  After describing the features, future additions to the tool 

will be considered. 
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4.3 GUI Development Platforms 

 
There are a wide variety of development platforms for software tools that could be 

distributed with the database.  The true number of candidates is much smaller, as the choices 

were limited to those where previous development experience had been obtained.   

MATLAB was the first candidate, as it has great built-in support for scientific and 

mathematical computing, both necessities for a visualization and analysis tool.  MATLAB also 

features the GUIDE (Graphical User Interface Development Environment) tool, which makes 

development and maintenance of GUI-based tools relatively simple.  Using the GUIDE tool, the 

actual coding is minimized, as MATLAB’s system of buttons and callbacks readily connects 

buttons to their functionality.  The built-in plotting and visualization in MATLAB is also a large 

plus, as native support for data display and visualization does not exist in the other languages. 

MATLAB-based tools have several shortcomings though, many of which have been 

previously noted.  Distributing MATLAB tools requires the user have a MATLAB license and 

technical skills necessary to run MATLAB, which limits overall effectiveness.  Also, while MATLAB 

has built-in plotting capabilities, it is somewhat slow when compared to other languages, which 

limits the frame rate at which real-time data playback can be viewed.  Due to the widely varying 

technical skills of the intended users of the final software tools, MATLAB may be suitable for 

certain special analysis tools that will not need to be used by non-technical users, but not for a 

widely-distributable visualization tool. 

Java Swing was another possible choice for development of the visualization tool.  Java’s 

main feature is that it is cross-platform, running the same way on every computer that has a JRE 

installed.  Expecting a user to have a JRE is not unreasonable, as a large number of applications 

utilize Java, and it is likely a typical user will already have a JRE.  Swing also makes it relatively 

easy to develop GUI-based applications, with a lot of built-in classes supporting dialogs, labels, 
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buttons, and other GUI elements.  The online support community for Java is large and there are 

also a great deal of open-source libraries available to be included with Java Swing applications.  

The data visualization and 3D graphing capabilities in Java exist in several different open source 

APIs, such as JZY3D.  

Even with the large development community around Java however, the support for 

scientific computing is not as robust as its counterparts.  Apache Commons Math is a decent 

resource for doing complex mathematical calculations in Java, but is nowhere near as complete 

as MATLAB, and does not have built in support for quaternions in working with the dataset.  As 

long as most of the built-in analysis capabilities of the tool are not mathematically complex, Java 

would be a fine choice for developing the visualization tool.  With more complicated algorithms, 

however, much more development time would be required to get the desired functionality.  

VisArtico stands as a good example of what can be done utilizing Java’s GUI-development 

capabilities. 

C++/Qt is another excellent GUI development framework.  Because it relies on C++, the 

program speed is faster than other platforms, as C++ code is compiled directly to machine code 

instead of interpreted (like MATLAB or Python), or converted to intermediate JVM bytecode (as 

in Java).  Qt is a GUI framework (developed by TrollTech, Oslo, Norway) that allows for cross-

platform development of GUI applications, where the application will assume a “native” look 

and feel on any type of major operating system (Linux, OSX, or Windows).  Qt provides built-in 

functionality for creating and customizing dialogs, main windows, buttons, user input, etc.  This 

speeds up development time significantly, as Qt does most of the back-end work, allowing 

development to be focused on the UI functionality itself.  There are also a number of plotting 

libraries capable of integrating with C++/Qt, with QwtPlot3D and QCustomPlot being good 

examples. 
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While using C++ along with Qt has its advantages, they each have notable downsides.  

Though Qt provides a cross-platform support, C++ must be compiled separately on each of the 

environments that the program needs to run on.  Also, of the development platforms 

mentioned, C++ requires the more code than MATLAB, Java, or Python to complete the same 

task, which increases development time and complexity.  This includes complexity of learning to 

use new libraries that would be required for plotting functions and mathematical analysis.  With 

the cost of more development time and added libraries, C++/Qt can produce fast programs that 

are suitable for cross-platform use. 

The final platform considered, PyQt, has many of the same features as C++/Qt, but 

utilizes Python as the main language.  This offers the same benefits as C++/Qt, but many other 

benefits (and some drawbacks) of Python versus C++.  Python provides a great deal of support 

for scientific computing, with packages like Scipy and Numpy available, and a huge development 

community behind them.  There are also a variety of plotting and visualization tools available as 

libraries for PyQt (Visvis, Matplotlib, PyQwt, PyQtGraph), which allows for some choice in 

picking the best visualization library.  The main virtue of Python over other programming 

languages is its easily understandable syntax and built-in abilities to do complicated tasks in 

relatively small amounts of code.  This decreases learning and development time significantly, 

allowing for rapid development and deployment of applications.  Python also features tools that 

allow it to run across all platforms (PyInstaller, Cx_freeze, Py2exe), which make distribution of 

the completed product to other platforms relatively simple. 

While PyQt’s benefits are many, it is not without tradeoffs.  Of the development 

platforms mentioned, Python is probably the slowest for most applications, due to its 

interpreted, dynamic nature.  It thus requires significantly more memory than other 

development platforms to do comparable tasks.  This also means distributed Python programs 
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are typically large (10s of MBs), with many included libraries adding to the size of the distributed 

file.   

Given all of these considerations, PyQt was chosen as the framework for developing the 

visualization tool.  The main benefits are development time and support for scientific 

computing, as these are as good as or better than the other platforms mentioned.  Though 

Python is relatively slower, in practice, Python is fast enough to do the visualization with the 

correct libraries (that might rely on C and C++ to improve speed), and its speed of development 

outweighs the cost of somewhat slower program execution.  Large application distribution files 

might be a problem in a program on its own, but in distributing a program that comes alongside 

a database that is tens of gigabytes, this really is not much of a limitation. 

