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Abstract  

This paper develops and applies a space-based strategy for overcoming the general problem of 

getting at the demand for non-market goods. It focuses specifically on evaluating one form of 

environmental quality, distance from EPA designated environmental hazards, via the single-

family housing market in the Puget Sound region of Washington State. A spatial two stage 

hedonic price analysis is used to: (1) estimate the marginal implicit price of distance from air 

release sites, hazardous waste generators, hazardous waste handlers, superfund sites, and toxic 

release sites; and (2) estimate a series of demand functions describing the relationship between 

the price of distance and the quantity consumed. The analysis, which represents a major step 

forward in the valuation of environmental quality, reveals that the information needed to identify 

second-stage demand functions is hidden right in plain site — hanging in the aether of the 

regional housing market. 
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1. Introduction 

The research presented in this paper is motivated by the need to better understand the value of 

environmental quality. Over the last several decades, the demand for that commodity has 

emerged as one of the most powerful forces acting on the economic landscape of the United 

States and other developed nations (see Kahn 2006). Viewed among regions, the influence of 

relative living conditions is so strong that they are observed to direct migration flows and 

generate compensating differentials in labor and housing markets. Viewed within a single region, 

environmental quality is similarly observed to affect where households choose to live and the 

price they pay in the housing market to realize that choice. While the two forms of influence play 

out across different levels of geography, they are closely connected and they each involve the 

identical set of mechanisms: (1) households compete to occupy environmentally desirable 

locations; and (2) in order to secure the right to do so, they incur costs that depend directly upon 

the comparative appeal of the spot in question. Through these actions, the place-to-place variation 

in environmental quality has become a main organizing force within the American space 

economy. 

But, in spite of its great importance, the value of environmental quality remains elusive 

because complete measurement requires knowledge of a demand function that describes the 

relationship between price and the quantity consumed. The challenges that this presents are 

several. To begin with, environmental quality is spatial in nature, so its mechanism of economic 

influence needs to be conceptualized and, ultimately, expressed in that way. Moreover, no 

conventional market for environmental quality exists, so, once it is measured, it can only be 

valued indirectly — ideally, via preferences revealed in markets for larger, differentiated 

commodities, like housing. Although it is usually straightforward to estimate the marginal 

implicit prices of the various non-market goods embedded in such markets, the function used to 

do this, called a hedonic price function, is a market clearing function that results from interaction 

between the bid and offer functions of participants on either side of the market (Rosen 1974). 

Recovering the prices of non-marginal differences in consumption, which are needed for welfare 

analysis, means extending hedonic price analysis to a second stage and estimating a demand 

function wherein price and quantity are endogenously determined. The problem is that, because 

the underlying first stage function is a composite of both demand and supply, conventional 

econometric procedures cannot readily be used to identify the demand function the way they can 

for more traditional commodities. Each of these issues makes it hard to evaluate environmental 

quality in a holistic way. 
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This paper responds to the challenge with an analysis that leverages spatial non-

stationarity in housing attribute prices to expose the demand for one aspect of environmental 

quality, distance from Environmental Protection Agency (EPA) designated environmental 

hazards. There are three specific research objectives: (1) to define spatial non-stationarity in the 

context of housing markets and develop a strategy for using it to overcome the general problem of 

getting at the demand for non-market goods; (2) to estimate the marginal implicit price of 

distance from air release sites, hazardous waste generators, hazardous waste handlers, superfund 

sites, and toxic release sites via the single-family housing market in the Puget Sound region of 

Washington State; and (3) to estimate a series of demand functions describing the relationship 

between the price of distance from environmental hazards and the quantity consumed. The 

analysis represents a major step forward in valuing environmental quality and, as important, it 

reveals how the field of regional science’s unifying epistemology — namely, that geographic 

space mediates socioeconomic processes — holds a workable solution to what has always been 

the albatross of two stage hedonic price analysis. 

2. Background Discussion 

2.1 Hedonic Prices and Implicit Markets 

Environmental quality is not traded in conventional markets so willingness to pay for it can only 

be estimated, never measured directly. Estimation is done either via stated preference approaches, 

such as contingent valuation, or via revealed preference approaches, such as hedonic price 

analysis (see Freeman 2003 for a more detailed description of the material presented in this and 

the next several paragraphs). In the latter case, competition for the right to occupy desirable 

locations — both among and within regions — generates implicit prices in labor and/or housing 

markets that correspond to spatial variation in environmental quality. And, since this process 

plays out across two different levels of geography, there are two corresponding levels of hedonic 

price analysis: (1) interregional analysis, which deals with variation in wages (the price of labor) 

and housing prices among regions; and (2) intraregional analysis, which deals with variation in 

housing prices within regions.1 Although the theory underpinning these two frameworks is 

essentially the same, the distinction is an important one because the appropriate lens depends on 

the nature of the environmental commodity in question. For example, the value of sunshine is 

best measured by looking among regions and, conversely, the value of proximity to neighborhood 

parks is best evaluated by looking within regions. Though both levels of analysis have long been 

1 See Carruthers and Mundy (2006) for a broad survey of the two levels of hedonic price analysis. 
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used to evaluate environmental hazards, it is the intraregional level of analysis that is the focus of 

this paper. 

Rosen (1974) originally formalized hedonic price analysis, which may be used to 

disaggregate the price of housing — or any other differentiated commodity, like labor — into its 

component parts, as a two-stage process. In the first stage, the transacted price is regressed on 

measures of all of the things that matter to it, including structural features, neighborhood 

characteristics, and environmental factors that vary by location. This stage estimates the hedonic 

price function, and it contains a vector of parameters giving the marginal implicit price of each 

attribute. Then, in the second stage, quantities of the attributes of interest are regressed on their 

estimated marginal implicit prices, which are endogenous, a set of exogenous demand shifters, 

and the prices of relevant complements and/or substitutes. This stage generates the demand 

function, and it is needed for recovering the values of non-marginal differences in the quantity 

consumed and for estimating assorted elasticities of demand. 

In the language of hedonic price theory, housing is described as a bundle of k attributes 

contained in a vector z, where z = (z1 , z2 , ...,zk ) , so its equilibrium price, p(z), is a function of 

each of those attributes: p(z) = p(z1 , z2 , ..., zk ) . This function, which corresponds to the first stage 

of the process just described, develops as long as: (1) there is perfect information about the 

bundle; (2) there are no costs associated with trading it; and (3) there is a continual offering of its 

attributes in the housing market. As shown in Figure 1, the hedonic price function is a market 

clearing function that emerges as a result of the interaction between the bid functions of 

consumers (b1, b2, b3) and the offer functions of producers (o1, o2, o3). The figure also illustrates 

that the function is normally assumed to be nonlinear, and this is because it is not practical to 

repackage or otherwise arbitrage a bundle of housing attributes. The reason for this is that a 

household cannot simultaneously consume the floor area of one home, the neighborhood of 

another, and the view of yet another — no matter how much happiness it would gain from such 

an arrangement. Under these assumptions, the marginal implicit price of any given attribute, zk , 

is defined as the partial derivative of the hedonic price function with respect to that attribute, or 

pzk (z) = ∂p /∂zk . 

The values of these marginal implicit prices are estimated in the first stage of hedonic 

price analysis: 

p̃i = α0 +α1 ⋅ zi1 +α2 ⋅ zi2 + ...+α k ⋅ zik +εi . (1) 

In this equation, p̃i represents the natural log of the sales price of home i; the z s represent 

measures of housing attributes; the α s represent estimable parameters; and εi represents a 
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stochastic error term. From this, the marginal implicit price of any attribute, k, for each home, i, is 

calculated as the product of the estimated parameter and the price of the home, or π̂ ik = α̂ k ⋅ pi,
2 

and the total implicit expenditure is calculated as the product of the marginal implicit price and 

the quantity of that attribute, or η̂ ik = π̂ ik ⋅ zik 
Before discussing the second stage, note that information about environmental quality 

may not be perfect and, so, in practice, its impact on the hedonic price function depends on how 

much is known about it (Clark and Allison 1999). To see this, suppose that there is an index of 

public knowledge, κ , about an environmental hazard that ranges between zero (no information) 

and one (perfect information). With this index in the mix, the hedonic price function depends on 

the perceived level of the hazard, not the actual level of the hazard: ˙̇ż = f (z, κ) is not necessarily 

equivalent to z . So, pz is instead p˙̇ż (z) = ∂p /∂˙̇ż , which means that, if κ = 0, ˙̇ż = f (z, 0) = 0 and, 

if κ = 1, ˙̇ż = f (z,1) = z . Anywhere along this continuum, the implicit price, p˙̇ż , is a function of 

both the actual level of the environmental hazard in question, z , and the level of information 

associated with it, κ . And, because distance, d , decreases both the actual level of the hazard and 

the level of information about it, in most instances, the perceived level declines with separation. 

With this added wrinkle, the marginal implicit price of distance is something more complicated 

than just ∂p /∂z , the straight partial derivative that measures most other implicit prices.3 Rather, it 

is expressed as: ∂p(˙̇ż (z,κ)) /∂d = ∂p /∂˙̇ż ⋅∂˙̇ż /∂z ⋅∂z /∂d +∂p /∂ ˙̇ż ⋅∂˙̇ż /∂κ ⋅∂κ /∂d . No matter what, 

the influence of distance is expected to be positive because both terms on the right-hand side of 

this extended partial derivative are expected to be positive. In the case of the first term, 

∂p /∂˙̇ż < 0 , ∂˙̇ż /∂z > 0, and ∂z /∂d < 0 , so their product is positive; likewise, in the case of the 

second term, ∂p /∂˙̇ż < 0 , ∂˙̇ż /∂κ > 0, and ∂κ /∂d < 0 so their product is positive. While it adds 

additional complexity, this expression captures the exact mechanism that causes distance from 

environmental hazards to positively influence the price of housing. 

