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Abstract 

 

Two residues that are conserved in type-I methionyl aminopeptidases (MetAPs) but are absent in all type-II 
MetAPs are the cysteine residues (Escherichia coli MetAP-I:  C59 and C70) that reside at the back of the 
substrate recognition pocket. These Cys residues are 4.4 Å apart and do not form a disulfide bond. Since bacteria 
and fungi contain only type-I MetAPs while all human cells contain both type-I and type-II MetAPs, type-I 
MetAPs represent a novel antibiotic/antifungal target if type-I MetAPs can be specifically targeted over type-II. 
Based on reaction of the thiol-specific binding reagent 5,5‘-dithio-bis(2-nitrobenzoic acid) (DTNB) with the type-I 
MetAP from E. coli and the type-II MetAP from Pyrococcus furiosus, the type-I MetAP can be selectively 
inhibited. Verification that DTNB covalently binds to C59 in EcMetAP-I was obtained by mass spectrometry (MS) 
from reaction of DTNB with the C59A and C70A mutant EcMetAP-I enzymes. In addition, two inhibitors 
of EcMetAP-I, 5-iodopentaphosphonic acid (1) and 6-phosphonohexanoic acid (2), were designed and 
synthesized. The first was designed as a selective-C59 binding reagent while the second was designed as a 
simple competitive inhibitor of EcMetAP. Indeed, inhibitor 1 forms a covalent interaction with C59 based on 
activity assays and MS measurements, while 2 does not. These data indicate that type-I MetAPs can be 
selectively targeted over type-II MetAPs, suggesting that type-I MetAPs represent a new enzymatic target for 
antibacterial or antifungal agents. 

 

Bacterial infections are a significant and growing medical problem in the United States and throughout the 
world, in part because an increasing number of disease-causing microbes have become resistant to antibiotics 
(1−4). Tuberculosis, staph, malaria, and childhood meningitis are just a few of the diseases that have become 
hard to treat with available antibiotics (3, 5). An important aspect of this problem is the development of 
antibiotic resistant bacteria and microorganisms that cause infections (3, 4). Even a single random gene 
mutation can have a large impact on an antibiotic's ability to kill a microorganism. Since most microbes replicate 
very rapidly, they can evolve rapidly; thus, a mutation that helps a microbe survive in the presence of an 
antibiotic will quickly become predominant throughout the microbial population. Microbes also commonly 
acquire genes, including those encoding for resistance, by direct transfer from members of their own species or 
from unrelated microbes. Since many of the broad-spectrum antibiotics contain β-lactam functional units that 
target enzymes involved in bacterial cell wall synthesis or pathways involved in cell replication, any new β-
lactam antibiotic will likely be a structural variant of an existing compound, shortening its useful lifetime as an 
antibiotic (3, 5). To overcome this problem, new enzymatic targets must be located and small molecule 
inhibitors designed and synthesized to target these enzymes. 

Methionyl aminopeptidases (MetAPs)1 represent just such an enzymatic target since the biosynthesis of all 
prokaryotic and eukaryotic proteins present in the cytosol starts with the initiator amino acid methionine. The 



cleavage of this N-terminal methionine residue by MetAPs plays a central role in protein synthesis and 
maturation (6, 7). The physiological importance of MetAP activity is underscored by the cellular lethality upon 
deletion of the MetAP gene in Escherichia coli, Salmonella typhimurium, and Saccharomyces cerevisiae (8−11). 
MetAPs are organized into two classes (types I and II) based on the absence or presence of an extra 62 amino 
acid sequence (of unknown function) inserted near the catalytic domain of type-II enzymes. The type-I MetAPs 
from E. coli (EcMetAP-I), Staphylococcus aureus (SaMetAP-I), and Thermotoga maritime (TmMetAP-I) and the 
type-II MetAPs from Homo sapiens (HsMetAP-II) and Pyrococcus furiosus (PfMetAP-II) have been 
crystallographically characterized (12−17). All five display a novel “pita-bread” fold with an internal pseudo 2-
fold symmetry that structurally relates the first and second halves of the polypeptide chain to each other. Each 
half contains an antiparallel β-pleated sheet flanked by two helical segments and a C-terminal loop. Both 
domains contribute conserved residues to the metallo-active site. In all five structures, a bis(μ-carboxylato)(μ-
aquo/hydroxo)dicobalt core is observed with an additional carboxylate residue at each metal site and a single 
histidine bound to Co1. Each of the crystallographically characterized MetAPs has a closed pocket lined by 
hydrophobic residues adjacent to the metallo-active site. For EcMetAP-I this pocket is composed of C59, C70, 
Y62, Y65, F177, and W221 (Figure 1); however, the residues present in this pocket for PfMetAP-II are F50, N53, 
L160, I205, P234, and Y265. This pocket has been proposed to act as the binding site of the N-terminal 
methionine side chain required for substrate recognition and catalysis based on X-ray crystallography such as 
the structure of EcMetAP-I bound by l-methionine phosphonate (Figure 1) (13, 14, 16). 