4.4 Plotting and Visualization Libraries 

 
With PyQt chosen as the platform for development, a suitable visualization library was 

required for plotting the data in 3D.  PyQt, as mentioned, has several options developed by 

members of the support community, including Visvis, Matplotlib, PyQwt, PyQtGraph.  The 

choice was made to include both Visvis and Matplotlib, as they offer benefits that complement 

one another, but on their own would not be suitable for the needs of the visualization tool. 

Visvis was used for the real-time sensor display, as it is a fast, lightweight means of using 

Python to make calls to OpenGL.  Direct integration of Python with OpenGL maximizes speed 

and minimizes the complexity of the code required, while retaining the ability to plot in 3D.  

Visvis also features easy integration with PyQt applications, so the sensor plot could be built into 

the user interface like any other integrated component.  One great feature of Visvis for working 

with the EMA sensor data is its built in support for quaternions, meaning the sensors can be 

plotted as cones that convey both position and orientation information.  These features, 
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coupled with a logical class structure for handling data and figures, made Visvis the clear choice 

for real-time data playback in the visualization tool. 

While Visvis is excellent for 3D plotting, Matplotlib offers a depth of functionality that 

far exceeds the other Python libraries.  Matplotlib has built in functions for plotting comparable 

to MATLAB’s 2D and 3D plotting capabilities.  The one major component of Matplotlib that is 

useful for the visualization tool is a spectrogram.  Spectrograms are a built-in plot type in 

Matplotlib, and are essential to effectively analyzing or indexing the database’s audio data.  Like 

Visvis, Matplotlib plots can be integrated into a PyQt UI window.  Including Matplotlib adds 

another large library to the list of dependencies for the project, but the gain in possible 

functionality both now and in the future is certainly worth the tradeoff. 

4.5 Basic GUI Development with PyQt 

 
Prior to describing the design of the visualization tool, some basic terminology and 

concepts relating to PyQt development need to be introduced.  In PyQt, each component of the 

GUI is called a widget.  Buttons, drop-down menus, user input textboxes, and spin boxes, 

present in many other GUI are all examples of widgets.  On top of a wide variety of built in 

widgets, PyQt supports creating custom widgets, which can be modified versions of built in 

widgets, combinations of widgets, or a completely new widget created from scratch.  When 

creating the visualization tool, the plots for displaying the sensor data and spectrogram would 

each be considered a separate widget. 

Applications are created by embedding widgets in a main window or in dialogs.  The 

main window is the central part of any GUI application in PyQt.  The main window contains a 

toolbar with shortcuts and icons for executing various actions in the program.  It also has a 

menu bar, which provides similar functionality, but usually a more complete listing of all 

available actions in the program.  Other main window features include a status display to show 
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the current program state and a title bar to show the name of the application and current open 

files.  

Dialogs are supplementary windows that can be used to alert the user of some 

information, prompt them to provide input data for the program, or allow the user to load a file, 

among a host of other tasks.  Several built-in dialog types allow for common user actions, like 

warning them of an error, showing progress of a task, or selecting a file to use.  On top of these 

built-in types, custom dialogs can be created to suit any desired user input.   

Widgets interact with the underlying program logic through several mechanisms.  The 

most basic is the use of signals and slots.  For example, when a button is clicked, it will emit a 

“clicked” signal.  This signal can be connected to a slot, which will take some action based on the 

button click.  This slot can be a function or method inside the program, which will then be 

executed.  Each built-in widget type will emit a pre-defined signal, per the Qt documentation. 

For lower level interactions, an event handler is used instead.    These are typically used 

with either custom widgets, or when special functionality is required.  For instance, it often 

occurs that some action needs to be taken by the program before closing (e.g. file saving or 

closing).  To ensure that these actions take place, the “close” event for a given dialog or window 

would be implemented, with the relevant file saving or closing calls made within it.  Combined 

together, PyQt’s signals and slots mechanism, along with the event handler allow for ease of 

implementation, but finer control when needed.  

4.6 Visualization Tool Design 

 
The design of the tool was split into four main components.  These include the sensor 

plot, data controller, spectrogram, and data viewer.  Each is pictured as part of a main window, 

shown in Figure 4.1 



 61 
 

 
Figure 4.1- Main window for the visualization tool.  The data controller, sensor plot, and 

spectrogram are on the left, from top to bottom.  The data viewer is on the right. 

 
The main window also contains a toolbar and menu bar at the top to allow for 

manipulations of other GUI components.  All components of the GUI will explored in terms of 

how they can be used for data visualization and analysis. 
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4.6.1 Feature Description- Visualization 

 
The sensor plot is the main widget involved in kinematic data visualization.  To load a file 

into the program, the user can either select “Open” from the file drop-down menu, or click the  

  icon.  A basic file selection dialog is then displayed, where a kinematic data file (*.tsv file) 

can be selected.  Once chosen, the program will automatically find the corresponding audio 

(*.wav) file based on the file name, and load both files into the program.  Following file 

selection, each of the seven sensors used in the EMA-MAE database collection protocol are 

shown in the biteplate corrected space (Figure 4.2). 

 

   

Figure 4.2 - Sensor cones shown in a midsagittal view.  The sensors are UL (upper lip), LL (lower 
lip), LC (lip corner), MI (medial incisors), TB (tongue blade), TL (tongue lateral), and TD (tongue 

dorsum). 