Moving on, Rosen’s (1974) formalization of hedonic price analysis suggested that the 

endogeneity between price and quantity in the second stage amounted to a “garden variety 

identification problem” (page 50). Unfortunately, as demonstrated by Brown and Rosen (1982), 

the situation is not so simple because, in hedonic price analysis, each revealed implicit price 

function results from a unique interaction between an individual demand function and an 

2 Because equation (1) in semi-log form, marginal implicit price is α̂ k ⋅ pi ; if equation (1) were linear, the implicit price 
would be just α̂ 

k ; and, if it were in log-log form, the marginal implicit price would be α̂ k ⋅ pi / z i . The calculations that 
come later in the paper account for the log transform of the dependent variable and, where appropriate, explanator
variables.

3 For the sake of clarity, the notation used in this paragraph applies to a simple linear relationship — that is, one where

α̂ k = ∂p /∂z  gives the marginal implicit price.
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individual supply function. As shown in Figure 2, the implicit price function is, like the hedonic 

price function it comes from, a reduced form composite of both demand (d1, d2, d3, d4) and supply 

(s1, s2, s 3, s4) so it alone does not contain the information needed to identify the second-stage 

function. Though there are multiple ways of overcoming this problem, the most widely accepted 

strategy is to use spatially distinct housing market segments having different prices for the same 

attributes to identify a demand function for the entire market (Brown and Rosen 1982; Palmquist 

1984; Bartik 1987; Epple 1987). While the parameter estimates of the resulting demand functions 

are spatially invariant, it is the spatial variation in the underlying marginal implicit price estimates 

that are critical to identifying the demand function. 

So, in the second stage of a hedonic price analysis, estimated marginal implicit prices 

from different locations are pooled to estimate a single demand function describing the 

relationship between price and quantity: 

q̃ik = β0 +δik ⋅ π̂ ik + β1 ⋅ xi1 + ...+ βs ⋅ xis +υi . (2) 

Here, q̃ik represents the natural log of the quantity of attribute k consumed via home i; π̂ ik 
represents its estimated marginal implicit price; the x s represent s number of demand shifters, 

plus the prices of relevant complements and/or substitutes; δik the β s represent estimable 

parameters; and υi represents a stochastic error term. Because this equation contains an 

endogenous variable ( π̂ ik ) it must be estimated via an instrumental variables procedure, like two 

stage least squares (2SLS). Once this is accomplished, the resulting demand function can be used 

to look at the price and income elasticities of demand, cross-price elasticities, and many other 

objects of interest. 

Over the years, variations on the first stage of hedonic price analysis have been used to 

examine many general forms of environmental quality (see Boyle and Kiel 2001 and Kiel 2006 

for reviews), plus a number of specific environmental hazards (for example, Kohlhase 1991; Kiel 

and McClain 1995; Clark et al. 1997; Clark and Allison 1999; Hite et al. 2001). And, recently, 

there has been a revived interest in the second stage of hedonic price analysis, which has been 

used to evaluate the demand for air quality (Chattopadhyay 1999; Zabel and Kiel 2000), 

neighborhood and school quality (Cheshire and Sheppard 1995, 1998, 2004; Brasington 2000, 

2003); and distance from environmental hazards similar to those that are of concern here 

(Brasington and Hite 2005). In addition to the growing commitment to second stage analysis, 

there have been important advances in first stage analysis, including those made by a number of 

recent studies that use spatial econometric methods to evaluate various forms of environmental 

quality (Kim et al. 2003; Theebe 2004; Anselin and LeGallo 2006). Still other spatial econometric 

analyses — beginning with work by Can (1990, 1992) — have revealed that there is a high 
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degree of spatial non-stationarity in housing attribute prices (Mulligan et al. 2002; Fik et al. 2003; 

Bitter et al 2007). This last category of research, which is detailed in the next section, 

demonstrates that geography itself mediates housing market processes and, in so doing, it points 

to a potential solution to the identification problem that has long plagued the second stage of 

hedonic price analysis. 

2.2. Market Segmentation and Spatial Non-Stationarity in Housing Attribute Prices 

At about the same time that Rosen (1974) formalized the two stages of hedonic price analysis, 

Straszheim (1974) cautioned that, because of market segmentation, it may not be appropriate to 

assume that the implicit prices of housing attributes are stationary across geographic space — 

even within a single region. It is likely that: (1) the regional housing market is composed of a set 

of many localized submarkets; (2) each of these submarkets is subject to idiosyncratic differences 

in the structure of supply and/or demand; and, (3) each submarket exhibits a unique schedule of 

attribute prices. In most places, the nature of the housing stock varies systematically from 

neighborhood-to-neighborhood and so, too, does the character of homebuyers. If either (or both) 

of these discrepancies applies, then it follows that the potential exists for the prices of housing 

attributes to vary accordingly as an outcome of normal supply and demand interactions. But, in 

order for spatially distinct housing market segments to materialize, it must also be the case that, 

for whatever reason, homebuyers from one submarket do not normally participate in the other 

submarkets. Under these conditions, which are typical of complex regional housing markets, the 

implicit prices of housing attributes may be non-stationary (Freeman 2003). 

This realization has impacted hedonic research by motivating a number of analyses aimed 

at delineating and measuring differences among submarkets within regional markets (see, for 

example, Goodman and Thibodeau 1998, 2003; Brasington 2000, 2001, 2002). In an early 

taxonomy, Goodman (1981) argued that segmented demand functions, which can arise due to 

asymmetrical information, barriers to market entry, or any number of other factors, are bound to 

interact with inelastic short-run supply functions to produce spatially distinct schedules of 

attribute prices. If so, the α s from equation (1) are then ∂p /∂zk ≈ ∂pm /∂zmk for each submarket, 

m, and they may not converge on a common value until the (unobservable) long-run — if ever. 

This means that estimating the first stage hedonic price function for a pool of transactions from 

multiple submarkets, when the submarkets involved in reality have different attribute prices, 

produces “global” parameters that do not accurately reflect genuine relationships (Brunsdon et al. 

1996, 1998a, 1998b). Indeed, the estimates may be, at best, analogous to averages that describe 
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some blend of submarket conditions and, at worst, irrelevant to any true on-the-ground 

conditions. 

One reason why this kind of segmentation might arise is that the nature of information 

available to homebuyers can differ substantially across the regional housing market. In an 

analysis of how environmental hazards impacted home prices in the Boston metropolitan area, 

Michaels and Smith (1990) found that several realtors independently delineated consistent 

“premier,” “above average,” “average,” and “below average” market areas. Moreover, each of 

these segments was revealed to have different implicit prices for many attributes — and, 

especially, for distance from the environmental hazards. For reasons that will later become 

evident, it is worth pointing out that Michaels and Smith (1990) found that some, but not all, of 

the implicit prices varied across submarkets, which signals that the market for certain attributes is 

segmented even as the market for others is not. These findings are intriguing because they suggest 

that, because information varies from place-to-place within the regional housing market, different 

housing submarkets asymmetrically price distance from environmental hazards. 

An emerging trend in hedonic price analysis is to extend this idea by considering the 

possibility that certain housing attribute prices may be non-stationary and even quite volatile 

across geographic space. The reasoning is that, as a result of market segmentation, at any given 

spot, {u, v}, there exists a potentially unique housing attribute price schedule. This approach 

began with work by Can (1990, 1992), who applied Casetti’s (1972) expansion method of model 

building by interacting an index of neighborhood quality with housing attributes to derive implicit 

price estimates that varied by location. In this way, the spatial expansion method recasts the first-

stage function as p(z) = p(z1, z2, ..., zk ,z1 ⋅{u,v}, z2 ⋅{u,v}, ..., zk ⋅{u,v}) and the resulting 

marginal implicit price of any given attribute, zk , may therefore be non-stationary. Doing this 

generates what has been termed a “location value signature” (Fik et al. 2003, page 643) for each 

and every home involved in the analysis. Once estimated, location value signatures reveal 

multiple housing attribute price surfaces within a single regional housing market — surfaces that 

are formed by unobservable factors, like disparities in public knowledge (Mulligan et al. 2002; 

Fik et al. 2003; Bitter et al. 2007). 

Critically, the non-stationarity that generates these surfaces is non-stochastic because 

housing markets are subject to a high degree of spatial dependence (Kim et al. 2003; Theebe 

2004; Anselin and LeGallo 2006; Brasington and Hite 2005). On the supply side, proximate 

homes tend to be similar to each other, and, on the demand side, homebuyers regularly emulate 

one another’s behavior. The result is a process of spatial interaction among market participants, 

which, at a minimum, suggests that the first stage hedonic price function shown in equation (1) 
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should be modified to include a spatial lag of its dependent variable (Anselin 1988; Anselin and 

Bera 1998): 

p̃i = φ0 + λ ⋅ Wij ⋅ p̃ +φ1 ⋅ zi1 +φ2 ⋅ zi2 + ...+φk ⋅ zik +ψ i . (3) 

The notation in this equation is essentially the same as before, except that the φs stand in for the 

α s; ψ i replaces εi as the stochastic error term; Wij ⋅ p̃ represents the spatial lag of the dependent 

variable ( Wij , j ≠ i, is a row-standardized n × n weights matrix describing the connectivity of 

observations) giving the average sales price of nearby homes; and λ is an estimable spatial 

autoregressive parameter. Because the behavioral underpinning of equation (3) says that the sales 

prices of nearby homes influence each other, Wij ⋅ p̃ is endogenous to p̃i and the function cannot 

be properly estimated using ordinary least squares (OLS). A viable alternative is a spatial two 

stage least squares (S2SLS) strategy developed by Kelejian and Prucha (1998), which, in a 

nutshell, involves regressing the spatially lagged variable on all explanatory variables plus spatial 

lags of those same variables to produce predicted values, and then using those predicted values in 

place of the actual values in equation (3). Like maximum likelihood estimation, S2SLS yields 

efficient, unbiased parameter estimates, even in the presence of spatial error dependence (Das et 

al. 2003). 

