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Background: No direct evidence exists for the direct coordination of nitrile to the Fe3� active site in nitrile hydratases.
Results: The first Fe3�-nitrile intermediate species is reported using stopped-flow spectroscopy.
Conclusion: These data establish that the direct ligation of the nitrile substrate occurs during catalytic turnover.
Significance: Understanding the catalytic mechanism of nitrile hydratases is critical to harness their bioremediation and
industrial potential.

Stopped-flow kinetic data were obtained for the iron-type
nitrile hydratase from Rhodococcus equi TG328-2 (ReNHase)
using methacrylonitrile as the substrate. Multiple turnover
experiments suggest a three-step kinetic model that allows for
the reversible binding of substrate, the presence of an interme-
diate, and the formation of product. Microscopic rate constants
determined from these data are in good agreement with steady
state data confirming that the stopped-flow method used was
appropriate for the reaction. Single turnover stopped-flow
experiments were used to identify catalytic intermediates.
These data were globally fit confirming a three-step kinetic
model. Independent absorption spectra acquired between 0.005
and 0.5 s of the reaction reveal a significant increase in absorb-
ance at 375, 460, and 550 nm along with the hypsochromic shift
of an Fe3�4S ligand-to-metal charge transfer band from 700 to
650 nm. The observed UV-visible absorption bands for the
Fe3�-nitrile intermediate species are similar to low spin Fe3�-
enzyme and model complexes bound by NO or N3

�

. These data
provide spectroscopic evidence for the direct coordination of
the nitrile substrate to the nitrile hydratase active site low spin
Fe3� center.

Nitrile hydratases (NHases)2 catalyze the hydration of
nitriles to their corresponding amides under ambient condi-
tions and physiological pH (Scheme 1) (1). NHases have
attracted substantial interest as biocatalysts in preparative
organic chemistry and are already used in several industrial
applications such as the large scale production of acrylamide (1)
and nicotinamide (2). For example, Mitsubishi Rayon Co. has
developed a microbial process that produces �95,000 tons of
acrylamide annually using theNHase fromRhodococcus rhodo-

chrous J1 (3). More than 3,500 tons of nicotinamide are pro-
duced per year via NHase, with yields of �99% and without
formation of troublesome byproducts such as acrylic acid (4).
NHases have also been employed as bioremediation agents to
clean up nitrile-based pesticides, such as bromoxynil (5).
Because of their exquisite reaction specificity, the nitrile-hy-
drolyzing potential of NHase enzymes is becoming increasingly
recognized as a truly new type of “green” chemistry.
NHases contain either an Fe3� ion (“iron-type”) or a Co3�

ion (“cobalt-type”) in their active sites (6). X-ray crystal struc-
tures of both Co-NHase and Fe-NHase reveal that theM3� ion
is coordinated by three cysteines, two amide nitrogens, and a
water molecule (7). Two of the active site cysteine residues are
post-translationally modified to cysteine sulfinic acid (–SO2H)
and cysteine sulfenic acid (–SOH), yielding an unusual metal
coordination geometry, termed a “claw setting.” These Cys oxi-
dation states are essential for NHase activity (8, 9).
Themolecular characterization of both iron-type and cobalt-

type NHase enzymes has provided some insight into how
molecular structure controls enzyme function. Based on these
data, and several elegant studies on active site NHase model
complexes, four possible reaction mechanisms have been pro-
posed (6, 10). In each, imidate is produced as a reaction inter-
mediate, which then isomerizes to the corresponding amide.
The most accepted catalytic mechanism for NHases involves
the binding of the nitrogen of the nitrile substrate to the active
site metal center; however, no direct evidence has been
reported supporting such a mechanism (6, 11). Herein we
report the detection of a NHase reaction intermediate, using
methacrylonitrile as the substrate that is observed using
stopped-flow spectroscopy. These data provide the first direct
spectroscopic evidence for nitrile binding to the Fe3� active site
in the nitrile hydratase from Rhodococcus equi TG328-2
(ReNHase).