 
The sensors individually are represented by a small, colored cone and a small label 

placed alongside.  The cone shape is ideal for representing the data, as it compactly represents 

both position and orientation information given by the EMA sensor coils.   
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The sensor plot can be shown in several different views, using either the “View” 

dropdown menu, or by clicking one of the four letter icons in the main window’s toolbar (Figure 

4.3).  Examples of each of the views are shown in Figure 4.4. 

 

 
Figure 4.3- Possible view selections from the main window toolbar.  The views are midsagittal 

(M), top (T), bottom (B), and front (F). 

 

 

 
Figure 4.4- Views of sensors from each of the built-in views: midsagittal (top-left), top (top-right), 

bottom (bottom- left), and front (bottom-right). 

 
If none of the default views provide a suitable angle of the sensors, there is also a 3D 

view, which allows for any arbitrary view of the sensors to be obtained.  This 3D interactive 
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mode can be toggled on or off by clicking the   icon in the toolbar.  In interactive mode, the 

user can use the mouse’s left button to rotate around the center of the axes display.  The plot 

also supports zooming in, either with the mouse’s scroll-wheel or holding the right mouse 

button.   An example of the data from an arbitrary view can be seen in Figure 4.5.   

 
 

 
Figure 4.5- Arbitrary view of the data in the axes. 

 
When the data are displayed in one of the four default views, the data controller can be 

used for real-time data playback.  The data controller consists of six buttons to control the 

playback of the audio and sensors, as well as an LCD-style timer that displays the time elapsed 

and length of the file (Figure 4.6).   

 

 
Figure 4.6- Data controller featuring (from left to right) rewind, step backward, play/pause, stop, 

step forward, and fast forward buttons. 

 



 65 
 

The data controller gives the user the ability to sift through the data in either a fine-

grained or coarse manner, which makes it excellent for data validation.  Errors can be 

documented by simply playing-back the data record and noting when sensors disappear, fall-off, 

or otherwise behave irregularly.  The data can then be rewound, and the step-forward button 

can be used to determine the exact time index a problem occurs. 

The final major kinematic visualization component is the ability to view sensor 

trajectories over an interval.  After selecting an interval (using the spectrogram widget, 

discussed shortly), all sensor locations throughout an interval can be viewed by selecting “View 

trajectories” from the “View” drop-down menu, or by clicking the   icon in the toolbar.  The 

trajectories will appear as small, translucent dots in the same color as the sensor whose 

trajectory they represent (Figure 4.7). 

 

 
Figure 4.7- Sensor trajectories for a subject saying the word "copy." 

 
While the trajectories are displayed, the data can be played back as normal.  This 

includes stepping slowly through the movement of the sensors to watch how they follow the 
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trajectory over the selected interval.  In all, the visualization capabilities for observing the 

kinematic data are many, and provide a means for both data validation and preliminary analysis. 

4.6.2 Feature Description- Analysis 

 
The other two components of the visualization tool, the spectrogram and data viewer, 

provide some additional functionality for visualization, but offer much more in terms of data 

analysis. The spectrogram shows the frequency content of the record over time, found by taking 

a discrete Fourier transform (DFT) on each chunk of a signal broken into small (millisecond) 

windows.  The spectrogram on program startup shows the frequency content across the entire 

record (as in Figure 4.1).  Intervals are selectable by clicking and placing a red cursor on either 

side of the interval and pressing the  icon.  The result is a zoomed-in display of the frequency 

content of the selected interval (as in Figure 4.8). 

 

 
Figure 4.8- Zoomed-in segment of the spectrogram.  Note the dark frequency bands which can 

be used in analysis. 

 
Upon zooming in, there are several major changes in program operation.  The data 

controller will only play back the portion of the kinematic and audio data selected in the 

spectrogram, including showing only the trajectories of the sensors within the selected interval.  

The data can be stepped through slowly or played back in real-time, with a black cursor showing 
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on the spectrogram where the current kinematic and audio data are being played back.  If an 

even closer view is required, an interval within this interval can be selected and zoomed in 

again.  Pressing the  button will zoom back out to show the previously selected interval. 

 Aside from these segment selection and playback features, the spectrogram also allows 

for some configuration of the data shown within it.  By default (as shown in Figure 4.8), the 

spectrogram will show frequencies between DC and 5 kHz, with the bandwidth of the 

spectrogram set at 300 Hz.  By clicking the arrows in the “Frequency Range” box, the range of 

displayed frequencies can be changed between 0.5 kHz and one-half of the sampling frequency 

(11.025 kHz for the EMA-MAE database).  By clicking the arrows in the “Bandwidth” box, the 

bandwidth of the spectrogram can be adjusted in intervals of 50 Hz between 50 Hz and 500 Hz.  

Smaller bandwidths result in a longer DFT and a better frequency resolution.  Larger bandwidths 

result in shorter DFTs, better time resolution and worse frequency resolution.  Examples of the 

same speech segment at 50 Hz bandwidth and 500 Hz bandwidth are shown in Figure 4.9. 
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Figure 4.9- Demonstration of different bandwidths for the spectrogram.  The top spectrogram 
has a bandwidth of 50 Hz, giving great frequency resolution but significant time blurring.  The 

bottom spectrogram was calculated at 500 Hz, giving excellent time resolution, but poor 
frequency resolution. 

 
The second major analysis piece is the data viewer, which is on the right side of the main 

window.  Each sensor has its own display section, with the display containing the sensor range, 

speed, and acceleration (as in Figure 4.10).  The speed and acceleration are calculated using the 

magnitude of the velocity and acceleration components, which are found using the 3-point 

central difference method. 
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Figure 4.10- Data display for the TD (tongue dorsum) sensor.  The display includes range, speed, 

and acceleration. 