In the context of housing markets, the spatial lag in equation (3) acts something like a 

flexible fixed effect, absorbing unobserved spatial correlation in the structure of supply and/or 

demand. But, while this helps to achieve proper first stage estimates, it does nothing to address 

the identification problem that arises in the second stage of hedonic price analysis. An alternative 

approach — Fotheringham et al.’s (2002) geographically weighted regression (GWR) procedure 

— opens the door to second stage estimation. Within this framework, equation (1) is expressed 

as: 

p̃i = γ i0 +γ i1 ⋅ zi1 +γ i2 ⋅ zi2 + ...+γ ik ⋅ zik + τ i . (4) 

The notation is again nearly the same as before, except that the γ s represent estimable parameters 

specific to each home, i, at location {u, v} and τ i represents the stochastic error term. From this, 

the marginal implicit price from above is calculated as the product of the estimated location-

specific parameter and the price of the home, or π̂ ik = γ̂ ik ⋅ pi , and the total implicit expenditure is 

calculated as the product of the marginal implicit price and the quantity of that attribute, or 

η̂ ik = γ̂ ik ⋅ zik . The difference is that the estimated parameters that go into the calculation, γ̂ ik , 

differ from home-to-home, so the variable is the product a variable parameter and a variable, not 

a constant parameter and a variable. 
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The function shown in equation (4) is complicated to estimate and requires the use of 

software developed especially for that purpose (Fotheringham et al. 2003). Even so, the 

estimation procedure relies on a reasonably intuitive adaptation of the familiar OLS estimator. 

Whereas, written in matrix form, the OLS estimate of the vector of parameters contained in 

equation (4), say Γ , is given by Γ̂ = (Z T Z)−1 Z T p̃ , the GWR estimate of the non-stationary 

vector of parameters, Γi , is Γ̂i = (Z TWi{u,v}Z)−1 Z TWi{u,v} p̃ . In this expression, Wi is an n × n 

spatial weights matrix particular to each home, i, describing the weight placed on other homes in 

the process of estimating the non-stationary vector of parameters. In plain terms, GWR calibrates 

a separate regression centered on the location of every observation in the dataset and, at the 

location of each regression, information from other locations is discounted with distance from it, 

so that closer observations have a greater influence on the solution. The output is voluminous — 

a total of n observations ⋅ k parameters, so 100,000 for a model having 10,000 observations, nine 

explanatory variables, and an intercept — and for this reason, GWR estimates must be interpreted 

via maps (see Kestens et al. 2006; Bitter et al. 2007; Wheeler and Calder 2007). 

Coming back to the matter at hand, GWR is a procedure for modeling spatial non-

stationarity and, because of this, it is ideal for accommodating the kind of market segmentation 

that Straszheim (1974) and others have cautioned of. Though it may be possible to delineate 

certain kinds of submarkets upfront, either by way of assumption or by consulting with market 

participants, in practice, it seems unlikely that these submarkets would ever follow rigid 

boundaries or that they would necessarily be congruent for all housing attributes. A more 

plausible supposition is that the implicit prices of housing attributes bleed across geographic 

space in various ways, waxing and waning in a manner relevant to the specific market processes 

that generate them. One method of addressing this is to use the spatial expansion method to 

generate location value signatures for each home involved in the analysis and another is to add a 

spatial lag of the dependent variable that absorbs interaction among nearby market participants. 

But these remedies do not help to identify the second stage demand function because, in their 

handling of geographic space, they eliminate non-stationarity instead of capturing it for later use. 

In contrast, GWR, which stems directly from the spatial expansion method Fotheringham et al. 

(1998), retains the non-stationarity of housing attribute prices — however organic and different 

from each other they may be — as a form of information that can, in turn, be used to estimate the 

demand for those attributes. This is fundamental because, if the marginal implicit prices estimated 

in the first stage of hedonic price analysis vary by location, it follows that the housing market is 

spatially segmented in a way that allows the implicit prices from different locations to be pooled 
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in the second stage to estimate a market-wide demand function. In this way, the space-based 

strategy developed in the discussion so far represents a general solution to the long-standing 

problem of getting at the demand for non-market goods. 

3. Empirical Analysis 

3.1 Data, Setting, and Modeling Framework 

The empirical analysis is set in King County, Washington, the location of Seattle and the heart of 

the Puget Sound region. The data, which originates mainly from the King County Assessor,4 

includes 29,165 transactions for single-family homes that took place during 2004 — this 

represents essentially all such arms-length transactions from that year. The sales data, which is 

mapped in Figure 3 against the backdrop of the region’s urban growth area, was stripped of all 

non-arms-length transactions, like those with some type of deed other than a warrantee deed, and 

“bad” records, with missing information or some other problem. The transactions were then 

loaded into a geographic information system (GIS) wherein they were linked to parcel data, also 

from the King County Assessor. Once this was done, the data was matched with other relevant 

data from the 2000 Census of Population and Housing, the Environmental Protection Agency 

(EPA), and various regional sources — including school district boundaries and King County’s 

portion of the Puget Sound’s urban growth area — to create neighborhood level and distance-

based metrics. Table 1 lists the source of, and descriptive statistics for, all variables involved in 

the analysis. 

In 2004, King County was home to over 1.75 million people, or nearly a third of 

Washington State’s population, living in more than 50 different jurisdictions. Within the region, 

there are many submarkets that can easily be distinguished on the basis of income, proximity to 

amenities, access to employment centers, and other factors. Nonetheless, there is considerable 

crossover between these submarkets because the region as a whole is exceptionally well 

integrated and faces little of the kind of urban decay, social turmoil, or other strife that bifurcates 

many other housing markets. This is not to say that income polarization and its attendant 

residential sorting do not exist, just not at the same extremes as they do in many other American 

metropolitan areas. Instead, the Puget Sound’s housing market tends to be sorted more by 

personal preference. For example, some residents prefer the high-density of Seattle and others 

4 This information is publicly available but, for this research, it was obtained from Metroscan, a proprietary database 
that collects assessor’s data from King County and elsewhere. 
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prefer the low-density of the eastern suburbs and other outlying areas.5 Moreover, the Puget 

Sound region in general, and Seattle — the so-called “Emerald City” — in particular, are famous 

for being among the nicest places to live and own housing in the United States. Views of the 

Cascade and Olympic mountain ranges are typical and so are views of the sound, Lake Union, 

Lake Washington, the Ship Canal, and many other smaller water bodies. With its large and 

dynamic housing market and its many opportunities to consume environmental quality, King 

County is an ideal setting for evaluating the demand for that commodity. 

As shown in each of the first stage estimating equations — that is, in equations (1), (2) 

and (4) — the units of analysis are single-family homes, and the dependent variable is the natural 

log of sales price. By convention, these equations indicate that the price of housing depends on a 

vector of housing attributes, z , that describes the home itself, its neighborhood, and its location 

vis-à-vis amenities and disamenities. In terms of model construction, the exact set of variables 

that fill out this vector depends, crucially, on the geographic scope of the analysis because 

different things matter within different spatial frames of reference. That is, constructing a model 

for a specific housing submarket is a different exercise than constructing a model for all of the 

regional market, which is what is of interest here. With this in mind, the specification evolved 

throughout the course of model development and extensive sensitivity testing, along with much 

local knowledge, went into the end result. Throughout this work, great care was taken to ensure 

that the final specification was not sensitive to the inclusion or exclusion of new variables and 

that a high level of explanatory power was achieved. 

The process of model construction led to the following nine categories of explanatory 

variables, some of which are captured by a lone variable: (1) lot size, measured as the square 

footage of the of the home’s site; (2) structure, measured as the square footage of the home, its 

age in quadratic form, and its number of fireplaces; (3) grade, a qualitative evaluation made by 

the assessor that rates the home as being of “below average,” “average,” “good,” “better,” “very 

good,” “excellent,” “luxury,” or “mansion” quality; (4) condition, another qualitative evaluation 

made by the assessor that rates the home as being in “below average,” “average,” “good,” or 

“very good” shape; (5) amenities, measured as whether or not the home has a view of any kind, 

whether or not it is subject to some sort of a nuisance, and the number of linear feet of waterfront 

its site has, if any; (6) neighborhood, measured as the property tax rate, calculated as the ratio of 

the property tax bill to the assessed value, school performance, calculated as the average 

percentage of students achieving success in several state aptitude tests,6 plus, defined at the 

5 Charles Tiebout chose to live in Seattle itself, in a neighborhood adjacent to the University of Washington.
6 The aptitude tests are for mathematics, reading, science, and writing. 
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census tract level, median household income and density, calculated as housing units per acre; (7) 

location, measured as distance from downtown Seattle, the average commute time to work in the 

census tract, distance from the nearest arterial, whether or not the home is located outside of the 

Puget Sound’s urban growth area, and distance from the nearest point on the growth area’s 

boundary; (8) environmental hazards, measured as the distance from the nearest air release site, 

hazardous waste generator, hazardous waste handler, superfund site; and toxic release site; and 

(9) time, measured as the number of the month in which the home was sold. Together, these 32 

variables plus an intercept form the vector z that explains the sales price of housing in King 

County’s portion of the Puget Sound region. The expected sign of each variable in the first stage 

hedonic price function is listed in the rightmost column of Table 1. 

Figure 4 displays surface trends interpolated from the natural log of the sales prices of the 

29,165 homes shown as points in the background of the image.7 The map reveals, on the one 

hand, a richly variegated regional housing market with clearly delineated, though mostly 

amorphous, submarkets and, on the other hand, a high degree of spatial correlation in prices 

within submarkets and across the transition zones dividing them. The overall picture is one that 

calls upfront for an explicitly spatial modeling framework, so equations (3) and (4) already seem 

preferable to equation (1). The remaining issue — the fine point of the entire matter — is to 

determine whether or not the various housing attribute price schedules that are embedded in the 

Puget Sound’s single-family housing market exhibit similar patterns. If so, the information 

needed to expose the demand for those attributes is there too, hidden right in plain sight. 

Last, before moving on to the estimates, it is necessary to provide some further detail 

about the five EPA designated environmental hazards that are the object of this analysis. These 

are: (1) air release sites, which are fixed sources of air pollution that are contained in the 

Aerometric Information Retrieval System; (2) hazardous waste generators, which are waste-

producing facilities that are contained in the Resource Conservation and Recovery Information 

System; (3) hazardous waste handlers, which are waste-handling facilities (including all waste-

producing facilities) that are contained in the Resource Conservation and Recovery Information 

System; (4) superfund sites, which are contaminated sites prioritized for cleanup that are 

contained in the Comprehensive Environmental Response, Compensation, and Liability 

Information System; and (5) toxic release sites, which are manufactures of toxic chemicals 

dangerous enough to pose severe environmental and, in certain cases, public health threats, that 

7 The surface trends were generated via an inverse distance weighting scheme, which is the simplest method of
interpolating a surface from point data — it estimates values between observations i and j as a weighted average, where 
the weight given to each observation is determined by a standard distance decay function: f (dij ) = 1/ dij 

2 (Longley et 
al. 2001). 
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are contained in the Toxics Release Inventory.8 All such sites located in King County or within 

five miles of its borders as of 2002, two years prior to the housing sales, are shown in Figure 3. 