EXPERIMENTAL PROCEDURES

All reagents were purchased commercially and were the
highest purity available.
Protein Expression—The ReNHase TG328-2 plasmid was

kindly provided by Professor Uwe Bornscheuer (12). The sub-
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unit and activator genes were subcloned into pET-21a(�) and
pET-28a(�), respectively. ReNHase was transformed into NEB
Turbo cells (New England Biolabs) for cloning and BL21(DE3)
cells (Stratagene) for protein expression. Cells were grown at
37 °C in LB media supplemented with kanamycin (50 �g/ml)
and ampicillin (100 �g/ml). The cultures were cooled for 1 h
upon reaching an optical density of 0.8. Cultures were
induced with 0.1 mM isopropyl �-D-1-thiogalactopyranoside
and 0.25mM ferrous sulfate and shaken for an additional 16 h
at 18 °C. Cells were pelleted by centrifugation at 5,000 rpm
for 5 min.
Purification of ReNHase—Cells containing ReNHase were

resuspended in 50 mM sodium phosphate buffer at pH 7.5 con-
taining 300mMNaCl, 40mM butyric acid, and 10mM imidazole
at a ratio of 3 ml/g of cells and lysed by ultrasonic probe (Miso-
nix Sonicator 3000) in 30-s increments for 4 min at 21 watts.
The cell lysate was separated from cell debris by centrifugation
for 40 min at 12,500 rpm and purified using immobilized metal
affinity chromatography on an ÄKTA FPLC chromatographic
system (GE Healthcare) at 4 °C. ReNHase was eluted with a
linear gradient from 0 to 100% imidazole buffer (50 mM

NaH2PO4, pH 7.5, 300 mM NaCl, 40 mM butyric acid, 500 mM

imidazole) at 1 ml/min followed by buffer exchange to remove
butyric acid and imidazole using an Amicon centrifugal filter
unit molecular weight cut-off 30,000 (Millipore). Enzyme
purity was assessed by sodium dodecyl sulfate-polyacrylamide
gel electrophoresis (SDS-PAGE). A Bradford Assay was per-
formed against bovine serum albumin (BSA) standards to
determine protein concentration.
Steady State Kinetic Assay—ReNHase activity was examined

using 100 mM methacrylonitrile as the substrate in 50 mM

HEPES buffer, pH 7.0, and 25 °C at 242 nm (�242 3.2 mM�1

cm�1) on a Shimadzu UV-2450 spectrometer. Initial reaction
rates were monitored and fit to a modified Hill equation y �
Vmax � (x/(k� x)) usingOrigin Pro. One unit of NHase activity
was defined as the formation of 1 �mol of amide product
formed per minute.
Stopped-flow Experiments—ReNHase activity toward meth-

acrylonitrile was examined in triplicate using a single mixing
Applied Photophysics SX-20 stopped-flow UV-visible spectro-
photometer. All data were fit using Pro-Data and Pro-K soft-
ware by Applied Photophysics. ReNHase activity was moni-
tored at 242 nm by acquiring stopped-flow data from 0.005 to
10 s at 5 °C using 10 �M enzyme and varying concentrations of
methacrylonitrile (0.1–25 mM). These data were fit to the dou-
ble exponential equation.

Y � A1ekobs1t � A2ekobs2t � C (Eq. 1)

Single turnover stopped-flowdatawere obtained using 0.33mM

ReNHase and 0.19 mM methacrylonitrile from 0.005 to 0.5 s.

Data were reduced by singular value decomposition and glob-
ally fit to various mechanistic models.

RESULTS AND DISCUSSION

Multiple turnover stopped-flow experiments were initially
run at 5 °C using 25 mM methacrylonitrile at pH 7.0 (Fig. 1) to
investigate pre-steady state behavior. Anoticeable lag is present
in the early portion of the reaction, indicating at least two reac-
tion steps. Independent absorption spectra were acquired at
242 nmover the time frame of 0.005–10 s. These datawere fit to
a double exponential equation providing kobs1 and kobs2 for
each phase of the reaction. kobs1 was designated the fast phase,
and kobs2 was designated as the slow phase. Based on these data,
a minimal three-step kinetic model is proposed that allows for
reversible substrate binding, the presence of an intermediate,
and the formation of product (Scheme 2).
The concentration dependence of the reaction rate onmeth-