 
As the data plays back, the speed and acceleration values will update rapidly along with 

the cursor on the spectrogram.  This also holds when stepping slowly through the data.  The 

range displayed will be the minimum and maximum values reached during the interval selected 

in the spectrogram.   

If a certain interval is of particular interest, there are two data export functions available 

for the program.  The first type of data export can be done using the  icon, which will export 

the speed and acceleration magnitude values from the selected interval to a text file.  The text 

file provides a header identifying each column, and a time-stamp identifying each data sample.  

The second type of data export can be done using the  icon.  This will take a screenshot of 

both the sensor plot and spectrogram and save them as PNG files.  In both types of data export, 

a file selection dialog will appear, prompting the user for a file name to be used for saving either 

the images or text file (see Figure 4.11). 

 

 
Figure 4.11- Dialog for saving the screenshots or text file.  The user can select the folder and file 

name. 
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These visualization and analysis features represent the totality of functionality for the 

current version of the visualization tool, and together allow for in-depth data validation and a 

fair amount of data analysis. 

4.6.3 Building, Distributing and Installing 

 
With the program fully implemented and described, distribution is the next requirement 

to complete the development cycle.  This means building and distributing the program as a 

standalone executable, capable of being run on computers without a Python interpreter or 

related software installed.  Also, one of the benefits of developing an application with PyQt was 

the support for a native interface on a variety of operating systems.  Making use of this 

capability requires that the build process for the program be capable of creating distributable 

application files for any of these systems.  To aid in both of these pursuits, the Python 

community has developed a tool called PyInstaller that is capable of creating standalone 

applications from the source code originally used to run the program.  PyInstaller supports 

creation of standalone applications for Mac OSX, Linux, or Windows, with usually only one 

command. 

To make use of PyInstaller, the installer requires a list of hooks, which are used to 

determine the dependencies that are needed for the program to run properly.  Hooks for major 

libraries (like PyQt, Matplotlib, Scipy, and Numpy) come with PyInstaller off-the-shelf, making 

the process of including these libraries effortless.  Visvis, as a less widely-used library, required a 

custom hook to be created to complete the build process.  By embedding the PyInstaller 

commands and related calls in a single batch script, the program can be built in a single step. 

Following the build, the user only requires the “dist” folder created by PyInstaller to run 

the program.  Currently, the dist folder has been placed in the EMA-MAE database software 

tools folder to be distributed along with the database.  To run the program, the user just needs 
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to click the executable in the folder, and an empty main window will appear to begin validation 

and analysis. 

4.6.4 Testing and User Acceptance 

 
Several methods have been used to both verify and validate the visualization tool.  

Verification includes testing specific functionality and components of the software piece, 

whereas validation includes determining whether or not specific user needs have been met, and 

if the tool is easily usable by the intended audience. 

Verification was done as components were created and after completion.  During 

development, certain functions were tested individually in their own separate scripts to ensure 

they were functioning as desired.  An example of this is in the file loading section of the 

program.  When a user selects a kinematic file to be played back, the program automatically 

searches the file path for the corresponding audio file, and selects it for loading once it is found.  

This functionality was somewhat difficult to achieve, so a separate script was written to test that 

the method written achieved its aim before being incorporated into the program.  This type of 

verification was done with several different methods, including those used to filter audio signals, 

retrieve and export data files, and various kinematic calculations. 

Another verification component implemented in the software is unit testing, which is 

done on each class.  Every class contains a main method that is executed if the class itself is 

executed on its own.  This main method contains sample data to do basic data loading and 

display, and allows the user to interact with the specific component for prompt testing of each 

of the functions.  The main method was used to verify each of the individual classes used in 

creating the program, to ensure that the components of the program were viable on their own 

prior to integration with other system components. 
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User validation testing was done without strict protocols, but was conducted using 

students in the lab.  The visualization tool was given to five Speech-Language Pathology students 

to use as a validation tool for checking for problems in the EMA-MAE database.  A document 

(called Instructions for Project TOAK) was created instructing the users how to load, view, and 

assess the quality of the data.  Several errors and sources of confusion were reported by the 

students and improvements were made based on this feedback.  One example occurred with 

the file loading functionality described earlier.  When the file was not found, users were 

confused about what happened in the program, as they were used to the audio file being 

automatically selected.  Because of this confusion, a warning dialog was added that informed 

the user that the audio file could not be found and they would be required to select it manually.  

This provided an appropriate fail-safe if the audio file could not be found automatically, and 

reduced confusion about the required user action.  Other examples of improvements made 

after user feedback included automatically setting the axes values, making the step-forward 

function step forward in smaller time increments, and a few minor aesthetic changes. 

Future work with the tool should include stricter validation with use cases that the tool 

seeks to fulfill.  Describing these use-cases in a script and having users assess intuitiveness and 

ease-of-use of the program would be useful for determining future improvements. 

4.6.5 Extensibility and Future Development 

 
Extensibility of the tool is an important consideration, both in terms of expanding 

functionality and adapting the current functionality to better suit user needs.  The program has 

been built using an object-oriented approach, with a logical class structure that facilitates future 

development by other programmers.  The convention in the program is to make each new user-

interface component a new widget, and thus a new class.  By organizing the tool in this way, 

even programmers who are new to PyQt will be able to easily identify which components 
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correspond to which classes.  If a problem is found with the sensor data viewer, for example, a 

developer will be know the problem is within the SensorDataView class, and be able to modify 

the code accordingly. 

Furthermore, the choice to develop using Python and PyQt makes the code readable 

and compact.  Python generally contains far fewer lines of code than similar-functioning C++ or 

Java code, which does a great deal to aid in the speed of learning about the tool and making 

future improvements.  PyQt features a large amount of built-in widgets that can be combined 

and modified ot form new widgets that might be desired in a newer version of the visualization 

tool. 