As the pattern in the figure suggests, these environmental hazards range from everyday-type land 

uses, like drycleaners and gas stations, to highly stigmatized sites hosting heavy industrial 

activities. Accordingly, as shown in Table 1, the median home in the data set is located about: (1) 

7,600 feet from an air release site; (2) 2,900 feet from a hazardous waste generator; (3) 1,700 

from a hazardous waste handler; (4) 39,000 feet from a superfund site;9 and (5) 10,500 feet from a 

toxic release site. However, while most homes are located far away from these sites, others are 

located as close as 80 feet, 15 feet, 5 feet, 1,100 feet, and 45 feet, respectively. As the figure 

illustrates, nearly every environmental hazard involved in this analysis is woven right into the 

fabric of the Puget Sound’s single-family housing market, which makes that market an ideal 

venue for evaluating their impacts. 

3.2 First Stage Hedonic Price Function — OLS and S2SLS Estimates 

The purpose of this step is to present the “global” model that was developed for the entire 

regional housing market and to highlight the importance of addressing the kind of localized 

differences in the structure of supply and/or demand that give rise to spatial non-stationarity. The 

main substance of the analysis lies in the GWR estimates of the first stage hedonic price function 

and subsequent 2SLS estimates of the second stage demand functions, so the discussion here is 

kept brief. But, an overview of the two global variants of the empirical model is a necessary 

precursor to what follows, because it establishes the econometric specification and demonstrates 

the high level of spatial interaction among market participants. 

The left-hand panel of Table 2 lists OLS estimates corresponding to equation (1). Every 

explanatory variable carries its expected sign (if it was anticipated in advance) and all except one, 

distance from the nearest hazardous waste handler, is statistically significant at well over a 99% 

level of confidence. Overall, the vector z influences the sales price of housing in the Puget Sound 

region according to the expectations provided in Table 1. Furthermore, the adjusted R2 is 0.83, 

indicating that the equation does an excellent job of explaining the cross-sectional variation in the 

sales price of single-family housing. Next, the right-hand panel of Table 2 lists the S2SLS 

8 For an overview of each and access to the same data used here, see: http://www.epa.gov/enviro/html/airs/index.html
for air release sites; http://www.epa.gov/epaoswer/hazwaste/data/index.htm for hazardous waste generators and 
hazardous waste handlers; http://www.epa.gov/enviro/html/cerclis/index.html for superfund sites; and 
http://www.epa.gov/enviro/html/tris/index.html for toxic release sites. 
9 Note that there are only five superfund sites in King County, so the sample is small compared to the other facilities.
This poses no serious problems, but, because the region as a whole is involved in the analysis, it does make superfund
sites more prone to localized idiosyncrasies — that is, if there is some kind unobserved of market anomaly nearby a
superfund site, it could have an influence on the hedonic price analysis. 
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estimates, corresponding to equation (3), wherein the spatial lag of the dependent variable is the 

average price paid in the four nearest transactions.10 As expected, the autoregressive term is 

positive and highly significant, which shows that the sales prices of proximate homes are strongly 

correlated with one another, and its inclusion in the equation raises the adjusted R2 slightly, to 

0.85. The original 32 explanatory variables all have the same signs as before and, except for the 

variable indicating whether or not the home is located outside of the Puget Sound’s urban growth 

area, they all remain statistically significant at a 99% or greater confidence level. Together, the 

two sets of estimates contained in Table 2 represent the foundation that the remainder of the 

analysis rests upon. 

3.3. First Stage Hedonic Price Function — GWR Estimates 

As explained, GWR involves calibrating a separate regression centered on the location of every 

single observation in the dataset and, at the location of each regression, information from other 

locations is discounted with distance from it, so that closer observations have a greater influence 

on the model’s solution. The technique, which is computationally complex and requires specially 

developed software (Fotheringham et al. 2003), produces output consisting of a voluminous total 

of n ⋅ k parameters — so, in this case, 962,445 (or 29,165 ⋅ 33) location-specific estimates. 

Before discussing the findings, a remaining aspect of the GWR procedure, the 

determination of the appropriate spatial bandwidth, needs some explanation because it affects the 

estimation results. There are two options: (1) a fixed spatial bandwidth, which uses all 

observations, no matter how few or how many, located within a constant radius of the regression 

point, so the sample size varies by location; and (2) an adaptive spatial bandwidth, which uses a 

constant number of observations, no matter how close or how far away they are from the 

regression point, so the sample size does not vary by location. Compounding this choice, the 

GWR software can be used to find a statistically “optimal” bandwidth or it will let the user supply 

a predetermined bandwidth. Various combinations of these alternatives were explored for the 

purposes of this research and, in the end, an adaptive spatial bandwidth encompassing 21,874 

nearest neighbors — a constant 75% of the dataset — was used to generate the estimates. Any 

further details on the estimation process are available upon request from the corresponding 

author. 

Getting into to the findings, Table 3 lists GWR estimates corresponding to equation (4). 

The left-hand panel of the table gives the minimum, mean, and maximum value of all parameters 

10 All spatially lagged variables were generated in GeoDa (see Anselin et al. 2006), and then imported into EViews,
where the OLS, STSLS, and 2SLS equations described in this paper were estimated. 
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estimated in the procedure and the right-hand panel gives the same numbers but only for those 

parameters having t-values ≥ 1.96. As the column in the right-hand panel listing the percentages 

demonstrates, for almost all of the variables, every single location-specific parameter is 

significant at a 95% or greater level of confidence. For most of those that do not meet the 100% 

mark, the rate of statistical significance is still very high. The one exception, as in the global 

estimates, is distance from the nearest hazardous waste handler, which is only statistically 

significant 3.24% of the time. Overall, the sign pattern in Table 3 is the same as the sign patterns 

in Table 2. The only variable that deviates from this is neighborhood density, which breaks in 

both directions, from a minimum of –0.012 to a maximum of 0.009. This indicates that, other 

things being equal, in some locations, density raises the price of housing and, in other locations, it 

lowers the price of housing. Figure 5, which shows surface trends interpolated from the density 

parameter estimates ( γ̂ ik ), illustrates that the pattern is systematic. Specifically, as telegraphed in 

the discussion above, density has a positive influence in the western half of King County and a 

negative influence in the eastern half. Anecdotally, it is something of a cliché among urban 

planners in the Puget Sound that the two things residents dislike most are density and sprawl, and, 

so, this is one of the ways in which the housing market there is segmented. The figure reflects the 

impact of households with preferences for density bidding up the price of housing for that 

attribute in Seattle and its immediate vicinity and, conversely, the impact households with 

preferences against density bidding down the price of housing for that attribute in the region’s 

eastern suburbs.11 The adjusted R2 of the GWR model is 0.84 and the Akaike Information 

Criterion (AIC) statistic is –17,553.67, an improvement over the –15,033.12 of the OLS variant 

of the model. 

Most important, some of the GWR parameter estimates exhibit wide ranges in value, 

suggesting that spatially distinct price schedules for those attributes may indeed be embedded in 

the regional housing market (Can 1990, 1992). Because the dependent variable is in natural log 

form, the marginal implicit prices from the hedonic price function are π̂ ik = γ̂ ik ⋅ pi or, where the 

explanatory variable is also in natural log form, π̂ ik = γ̂ ik ⋅ pi / zi . The product of the relevant term 

and zi gives the value of the estimated total implicit expenditure, η̂ ik . In cases where the 

location-specific parameter is not statistically significant, the marginal implicit price was taken to 

be zero because insignificance means, after all, that the variable had no influence on sales price. 

The minimum, mean, and maximum values (accounting for zeros) of the estimated marginal 

11 To the authors, who know the Puget Sound region well, this result serves as a conformation that the GWR parameter
estimates reflect true patterns of spatial non-stationarity. 
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implicit price of, and total implicit expenditure on, each attribute are listed in the left-hand and 

right-hand panels of Table 4, respectively. 

Because sales price and the distances from the five environmental hazards are all 

expressed in natural log form, the distance parameters are elasticities. On average, these 

elasticities reveal that preferences for this form of environmental quality are ordered as follows: 

superfund sites (0.06) > toxic release sites (0.02) > air release sites (0.017) > hazardous waste 

generators (0.01) > hazardous waste handlers (0.003). And, as the marginal implicit prices shown 

in the left-hand panel of Table 4 reveal, the average transaction contributed: (1) $1.36 for an 

additional foot of distance from the nearest air release site; (2) $2.89 for an additional foot of 

distance from the nearest hazardous waste generator; (3) $0.00 for an additional foot of distance 

from the nearest hazardous waste handler; (4) $0.76 for an additional foot of distance from the 

nearest superfund site; and (5) $0.99 for an additional foot of distance from the nearest toxic 

release site. These are the mean values of π̂ ik , the estimate of marginal implicit price required for 

the second stage demand functions. Note, however, that these estimates are average prices per 

foot of distance across all distance consumed and that, because of diminishing marginal utility, 

the first foot of distance from an environmental hazard is far more expensive than, say, the 

40,000th foot. A clearer picture emerges, then, from the total implicit expenditures, η̂ ik , which are 

listed in the right-hand panel of Table 4. The table shows that the average home, which sold for 

$383,440, involved a total implicit expenditure of: (1) $5,988.21 on distance from the nearest air 

release site; (2) $5,514.45 on distance from the nearest hazardous waste generator; (3) $18.99 on 

distance from the nearest hazardous waste handler; (4) $23.871.92 on distance from the nearest 

superfund site; and (5) $6,909.00 on distance from the nearest toxic release site. 