acrylonitrile was examined by plotting the fast and slow phases
(kobs1 and kobs2) of the reaction against the substrate concen-
tration (Fig. 2, A and B) to extract the microscopic rate con-
stants of the reaction. The concentration dependence of the fast
phase was fit to a linear equation where the slope is the second-
order rate constant and the y-intercept is the sumof k�1 � k2 �
k�2. This fit provided a k1 value of 1.0 � 0.1 mM�1 s�1 and a
k�1 � k2 � k�2 value of 12 � 1 s�1. The nonzero intercept
implies that the binding is reversible. The linear fit indicates
that binding occurs in a single step (13).
The dependence of kobs2 on substrate was fit to a hyperbolic

curve, (kobs2 � kmax[S]/(Kd2 � [S]), where kmax is the sum of
k2 � k�2 and is equal to the rate at saturated enzyme concen-
trations. Kd2 is the apparent dissociation constant of an inter-
mediate step following substrate binding. kmax was found to be
9 � 2 s�1, and Kd2 is 1.5 � 0.8 mM. Subtracting kmax (k2 � k�2)
from the intercept of the fast phase (k�1 � k2 � k�2) provides
k�1, which is 3 s�1. The y-intercept of the slow phase provides
k�2, which is 1 s�1. Therefore, k2 is 8 s�1, and Kd1, which is

FIGURE 1. Representative pre-steady state plot of 10 �M ReNHase cata-
lyzing the hydration of 250 mM methacrylonitrile in 50 mM HEPES buffer,
pH 7.0, and 5 °C at 242 nm over 0.005–5 s.

SCHEME 2. Proposed kinetic model for the hydration of methacrylonitrile
by ReNHase.

SCHEME 1. The hydration of a nitrile to its corresponding amide by nitrile
hydratase.
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k�1/k1, is 3 mM. The hyperbolic dependence of the slow phase
indicates the presence of a second step following substrate
binding, which is independent of substrate concentration.
These data were compared with experimentally determined

steady state kinetic data obtained at 5 °C for ReNHase using
0.5–100 mM methacrylonitrile as the substrate at pH 7.0 and
242 nm. Under these conditions, theVmax value is 4.0� 0.2 s�1

and the Km value is 6 � 1 mM. One assumption under rapid
equilibrium, because k2 is greater than k�1, is that Km is greater
thanKd. Therefore, the steady stateKm value of 6mM is in good
agreementwith theKd value of 3mMdetermined from stopped-
flow data. However, because the system is not at rapid equilib-
rium but at the steady state, Km � k2k3 � k�1k�2 � k�1k3/
k1(k2 � k�2 � k3) for a mechanism with one intermediate
before product release (14). That means the experimentally
determined Km value of 6 mM might be different from the Kd
value described as k�1/k1. In our case where the values of k1,
k�1, k2, and k�2 were experimentally determined, Km can only
be 0.33 mM (for extremely small k3 values) up to 11 mM (for
extremely high k3 values). For this reason, 6mM is a value forKm
that is compatible with our measurement of the microscopic
constants. In fact, values for k3 obtained below in single turn-
over experiments confirm this, and these values are discussed
later.
These data indicate that a three-step reaction mechanism is

operative and provide microscopic rate constants. The agree-

ment between theoretical constants calculated from themicro-
scopic rates to steady state data also confirm that stopped-flow
experiments using UV detection are valid for the NHase reac-
tion. However, the high concentrations of substrate and subse-
quent product formation likely obscure potential transient
intermediates. To overcome these limitations and to obtain k3,
single turnover stopped-flow experiments were performed as
only kinetically significant intermediates will be observed
directly.
Single turnover stopped-flow experiments are typically not