 
Figure 1 EcMetAP-I complex with methionine phosphonate bound. The sulfur atom of the methionine residue 
resides 4.3 Å from C59 and 13.1 Å from C70. Prepared from PDB file 1C23. 
 

Bacteria express only type-I MetAPs while archaea contain only the type-II enzyme (18). Eukaryotic cells, in 
contrast, have both type-I and type-II enzymes. Because type-I and type-II enzymes exhibit similar functions, 
there is redundancy in eukaryotic cells. For example, it has been shown that S. cerevisiae is viable if the gene 
encoding for the type-I MetAP is deleted but the type-II gene is present (18). Although type-I and type-II MetAPs 
are nearly structurally identical, one key difference has been identified that can be exploited to differentiate 
type-I from type-II enzymes (7), i.e. the two active site cysteine residues (e.g. C59 or C70 in E. coli) that exist only 
in type-I MetAPs (Figure 2) (13, 14, 16). Since bacteria contain only type-I MetAPs, compounds with selective 
inhibition for type-I MetAPs, by targeting the cysteine residues C59 and C70 (E. coli numbering), represent novel 
antibiotics. Herein, we provide “proof-of-concept” that Cys59 provides a molecular target to differentiate the 
type-I EcMetAP enzyme from type-II MetAP enzymes and, therefore, small molecules that target Cys59 
represent a new class of antibiotic. 



 
Figure 2 Amino acid sequence alignment for selected MetAPs. C59 is conserved in Gram negative bacteria while 
C70 is conserved in both Gram positive and Gram negative bacteria. C59 is absent in type-I and type-II 
eukaryotic MetAPs. A 62 amino acid insert is present in type-II enzymes; thus the dashed lines do not indicate 
the number of amino acids missing between the conserved Cys residue. 
 

Materials and Methods 
Purification of Recombinant EcMetAP-I and PfMetAP-II.  
EcMetAP-I was purified as previously described (19, 20) and exhibited a single band on SDS−PAGE and a single 
symmetrical peak in matrix-assisted laser desorption ionization time-of-flight (MALDI-TOF) MS analysis 
indicating Mr = 29 630 ± 10. Protein concentrations were estimated from the absorbance at 280 nm using an 
extinction coefficient of 16 450 M-1 cm-1. PfMetAP-II was purified as previously reported (21). Protein 
concentrations were estimated from the absorbance at 280 nm using an extinction coefficient of 21 650 M-1 cm-

1. The metal free enzyme (apo-PfMetAP-II) was prepared by concentrating the as-purified enzymes to a volume 
of ∼5 mL after which EDTA was added to a final concentration of 10 mM. The resulting protein solution was 
dialyzed against 25 mM HEPES (2 L, pH 7.5) containing 10 mM EDTA and 150 mM KCl at 4 °C for 2 days with two 
buffer changes per day. This protein solution was then dialyzed against chelexed (Chelex-100 column) 25 mM 
HEPES buffer (2 L, pH 7.5) containing 150 mM KCl for 3 days against two buffer changes per day. The as-purified 
apo-EcMetAP-I enzyme was exchanged into 25 mM HEPES, pH 7.5, containing 150 mM KCl (Centricon-10, 
Millipore Corp). The apo-PfMetAP-II and apo-EcMetAP-I enzymes were inactive and found to contain no 
detectable metal ions via inductively coupled plasma atomic emission spectrometry (ICP-AES). 