Surface trends interpolated from the 29,165 location-specific marginal implicit prices of 

distance from air release sites, hazardous waste generators, hazardous waste handlers, superfund 

sites, and toxic release sites are shown in Figures 6 – 10. The maps are revealing because they 

show exactly where and how the five environmental hazards have impacted King County’s 

single-family housing market. In some parts of the region, which have been left white, air release 

sites, hazardous waste handlers, and toxic release sites have had no effect but, overall, the 

influence of the facilities is wide ranging. A striking feature of the maps is that the marginal 

implicit prices of distance from the hazards are spatially incongruent — the patterns of impact 

vary across the five types of facilities, and even within each type. This latter finding is consistent 

with a recent analysis of superfund sites by Kiel and Williams (2007), who found that that the 

impact on housing markets varies substantially from site-to-site. Note, too, that the patterns of 

impact shown in Figures 6 – 10 illustrate why homes located far from the environmental hazards 
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do not necessarily end up with large total implicit expenditures on distance. In particular, even 

though the amount of distance consumed is large for more distant homes, the marginal implicit 

price of distance is very small, so the product of the two (η̂ ik ) does not have to be big. Had the 

maps been created using the stationary OLS or S2SLS parameter estimates, they would illustrate 

a situation wherein the total implicit expenditure on distance would always rise with distance, 

even if marginally. Instead, because of the non-stationary parameters, homes located close to 

environmental hazards can (and commonly do) end up having greater total implicit expenditures 

than those located further away. 

Recall now that it is possible to estimate second stage demand functions for 

environmental quality if spatially segmented submarkets having separate hedonic price schedules 

for the identical attributes are available. A lone hedonic price function cannot be used to do this 

because it is a composite of both supply and demand and, so, does not contain the information 

needed to identify the second stage function. Table 4 reveals that the marginal implicit price of, 

and total implicit expenditure on, many of the housing attributes included in the first stage 

function have considerable range, but this, while promising, is not in-and-of-itself evidence of 

spatially segmented submarkets. What is needed to confirm the presence of segmentation, is a test 

of whether the variances of the total implicit expenditures described in the right-hand panel of the 

table are owed to variation in the attributes or, instead, to variation in the marginal implicit prices. 

In other words, the question is: Does the variance of each η̂ ik across the 29,165 transactions come 

from variation in zk , the quantity consumed, or from variation in π̂ ik , the marginal implicit price? 

Evidence that the latter is responsible for the variance of η̂ ik is needed to establish that the kind of 

spatially segmented markets that give rise to non-stationarity housing attribute price schedules are 

present. If such submarkets exist, then so, too, does the information needed to identify the second 

stage demand functions for environmental quality. 

Ali et al. (2007) have developed just the test needed to ascertain this. Following their 

approach, the variance of the total implicit expenditures was decomposed via the following: 

var(η̂ ik ) = (∂η̂ ik /∂zk )
2 ⋅ var(zk ) + (∂η̂ ik /∂π̂ ik )

2 ⋅ var(π̂ ik ) (5) 
+ 2 ⋅ cov(π̂ ik ,zk ) ⋅ (∂η̂ ik /∂zk ) ⋅ (∂η̂ ik /∂π̂ ik ). 

In this formula, the partial derivative in the first term is the mean of π̂ ik 
2 ; the partial derivative in 

the second term is the mean of zk 
2 ; and the partial derivatives in the third term are the means of 

π̂ ik and zk . The terms themselves give the share of the variance in η̂ ik , total implicit 
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expenditures, that is attributable to: (1) spatial variation in zk , the attributes; (2) spatial variation 

in π̂ ik , the marginal implicit prices; and (3) the covariance of π̂ ik  and zk .
12 

The results of Ali et al.’s (2007) spatial decomposition test, which are presented in Table 

5, are compelling. Just as earlier findings (Michaels and Smith 1990) seem to indicate, certain 

total implicit expenditures vary significantly due to spatial non-stationarity in marginal implicit 

prices but others do not. For many of the housing attributes that are characteristics of the home 

itself, much, if not most, of the variance in η̂ ik is owed to spatial variation in zk . For example, 

there is little evidence of a spatially segmented implicit market for lot size — about two thirds of 

the total implicit expenditure is owed to the quantity consumed — so the hedonic price schedule 

for that attribute is relatively constant across King County. Other things being equal, an additional 

square foot of lot costs more-or-less the same anywhere within the regional housing market. 

Further down the list of explanatory variables, though, the opposite is true. For attributes that are 

spatial in nature, and particularly for distance from the five environmental hazards, there is 

overwhelming evidence that the variance in η̂ ik is owed to spatial variation in π̂ ik , not zk . 

Specifically, spatial variation in marginal implicit prices accounts for the majority of the variance 

in total implicit expenditure on distance: (1) 72% for air release sites; (2) 70% for hazardous 

waste generators; (3) 70% for hazardous waste handlers; (4) 88% for superfund sites; and (5) 

73% for toxic release sites. In short, the total amount that households spent on avoiding these 

facilities depends largely on how distance from them was priced at the location of the home they 

purchased. This segmentation may be due to asymmetrical information, barriers to market entry, 

or any other factor causing idiosyncratic differences in the structure of supply and/or demand. 

Whatever the reason, it means that the kind of spatially distinct submarkets needed to identify 

second stage demand functions for these attributes is there, hanging in the aether of the regional 

housing market. 

3.4 Second Stage Demand Functions — 2SLS Estimates 

Like other hedonic price analyses involving second stage estimation (see, for example, 

Brasington and Hite 2005) this research relies on spatial variation in housing attribute price 

schedules to address the identification problem. The main difference is that, instead of using 

different regions as distinct housing market segments, this analysis leverages spatial non-

stationarity in housing attribute prices within a single region to identify the second stage demand 

12 Ali et al.’s (2007) test deals with a somewhat simpler situation wherein the term that is decomposed is the product of
the GWR parameters and the explanatory variables. Since marginal implicit prices are the object of interest here, the
actual values of the GWR-estimated housing attribute price schedules first had to be backed out of the log-transformed
equations. 
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functions. With the marginal implicit price estimates, π̂ ik , from the first stage hedonic price 

function in hand, the remaining step of the analysis is to estimate a series of second stage demand 

functions corresponding to equation (3). 

As already explained, the dependent variable of these functions is quantity — expressed 

as q̃ik , the natural log of distance from each environmental hazard — and the explanatory 

variables are the marginal implicit price of distance, the marginal implicit prices of distances 

from the other hazards, which may act as compliments or substitutes, and a standard set of 

demand shifters. Because π̂ ik is endogenous to q̃ik , the demand functions must be estimated via 

two stage least squares (2SLS) or some other instrumental variables procedure. The instruments 

used to do this are all of the exogenous variables, plus spatial lags of those same variables, or, in 

matrix form, X and Wij ⋅ X .13 The 2SLS estimation results for the implicit markets for distance 

from air release sites, hazardous waste generators, hazardous waste handlers,14 superfund sites, 

and toxic release sites are listed from left to right, respectively, in Table 6. Each of the equations 

except for the one for hazardous waste handlers registers a respectable adjusted R2 and almost all 

of the explanatory variables are statistically significant and appropriately signed. The next 

paragraphs summarize the own-price, income, and cross-price relationships and the influence of 

the set of demand shifters in turn. 

The equations are all in semi-log form so own-price elasticities can easily calculated, by 

taking the product of the estimated parameter and the mean of the estimated marginal implicit 

price: δ̂ ⋅ π̂ ik . As expected, all of the price elasticities of demand that come out of this calculation 

are negative, or, in one instance, essentially zero: (1) –0.22 for air release sites; (2) –0.11 for 

hazardous waste generators; (3) 0.00 for hazardous waste handlers; (4) –0.27 for superfund sites; 

and (5) –0.41 for toxic release sites. These results are remarkably consistent with work done by 

Brasington and Hite (2005), who found a price elasticity of demand of –0.12 for an almost 

identical measure of environmental quality.15 In general, it is reasonable to expect high profile 

environmental hazards to not only generate large implicit price responses in the first stage 

hedonic price function but, also, to generate large distance responses in the second stage demand 

functions. And, for this reason, it is interesting that all of the price elasticities of demand are less 

than one, indicating that demand is inelastic. This finding suggests that household responses are 

relatively stronger in the first stage hedonic price function than in the second stage demand 

13 Just as before, Wij is an n × n spatial weights matrix and the spatial lags give the average of values from the four

nearest neighbors.

14 The implicit price of distance from hazardous waste handlers was zero for 28,220, or about 97%, of the observations.

15 Distance from the nearest Ohio Environmental Protection Agency designated environmental hazard
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functions — households apparently do not mind proximity to environmental hazards as long as 

they are compensated for it. 

Beyond this, the relative ordering of the price elasticities of demand is reasonable: Toxic 

release sites > superfund sites > air release sites > hazardous waste generators > hazardous waste 

handlers. This lines up well with the levels of risk actually associated with the five environmental 

hazards. In particular, the largest own-price elasticity is for toxic release sites, which are facilities 

registered in the Toxics Release Inventory, a publicly available database of firms that emit toxic 

chemicals into the environment.16 Given the severe stigma attached to many of these facilities, it 

is not surprising that they have the highest of the five price elasticities of demand. The result for 

superfund sites may initially seem counterintuitive given their high profile, but it is actually not, 

considering that operations at these facilities have ceased and, so, no further contamination is 

likely to happen. Indeed, research on a superfund site located in nearby Tacoma, Washington by 

McMillen and Thorsnes (2003) found that superfund designation eventually leads housing values 

to rebound from initial losses in anticipation of cleanup. The price elasticity of demand for 

distance from air release sites is comparable to the price elasticity of demand for distance from 

superfund sites, and this may be attributable to the high visibility that air release sites can have. 

Public knowledge is at the core of how environmental hazards influence the housing market, and 

the evidence here suggests that emissions from air release sites send comparatively strong signals 

to market participants. The remaining two hazards, hazardous waste generators and hazardous 

waste handlers, tend to be everyday-type land uses and, for this reason, households exhibit less 

aversion to living in close proximity to them and their own-price elasticities are correspondingly 

low. 

