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Abstract 

 

A composite containing cellulose (CEL) and chitosan (CS) synthesized by a simple and recyclable method by using 

butylmethylimmidazolium chloride, an ionic liquid, was found to exhibit remarkable enantiomeric selectivity 

toward the adsorption of amino acids. The highest adsorption capacity and enantiomeric selectivity are 

exhibited by 100% CS. A racemic amino acid can be enantiomerically resolved by 100% CS in about 96–120 h. 

Interestingly, adsorption by 50:50 CEL/CS is more similar to that by 100% CS than to 100% CEL. Specifically, 

whereas 100% CEL has the lowest adsorption capacity and enantiomeric selectivity, 50:50 CEL/CS has sufficient 

enantiomeric selectivity to enable it to be used for chiral resolution. This is significant because in spite of its high 

enantiomeric selectivity 100% CS cannot practically be used because it has relatively poor mechanical properties 

and undergoes extensive swelling. Adding 50% CEL to CS substantially improves the mechanical properties and 

reduces its swelling while it retains sufficient enantiomeric selectivity to enable it to be used for routine chiral 

separations. The kinetic results indicate that the enantiomerically selective adsorption is due not to the initial 

surface adsorption but rather to the subsequent stage in which the adsorbate molecules diffuse into the pores 

within the particles of the composites and consequently are adsorbed by the interior of each particle. The strong 

intermolecular and intramolecular hydrogen bond network in CEL enables it to adopt a very dense structure that 

makes it difficult for adsorbate molecules to diffuse into its interior, thereby leading to low enantiomeric 

selectivity. Compared to hydroxy groups, amino groups cannot form strong hydrogen bonds. The hydrogen bond 

network in CS is not as extensive as in CEL, and its inner structure is relatively less dense than that of CEL. 

Adsorbate molecules can, therefore, diffuse from the outer surface to its inner structure relatively more easily 

than in CEL, thereby leading to higher enantiomeric selectivity for 100% CS. 

Introduction 
Differences between the physiological properties and the therapeutic effects of the enantiomeric forms of many 

compounds have been recognized for some time.(1-4) Very often, only one form of an enantiomeric pair is 

pharmacologically active. The other or others can reverse or otherwise limit the effect of the desired 

enantiomer. However, despite this knowledge, only 61 of 528 chiral synthetic drugs are marketed as single 

enantiomers whereas the other 467 are sold as racemates.(1) Recognizing the importance of chiral effects, the 

FDA in 1992 issued a mandate requiring pharmaceutical companies to evaluate the effects of individual 

enantiomers and to verify the enantiomeric purity of chiral drugs that are produced.(1-4) It is thus hardly 

surprising that the pharmaceutical industry needs effective methods for the optical resolution of racemic 

mixtures on the preparative scale. Conventional chiral resolution methods, including preferential crystallization, 

stereoselective transformation by an optical resolution agent, high-performance liquid chromatography and 

electrophoresis have common shortcomings such as relatively low productivity, expensive chemical 



consumables, and high energy consumption.(5-10) The use of membrane technology for chiral separations 

offers several advantages over traditional methods, including low time cost, simplicity of operation, and easy 

scale-up.(5-10) Furthermore, when using chiral activated membranes only a small quantity of an expensive chiral 

selector is required.(8-10) 

Polysaccharides are chiral polymers that can potentially be used as chiral membranes for enantiomeric 

separations. Chitosan (CS) and cellulose (CEL) are two of the most widely used polysaccharides. Chitosan (CS) is a 

linear amino polysaccharide obtained by N-deacetylation of chitin, and chitin is the second most abundant 

naturally occurring polysaccharide after cellulose (CEL).(11-14) CS’s structure allows it to have some unique 

properties, including antimicrobial, drug delivery, wound healing, hemostasis, and pollutant adsorbant.(12-28) In 

addition, CS is also biocompatible and biodegradable. Unfortunately, in spite of its potential, there are 

drawbacks that severely limit the application of CS. For example, similar to cellulose (CEL), the most abundant 

substance on earth, in CS a network of intrahydrogen and interhydrogen bonds enables it to adopt an ordered 

structure.(15-22) Although such a structure is responsible for CS having the aforementioned properties and CEL 

having superior mechanical strength, it also makes them insoluble in most solvents.(15-22) As a consequence, 

high temperature, strong exotic solvents, and strong acid followed by neutralization with base are needed to 

dissolve CEL and CS, respectively. These methods are undesirable because they are based on the use of 

corrosive and volatile solvents, require high temperature, and suffer from side reactions and impurities that may 

lead to changes in the structure and properties of the polysaccharides. More importantly, it is not possible to 

use a single solvent or system of solvents to dissolve both CEL and CS. Furthermore, CS is known to swell in 

water, which leads to structural weakening in wet environments.(15-22) To increase the structural strength of 

CS products, attempts have been made to covalently bind or graft CS onto man-made polymers to strengthen its 

structure.(15-25) Such modification is not desirable because it may inadvertently alter the CS properties, making 

it nonbiocompatible and toxic and lessening or removing its unique properties. A new method that can 

effectively dissolve both CS and CEL not at high temperature and not by corrosive and volatile solvents but 

rather by recyclable “green” solvents is particularly needed. 