Preparation of the C59A and C70A Altered EcMetAP-I Enzymes.  
The C59A and C70A altered EcMetAP-I enzymes were generated using the Quick-Exchange mutagenesis kit 
(Stratagene, San Diego, CA). Briefly, the codons encoding the C59A and C70A mutations were placed in the wild-
type (WT) expression system for EcMetAP-I containing the R175Q mutation (mutation eliminating a secondary 
thrombin cleavage site) using the following mutagenic primers:  5‘-G GTT TCT GCT GCC CTC GGC TAT CAC G-3‘ 
(C59A) and 5‘-CCGAAA TCC GTT GCC ATC TCT ATT AAT GAA GTG G-3‘ (C70A) with corresponding lower strand 
primers. Mutagenesis reactions and transformations were performed as prescribed in the manufacture's 
protocols with negligible modifications. Presence of the mutation was verified by DNA sequencing. Recombinant 
WT, C59A, and C70A EcMetAP-I were expressed in BL21 E. coli cells and purified as previously described (19, 20). 
Purified C70A and C59A EcMetAP-I exhibited a single band on SDS−PAGE and a single symmetrical peak in 
MALDI-TOF MS analysis indicating Mr = 29 600 ± 15. Protein concentrations were estimated from the 
absorbance at 280 nm using an extinction coefficient of 16 450 M-1 cm-1. Apo-EcMetAP-I C59A and C70A samples 
were exchanged into 25 mM HEPES, pH 7.5, containing 150 mM KCl (Centricon-10, Millipore Corp). 



Metal Content Measurements.  
Metal analyses were performed on WT, C59A, and C70A EcMetAP-I samples that were typically 30 μM using ICP-
AES. Apo-EcMetAP-I samples were incubated under anaerobic conditions with CoCl2·6H2O (CoCl2·6H2O:  
≥99.999% Strem Chemicals, Newburyport, MA, or Aldrich) for 30 min prior to exhaustive dialysis under 
anaerobic conditions against Chelex-treated buffer as previously reported (19, 20). 

Synthetic Procedures.  
All chemicals used in this study were purchased commercially and were of the highest quality available. The 
synthesis of 5-iodopentaphosphonic acid (1) as the disodium salt started with the diethyl ester of 5-
bromopentaphosphonic acid. In this reaction, 5-bromopentaphosphonic acid diethyl ester (3.28 g, 12 mmol) was 
refluxed with hydroiodic acid (55−58%, 20 mL) for 24 h (22). The cooled postreaction mixture was diluted with 
water (100 mL) and extracted with dichloromethane (3 × 50 mL). The water was removed under vacuum, and 
the resulting residue was diluted with water (50 mL) and evaporated again. This procedure was repeated 3 
times. The resulting dark red residue was dissolved in acetone (50 mL) and titrated with concentrated aqueous 
sodium hydroxide. A white precipitate formed and was filtered off, washed with acetone and diethyl ether, and 
dried in vacuo to give the disodium salt of 5-iodopentaphosphonate (3.70 g, 100%). 1H NMR (D2O):  3.15−3.20 
(m, 2H), 1.80−1.94 (m, 2H), 1.50−1.70 (m, 4H). 31P NMR (D2O):  26.7. The synthesis of 6-phosphonohexanoic acid 
(2) was carried out according to the published procedure (23). 

Enzymatic Assay of EcMetAP-I and PfMetAP-II.  
WT and the altered forms of EcMetAP-I were assayed for catalytic activity with the tetrapeptide MGMM as the 
substrate (8 mM) using an HPLC method as previously described (20). This method is based on the 
spectrophotometric quantification of the reaction product GMM following separation on a C8 HPLC column 
(Phenomenex, Luna; 5 m, 4.6 × 25 cm). The kinetic parameter v (velocity) was determined at pH 7.5 by 
quantifying the tripeptide GMM at 215 nm in triplicate. Enzyme activities are expressed as units/mg, where one 
unit is defined as the amount of enzyme that releases 1 μmol of product at 30 °C in 1 min. The inhibition 
constant (Ki) for 2 was obtained by measuring the activity of a 1 μM Co(II)-loaded EcMetAP-I solution with 1−15 
mM MGMM in the presence of 0−15 mM 2. These data were fit to a nonlinear competitive inhibition model 
using Sigma Plot Software. 

A continuous assay was used to monitor the activity of Co(II)-loaded EcMetAP-I upon incubation with DTNB. In 
this assay, the hydrolysis of MP-p-NA was monitored spectrophotometrically at 405 nm based on the increase in 
absorbance of p-NA (Δε405 value of p-nitroaniline of 10 600 M-1 cm-1) using a coupled assay (24). The reaction 
mixture consisted of a 10 μL aliquot of a 5 μM enzyme solution preincubated with 200 μM DTNB, 2 μL of a 2.0 
μM prolidase in 20 mM Tris containing 30% glycerol and 0.5 mM substrate in buffer (25 mM HEPES in Chelex-
treated water at pH 7.5, 150 mM KCl) with a final volume of 150 μL. Catalytic activities were determined with an 
error of ±10%. In order to eliminate a possibility of inhibition of prolidase by DTNB, a control experiment was set 
up in which 5 μM prolidase was incubated with 200 μM DTNB. Samples were taken between 5 min and 5 h from 
the time of DTNB addition and were checked for activity with 500 μM MP-p-NA. 