feasible due to the requirement that enzyme concentrations be
similar to the Km value of the substrate. For ReNHase, the Km
value for methacrylonitrile is 190 �M at 25 °C, which is low
enough that the enzyme can be kept at a concentration that
exceeds the substrate concentration. Additionally, the turnover
value determined at the Km is 5 s�1, placing the reaction well
within the limits of the stopped-flow experiment. Therefore,
independent absorption spectra were acquired between 350
and 720 nm using 0.33 mM ReNHase and 0.19 mM methacrylo-
nitrile over 0.005–0.5 s of the reaction at 25 °C (Fig. 3). These
transient spectra indicate the rapid formation of an Fe3�-nitrile
species that converts to the resting Fe3� state and product.
Independent spectra of enzyme intermediate complexes were
extracted after singular value decomposition was applied to the
raw data to eliminate noise and to isolate species with signifi-
cantly different absorption spectra. In total, four species were
identified as significantly different, supporting a three-step
mechanism. All spectra were then globally fit using the Applied
Photophysics Pro-K software to the kinetic model shown in
Scheme 2. To verify that Scheme 2 was the best model, simpler
and more complicated models were evaluated as well, but a
three-step model provided the best global fit. To ensure that a
global minimum was reached, the forward rates were varied
and then verified by residual analysis, observation of positive
fitted spectra, and simulation. The best fit using Scheme 2 as a
model provided values for the forward rate constants k1, k2, and
k3 of 65� 10mM�1 s�1, 23� 3 s�1, and 12� 4 s�1, respectively.
The reverse rate constants k�1 and k�2 were found to be 2.8 �

FIGURE 2. Methacrylonitrile concentration dependence on kobs. A, the fast
phase shows a linear dependence and a nonzero intercept, indicating a fast
reversible binding step. Error bars indicate S.D. B, the slow phase exhibits a
hyperbolic dependence with a maximum rate of 8 s�1. Error bars indicate S.D.

FIGURE 3. Absorption spectra collected with mixing times ranging from
0.005 to 0.5 s for the ReNHase hydration reaction. The green line indicates
resting enzyme, whereas the red line is an intermediate complex. The arrows
indicate the direction of major absorption band shifts. Experimental condi-
tions were 0.33 mM ReNHase and 0.19 mM methacrylonitrile reacted in 50 mM

HEPES, pH 7.0, at 25 °C.
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0.1 and 1.1 � 0.1 s�1, respectively. Theoretical kcat and Km
values were calculated by inserting the microscopic rate con-
stants obtained from single turnover into the following equa-
tions derived from the minimal three-step model in Scheme 2.

kcat � k2k3/k2 � k�2 � k3 (Eq. 2)

Km � k2k3 � k�1k � 2 � k�1k3/k1�k2 � k�2 � k3	 (Eq. 3)

The theoretical kcat andKm values of 8� 3 s�1 and 128� 50�M,
respectively, are in good agreement with steady state values of 5
s�1 and 190 �M, respectively.
These data indicate that the substrate binding step is fast and

reversible, corresponding to k1. k2 is the rate of rearrangement
of the enzyme-substrate complex to an enzyme-product com-
plex. Product release is rate-limiting and assigned k3. Product
release was previously shown to be rate-limiting under steady
state conditions for both iron-type and cobalt-type NHase
enzymes (15, 16). Concentration profiles for the progress of the
reaction confirm a three-step reaction model (Fig. 4) with the
observed decrease in free enzyme concentration occurring con-
comitantly with the formation of an enzyme-substrate complex
followed by an enzyme-intermediate complex and the con-
sumption of substrate. The first transient species reaches its
maximum concentration at �0.03 s, after which it begins to
disappear, and a second transient species peaks at �0.1 s.

Singular value decomposition identified four spectrally
unique species, with one corresponding to native ReNHase
enzyme, whereas the second is an Fe3�-nitrile intermediate
species (Fig. 5). As the reaction proceeds,UV-visible absorption
bands appear at 375, 450, 550, and 650 nm due to an Fe3�-
nitrile intermediate species. These absorption bands decrease
in intensity as the reaction proceeds to productwith the band at
550 nm disappearing completely. Extraction of the absorption
data as a function of time at 375 and 550 nm provides curves
that are identical to the first and second intermediates in the
concentration profile. These data are consistent with the accu-
mulation of an Fe3�-nitrile intermediate species that degrades
into the resting Fe3� state and product. The origin of this
absorption band is likely due to an Fe3�4S ligand-to-metal
charge transfer (LMCT) band resulting from the strong back
donation of the low spin Fe3� center to the nitrile N�* orbitals,

similar to NHase-NO and Fe3�-N3 or -NO model complexes
(17–19).
Additional evidence for an Fe3�-nitrile intermediate species

comes from the observed absorption band at�700 nm. In rest-
ing ReNHase, this band was assigned to an Fe3�4S LMCT
band. The observed hypsochromic shift from 700 to 650 nm
upon the addition of substrate is indicative of a perturbation at
the Fe3� center due to nitrile binding. Blue shifts of similar
magnitude have been observed in NHase enzymes and model
complexes upon the addition of NO or N3

