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Abstract 
We report herein the functional expression of an Fe-type nitrile hydratase (NHase) without the co-expression of 

an activator protein or the Escherichia coli chaperone proteins GroES/EL. Soluble protein was obtained when the 

α- and β-subunit genes of the Fe-type NHase Comamonas testosteroni Ni1 (CtNHase) were synthesized with 

optimized E. coli codon usage and co-expressed. As a control, the Fe-type NHase from Rhodococcus equi TG328–

2 (ReNHase) was expressed with (ReNHase+Act) and without (ReNHase−Act) its activator protein, establishing that 

expression of a fully functional, metallated ReNHase enzyme requires the co-expression of its activator protein, 

similar to all other Fe-type NHase enzymes reported to date, whereas the CtNHase does not. The X-ray crystal 

structure of CtNHase was determined to 2.4 Å resolution revealing an αβ heterodimer, similar to other Fe-type 

NHase enzymes, except for two important differences. First, two His residues reside in the CtNHase active site 

that are not observed in other Fe-type NHase enzymes and second, the active site Fe(III) ion resides at the 

bottom of a wide solvent exposed channel. The solvent exposed active site, along with the two active site 

histidine residues, are hypothesized to play a role in iron incorporation in the absence of an activator protein. 

Graphical abstract 

 

Highlights 
► Functional expression of an Fe-type nitrile hydratase without an activator protein. ► X-ray structure of the 

nitrile hydratase from Comamonas testosteroni Ni1 at 2.4 Å. ► Iron active site resides at the bottom of a wide 

solvent exposed channel. ► Two His residues reside in the active site that are not conserved. ► Solvent 

exposed active site and/or His residues may play a role in iron incorporation. 
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1. Introduction 
Nitrile hydratases (NHase, EC 4.2.1.84) catalyze the hydration of nitriles to their corresponding amides under 

ambient conditions and physiological pH [1], [2]. NHases have attracted substantial interest as biocatalysts for 

industrial applications such as the large scale production of acrylamide [3] and nicotinamide [4]. X-ray 

crystallographic studies have shown that NHases are α2β2 heterotetramers with an active site consisting of 

three cysteine residues, two amide nitrogens, a water molecule, and either a non-heme Fe(III) ion (Fe-type) or a 

non-corrin Co(III) ion (Co-type) [5], [6]. Two of the active site cysteine residues are post-translationally modified 



to cysteine–sulfinic acid (–SO2H) and cysteine–sulfenic acid (–SOH), which yields an unusual metal coordination 

geometry termed a “claw-setting”. Although the structures of Fe- and Co-type NHases are very similar, Fe-type 

NHases only bind Fe(III) and Co-type NHases only bind Co(III) [5]. Several open reading frames (ORFs) have been 

identified just downstream from the structural α- and β-subunit genes in NHases, and one of these genes has 

been proposed to function as an activator protein [7], [8], [9]. While Co- and Fe-type NHase enzymes share high 

sequence identity, their respective activator proteins are different sizes and share little sequence 

identity [10], [11]. The prevailing dogma is that both Co- and Fe-type NHase enzymes require the co-expression 

of an activator protein to be soluble and fully active [7], [8], [9]. 

Recently, it was reported that the Fe-type CtNHase, cloned from the Comamonas testosteroni Ni1 genomic DNA 

could be expressed in Escherichia coli in the absence of an activator protein [12]. The resulting enzyme was 

insoluble unless the E. coli chaperone proteins GroES/EL were co-expressed, in which case soluble enzyme was 

obtained albeit with low activity. The observation of low activity levels is typical for Fe-type NHases expressed in 

the absence of an activator protein [5], [13]. To determine whether the limited availability of rare 

tRNAs for CtNHase expression in E. coli or the lack of an activator protein or molecular chaperone was the true 

cause of its insolubility and poor activity, the genes encoding the α- and β-subunits of CtNHase were synthesized 

with optimized E. coli codon usage and heterologously expressed in E. coli. The resulting CtNHase is fully 

functional as evidenced by the enzyme containing its full complement of Fe(III) and the equatorial Cys residues 

being appropriately oxidized, all without the co-expression of an activator protein or the E. coli GroES/EL 

molecular chaperones. This is the first report of an Fe-type NHase that does not require an activator protein for 

metal ion insertion or for facilitating the oxidation of the active site cysteine residues. 