MS Experiments.  
EcMetAP-I samples before and after reaction with DTNB or 1 were analyzed by MALDI-TOF MS equipped with 
delayed ion extraction (25, 26). For the MALDI-TOF MS experiments, an ion source bias voltage of 24 kV and an 
extraction delay time of 1050 ns were employed. Ion extraction pulse voltages were selected to optimize mass 
resolution (via time lag focusing) for the largest m/z ion of interest in each sample. The ion signals generated 
from 100 individual laser shots (337 nm) were signal averaged to generate the resulting MALDI-TOF MS. MALDI-
TOF MS were externally mass calibrated by the use of the flight times and known masses of the singly and 



doubly protonated ions produced by MALDI-TOF MS from a sample of EcMetAP-I. Co(II)-loaded EcMetAP-I after 
reaction with DTNB or 1 in HEPES buffer, pH 7.5, and 150 mM KCl were run down a C4 ZipTip (Millipore Corp., 
Bedford, MA) prior to MALDI-TOF analysis to remove excess buffer and salts. The ZipTip was first treated with 30 
mL of a 75% acetonitrile/25% distilled, deionized (DDI) water solution followed by 40 mL of a 0.1% trifluroacetic 
acid (TFA) in DDI water solution. 

 
Figure 3 Activity as a function of time for EcMetAP-I (black circles) and PfMetAP-II (red circles) after reaction 
with 200 μM DTNB. DTNB absorbance after reaction with EcMetAP-I (black diamonds) and PfMetAP-II (red 
diamonds). Reaction conditions:  1 μM Co(II)-loaded MetAP in 50 mM HEPES buffer, pH 7.5, 150 mM KCl under 
anaerobic conditions. 
 

MS fingerprints of trypsin digested WT, C59A, and C70A EcMetAP-I samples before and after reaction with 1 or 
DTNB were obtained on a Waters Micromass MALDI-TOF MS (TofSpec 2E). Reflectron mode was used with a 
20.00 kV operating voltage, 5000 V source voltage, 2400 V pulse voltage, and 2 GHz sampling rate. The samples 
for MS analysis were prepared in water by dialyzing them in a Slide-A-Lyzer mini dialysis unit. Catalytic amounts 
of trypsin were then added in situ before MS data were obtained. The buffer used for the trypsin in situ digest 
was NH4HCO3 (pH = 8). The samples were then diluted 10-fold with acetonitrile:H2O (50:50). Masses for 
predicted peptides after trypsin digestion were determined using Peptide Mass software available at ExPASy 
Proteomics tools (http://us.expasy.org/tools/peptide-mass.html). Masses for up to three uncleaved sites 
were determined and compared to the experimentally observed masses. 

Spectroscopic Measurements.  
All spectrophotometric measurements were performed on a Shimadzu UV-3101PC spectrophotometer equipped 
with a constant-temperature holder and a Haake (Type 423) constant-temperature circulating bath. The use of 
200 mL, 1 cm path-length microcuvettes (QS, Hellma) stoppered with rubber septa facilitated the recording of 
the optical spectra under anaerobic conditions. 



 
Figure 4 MALDI-TOF MS of trypsin digested samples of (A) Co(II)-loaded WT EcMetAP-I and (B) Co(II)-loaded 
WT EcMetAP-I + DTNB. 
 

Results 
Inactivation of MetAP's by DTNB. In order to determine if the covalent attachment of a reagent to C59 or C70 
inactivates EcMetAP-I, the cysteine-specific chemical modification reagent, DTNB, was examined. A 200 μM 
solution of DTNB was prepared in 50 mM HEPES buffer, pH 7.5, 150 mM KCl and added to a 5 μM Co(II)-
loaded EcMetAP-I solution under anaerobic conditions. Upon the addition of DTNB to EcMetAP-I, the coupled 
prolidase hydrolysis of MP-p-NA by EcMetAP-I quickly decreased, and EcMetAP-I was completely inactive after 
only ∼50 min (Figure 3). Identical experiments, performed on PfMetAP-II, which does not contain any cysteine 
residues, revealed no inactivation due to DTNB even after several hours (Figure 3). Similarly, no loss in catalytic 
activity was observed for HsMetAP-II in the presence of 1 mM DTNB. 