�

and were attributed
to an increase in � electron donation from the axial thiolate
ligand to the Fe3� ion to compensate for the �-accepting
behavior of the bound ligand (20, 21). Similarly, the absorbance
band observed at 450 nm, which has also been assigned as an
Fe3�4S LMCT band based on resonance Raman data and
magnetic circular dichroism model complex data (17, 19),
increases in intensity upon substrate binding. Taken together,
these data indicate that the observed enzyme-substrate com-
plex is the result of the direct ligation of a nitrile to the active
site low spin Fe3� center, which forms an Fe3�-nitrile interme-
diate species.
Direct ligation of a nitrile to the low spin Fe3� center of

ReNHase is also consistent with the significant increase in
absorption observed at 375 nm upon the addition of methacry-
lonitrile to resting ReNHase. In the presence of NO, iron-type
NHases show strong absorbance at 370 nmcorresponding to an
Fe3�4S LMCT band that results from the direct coordination
of theNO to the Fe3� active site (19, 22). Direct coordination of
NO to the low spin Fe3� active site was confirmed by EPR and
resonance Raman data, which suggested that NO displaces the
axial water molecule, forming an Fe3�-NO complex that is
inactive. The Fe3�4S LMCT band observed at �700 nm in
resting iron-type NHase is not observed in NO-inhibited
NHase enzymes but reappears upon light-induced activation
(19, 22). However, in the enzyme-substrate intermediate com-
plex, the Fe3�4SLMCTband at�650nmand a strong absorp-
tion at 375 nm are observed. This suggests that upon the addi-
tion of nitrile, the absorption band at 375 nm is due to an
Fe3�4SLMCT transition fromnitrile coordination to the Fe3�

center in ReNHase.
The single turnover data combined with previously reported

kinetic and crystallographic data allow a catalyticmechanism to
be proposed for iron-type NHase enzymes that involves the

FIGURE 4. Concentration profile of two new transient species (red and
blue) observed as a function of time under single-turnover assay condi-
tions. The green trace is free enzyme, light blue is substrate, and purple is
product. Conditions: 50 mM HEPES, pH 7.0, and 25 °C.

FIGURE 5. Spectra of the intermediate species (red and blue) generated
from singular value decomposition applied to the raw data and the rest-
ing enzyme (green) and product complex (purple). Conditions: 50 mM

HEPES, pH 7.0, and 25 °C.
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direct ligation of the nitrile to the Fe3� active site (Fig. 6) (6, 16,
22–24). The rate constants provided herein suggest a fast sec-
ond-order step that involves binding of substrate to the enzyme
followed by rearrangement and then product release, which is
the rate-limiting step. Displacement of the metal-bound water
molecule by a nitrile and coordination to the low spin Fe3�

center activate the CN bond toward nucleophilic attack. Once
nucleophilic attack occurs followed by proton transfer, the
resulting imidate can tautomerize to form an amide with a sub-
sequent proton transfer (15, 16). Finally, the amide product can
be displaced by a water molecule and thus provide the regener-
ated catalyst.
In conclusion, we have identified the first low spin Fe3�-

nitrile intermediate species for an NHase enzyme using single-
turnover stopped-flow spectroscopy. The best kinetic model
allows for the fast, reversible binding of substrate followed by
the formation of an Fe3�-nitrile intermediate species, a poten-
tial rearrangement of ES, and the formation of product. The
product release step is rate-limiting, which is consistent with
previous steady state kinetic studies for both iron-type and
cobalt-type NHase enzymes (15, 16). The observed UV-visible
absorption bands for an Fe3�-nitrile intermediate species at
375, 450, 550, and 650 nm are similar to low spin Fe3� enzyme
andmodel complexes bound by NO or N3

�

and are indicative of
strong back donation from the low spin Fe3� to nitrile�* orbit-
als. These data provide spectroscopic evidence for the direct
ligation of the nitrile substrate to the low spin Fe3� active site in
NHase.
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