2. Materials and methods 

2.1. Materials 
Acrylonitrile was purchased from Sigma–Aldrich (St. Louis, MO, USA). Synthesized genes and primers were 

purchased from Integrated DNA Technologies, Inc., (IDT). All other materials were purchased at the highest 

quality available. 

2.2. C. testosteroni Ni1 nitrile hydratase (CtNHase) plasmid construction 
The α- and β-subunit genes of CtNHase were individually synthesized with optimized E. coli codon usage and 

were cloned into the pIDT-SMART kanamycin resistant vector. Protein sequences for the α- and β- subunit genes 

were obtained from Cerbelaud et al. [14]. Optimized sequences for each gene are provided in the Supplemental 

material (Figs. S1 and S2). Restriction sites were NcoI and HindIII for the α-subunit gene and NdeI and KpnI for 

the β-subunit. A polyhistidine (His6) affinity tag was engineered onto the C-terminus of the β subunit using 

Phusion DNA polymerase (New England Biolabs) and the following primers: forward 5′-GCA CCC ATA TGG ACG 

GCA TGC-3′ and reverse 5′-GGT ACC TTA ATG ATG ATG ATG ATG GTG CAC CTC TGC G-3′. The polymerase chain 

reaction (PCR) product was sub-cloned into the pSC-B-amp/kan vector using the Strataclone Blunt PCR cloning 

Kit (Stratagene). The α- and β-C-His6 subunit genes were sub-cloned into MCSI and MCSII of the kanamycin 

resistant pCOLADuet-1 expression vector (Novagen), respectively, to create the plasmid pSMCtαβHis. The 

sequence was confirmed using automated DNA sequencing at the University of Chicago Cancer Research Center 

DNA sequencing facility. 

2.3. Rhodococcus equi TG328–2 nitrile hydratase (ReNHase) expression in the presence 

and absence of an activator protein 
The R. equi TG328–2 nitrile hydratase (ReNHase) and activator plasmids were obtained from Bornscheuer et 

al. [15]. The ReNHase gene was sub-cloned into the ampicillin resistant pET21a+ expression vector and the 

activator gene into the kanamycin resistant pET28a+ expression vector using NdeI and HindIII restriction 



sites. ReNHase was expressed in the presence (ReNHase+Act) or absence (ReNHase−Act) of its Fe-type activator 

protein as previously described [15]. 

2.4. CtNHase expression in the absence of an activator protein 
The CtNHase α- and β-subunits (∼23 and ∼23.5 kDa, respectively) were expressed alone, without co-expressing 

an Fe-type activator protein or the E. coli chaperones GroES/EL, in the following manner. The plasmid 

pSMCtαβHis was freshly transformed into BL21(DE3) competent cells (Stratagene), and a single colony was used 

to inoculate 50 ml of LB-Miller culture containing 50 μg/mL kanamycin with shaking overnight at 37 °C. This 

culture (∼7 ml) was used to inoculate a 1 L culture and the cells were grown at 37 °C until the OD600nm reached 

0.6–0.8. The culture was cooled on ice, induced with 0.1 mM isopropyl β-d-1-thiogalactopyranoside (IPTG), and 

expressed at 20 °C for 16 h. Cells were harvested by centrifugation at 5000g and 4 °C for 5 min in a Beckman 

Coulter Avanti JA-10 rotor. Cell pellets were resuspended in buffer A (50 mM Na2HPO4 pH 7.5, 300 mM NaCl, 

10 mM imidazole) at a ratio of 5 ml per gram of cells, then sonicated for 4 min (30 s on 45 s off) at 21 W using a 

Misonix sonicator 3000. The crude extract was obtained after centrifugation in a JA-20 rotor at 15,000g and 4 °C 

for 20 min. The sample was subjected to another round of centrifugation before purification to 

remove particulate matter. 

2.5. Purification of CtNHase and ReNHase co-expressed with (ReNHase+Act) and without 

activator (ReNHase−Act) 
Crude extracts of CtNHase, ReNHase+Act, or ReNHase−Act were loaded onto a 5 ml Ni–NTA (nitrilotriacetic acid) 

Superflow Cartridge (Qiagen) for immobilized metal affinity chromatography (IMAC) using an ÄKTA FPLC P-960. 