Reaction of DTNB with Cys residues on EcMetAP-I was also monitored at 410 nm. A 5 μM Co(II)-
loaded EcMetAP-I sample was reacted with 200 μM DTNB (50 mM HEPES, pH 7.5, 150 mM KCl), and the change 
in absorbance at 410 nm was monitored as a function of time. After reaction for 200 min, no additional 
absorbance was observed, indicating that all exposed Cys residues had reacted within this time period. Using the 
known molar absorptivity for DTNB (13 600 M-1 cm-1) the number of solvent exposed Cys residues was calculated 
using the maximum absorption (0.13) observed at 410 nm (27). The number of modified Cys residues 
in EcMetAP-I is 1.2. Since seven total Cys residues exist in EcMetAP-I, another surface accessible Cys residue may 
react with DTNB, so the inactivity due to reaction with DTNB and Cys residues besides C59 or C70 cannot be 
ruled out. In order to clarify the roles of C59 and C70 in DTNB inactivation, MALDI-TOF MS data were obtained 
on trypsin digests of WT EcMetAP-I in the absence and presence of 200 μM DTNB (Figure 4; Table 1). The only 
new mass peak observed in the EcMetAP-I-DTNB complex occurred at 2900 m/z, consistent with the peptide 
fragment containing 23 amino acids (44 to 67) including C45 and C59, indicating that one of these two Cys 
residues reacted with DTNB. 



Table 1:  Predicted and Observed m/z for Trypsin Digested EcMetAP-I in the Absence and Presence of DTNB 
        obsd m/z  
predicted m/z for EcMetAP-I position #MCa peptide sequenceb EcMetAP-I EcMetAP-I + DTNBc 
3060.63 139−166 2 MVKPGINLREIGAAIQKFVEAEGFSVVR 3055.95 3051.67 
2963.34 252−227 2 DRSLSAQYEHTIVVTDNGCEILTLRK 2951.72 2951.66 
2893.03 44−67 0 ICNDYIVNEQHAVSACLGYHGYPK + DTNB   2903.72 (C45 or C59) 
2696.03 44−67 0 ICNDYIVNEQHAVSACLGYHGYPK 2693.49 2694.13 
2659.85 167−189 0 EYCGHGIGQGFHEEPQVLHYDSR 2659.12 2659.28 
2618.02 20−43 0 LAAEVLEMIEPYVKPGVSTGELDR 2617.64 2617.48 
2563.95 229−251 0 SLSAQYEHTIVVTDNGCEILTLR 2563.78   
2424.80 130−124 1 DGFHGDTSKMFIVGKPTIMGER 2455.10 2466.19 
2377.82 190−211 0 ETNVVLKPGMTFTIEPMVNAGK 2377.47 2377.3 
2197.29 68−86 0 SVCISINEVVCHGIPDDAK + DTNB     
2000.29 68−86 0 SVCISINEVVCHGIPDDAK 199819 1997.03 
        1919.30 1919.30 
1479.84 112−124 0 MFIVGKPTIMGER 1479.05 1479.80 

a The MC number indicates the number of uncleaved trypsin cleavage sites within the peptide of the given mass.b Predicted peptides after trypsin 
digestion were determined using the Peptide Mass software available at ExPASy Proteomics tools (http://us.expasy.org/tools/peptide-mass.html).c The 
boldface peptides indicate those with Cys residues which are provided in parentheses. 
 



EcMetAP-I Specific Inhibitors.  
Since EcMetAP-I is inactivated by the cysteine-specific chemical modification reagent DTNB, two small molecules 
5-iodopentaphosphonic acid (1) and 6-phosphonohexanoic acid (2) were designed and synthesized (Figure 5). 
Reaction of WT EcMetAP-I with a 1 mM sample of 1 for ∼12 h resulted in the complete and irreversible loss of 
catalytic activity (Figure 5). As expected, 2 did not significantly alter the catalytic activity of EcMetAP-I but 
functions as a simple, weak competitive inhibitor (Ki = 4.9 mM). Significantly, no inhibition was observed 
for PfMetAP-II upon the addition of either 1 or 2. MALDI-TOF MS spectrometric analysis performed on EcMetAP-
I in the absence of 1 provided a molecular mass of 29 630 ± 10, whereas, upon reaction of EcMetAP-I with 1, a 
small shift in the mass peak was observed, suggesting the addition of ∼149 mass units. These data match well 
with the calculated mass of 1 after reaction with EcMetAP-I. Therefore, 1 is covalently bound to EcMetAP-I. 
Additional MS data were obtained on trypsin digests of EcMetAP-I in the absence and presence of 1. These data 
revealed that 1 binds only to the C45/C59 containing peptide (Table 2; mass 2904). 