Income elasticities of demand for each of the five hazards are calculated the same way as 

before, by taking the product of the estimated parameter and the mean of median household 

income. Note, however, that interpretations have to be tempered by the fact that the measure of 

income is calculated at the census tract level because household level data corresponding to the 

single-family housing sales was not available. That said, as expected, all of the income elasticities 

of demand that come out of this calculation except one are positive: (1) 0.32 for air release sites; 

(2) 0.71 for hazardous waste generators; (3) 0.51 for hazardous waste handlers; (4) –0.19 for 

superfund sites; and (5) 0.32 for toxic release sites. Overall, these values imply that 

environmental quality is a normal good so, other things being equal, households spend more on it 

as their incomes rise. As to how readily: Hazardous waste generators > hazardous waste handlers 

16 The inventory was created in response to the 1984 Bhopal, India accident wherein a Union Carbide plant accidentally
released a large volume of methyl isocyanate gas. By some estimates, more than a million people were exposed to the
gas, and more than 20,000 eventually died from their exposure to it. 
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> air release sites > toxic release sites. The perverse sign on the one elasticity suggests that 

superfund sites are not normal goods, but this may be due to some anomaly stemming from the 

small number of them involved in the analysis. As footnoted above, the fact that there are so few 

within such a large market significantly increases the chances for the estimation results to be 

distorted by an unobserved factor so, whatever the exact cause of the result, it is almost certainly 

spurious. 

Next, the parameter estimates on the exogenous marginal implicit prices in each equation 

reveal which forms of distance are complements and which forms of distance are substitutes. To 

give two examples: (1) in the implicit market for distance from air release sites, distance from 

hazardous waste handlers is a complement and distance from hazardous waste generators and 

distance from superfund sites are substitutes; and (2) in the implicit market for distance from 

superfund sites, distance from hazardous waste handlers and distance from toxic release sites are 

complements and distance from air release sites and distance from hazardous waste handlers are 

substitutes. Note that each equation deals with a separate implicit market so there is no reason to 

expect symmetry among complements and substitutes — that is, theory does not dictate that one 

hazard is a substitute for, or complement to, another just because there is a relationship the other 

way around. Though detailed discussion of the cross-price relationships is beyond the scope of 

this paper, any subsequent welfare analysis aimed at estimating the benefits of site remediation, 

for example, would involve examining them more thoroughly. 

Last, the two groups of demand shifters illustrate how various socioeconomic and 

locational factors affect the quantity of distance from environmental hazards that households 

consume. The initial group shows that quantity is positively influenced by: (1) education, 

measured as the percent of residents in the census tract that are college educated; (2) absence of 

racial minorities, measured the percent residents in the census tract that are white; and (3) the 

presence of children, measured as the percent of households in the census tract with children. The 

percent of residents that are foreign-born in the census tract negatively influences distance from 

air release sites and hazardous waste generators but positively influences distance from superfund 

sites and toxic release sites. Meanwhile, the second group of demand shifters shows that quantity 

is positively influenced by: (1) distance from downtown Seattle; (2) commute time; and (3) 

distance from the nearest arterial. It also shows that quantity is negatively influenced by 

neighborhood density, which, other things being equal, directly impacts the ability of households 

to live away from environmental hazards. Each of these findings is intuitive, except, perhaps, the 

mixed result for foreign-born residents, which merits further investigation. In addition to playing 

their own part in the equations, the demand shifters, by virtue of their sound performance, 
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indicate that the estimated relationships accurately reflect the nature of demand for distance from 

air release sites, hazardous waste generators, hazardous waste handlers, superfund sites, and toxic 

release sites. The results listed in Table 6 represent a basis for evaluating these forms of 

environmental quality in a holistic way. 

4. Summary and Conclusion 

This paper began by articulating three specific research objectives: (1) to define spatial non-

stationarity in the context of housing markets and develop a strategy for using it to overcome the 

general problem of getting at the demand for non-market goods; (2) to estimate the marginal 

implicit price of distance from air release sites, hazardous waste generators, hazardous waste 

handlers, superfund sites, and toxic release sites via the single-family housing market in the Puget 

Sound region of Washington State; and (3) to estimate a series of demand functions describing 

the relationship between the price of distance from environmental hazards and the quantity 

consumed. Having met its objectives, the few remaining comments of this paper focus on some of 

its implications, plus caveats and directions for future research. 

Foremost, the strategy laid out here represents a major step forward in valuing non-

market goods because it offers a workable solution to what has always been the albatross of two 

stage hedonic price analysis. In practice, estimating demand functions with data from multiple 

regions is problematic because of the difficulty of obtaining identical datasets. In contrast, the 

approach developed here is more tractable in the sense that it requires data from only one region, 

but, that said, it does require a lot of data, plus a good degree of local knowledge. The importance 

of market knowledge on the part of the analyst should not be underappreciated because some 

danger lies in accepting the first stage GWR parameter estimates at face value. As one astute 

seminar participant remarked: “This estimator is a geographer’s dream, but, in economic terms, 

how can it be theoretically justified?” The density parameter shown in Figure 5 is a prime 

example of what is at stake in terms of the risk of misinterpretation when using GWR. Knowing 

upfront that the influence of density cuts in both ways in the Puget Sound, and, also, that there 

exist clearly delineated housing market segments based on it was key to understanding the result. 

Had the region been less familiar, the density parameter would have raised questions instead of 

confirming expectations. Even still, it seems to the present authors that GWR analysis, if 

thoughtfully done, represents the very best of what the field of regional science has to offer — 

innovative solutions to the many untidy problems that emerge from how geographic space 

mediates socioeconomic processes. 
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This paper has covered a lot of ground and often rapidly because of the distance 

demanded by its objectives. The results presented in the tables and figures are an excellent 

starting point for a more detailed welfare analysis, and there may be room for refinement and re-

estimation of certain of the equations. According to the 2005 American Housing Survey, a great 

number of homes in the United States are affected by bothersome neighborhood conditions, 

including odors (~3.5 million homes), unpleasant noise (~16.9 million homes), the presence of 

various undesirable land uses (~0.45 million homes), and more. In some circumstances, it may 

make economic sense to address the problems, but, for public policies aimed at doing so to be 

credible, they need to be based on sound benefit-cost analyses. And, in order to carry out these 

projects in the first place, analysts must have a way to estimate the demand for non-market goods 

— in all their myriad forms. The research presented in this paper was motivated by the need to 

better understand the value of environmental quality, and the space-based strategy it has 

developed is offered up in the hope that, over time, it will be used to guide public policy in a way 

that improves living conditions. 
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Table 1. Descriptive statistics 

Sales Price 1 

Lot Size 1 

Structure 

Units 
Dollars 
Sq. feet 

Min. Max. Mean Med. Std. Dev. 
Exp.
Sign

50,000.00 9,000,000.00 383,440.30 323,626.00 260,663.88 n/a
780.00 1,738,915.00 12,590.16 7,560.00 33,032.98 + 

Size 1 

Age 1 

Age2 1 

Fireplaces 1 

Grade 

Sq. feet
Years 
Years 
Count 

360.00 
0.00 
0.00 
0.00 

12,750.00 
104 

10,816.00 
6.00 

2,207.73 
34.94 

1,220.56 
1.19 

2,130.00 
31.00 

961.00 
1.00 

886.09 + 
28.59 – 

817.48 + 
0.71 + 

Average 1 

Good 1 

Better 1 

Very Good 1 

Excellent 1 

Luxury 1 

Mansion 1 

Condition 

Binary
Binary
Binary
Binary
Binary
Binary
Binary 

0.00 
0.00 
0.00 
0.00 
0.00 
0.00 
0.00 

1.00 
1.00 
1.00 
1.00 
1.00 
1.00 
1.00 

0.44 
0.25 
0.11 
0.04 
0.01 
0.00 
0.00 

0.00 
0.00 
0.00 
0.00 
0.00 
0.00 
0.00 

0.50 + 
0.43 + 
0.31 + 
0.21 + 
0.12 + 
0.06 + 
0.03 + 

Average 1 

Good 1 

Very Good 1 

Amenities 

Binary
Binary
Binary 

0.00 
0.00 
0.00 

1.00 
1.00 
1.00 

0.71 
0.24 
0.04 

1.00 
0.00 
0.00 

0.45 + 
0.43 + 
0.20 + 

View 1 

Nuisance 1 

Waterfront Feet 4 

Neighborhood
Property Tax Rate 1 

School Performance 4 

Binary
Binary
Feet 

Percent 
Percent 

0.00 
0.00 
0.00 

0.00 
0.38 

1.00 
1.00 

1,600.00 

0.03 
0.84 

0.12 
0.13 
0.92 

0.01 
0.56 

0.00 
0.00 
0.00 

0.01 
0.54 

0.33 + 
0.34 – 

13.93 + 

0.00 – 
0.12 + 

Median Income 2 

Density 2 

% College Educated 2 

% White 2 

% Foreign-born 2 

% Households w/ Children 2 

Location 

Dollars 16,285.00 
Units / Ac. 0.00 
Percent 0.01 
Percent 0.11 
Percent 0.02 
Percent 0.02 

133,756.00 
51.02 
0.44 
0.97 
0.53 
0.59 

64,122.82 
2.75 
0.19 
0.79 
0.14 
0.28 

61,726.00 
2.24 
0.19 
0.83 
0.12 
0.26 

19,617.79 + 
2.35 +/–
0.07 n/a
0.15 n/a
0.08 n/a
0.12 n/a 

Dist. from Seattle 4 

Commute Time 2 
Feet 
Minutes 

2,181.64 
16.00 

190,855.98 
46.00 

65,557.21 
26.29 

58,271.44 
26.00 

36,716.63 – 
4.30 – 

Dist. from Arterial 4 

Outside UGB 4 

Dist. from UGB 4 

Environmental Hazards 

Feet 
Binary
Feet 

0.14 
0.00 

27.62 

21,292.92
1.00 

88,040.18 

1,161.09
0.06 

25,088.06 

712.76 
0.00 

21,435.22 

1,399.70 + 
0.23 +/–

19,666.14 +/– 

Dist. from Air Site 2 and 4 

Dist. from HWG 2 and 4 

Dist. from HWH 2 and 4I 

Dist. from SF Site 2 and 4 

Dist. from TR Site 2 and 4 

Time 

Feet 
Feet 
Feet 
Feet 
Feet 
Months 

77.66 
14.36 
4.92 

1,088.09 
44.43 
1.00 

69,211.39 
30,018.93 
19,005.26

149,959.83 
81,959.90 

12.00 

10,467.07 
4,188.50 
2,207.47

44,253.83 
13,336.76 

6.75 

7,564.22 
2,916.23 
1,683.23

39,037.09 
10,526.59 

7.00 

9,491.67 + 
3,929.90 + 
1,877.89 + 

26,585.09 + 
11,285.17 + 

3.11 + 
Data sources: 1 King County Assessor; 2 U.S. Census of Population and Housing; 3 U.S. EPA; 4 author’s calculations,
based on regional data sources. 