While the visualization tool in its current form provides a core set of features for EMA 

visualization and analysis, there are a large number of upgrades that could be made to future 

releases of the tool.  The first and most useful upgrade would be to add the ability to index the 

audio and kinematic files, labeling time segments with start and end times for phonemes.  These 

indices would be labeled within the program and saved to a label file as the user marked them, 

along with a code number or IPA character identifying the labeled interval. 

A few other useful features would involve creation of new dialogs allowing the user to 

configure various widgets within the program.  One example is a dialog for the spectrogram, 

allowing for more changes than just the frequency range and bandwidth.  These could include 

changes in dynamic range and noise floor to adjust the darkness of the various decibel levels.  It 

could also include turning on a formant tracking algorithm that could plot formant estimates on 

the spectrogram, be adjusted and confirmed by the user, and exported to a text file. 

Another dialog that would increase the flexibility of the tool would be a sensor 

configuration dialog.  Upon opening the tool for the first time (or whenever data is collected in a 

new format), the tool would prompt the user for the number of sensors in the configuration, as 
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well as sensor names, labels, columns containing the different portions of sensor data in the 

kinematic file, and even sensor color when plotted on screen.  This would make the tool usable 

for other studies outside of just the EMA-MAE database, and vastly increase its potential impact. 

Other additions to the tool could include integration of other components mentioned in 

previous chapters.  An integrated biteplate correction tool, tongue mesh visualization function, 

or jaw angle tracking function would all be excellent additions to the list of capabilities.  The 

tongue mesh, specifically, if integrated with a palate mesh in the sensor plot, could provide 

excellent views of the constriction points in the oral cavity that strongly influence articulation.  

They would also allow for possible numerical calculation of vocal tract cross-sectional area for a 

sizable portion of the oral cavity, further bolstering analyses related to articulation. 
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5. CONCLUSIONS 
 
 

This thesis has presented a set of new software tools and analysis methods for working 

with EMA data.  Beginning with an explanation of EMA’s benefits, its operating principle, and its 

data structure, the basics of EMA were covered in depth.  This included a discussion of 

quaternion data and an associated tutorial on using quaternions to represent rotations and 

orientations.  The concept of biteplate correction, its necessity, and its implementation were 

briefly discussed.  A new biteplate correction method was introduced for placing the quaternion 

data in a physiologically meaningful coordinate space.  Biteplate correcting the quaternion data 

alongside traditional positional biteplate correction is essential for making use of the orientation 

data in kinematic analyses. 

Applications for quaternion orientation data were shown in the form of two articulatory 

representations: single-sensor jaw angle measurement, and formation of a tongue surface 

interpolation algorithm.  The single-sensor jaw angle measurement technique produced results 

that were superior to traditional, position-based measurement with nearly equivalent angles, 

and a lower variance due to less noise.  The tongue mesh showed reasonable accuracy in 

predicting virtual fleshpoint trajectories and also provided a means of visualizing gross changes 

in tongue shape and position.  Both of these representations showed promise for use in future 

speech kinematic studies.   

Finally, a new EMA visualization tool was presented.  The visualization tool allows users 

to load, observe in real time, and do basic analysis on EMA data over an interval, including 

calculations of sensor speed, acceleration, and range.  Compared to other pieces of software for 

EMA visualization and analysis, the tool offers similar analysis capabilities, with superior 
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visualization that allows for 3D viewing and couples the position data with orientation 

information. 

In total, the thesis contains both the knowledge and tools to simplify EMA data 

processing for all researchers that are interested in using the EMA-MAE database for speech 

kinematic analysis.  In explaining and demonstrating the use of quaternion orientation data, it is 

hoped that future EMA studies will make full use of the orientation data to characterize 

articulation in the most complete manner possible.  The orientation data provided by modern 

3D-EMA is an important component of sensor data that has been almost completely neglected 

thus-far in the literature.  By providing others with the means to maximize the knowledge 

gained from EMA datasets, it is hoped that the contents of this work will help to move the fields 

related to speech kinematic analysis forward.  In providing tools for increased research 

productivity, solutions to complex questions in speech production can be found more quickly, 

with major benefits for individuals requiring speech training and rehabilitation.
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7.  APPENDIX A 
 
 

This appendix contains high-level descriptions of the code used to create the software 

tools presented in the thesis.    For each project, a link is provided to the source code that can be 

viewed online at GitHub.  Some files are included across projects, for instance loadtsv, which is 

used in all tools to load kinematic data into the given program.  These files contain their own 

descriptions in the comments of the code. 

7.1 Biteplate Correction Code 

 
The biteplate correction code is a set of MATLAB functions and scripts that are 

specialized for biteplate correcting both the position and orientation data as taken using the 

Marquette University Speechlab Protocol.  The main files required for the biteplate correction 

are BPRotation and BiteplateCorrect.  BPRotation is run first, and returns the average positions 

of the MS and OS sensors, as well as the quaternion rotation required to transform between the 

axes-flipped coordinate space and the biteplate-corrected coordinate space (See Chapter 2, 

Table 2.1).  These values are saved in the Matlab workspace as BP_Info.mat.  This .mat file is 

then used in BiteplateCorrect to correct a file associated with the BP_Info file. 

This work’s contribution to the biteplate correction process, the quaternion correction, 

can be found in the file correctQuat.  CorrectQuat uses the rotation provided in BP_Info to place 

the quaternions in the biteplate-corrected coordinate space, as described in Section 2.4.  It 

utilizes a function called getQuat, which is an implementation of Equation(2.4.4).  The 

remainder of the functions in the biteplate correction code are taken from the Matlab 

Quaternion Toolbox, provided on the Matlab File Exchange. 
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Future work with the biteplate correction code will likely include creation of a 

standalone, GUI-based tool that does not use MATLAB, so it can be used by non-technical users 

who do not have a MATLAB license. 