The column was washed with four column volumes (CVs) of buffer A, and the protein was eluted with a linear 

gradient (0–100%) of buffer B (buffer A with 500 mM imidazole) over 20 CVs at a flow rate of 1 ml/min. Active 

protein fractions were pooled and concentrated with an Amicon Ultra-15 10,000 MWCO centrifugal filter unit 

(Millipore) resulting in ∼10 mg/L of soluble CtNHase and ∼50 mg/L of ReNHase+Act (Fig. S3). Protease 

inhibitors or butyric acid was not required during purification of CtNHase, but 40 mM n-butyric acid was 

included in all buffers for ReNHase purification. For crystallization trials, CtNHase was further purified using a 

HiLoad 16/60 Superdex 200 prep grade gel filtration column (GE Healthcare). The protein eluted over one CV of 

buffer C (50 mM HEPES pH 7.5, 300 mM NaCl) at a flow rate of 0.5 ml/min. The fractions were pooled, 

concentrated, and buffer was changed to 50 mM HEPES pH 7.0 using an Amicon Ultra-15 10,000 MWCO 

centrifugal filter unit. 

Purified protein samples were analyzed by SDS–PAGE with a 12.5% polyacrylamide SPRINT NEXT GEL™ 

(Amresco). Gels were stained with Gel Code Blue (Thermo-Fisher Scientific). Protein concentration of crude 

extracts was determined using a Coomassie (Bradford) Protein Assay Kit (Pierce) and pure protein by measuring 

the absorbance at 280 nm with a Nanodrop Spectrophotometer ND1000. Theoretical molecular weights and 

protein extinction coefficients were calculated with the ExPASy compute pI/Mw tool. The molecular weight for 

the CtNHase tetramer was 92,828 g/mol with an extinction coefficient of 118,720 cm−1 M−1. For the ReNHase 

tetramer, a molecular weight of 97,888 g/mol was calculated with an extinction coefficient of 149,660 cm−1 M−1. 

These molecular weights are in good agreement with SDS–PAGE data. 

2.6. Kinetic analysis of CtNHase, ReNHase+Act, and ReNHase−Act 
The enzymatic activity of CtNHase, ReNHase+Act, and ReNHase−Act towards acrylonitrile 

(225 nm, ε = 2.9 mM−1 cm−1) was measured using a Shimadzu UV-2450 spectrophotometer. A 1 ml reaction 

consisted of 50 mM Tris–HCl buffer pH 7.5 (CtNHase) or 50 mM phosphate buffer pH 7.5 

(ReNHase+Act and ReNHase−Act) and various concentrations of acrylonitrile. All assays were performed at room 

temperature and data analysis was performed using Origin Lab 7.5. The kinetic constants Vmax and Km (k) were 



calculated using the equation [y = Vo + (Vmax − Vo) (xn/(kn + xn))] where n = 1 and Vo is zero to give the 

equation y = Vmax * (x/(k + x)). One Unit is defined as 1 μmol/min. 

2.7. Metal analysis 
Protein samples for CtNHase (0.15 mg/ml), ReNHase+Act (0.15 mg/ml), and ReNHase−Act (0.19 mg/ml) were 

digested with concentrated nitric acid at 70 °C for 10 min and then cooled to room temperature. These samples 

were diluted to 5 ml total volume with deionized water to give a final nitric acid concentration of 5%, and were 

filtered using 0.2 μm Supor membrane syringe filters (Pall). A nitric acid blank was also prepared. The samples 

were analyzed using inductively coupled atomic emission spectroscopy (ICP-AES) at the Integrated Molecular 

Structure Education and Research Center (IMSERC) at Northwestern University (Evanston, IL, USA). 

2.8. CtNHase crystallization and data collection 
Crystals of CtNHase were obtained by the hanging drop vapor diffusion method. The initial sparse matrix screen 

was carried out using a Gryphon crystallization robot from Art Robbins Inc. with commercial screen sets 

including Wizard Screen I–IV from Emerald Biosystems (Bainbridge Island, WA, USA) and Crystal Screen I–II, Peg 

Ion Screen, Index Screen I–II, and Crystal Screen Cryo from Hampton Research. Once initial crystallization 

conditions were obtained, they were optimized manually by varying all component concentrations. Optimized 

conditions were: 1 μl of purified CtNHase (15, 20, or 30 mg/ml) in 50 mM HEPES pH 7.0 with an equal volume of 

the crystallization reservoir solution (1.08 M K2HPO4, 0.49 M NaH2PO4 with 25% or 30% (v/v) glycerol). The best 

quality CtNHase crystals were obtained at 20 °C after 5 days. For X-ray data collection, the crystals were soaked 

in the reservoir solution with 30% (v/v) glycerol as a cryo-protectant before flash freezing in liquid nitrogen. Data 

sets were collected at the SBC 19-ID beamline at the Advanced Photon Source, Argonne National Laboratory 