27 



Table 2. OLS and S2SLS Estimates of Hedonic Price Models 
OLS S2SLS 

Est. Parameter t-value Est. Parameter t-value 
Constant 13.995900 ★★★ 285.97 11.437490 ★★★ 111.41 
Spatial Lag
Lot Size 

-
0.000001 ★★★ 

-
23.34 

0.174422 ★★★ 

0.000001 ★★★ 

27.90 
24.00 

Structure 
Size 0.000168 ★★★ 84.12 0.000159 ★★★ 83.06 
Age
Age2 

Fireplaces
Grade 

–0.004797 ★★★ 

0.000046 ★★★ 

0.014371 ★★★ 

–30.17 
27.74 
6.91 

–0.004289 ★★★ 

0.000039 ★★★ 

0.009894 ★★★ 

–28.40 
24.76 
5.03 

Average
Good 

0.102765 ★★★ 

0.218304 ★★★ 

25.76 
43.99 

0.094037 ★★★ 

0.193060 ★★★ 

24.91 
40.51 

Better 0.363605 ★★★ 56.54 0.313897 ★★★ 49.66 
Very Good
Excellent 

0.500061 ★★★ 

0.613646 ★★★ 

60.15 
52.36 

0.428527 ★★★ 

0.532088 ★★★ 

51.96 
46.54 

Luxury
Mansion 

0.856369 ★★★ 

0.889545 ★★★ 

42.70 
20.45 

0.759865 ★★★ 

0.763861 ★★★ 

39.53 
18.51 

Condition 
Average
Good 

0.121464 ★★★ 

0.163449 ★★★ 

10.61 
14.20 

0.123498 ★★★ 

0.164896 ★★★ 

11.44 
15.19 

Very Good
Amenities 

0.248836 ★★★ 19.87 0.248307 ★★★ 21.03 

View 0.148658 ★★★ 40.77 0.122613 ★★★ 34.42 
Nuisance –0.025813 ★★★ –7.20 –0.027817 ★★★ –8.23 
Waterfront Feet 0.001700 ★★★ 21.13 0.001672 ★★★ 22.05 

Neighborhood
Property Tax Rate
School Performance 

–29.828490 ★★★ 

0.122706 ★★★ 

–27.03 
7.88 

–24.145230 ★★★ 

0.080787 ★★★ 

–22.78 
5.47 

Median Income 0.000002 ★★★ 27.33 0.000002 ★★★ 19.66 
Density

Location 
0.002954 ★★★ 3.70 0.002902 ★★★ 3.86 

ln Dist. from Seattle –0.216211 ★★★ –60.53 –0.175279 ★★★ –47.71 
ln Commute Time –0.208760 ★★★ –19.29 –0.164252 ★★★ –15.90 
ln Dist. from Arterial 0.012165 ★★★ 9.74 0.009536 ★★★ 8.07 
Outside UGB 0.017324 ★★★ 2.98 0.002674 n/s 0.48 
ln Dist. from UGB 0.011674 ★★★ 10.61 0.011602 ★★★ 11.18 

Environmental Hazards 
ln Dist. from Air Site 0.013773 ★★★ 6.29 0.009939 ★★★ 4.80 
ln Dist. from HWG 0.014385 ★★★ 6.74 0.010529 ★★★ 5.22 
ln Dist. from HWH 0.003027 n/s 1.50 0.000661 n/s 0.35 
ln Dist. from SF Site 0.054032 ★★★ 24.29 0.044827 ★★★ 21.11 
ln Dist. from TR Site 0.016637 ★★★ 8.40 0.015435 ★★★ 8.26 

Time 0.009650 ★★★ 27.35 0.009642 ★★★ 28.98 
n 
Adjusted R2 

29,165 
0.83 

29,165 
0.85 

Notes: All hypothesis tests are two-tailed; ★★★ denotes at p < 0.01; ★★ denotes significant at p < 0.05; ★ denotes 
significant at p < 0.10; n/s denotes not significant. 
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Table 3. GWR Estimates of Hedonic Price Models 

Min. 
All Parameters 
Mean Max. Pct. 

Parameters w/ t-value ≥ 1.96 
Min. Mean Max. 

Constant 13.140311 14.039300 14.820066 100.00% 13.140311 14.039300 14.820066 
Lot Size 0.000001 0.000002 0.000003 100.00% 0.000001 0.000002 0.000003 
Structure 

Size 0.000158 0.000165 0.000170 100.00% 0.000158 0.000165 0.000170 
Age
Age2 

Fireplaces
Grade 

–0.005967 
0.000034 
0.011616 

–0.004654 
0.000044 
0.016085 

–0.003357 
0.000061 
0.025223 

100.00% –0.005967 
100.00% 0.000034 
100.00% 0.011616 

–0.004654 
0.000044 
0.016085 

–0.003357 
0.000061 
0.025223 

Average
Good 

0.062679 
0.172277 

0.093987 
0.211093 

0.113418 
0.240682 

100.00% 
100.00% 

0.062679 
0.172277 

0.093987 
0.211093 

0.113418 
0.240682 

Better 0.315706 0.362485 0.402919 100.00% 0.315706 0.362485 0.402919 
Very Good
Excellent 

0.449774 
0.553748 

0.506888 
0.624594 

0.571270 
0.694141 

100.00% 
100.00% 

0.449774 
0.553748 

0.506888 
0.624594 

0.571270 
0.694141 

Luxury
Mansion 

0.771232 
0.607701 

0.839562 
0.873345 

1.007665 
1.088408 

100.00% 
100.00% 

0.771232 
0.607701 

0.839562 
0.873345 

1.007665 
1.088408 

Condition 
Average
Good 

0.006550 
0.039617 

0.102476 
0.146201 

0.193725 
0.240667 

88.19% 
100.00% 

0.032448 
0.039617 

0.116201 
0.146201 

0.193725 
0.240667 

Very Good
Amenities 

0.131474 0.231493 0.328336 100.00% 0.131474 0.231493 0.328336 

View 0.119499 0.141195 0.161684 100.00% 0.119499 0.141195 0.161684 
Nuisance –0.042430 –0.020920 –0.001885 70.35% –0.042430 –0.029737 –0.009691 
Waterfront Feet 0.000635 0.004456 0.009532 100.00% 0.000635 0.004456 0.009532 

Neighborhood
Property Tax Rate
School Performance 

–39.160605 –27.272754 –12.800479 
–0.000158 0.127392 0.268896 

100.00% –39.160605 –27.272754 –12.800479 
77.20% 0.038744 0.165011 0.268896 

Median Income 0.000001 0.000002 0.000003 100.00% 0.000001 0.000002 0.000003 
Density

Location 
–0.011752 0.001089 0.008971 77.42% –0.011752 0.001406 0.008971 

ln Dist. from Seattle –0.288447 –0.223224 –0.174856 100.00% –0.288447 –0.223224 –0.174856 
ln Commute Time –0.312043 –0.227582 –0.136515 100.00% –0.312043 –0.227582 –0.136515 
ln Dist. from Arterial 0.006779 0.011139 0.014933 100.00% 0.006779 0.011139 0.014933 
Outside UGB –0.135076 –0.036204 0.052647 90.35% –0.135076 –0.040068 0.052720 
ln Dist. from UGB 0.003221 0.013015 0.028091 99.34% 0.003328 0.013101 0.028091 

Environmental Hazards 
ln Dist. from Air Site –0.004589 0.014496 0.026780 81.23% 0.006362 0.017845 0.026780 
ln Dist. from HWG 0.009052 0.014035 0.020078 100.00% 0.009052 0.014035 0.020078 
ln Dist. from HWH –0.005820 0.000109 0.006209 3.24% –0.005820 0.003375 0.006209 
ln Dist. from SF Site 0.034381 0.059612 0.089011 100.00% 0.034381 0.059612 0.089011 
ln Dist. from TR Site –0.004886 0.018378 0.033199 97.42% 0.005133 0.018865 0.033199 

Time 0.009234 0.009812 0.010654 100.00% 0.009234 0.009812 0.010654 
n 
Adjusted R2 

29,165 
0.84 
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Table 4. Dollar Value of Estimated Marginal Implicit Prices and Total Implicit Expenditures
Marginal Implicit Price Total Implicit Expenditure
Min. Mean Max. Min. Mean > 0 Max. 