 
Figure 5 Reaction of 1 with WT EcMetAP-I (black squares 30 mM, black diamonds 10 mM), WT PfMetAP-II (green 
triangles, 10 mM), C59A EcMetAP-I (red squares, 10 mM), and C70A EcMetAP-I (black circles, 10 mM). Reaction 
of a 30 mM solution of 2 with WT EcMetAP-I (blue diamonds). Reaction conditions:  1 μM Co(II)-loaded MetAP in 
50 mM HEPES buffer, pH 7.5, 150 mM KCl under anaerobic conditions. 
 



Table 2:  Predicted and Observed m/z for Trypsin Digested EcMetAP-I and the C59A and C70A Altered EcMetAP-I Enzymes in the Presence and 
Absence of 1 

        obsd m/z   
predicted m/z for EcMetAP-I position #MCa peptide sequenceb MetAP + 1c C59A MetAP + 1c C70A MetAP + 1c 
3060.63 139−166 2 MVKPGINLREIGAAIQKFVEAEGFSVVR 3051.40 3051.36 3047.25 
2963.34 252−227 2 DRSLSAQYEHTIVVTDNGCEILTLRK 2963.25 2963.15 2951.41 
2904.03 44−67 0 ICNDYIVNEQHAVSACLGYHGYPK + Co + 1 2903.49 (C59)   2903.51 (C59) 
2696.03 44−67 0 ICNDYIVNEQHAVSACLGYHGYPK 2696.25 2660.46 (C59A) 2700.35 
2659.85 167−189 0 EYCGHGIGQGFHEEPQVLHYDSR 2658.18 2659.42 2659.23 
2618.02 20−43 0 LAAEVLEMIEPYVKPGVSTGELDR 2617.34 2616.60 2617.34 
2505.99 190−212 1 ETNVVLKPGMTFTIEPMVNAGKK 2509.34 2509.45 2505.28 
2424.80 130−124 1 DGFHGDTSKMFIVGKPTIMGER 2465.15 2466.20 2460.25 
2377.82 190−211 0 ETNVVLKPGMTFTIEPMVNAGK 2377.23 2377.16 2377.16 
2346.56 90−111 1 DGDIVNIDVTVIKDGFHGDTSK 2346.17   2356.16 
2149.29 68−86 0 SVCISINEVVCHGIPDDAK + 1       
2000.29 68−86 0 SVCISINEVVCHGIPDDAK 1997.99 1999.19 1968.31 (C70A) 
        1919.06 1919.31 1920.04 
1479.84 112−124 0 MFIVGKPTIMGER 1478.85 1479.04 1478.84 

a The MC number indicates the number of uncleaved trypsin cleavage sites within the peptide of the given mass.b Predicted peptides after trypsin 
digestion were determined using the Peptide Mass software available at ExPASy Proteomics tools (http://us.expasy.org/tools/peptide-mass.html).c The 
boldface peptides indicate those with Cys residues which are provided in parentheses. 



C59A and C70A Altered EcMetAP-I Enzymes.  
In order to determine if C59 is the target for 1, we prepared and purified both the C59A and C70A EcMetAP-I 
altered enzymes. Both the C59A and C70A EcMetAP-I altered enzymes bind one equivalent of Co(II) tightly, 
based on ICP-AES analysis. Their kinetic parameters are listed in Table 3. Reaction of a 10 mM solution of 1 with 
C70A EcMetAP-I results in the complete loss of catalytic activity after ∼12 h; however, 1 does not decrease the 
catalytic activity observed for C59A EcMetAP-I even after more than 8 h (Figure 5). These data suggest 
that 1 covalently modifies C59. Additional proof comes from MS data obtained on trypsin digests of C59A and 
C70A EcMetAP-I that were reacted with 1 mM 1 for 12 h. These data indicated that 1 does not covalently bind to 
the C59A EcMetAP-I altered enzyme but does covalently modify the C70A EcMetAP-I enzyme (mass 2903). Taken 
together, these data establish that 1 covalently binds C59, which is located in the EcMetAP-I substrate-binding 
pocket. 