(Argonne, IL, USA). Monochromatic data collection was conducted at a wavelength of 0.98 Å using a Quantum 

315 CCD detector providing a data set with a resolution to 2.4 Å. 

2.9. Structure determination and refinement 
The X-ray data set for CtNHase was indexed, integrated and scaled using HKL3000 software and the statistics 

revealed that the data were of good quality (Table 1) [16]. The space group was P31 with eight copies of CtNHase 

heterodimers in each asymmetric unit giving a solvent content of 71%. Molecular replacement was carried out 

with a known NHase structural model (PDB ID: 1AHJ) [17] using the program Phaser from the CCP4 software 

suite. Once a solution was obtained, model building was conducted in COOT [18]; rigid-body refinement and 

restrained refinement was conducted in refmac5 [19]. In order to remove model bias and achieve the best 

refinement result possible, simulated annealing refinement, TLS refinement, and ordered solvent identification 

were conducted using PHENIX.refine [20] while model building continued until the lowest Rfree/R values were 

achieved. Active site metal ion occupancies were initially set at one resulting in negative difference electron 

density (Fo–Fc map) around the metal center (not shown). Metal analyses indicated ∼0.8 equivalents of iron per 

heterodimer, therefore, the final structural model was refined with iron ion occupancies and those of the three 

coordinating residues (CSA102, S103 and CSA104) set at 0.8. Positive difference electron density (Fo–Fc map) 

around this region was observed (not shown) after refinement, which is likely due to the contribution of 

residues 102–104 from the 20% apo-enzyme molecules in the crystal. The structure was refined in PHENIX with 

the completed model possessing Rfree/R values of 22.7/18.8. Since the P31 space group can be indicative of 

twining, the L-test for twining was conducted using the Xtriage program in PHENIX revealing that the intensity 

statistics behave as expected, indicating no twining. 

Table 1. Data and Refinement Statistics. 

PDB code xxxx 

Resolution range, Å 36.2–2.4 



Space group P31 

Cell dimensions 
 

a, b, c, Å 111.4, 111.4, 475.3 

, , , ° 90, 90, 120 

Total (unique) reflections 128,0741 (262,123) 

Completeness, % 99.5 (99.2) 

Linear Rmerge
a, % 13.3 (60.2) 

I/ (I/cut-off) 11.0 (1.0) 

Rcrys
b/Rfree

c, % 18.8/22.7 

rmsdd bond, Å 0.01 

rmsdd angle, ° 1.4 

Average B, Å2 47.8 

Estimated coordinates error, Å 0.29 

a Linear Rmerge = Σ|Iobs–Iavg|/ΣIavg. 

b Rcrys = Σ|Fobs–Fcalc|/ΣFobs. 

c Five percent of the reflection data were selected at random as a test set and only these data were used to 

calculate Rfree. 

d rmsd, root mean square deviation. 

 

3. Results and discussion 

3.1. Kinetic characterization of CtNHase, ReNHase+Act, and ReNHase−Act 
CtNHase was expressed in E. coli without the co-expression of the E. coli molecular chaperones GroES/EL or an 

activator protein but with E. coli codon usage and a hexahistidine tag on the C-terminus of the β-subunit. 

Expression of CtNHase and purification using IMAC resulted in ∼10 mg/L of soluble CtNHase enzyme. Kinetic 

characterization of CtNHase using acrylonitrile as the substrate provided a kcat of 71 ± 5 s−1 and a Km of 

350 ± 50 mM. Since the turnover rate is more than 7-fold higher than any previous report 

for CtNHase [12], [13], [21], it was hypothesized that the metal ion was properly inserted and both active site 

Cys residues were properly oxidized in the absence of an activator protein, which is required for full enzymatic 

activity [22]. For comparison purposes, the Fe-type ReNHase was co-expressed with its activator protein 

(ReNHase+Act), purified, and kinetically characterized. Using acrylonitrile as the substrate, the enzyme exhibited 

a kcat of 2400 s−1 and a Km of 4.3 ± 1.7 mM, which is in good agreement with previous studies [15]. Although 

expression of ReNHase−Act produced soluble protein, no enzymatic activity was observed, most likely due to its 

inability to incorporate metal in the absence of an activator protein. 