All of the biteplate correction code can be found at: 
https://github.com/andrewkolb08/BiteplateCorrection 

 
7.2 Jaw Angle Code 

 
The jaw angle code is also a set of MATLAB scripts and functions.  The two files of 

interest are finalJawAngle and getJawAngles.  FinalJawAngle is a script that demonstrates the 

two different jaw angle measurement methods described in Section 3.1.  The position and 

quaternion method are both implemented and plotted, along with the acoustic data taken from 

the subject at the time.  GetJawAngles returns the quaternion-derived angles and position-

derived angles from an entire file that is passed in.  It also requires the columns in the file where 

the midsagittal incisor and molar data are stored. 

In the future, the jaw angle tool should be integrated into the visualization tool to 

provide a real-time display of the jaw angle over time, with the ability to export orientation-

derived jaw angles to file.   

All of the jaw angle code can be found at: 
https://github.com/andrewkolb08/JawAngle   

7.3 Tongue Mesh Code 

 
The interpolated tongue mesh code is another group of MATLAB scripts.  It is somewhat 

complicated with several different functions used to create the final mesh output.  The script 

newestTongueMesh runs a demonstration of overall mesh creation for a single word uttered by 

a single subject (05_ENGL_F).  The demonstration plots a spectrogram of the subject’s speech 

alongside a tongue mesh.  A scrollbar under the tongue mesh can be used to show the tongue at 

https://github.com/andrewkolb08/BiteplateCorrection
https://github.com/andrewkolb08/JawAngle
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different time points, which are identified by a black cursor on the spectrogram.  The time 

interval plotted can be changed by adjusting the startTime and endTime variables in the script.   

The beginning of the script implements quaternion baseline adjustment, using the 

function newAdjustTongueQuats.  This function determines the quaternion baseline adjustment 

using the averaging discussed in Section 3.2.  AdjustTongueQuats, a different function, 

implements the position-based quaternion adjustment scheme, also detailed in Section 3.2.  The 

script then calls getTonguePoints, which is a function to calculate the centroid heights at each of 

the triangles formed by the Clough-Tocher split.  The function findTriVal implements Equations 

(3.4.3) through (3.4.6) to get the new interpolated tongue values.  When these values are 

returned to getTonguePoints, the entire tongue mesh for one time point is created and returned 

to the script to be saved for display. 

A tool for looking at an arbitrary time segment for a subject is the function 

viewTongueAndSpec.  This function accepts as an input a given sound file, kinematic file, start 

time and end time to be plotted.  It will display a spectrogram and tongue mesh, just as was 

done in the example file newestTongueMesh. 

All of the tongue mesh code can be found at: 
https://github.com/andrewkolb08/TongueMesh  

 
7.4 Visualization Tool Code 

 
The visualization tool is by far the most complicated of any of the software tools.  It is 

implemented in Python using the combination of software libraries discussed in Sections 4.3 and 

4.4.    There are five major components to the visualization tool.    The first is the main window, 

called visualizationTool.  The visualizationTool serves as the container for all other widgets used 

in the program.  It contains several shortcuts, a toolbar, a file and menu.  The dataController is 

the main widget inside the main window.  The dataController class contains the sensor plot, the 

https://github.com/andrewkolb08/TongueMesh
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spectrogram, the timer, control buttons, and sensor data viewer.  Each of these are 

implemented as their own class. 

The sensor plot is a 3D visvis plot that contains cone objects representing the sensors.  

While playing, the cones’ positions and orientations are constantly updated, as are their 

associated labels.  The sensors are instances of their own Sensor class, which holds all data 

pertinent to displaying information about a given sensor.  The motion of the sensor is updated 

using an index variable and a timer which governs how often an update occurs, and the new 

value to be displayed.   The view of the plot can be changed using the camera object associated 

with the plot.  The axes labels are controlled by an Axis object that is associated with the plot. 

The spectrogram is also its own separate class.  The spectrogram contains a Matplotlib 

spectrogram plot, with several buttons and scroll boxes to control how the data is displayed.    

The plot has an event handler which waits for the user to click the plot, and then places a cursor 

at the point they clicked.  The time intervals displayed are saved so the user can proceed back to 

their previously viewed interval when clicking the ‘minus’ button.    The audio data is filtered 

using a high-pass pre-emphasis filter to balance the frequency response of the audio, which is 

biased toward low-frequency information. 

 The timer is the clock shown while the sensors are moving, keeping track of the time 

point being displayed in the record.  The timer includes and LCD timer class which accepts as 

input a number of seconds elapsed.  The LCD timer is updated to reflect the current index every 

100 ms. 

The timer is synchronized with the control buttons, which control how the time moves.  

The buttons are contained in the dataController class, and have associated functions called 

when any of them are pressed.  Buttons are enabled and disabled as needed when different 
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data views are enabled.  For instance, the fast forward/rewind buttons will be disabled when 

the 3D view is activated, as the user cannot play through the data in this mode. 

The final component is the sensor data viewer class, which holds displays for the range, 

speed, and acceleration of a sensor.  When it is instantiated, it is automatically associated with a 

specific sensor whose data it will display for the current record.  These sensor data viewer 

instances are updated as the data plays, and their contents can be exported to file using the 

export menu. 