Table 3:  Kinetic Constants for Co(II)-Loaded Wild-Type C59A and C70A EcMetAP-I toward MGMM at 30 °C and 
pH 7.5 

kinetic constants wild-type C59A C70A 
Km (mM) 3.2 ± 0.2 3.0 ± 0.2 6.3 ± 0.2 
kcat (s-1) 18 22 1.8 
kcat/Km (M-1 s-1) 5630 7270 290 
SA (units/mg) 37 ± 3 32 ± 0.5 3.6 ± 0.2 

 

Discussion 
Bacterial infections (such as tuberculosis, gonorrhea, malaria, and childhood meningitis, to name a few) are a 
significant and growing medical problem in the United States and throughout the world. In order to combat this 
problem, new enzymatic targets must be identified and novel inhibitors that function as antibiotics need to 
designed and synthesized. Bacteria and fungi contain only type-I MetAPs while eukaryotic cells contain both 
type-I and -II MetAPs; therefore, type-I MetAPs represent a potential antibiotic target. Although type-I and -II 
MetAPs are nearly structurally identical, two cysteine residues that are strictly conserved in type-I MetAPs but 
are absent in all type-II MetAPs (EcMetAP-I:  C59 and C70) reside at the back of the putative substrate-binding 
pocket (Figure 1) (13−16, 19−21, 28−30. These Cys residues are 4.4 Å apart and, therefore, do not form a 
disulfide bond. In order to determine if either of these Cys residues (C59 or C70) can be specifically targeted by 
small molecule inhibitors, EcMetAP-I was reacted with the cysteine-specific chemical modification reagent 
DTNB. Upon reaction with DTNB, EcMetAP-I quickly loses catalytic activity and is completely inactive after ∼50 
min. Identical experiments, performed on PfMetAP-II, which does not contain cysteine residues in the substrate 
recognition pocket, revealed no inactivation due to DTNB even after several hours. Similarly, no loss in catalytic 
activity was observed for the human type-II MetAP even in the presence of 1 mM DTNB. These data indicate 
that type-I MetAPs can be specifically inhibited by covalent modification of Cys residues and support the 
hypothesis that the conserved Cys residues in type-I MetAPs can be exploited as targets for antibacterial agents. 

Several potential pitfalls exist if chemical modification studies are overinterpreted. First, a specific reagent may 
not only modify residues in the active site of the enzyme but also react with other amino acid groups on the 
enzyme surface. Since five additional Cys residues exist in EcMetAP-I (C45, C78, C126, C169, C245), reaction of 
DTNB with other Cys residues that potentially can inhibit catalytic activity cannot be ruled out. However, the 
number of covalently modified Cys residues was calculated to be 1.2 based on the absorbance of DTNB observed 
at 410 nm (27). These data suggest that, under the reaction conditions used, DTNB reacts with only one Cys 
residue in EcMetAP-I. In order to clarify which Cys residue in EcMetAP-I was covalently modified after reaction 
with DTNB, MS data were obtained on trypsin digests of WT EcMetAP-I in the absence and presence of DTNB. 



These data indicated that DTNB binds only to the peptide fragment of the WT enzyme containing C45 and C59 
(mass 2900). Interestingly, MS data reveals that the EcMetAP-I peptide fragment containing C70 is not 
covalently bound by DTNB. In addition, the MS data indicated that, under the reaction conditions used, DTNB 
does not covalently modify any of the other Cys residues present in the polypeptide chain of EcMetAP-I. 
Combination of these data with the kinetic results suggests that C59 may be the primary target for cysteine-
specific chemical modification reagents. 

In order to unequivocally show that C59 is the target forDTNB and not C45, we prepared and purified both the 
C59A and C70A EcMetAP-I altered enzymes. Both the C59A and C70A EcMetAP-I altered enzymes bind one 
equivalent of Co(II) tightly, based on ICP-AES analysis, which is identical to WT EcMetAP-I. Interestingly, kcat does 
not change significantly for C59A EcMetAP-I but decreases 10-fold for the C70A EcMetAP-I enzyme. Moreover, 
the Km value obtained for C59A EcMetAP-I does not change; however, Km doubles for the C70A altered EcMetAP-
I enzyme. These data suggest that C70 may play a role in substrate recognition and binding. Reaction of DTNB 
with C59A EcMetAP-I under strict anaerobic conditions results in the loss of catalytic activity. Interestingly, the 
observed inactivation of C70A EcMetAP-I is identical to wild-type enzyme. Based on MS data, the expected mass 
shift was observed for DTNB binding to C59 but not C70. These data confirm the covalent modification of C59 
and not C70 or C45. 