3.2. Metal analysis and spectral characterization of CtNHase and ReNHase 
A combination of UV–vis spectroscopy and metal analysis was used to determine 

if CtNHase, ReNHase+Act and ReNHase−Act contained their full complement of Fe(III). After purification, 

the CtNHase and ReNHase+Act enzymes exhibited an emerald green color, whereas the ReNHase−Act was colorless. 

The UV–vis spectra for CtNHase and ReNHase+Act show the characteristic S → Fe(III) ligand-to-metal-charge-

transfer (LMCT) band at ∼700 nm (ε = ∼6000 cm−1 M−1 and 3500 cm−1 M−1, respectively), however no 

absorbance was detected for ReNHase−Act (Fig. 1). ICP-AES data indicate that CtNHase contained ∼1.6 irons per 

α2β2 heterotetramer, ReNHase+Act had ∼1.7 equivalents of iron per α2β2 heterotetramer, while no iron was 

detected for ReNHase−Act. These data clearly indicate that ReNHase strictly requires the co-expression of its 

corresponding Fe-type activator for an active enzyme and the presence of an affinity tag plays no role in metal 

incorporation. They also confirm that CtNHase contains its full complement of Fe(III) metal and can thus be 



expressed in E. coli in the absence of an Fe-type NHase activator protein or the E. coli molecular chaperones 

GroES/EL. 

 
Fig. 1. UV–visible spectra of CtNHase Ni1 (–), ReNHase TG328–2 (–) co-expressed with activator, and ReNHase 
TG328–2 co-expressed without activator (–). 
 

3.3. Crystal structure of CtNHase 
The three-dimensional X-ray crystal structure of CtNHase was determined to 2.4 Å resolution. The structure 

verifies that the recombinant CtNHase binds its full complement of iron and, in general, is structurally similar to 

other Fe-type NHase enzymes (Fig. 2). The α-subunit of CtNHase is embedded in the center of the β-subunit, 

while the N-terminus of the α-subunit forms a helix that is embedded among three helices from the β-subunit 

(Fig. 2A). Supported by ICP-AES data, we set the occupancies of the Fe(III) ion and its coordination residues at 

0.8 during structural refinement resulting in satisfactory electron density maps and good Rfree/R values. The 

Fe(III) ions in CtNHase are five coordinate and bound by C99, C102, and C104 as well as two backbone amide 

nitrogens, where C102 and C104 are both oxidized to cysteine–sulfinic acids (CSA) (Fig. 2B). The full oxidation of 

the equatorial Cys residues is expected since crystals of CtNHase were obtained under aerobic conditions over 

the course of a week. Two amide nitrogen atoms and the oxidized sulfur atoms are roughly in the same plane as 

the metal ion. The sulfur atom from C99 forms a coordination bond roughly perpendicular to this plane, which 

results in a slightly distorted square-based pyramidal geometry. On the opposite side of C99, no sixth ligand such 

as NO or a water molecule is present as is often observed for Fe-type NHase enzymes [5], which is possibly due 

to the resolution of the present structure. A phosphate ion is present in the active site, likely due to phosphate 

(1.57 M) in the crystallization buffer (Fig. 2B). This phosphate ion forms hydrogen bonds with α-H80 (2.6 Å) and 

α-H81 (2.8 Å) along with α-R157 (2.9 and 2.8 Å from two nitrogen atoms, respectively) and an oxygen atom of 

CSA104 (2.6 Å). Interestingly, these histidine residues are not strictly conserved in the α-subunits of Fe-type 

NHase enzymes (Fig. S4). 



 
Fig. 2. Structure of the CtNHase heterodimer. (A) The α-subunit is in green and β-subunit is in red. The iron ion is 
shown as a grey sphere and the phosphate ion bound to the active site is shown in ball-and-stick form. 
(B) CtNHase active site containing a phosphate ion in ball-and-stick form, the iron ion is shown as an orange 
sphere, bonds are shown as silver sticks, and hydrogen bonds are shown as dashed lines. The asterisk indicates 
that Y68 is from the β-subunit. Electron density maps (2Fo–Fc) are shown around key chemical groups: the 
two sulfinic acid groups are shown in grey at 1.2σ while the maps around the heavy atom are shown in magenta 
at 3.4σ. The (2Fo–Fc) maps around the phosphate ion are shown in cyan at 2.2σ. (Contour levels of the electron 
density maps are adjusted for both validation and clarity.). 
 