There are several other ancillary files that go along with the visualization tool.  These 

include the build.bat script, which builds the executable from source code; the qrc_resources 

file, which holds the locations of pictures and icons used by the program; and the resource 

compilation batch file, which is used to compile qrc_resources and include these resources in 

the code.  There is certainly much more to be said in-depth about the components of the 

visualization tool, and many more notes are available in the comments of the code.  Each class 

features a class description at the top, with many comments throughout the functions to help a 

new developer understand what they do and how they accomplish it.  Also, for a great tutorial 

on Python and PyQt4, refer to Mark Summerfield’s book, Rapid GUI Programming with Python 

and Qt [50].  The book provides all the materials to understand the visualization tool at a very 

deep level, and should be a reference for anyone who seeks to continue its development. 

All of the visualization tool code can be found at: 
 

https://github.com/andrewkolb08/TOAK  
 

https://github.com/andrewkolb08/TOAK
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8. APPENDIX B 
 

This appendix contains descriptions of other associated EMA tools that are not 

specifically mentioned in the body of the thesis.  This includes two major components: RASS 

Tools and R Tools.  These tools are currently only suitable for in-house data processing, so no 

links will be included to the source code. 

8.1 RASS Tools 

 
RASS is the abbreviation for the Marquette Speech and Swallowing Lab’s Rehabilitory 

Articulatory Speech Synthesizer.  RASS is a virtual vocal tract that is controllable by a subject 

who has EMA sensors attached to their articulators.  By moving their lips, jaws, and tongue, the 

subject controls the synthesizer to create an acoustic output.  RASS is a modified version of 

Mark Huckvale’s Vocal Tract Demonstrator (VTDemo) Software [51], which is in turn based on a 

vocal tract model created by Shinji Maeda [30].  The tools created for working with RASS include 

a new biteplate implementation, mapping scheme adjustment, playback of previous subject 

data, and a MATLAB version of RASS for testing new mapping schemes. The tools created for 

working with RASS include a new biteplate implementation, mapping scheme adjustment, 

playback of previous subject data, and a MATLAB version of RASS for testing new mapping 

schemes. 

Before describing the tools, a brief description of the VTDemo workflow needs to be 

provided.  After a subject is connected to the NDI Wave system, the typical process for setting 

up a subject needs to be done, including biteplate correction.  In addition to these steps, the 

synthesizer must be tuned to work with the subject’s unique anatomy.  As an example, one 

subject’s jaw might be all the way open and provide a jaw sensor y-value of -25 millimeters.  

Another subject might have their jaw all the way open at -30 millimeters.  Regardless of these 
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anatomical differences, the synthesizer must recognize these positions as maxima for open jaw 

position.  Similar tuning must be done for the tongue and lip sensors. 

Many different schemes are possible for mapping the articulator positions to 

synthesizer positions.  Future research will include determining better schemes for doing this 

mapping, as it has an outsize effect on the quality of speech the subject can produce through 

the synthesizer.  For this reason, the ability to have a mapping scheme that is able to be fine-

tuned is very desirable. 

VTDemo Verification Scheme 

 
The first piece of software to aid in this setup process was a series of dialogs that walks 

a user through the workflow of preparing a subject.  This was completed as part of a senior 

design team project.  The dialogs include an initial setup dialog, a vowel-space setup dialog, and 

a verification/playback dialog.  The initial setup dialog prompts the user to collect a biteplate 

record and a sensor boundary record.  As previously described, this sensor boundary record will 

determine the minimum and maximum positions of the articulators to be mapped onto the 

minimum and maximum values of the synthesizer. 

Following collection of a sensor boundary file, the vowel-space setup dialog aids in 

mapping vowels from the subject onto the synthesizer.  Several (up to 8) vowel records can be 

collected and incorporated as part of the mapping scheme for the synthesizer.  These values 

contribute vowel minimum or vowel maximum sensor positions to the mapping scheme. 

After the vowel records have been collected, the mapping scheme needs to be tested to 

see if it adequately maps the movement of a subject’s articulators onto the movements of the 

synthesizer.  The verification dialog aids in this pursuit.  In the verification dialog, any previously 

recorded record for a subject can be played back via the synthesizer using the current mapping 

scheme.  If the record was of a subject producing the vowel sound “eeee,” the synthesizer 
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should produce the vowel sound “eeee,” and match the subject as closely as possible.  By 

comparing the actual acoustics of the subject and the acoustics formed by the virtual vocal tract, 

mapping quality can be assessed. 

Mapping Scheme Adjustment 

 
If the mapping is determined to be satisfactory, experiments utilizing the synthesizer 

can proceed.  However, if adjustments need to be made, the verification dialog provide a means 

to make changes to the mapping.  Using two sliders, the min, max, vowel min and vowel max 

values can be adjusted upward or downward by a certain percentage.  This can be done for any 

of the jaw, lip, or tongue parameters used by the synthesizer.  Following the adjustment, the 

synthesized speech can be played back again using the adjusted mapping scheme, and assessed 

again for quality.  This process can be done repeatedly until the best mapping scheme is 

obtained. 

Offline Synthesis 

 
While the rapid mapping adjustment is a good feature for changing the mapping when 

the subject is hooked up to the system, often, it is desirable to collect data from a subject and 

determine the optimal mapping scheme offline.  The subject might become uncomfortable or 

impatient when the mapping scheme is being iteratively adjusted, so simply collecting some 

data and allowing them to return later can increase efficiency and subject comfort level. 