Since EcMetAP-I is inactivated by DTNB binding to C59, we designed small a molecule inhibitor that potentially 
targets C59 based on previously reported kinetic, spectroscopic, and X-ray crystallographic data. First, 
phosphonic acid derivatives of l-methionine have been shown to be weak competitive inhibitors of EcMetAP-I; 
therefore, the molecules listed in Figure 5 will bind to the active site metal ion in EcMetAP-I (13, 14, 16, 28). 
Second, based on the X-ray crystallographic data of Lowther et al. (13, 14, 16, 28) on various inhibited forms 
of EcMetAP-I, side-chain lengths of 4 and 5 appear to fit most efficiently in the substrate-binding pocket 
(13, 14, 16, 28). Third, both C59 and C70 must be reduced for EcMetAP-I to be fully active, suggesting that these 
Cys residues must be reasonable nucleophiles (31). The test compound, 5-iodopentaphosphonic acid (1), was 
designed not only to bind the divalent metal ion in the active site of MetAPs but also to covalently modify C59 or 
C70 via an electrophilic carbon center on 1, that is presumably positioned adjacent to C59 or C70 allowing 
nucleophilic attack to occur. As a control, we synthesized a derivative of 1 in which the iodide was replaced with 
a carboxylate residue (6-phosphonohexanoic acid; 2). This molecule was designed to bind to the active site 
divalent metal ion but not to covalently modify either C59 or C70. 

Reaction of WT EcMetAP-I with 1 for ∼12 h resulted in the complete and irreversible loss of catalytic activity. As 
expected, 2 did not significantly alter the catalytic activity of EcMetAP-I but functioned as a simple, weak 
competitive inhibitor (Ki = 4.9 mM). Significantly, PfMetAP-II was not inhibited by either 1 or 2. MALDI-TOF 
analysis was also performed on EcMetAP-I in the presence and absence of 1. In the absence of 1, a molecular 
mass of 29 630 ± 10 was obtained, whereas, upon reaction of EcMetAP-I with 1, a small shift in the mass peak 
was observed, suggesting the addition of ∼149 mass units. These data match well with the calculated mass 
of 1 after reaction with EcMetAP-I. Additional MS data were obtained on trypsin digests of EcMetAP-I in the 
absence and presence of 1, which showed that 1 binds only to the peptide containing C45 and C59 (m/z 2904). 
Therefore, 1 is covalently bound to EcMetAP-I. The chloro and bromo derivatives of 1 were also prepared but 
did not covalently modify EcMetAP-I. The lack of reactivity by the chloro and bromo derivatives of 1 presumably 
occurs because the carbon center to which they are attached is not electrophilic enough to react with C59. 

In order to unequivocally show that 1 binds only to C59, 1 was reacted with C70A EcMetAP-I, resulting in the 
complete loss of catalytic activity after ∼12 h, similar to WT EcMetAP-I. However, 1 did not decreases the 
observed activity of C59A EcMetAP-I even after ∼8 h. These data are consistent with the covalent modification 
of only C59. Additional proof comes from MS data obtained on trypsin digests of C59A and C70A EcMetAP-I that 
were reacted with 1 for ∼12 h. These data revealed that 1 does not covalently modify the C59A EcMetAP-I 



altered enzyme but does covalently modify the C70A EcMetAP-I altered enzyme (mass 2903). Taken together, 
these data establish that 1 covalently binds only to C59, which is located in the EcMetAP-I substrate-binding 
pocket. 

In conclusion, the data presented herein provide “proof-of-concept” that type-I MetAPs can be selectively 
inhibited over type-II MetAPs. Since bacteria contain only type-I MetAPs while all eukaryotic cells contain both 
type-I and type-II MetAPs, compounds that selectively inhibit the Cys residue at position C59 (E. coli numbering) 
represent a novel class of antibiotics. The inhibitor described herein (1) covalently modifies the EcMetAP-I 
enzyme but does not inhibit type-II MetAPs by selectively binding to C59. It is anticipated that compounds that 
target C59 will not inhibit HsMetAP-I or HsMetAP-II since neither enzyme contains this active site Cys residue. 
Therefore, such compounds as 1 represent a new and novel class of antibiotic. 
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