Lot Size $0.04 $0.65 $22.91 $110.51 $7,958.04 $1,167,351.03 
Structure 

Size $8.06 $63.05 $1,489.89 $6,366.64 $163,434.18 $9,833,272.02 
Age –$33,734.46 –$1,764.86 –$208.23 –$2,429,707.59 –$53,866.39 $0.00 
Age2 $2.03 $16.77 $331.18 $0.00 $29,899.62 $1,859,362.41 
Fireplaces $592.60 $6,338.13 $141,157.45 $0.00 $8,850.23 $564,629.79 

Grade 
Average $4,596.97 $35,231.69 $867,884.79 $0.00 $28,621.66 $294,232.40 
Good $10,929.11 $79,685.22 $1,890,385.88 $0.00 $81,975.76 $598,143.01 
Better $17,477.96 $138,429.84 $3,406,823.41 $0.00 $194,820.17 $1,555,179.01 
Very Good $24,287.88 $193,282.45 $4,705,455.62 $0.00 $379,615.97 $4,365,325.89 
Excellent $30,520.40 $238,482.24 $5,823,424.58 $0.00 $648,669.13 $4,656,149.14 
Luxury $41,460.37 $319,769.73 $7,390,587.65 $0.00 $1,496,421.89 $7,390,587.65 
Mansion $35,273.92 $325,224.11 $6,203,956.68 $0.00 $2,238,232.33 $4,333,464.73

Condition 
Average $0.00 $35,926.08 $1,007,785.97 $0.00 $40,484.08 $1,007,785.97 
Good $4,074.49 $52,849.75 $1,421,161.23 $0.00 $54,644.66 $894,865.79 
Very Good $10,560.04 $85,565.61 $2,155,173.79 $0.00 $111,391.77 $1,985,622.74 

Amenities 
View $6,329.30 $54,579.16 $1,236,154.35 $0.00 $86,513.64 $1,236,154.35
Nuisance –$360,515.45 –$9,095.74 $0.00 –$173,279.98 –$12,953.77 $0.00 
Waterfront Feet $53.84 $1,824.83 $78,226.32 $0.00 $4,526.06 $6,150,732.61 

Neighborhood
Property Tax Rate # –$27,342.35 –$10,169,238.63 –$94.06 # –$2,798,729.48 –$115,428.80 –$9,785.70 

Notes: All values are in 2004 dollars; # indicates that the implicit prices associated with the property tax rate have been

School Performance 
Median Income 
Density

Location 

$0.00 
$0.09 

–$31,726.94 

$44,843.90 
$0.96 

$191.64 

$671,919.52 
$27.27 

$39,791.71 

$0.00 
$4,018.82 

–$81,761.88 

$27,168.60 $480,422.46 
$64,958.39 $2,713,064.36 
$3,394.19 $369,332.91 

ln Dist. from Seattle –$183.02 
ln Commute Time –$130,406.06 
ln Dist. from Arterial $0.10 
Outside UGB –$761,152.58 
ln Dist. from UGB $0.00 

Environmental Hazards 

–$2.33 
–$3,734.74 

$13.53 
–$16,516.37 

$1.27 

–$0.06 
–$220.47 

$18,038.15 
$44,553.55 

$169.59 

–$1,885,631.66 –$86,966.52 –$9,744.60 
–$2,457,286.63 –$90,638.79 –$7,275.40 

$345.89 $4,422.91 $112,342.09 
–$51,409.80 –$565.29 $44,553.55 

$0.00 $5,080.34 $177,721.52 

ln Dist. from Air Site 
ln Dist. from HWG 
ln Dist. from HWH 
ln Dist. from SF Site 
ln Dist. from TR Site 

Time 

$0.00 
$0.05 

–$32.71 
$0.02 
$0.00 

$478.53 

$1.36 
$2.89 
$0.00 
$0.76 
$0.99 

$3,778.65 

$98.90 
$305.32 

$7.38 
$26.61 
$70.81 

$92,445.25 

$0.00 
$512.76 

-$30,068.30 
$1,744.82 

$0.00 
$771.11 

$5,988.21 $199,297.60 
$5,514.45 $171,305.38 

$18.99 $6,029.92 
$23,871.92 $631,891.31 
$6,909.00 $139,831.86 
$5,988.21 $1,033,146.01 

scaled by 10,000 for presentation purposes, so they express the implicit price per 100th of a percent; > 0 indicates that the 
mean total implicit prices for the dummy variables were calculated for cases greater than zero. 
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Table 5. Spatial Decomposition Test of η̂ik


Variance ( zk ) Variance ( π̂ 
ik ) Covariance ( zk , π̂ 

ik )

Lot Size 
Structure 

Size 
Age
Age2 

Fireplaces
Grade 

Average
Good 
Better 
Very Good
Excellent 
Luxury
Mansion 

Condition 
Average
Good 
Very Good

Amenities 
View 
Nuisance 
Waterfront Feet 

Neighborhood
Property Tax Rate
School Performance 
Median Income 
Density

Location 
ln Dist. from Seattle 
ln Commute Time 
ln Dist. from Arterial 
Outside UGB 
ln Dist. from UGB 

Environmental Hazards 
ln Dist. from Air Site 
ln Dist. from HWG 
ln Dist. from HWH 
ln Dist. from SF Site 
ln Dist. from TR Site 

Time 

64.95% 

21.05% 
68.18% 
71.92% 
32.58% 

74.18% 
70.40% 
69.94% 
71.73% 
73.56% 
75.31% 
77.79% 

43.84% 
67.95% 
74.36% 

67.48% 
57.87% 
62.21% 

4.96% 
6.96% 

15.95% 
29.08% 

28.08% 
5.69% 

37.71% 
57.73% 
29.42% 

43.08% 
41.61% 
29.57% 
42.53% 
42.99% 
33.60% 

35.30% 

47.74% 
49.98% 
35.99% 
47.33% 

40.74% 
28.65% 
25.28% 
23.88% 
23.83% 
23.25% 
21.76% 

61.81% 
31.11% 
24.34% 

24.91% 
40.56% 
37.43% 

105.38% 
78.58% 
71.77% 
68.47% 

90.02% 
110.49% 

62.80% 
44.14% 
74.00% 

71.90% 
69.56% 
70.44% 
88.47% 
73.47% 
63.50% 

-0.26% 

31.21% 
-18.17% 
-7.91% 
20.08% 

-14.92% 
0.95% 
4.77% 
4.39% 
2.60% 
1.44% 
0.45% 

-5.65% 
0.94% 
1.30% 

7.60% 
1.56% 
0.37% 

-10.34% 
14.46% 
12.28% 
2.45% 

-18.10% 
-16.18% 
-0.50% 
-1.87% 
-3.42% 

-14.98% 
-11.17% 
-0.01% 

-31.00% 
-16.46% 

2.89% 
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Table 6. 2SLS Estimates of Demand Models 
Dist. from Air Release Site Dist. from HWG Dist. from HWH Dist. from SF Site Dist. from TR Site 

Estimated Parameter t-value Estimated Parameter t-value Estimated Parameter t-value Estimated Parameter t-value Estimated Parameter t-value 
Constant 6.546625 ★★★ 127.46 6.165469 ★★★ 101.90 5.671262 ★★★ 63.03 8.031094 ★★★ 118.92 6.621985 ★★★ 72.15 
Marginal Implicit Prices

Air Site –0.164441 ★★★ –16.48 –0.020244 ★★★ –3.79 –0.025249 ★★★ –4.59 0.046529 ★★★ 28.15 0.075732 ★★★ 9.27 
HWG 0.004572 ★★★ 4.80 –0.038237 ★★★ –4.24 –0.046804 ★★★ –36.48 0.006215 ★★★ 10.30 0.003726 ★★★ 4.29 
HWH –0.022541 ★★★ –4.32 –0.035463 ★★★ –5.79 –0.992157 ★★★ –3.82 –0.009998 ★★ –2.04 –0.019303 ★★★ –2.99 
SF Site 0.211717 ★★★ 40.87 0.125404 ★★★ 14.09 –0.006007 n/s –0.27 –0.353697 ★★★ –17.45 0.106881 ★★★ 9.76 
TR Site –0.004029 n/s –0.71 –0.043674 ★★★ –12.84 –0.004642 n/s –0.80 –0.022835 ★★★ –8.58 –0.412047 ★★★ –14.23 

Median Household Income 0.000005 ★★★ 13.03 0.000011 ★★★ 24.85 0.000008 ★★★ 9.41 –0.000003 ★★★ –5.00 0.000005 ★★★ 11.91 
Socioeconomic Factors 

% College Educated
% White 

1.169164 ★★★ 

–0.029060 n/s 
13.76 
–0.61 

1.527376 ★★★ 

–0.124101 ★★ 

14.55 
–2.35 

0.965145 ★★★ 

0.122600 n/s 
4.15 
1.58 

3.857349 ★★★ 

1.665327 ★★★ 

40.43 
32.29 

1.025962 ★★★ 

0.757730 ★★★ 

7.46 
11.62 

% Foreign-born
% w/ Children

Locational Factors 

–1.498993 ★★★ 

1.271343 ★★★ 

–22.40 
23.10 

–0.219526 ★★★ 

0.955573 ★★★ 

–2.77 
14.54 

–0.116955 n/s 

0.511643 ★★★ 

–0.53 
5.35 

1.666160 ★★★ 

0.710988 ★★★ 

19.48 
10.78 

1.100613 ★★★ 

0.401983 ★★★ 

9.39 
5.06 

Dist. from Seattle 0.000005 ★★★ 23.43 0.000003 ★★★ 15.63 0.000002 ★★★ 3.12 0.000002 ★★★ 8.33 0.000005 ★★★ 14.21 
Commute Time 0.000033 ★★★ 13.88 0.000111 ★★★ 40.05 0.000150 ★★★ 36.36 0.000086 ★★★ 44.19 0.000000 n/s 0.11 
Dist. from Arterial 0.052349 ★★★ 55.04 0.020847 ★★★ 18.64 0.028346 ★★★ 6.03 0.011255 ★★★ 13.39 0.043535 ★★★ 21.09 
Density 

n 
Adjusted R2 

–0.001404 n/s –0.57 
29,165 

0.71 

–0.036056 ★★★ –8.91 
29,165 

0.61 

–0.014292 n/s –2.39 
29,165 

0.04 

–0.045560 ★★★ –25.67 
29,165 

0.66 

–0.039097 ★★★ –7.02 
29,165 

0.54 
Notes: All hypothesis tests are two-tailed; ★★★ denotes at p < 0.01; ★★ denotes significant at p < 0.05; ★ denotes significant at p < 0.10; n/s denotes not significant. 
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Figure 3. Single-family Home Sales and Environmental Hazards Figure 4. Natural Log of Sales Price of Single-family Homes, 2004 
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Figure 5. Estimated Influence of ( γ̂k ) Density in the First Stage Figure 6. Dollar Value of Estimated Marginal Implicit Price ( π̂ ik ) of
Hedonic Price Function Distance from Air Release Site 
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Figure 7. Dollar Value of Estimated Marginal Implicit Price ( π̂ ik ) of Figure 8. Dollar Value of Estimated Marginal Implicit Price ( π̂ ik ) of
Distance from HWG Site Distance from HWH Site 
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Figure 9. Dollar Value of Estimated Marginal Implicit Price ( π̂ ik ) of Figure 10. Dollar Value of Estimated Marginal Implicit Price ( π̂ ik )
Distance from Superfund Site of Distance from Toxic Release Site 
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