If a subject has a biteplate record, a sensor boundary record, and any number of vowel 

records, VTDemo has been adjusted so it will playback these records from the kinematic data 

alone, and does not need to be connected to a subject to synthesize speech from kinematic 

data.  The workflow is exactly the same as if a subject is connected to the system, except that 

existing files are loaded and played back, rather than recorded and played back.  Pre-recorded 
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files allow for the articulator to synthesizer mapping to be adjusted while a subject is gone, and 

a reasonable mapping to be used when they return.  It also allows for “virtual” subjects, whose 

data was not even collected using RASS at all, but has been put in the proper format for RASS to 

read in and synthesize speech based on the data.  This opens up RASS to studies using existing 

datasets, and not exclusively for real-time speech synthesis. 

New Mapping Scheme Assessment 

 
Fine-tuning the mapping scheme is currently possible in RASS, but implementation of a 

new mapping scheme is not.  As stated, future research must include improved mapping 

schemes for subjects to synthesize the most realistic speech possible.  Toward this end, as part 

of a Digital Processing of Speech Signals project, a MATLAB version of the RASS was created for 

new mapping schemes to be implemented and tested rapidly. 

When the kinematic data has been transformed into synthesis parameters by a test 

mapping scheme, a function loads the parameters and plays the synthesized speech.  This is 

done using a modified version of the MATLAB Maeda synthesizer from Ghosh [52], combined 

with objective quality assessment metrics.  The quality metrics included both PESQ [53]and 

formant distortion [54].  The tool can thus rapidly and objectively assess the mapping quality for 

a given mapping scheme, expediting the research related to new articulator to synthesizer 

mappings. 

Quaternions in RASS 

 
Previously, RASS ignored quaternion data and made no use of quaternions or the 

quaternion data provided by the EMA sensors.  Modifications were made to RASS to load the 

quaternion data into the program for future use.  These modifications also included a group of 

functions for quaternion mathematical operators.  This includes rotating a vector using a 
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quaternion, multiplying two quaternions together, adding/subtracting two quaternions, and 

getting the quaternion representing the rotation between two vectors.  Other vector operations 

(cross product, dot product, L2-norm, etc.) were also implemented.  The boost library 

(http://www.boost.org/) was used for its quaternion class, and all operators utilizes this class as 

the data structure to hold quaternion data. 

Improved Biteplate Correction 

 
Because biteplate correction is used in RASS, the new biteplate correction scheme for 

both the position and orientation data was implemented to improve the speed and accuracy of 

biteplate correction.  Previously, RASS used Euler angles from the biteplate record to determine 

the rotation needed to move from the axes-flipped space to the biteplate-corrected space.  This 

algorithm contains singularities that make it unreliable, and consumed more time and memory 

to implement the rotation of the subject’s data into the biteplate-corrected space.  The new 

quaternion-based biteplate correction scheme is exactly analogous to the biteplate code 

presented in Appendix A. 

8.2 R Tools 

 
R is a programming language traditionally used for statistical processing and analysis.  It 

is the open-source version of S/S+, a language developed by Bell Labs beginning in 1976.  R 

provides excellent built in capabilities for manipulating matrices and tables of data, and features 

a large community of researchers who contribute to the functions and capabilities of the 

software.  Large numbers of R packages are freely available online to be used as part of any R-

based project. 

Because of its ability to handle large datasets and many built in statistical operators, R 

has become the programming language of choice in the Marquette Speech and Swallowing Lab 

http://www.boost.org/
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for working with EMA data.  Several functions have been developed for working with the EMA 

data collected by the NDI Wave, described here. 

Basic Data Manipulations 

 
A series of functions were written for copying, renaming, and moving kinematic data 

files.  This includes the ability to load an NDI Wave-style kinematic data file into R, as well as 

write it back out to file following some data manipulations.  One major manipulation 

implemented was the ability to linearly interpolate NaN (not a number) instances in the data or 

set them to some nonsense value if the run of NAs is longer than some specified length of time. 

Numerical Derivatives and Integrals 

 
As part of many kinematic analyses, measures like speed, velocity, or acceleration are 

used to characterize and differentiate between subject movements.  Built in functions exist in R 

to measure single dimension velocity and acceleration, but this arbitrarily reduces the 

movements produced by the articulators to three principle directions.  Combining the X, Y, and Z 

velocities together to produce a single velocity and acceleration magnitude were implemented 

as their own functions.  Integration was also implemented numerically to get values such as 

distance travelled. 

A non-built-in function that was also created was jerk cost, presented in [55].  Jerk is the 

third derivative of position, and jerk cost is the accumulation of jerk over time (corresponding to 

an integral operator).  A function was written to calculate jerk cost in R, using the numerical 

derivative and integration functions mentioned previously. 

Indexing and Segmenting 

 
Breaking a total record into pieces of interest is a common task in speech kinematic 

processing.  Functions have been created to take in a list of time values of interest, and output 
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the kinematic data corresponding to these time intervals.  This includes both getting kinematic 

data and formant data, provided that an FBW file (from TF32) is also given to the function.  

Codes in the indexing file can be used to specify what phoneme is being extracted from the 

kinematic data, and the extracted data matrix will contain that information in its name. 

Plotting and Data Display 

 
A variety of plotting and display functions have been developed.  Given some kinematic 

data for a vowel, the convex hull of the vowel space can be plotted.  The area of this hull can 

also be calculated and displayed along with the data points themselves.  There is also an 

example of this in [55] .  Similarly, the ellipse giving the first two principle components and 

standard deviation of the data distribution can be plotted over the data.  Box and whisker plots 

and scatter plots have been implemented for use with arbitrary kinematic data. 

Convenience Functions 

 
Several functions to make programming in the R environment more convenient were 

also created.  This includes backing up all functions created in a workspace to an external folder 

(outside of R), setting the new working directory based on the last current working directory, 

saving all variables in the workspace with a timestamp provided, and resetting the workspace 

(removing variables while keeping functions). 
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