Structural comparison of the CtNHase model and the Fe-type NHase from Rhodococcus sp. 312 (1AHJ) [17], 

which exhibits ∼50% identity to CtNHase, indicates that the two structures are very similar with a core rmsd 

(root mean square deviation) of 1.13 Å. Three regions of the CtNHase are different from 1AHJ (Fig. 3A). These 

include the C-terminal region of the α-subunit, the N-terminus of the α-subunit, and a loop region (76–83) of α-

subunit just above the Fe(III) active site. Neither this loop region in CtNHase nor the equivalent loop region (88–

94) in 1AHJ is involved in any crystallographic contact. It is therefore unlikely that the structural differences are 

caused by mildly different crystallization conditions (pH 7 vs. pH 8.5). Alteration of this loop region above the 

active site results in the formation of an unusually wide-open solvent accessible active site (Fig. 3B). This 

accessibility provides a direct approach for the substrate to the active site and coincides directly with the 

unfilled axial position of the Fe(III) ion (Fig. 3B). Typically, the trivalent metal ions of both Co- and Fe-type NHase 

enzymes are buried and accessible only through narrow channels [5]. The solvent inaccessibility of the trivalent 

metal ions in NHases has been implicated in observed substrate specificities, as well as the difficulty in preparing 

the apo- or metal substituted forms of NHases [5]. In the contrast, the narrow substrate channel observed for 



1AHJ requires that the substrate approach the metal center at a 60° angle off of the axial position (Fig. 3C). In 

1AHJ, the side chains of α-Y40, α-W44, α-W118, β-Y37, β-M40 and β-F41 block a direct axial approach to the 

Fe(III) ion. None of the above residues are conserved and all are significantly bulkier than the spatially related 

residues in CtNHase. 

 
Fig. 3. Structural Comparison of CtNHase and the Starting Model 1AHJ. (A) A wall-eyed stereo display of the 
superposition of CtNHase and 1AHJ. The CtNHase structure is in green and the 1AHJ model is in magenta. Three 
regions with pronounced differences in the protein backbones occur between the two α-subunits and are 
indicated in the CtNHase structure with labels at the two terminal regions and a loop region (76–83) above the 
metal center. (B) Surface representation of the CtNHase heterodimer showing the solvent accessible channel 
with the active site iron as a grey sphere. The Fe(III) centers of CtNHase and 1AHJ are superimposed. The metal 
ligands displayed are shown in stick form; the carbon atoms for the residues in CtNHase are green; the carbon 
atoms of the residues in 1AHJ are blue. The Fe(III) ion in CtNHase is shown as a silver sphere. A dashed line 
indicates the axial direction of the metal constellation. (C) Surface representation of 1AHJ showing the solvent 
accessible channel. The superimposed Fe(III) centers are show as in B. 
 

In conclusion, the construct reported herein for CtNHase is the first functional expression system for an Fe-type 

NHase that does not require an NHase activator protein or the E. coli chaperone proteins GroEL/ES. These data 

are contrary to the accepted view regarding the strict requirement of co-expressing NHases with activator 

proteins for fully active enzymes. Based on the X-ray crystallographic data CtNHase binds it full complement of 

Fe(III) ions in its active site and the equatorial Cys residues are appropriately oxidized, which is a requirement for 

full enzymatic activity. Both metal ion insertion and Cys oxidation are functions previously ascribed to the NHase 

activator protein. The structure of CtNHase reveals that the Fe(III) ion in the active site is solvent exposed and 

resides at the bottom of an open cavity. This exposed active site not only provides a much more direct route for 

substrates, but also for metal ion incorporation. It is possible that the solvent accessibility of the CtNHase active 

site, both the large opening and the axial approach direction, provides the necessary access for metal ion 

incorporation without the use of an activator protein. Moreover, the two non-conserved His residues that reside 

near the active site Fe(III) ion at the bottom of the solvent exposed channel, may play a role in assisting in the 

incorporation of iron ions into the active site. 

Appendix A. Supplementary data 
Download : Download Acrobat PDF file (99KB) 

Supplementary Figures. 

https://ars.els-cdn.com/content/image/1-s2.0-S0006291X12011242-mmc1.pdf
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