We have demonstrated recently that a simple ionic liquid, BMIm+Cl–, can dissolve both CEL and CS, and by the 

use of BMIm+Cl– as the sole solvent, we developed a simple, green, and totally recyclable method to synthesize 

[CEL+CS] composites just by dissolution without using any chemical modifications or reactions.(23-25) The 

[CEL+CS] composite obtained was found not only to be biodegradable and biocompatible but also to retain the 

unique properties of its components, namely, superior mechanical strength (from CEL) and excellent 

antibacterial and adsorption capability for pollutants and toxins (from CS).(23-25) 

Because the [CEL+CS] composite was synthesized without employing any chemical modifications, the chiral 

nature of its components remains intact, and it is possible that it may be used as a chiral membrane for the 

enantiomeric separation of racemic mixtures. Such considerations prompted us to initiate this study, which aims 

to hasten the breakthrough by using the [CEL+CS] composite synthesized by the green, recyclable method that 

we have developed recently, for chiral separation. Results for enantiomeric differentiation with respect to the 

adsorption of different amino acids by the [CEL+CS] composite and the mechanism of the chiral adsorption 

deduced from adsorption kinetics of composites having different concentration of CEL and CS will be reported 

herein. 

Experimental Section 
The polysaccharide composite materials used in this study were prepared according to procedures previously 

developed in our laboratory.(23-25)d and l enantiomers (99%) of tryptophan (Trp), tyrosine (Tyr), histidine (His), 

and phenylalanine (Phe) were obtained from Alfa Aesar. Experiments with racemic mixtures were carried out on 

a Shimadzu LC-20AT prominence liquid chromatograph equipped with an SPD-20A prominence UV/vis detector. 



The chiral column used was a 250 L × 4.6 mm i.d. 5-μm-particle stainless steel column (Advance Separation 

Technologies, Whippany, NJ, Chirobiotic TAG column). The mobile phase for Trp, Tyr, and Phe was 60:40 

methanol/water, and His was separated using 30:70 ethanol/water in 160 mM sodium phosphate buffer 

adjusted to pH 4.5; the flow rate was 1.0 mL/min. Trp and Tyr were detected at 275 nm, and His and Phe were 

detected at 205 nm. Experiments with optically active (pure enantiomer) samples were carried out on a 

PerkinElmer Lambda 35 UV/visible spectrometer. 

For the enantiomeric resolution experiments, about 0.3 g of the dry polysaccharide composite material was 

placed in a sample vial. The dl racemic solution of the amino acid (30 mL, 1.0 × 10–3 M) was added. (The 

concentration of both the d and the l enantiomers in this solution was 5.0 × 10–4 M.) The amino acid solutions 

were prepared in distilled deionized water at pH 6.6. The vials were tightly closed and agitated (at room 

temperature) at 240 osc/min on a mechanical shaker (model E6005 explosion proof reciprocal shaker, Eberbach 

Corporation, Ann Arbor, MI). At specific time intervals, 20 μL solutions were withdrawn and injected into the 

HPLC for analysis. It is possible that for racemic mixtures the presence of one enantiomer may have some effect 

on the adsorption of other enantiomers. To determine if such an effect is present, the adsorption of optically 

active (pure) d and l enantiomers was measured separately by UV/vis spectrophometry. The experimental setup 

and conditions (mass of film and volume of solution) were the same as those used for the racemic mixture. The 

concentration of the optically active solutions used for this experiment was 5.0 × 10–4 M. This concentration is 

the same as that of the individual enantiomers used for the racemic experiment described above. In addition, 

because these were solutions of pure enantiomers, the residual concentration of the enantiomer in solution at 

specific time intervals was directly determined by UV/vis absorption. After the UV absorption of the solution 

was measured, the sample solution was returned to its sample vial to ensure that there were no significant 

volume changes in the sample during the course of the experiment. 

Results and Discussion 
HPLC chiral separation was carried out to determine the adsorption of d- and l-Tyr enantiomers from a solution 

of a 1.0 × 10–3 M racemic mixture using three different polysaccharide composite materials: 100% CS, [CEL+CS], 

and 100% CEL. The obtained chromatograms are shown in Figure 1. As expected, the HPLC chromatograms 

contain two bands corresponding to the two enantiomers in solution (d and l). The identity of each band was 

determined by spiking the racemic solutions with one of the enantiomers and identifying the band whose 

intensity increased as a result of the enantiomer in the spike. In all cases, the l enantiomer was eluted first (this 

band is indicated by an arrow in Figure 1). The second unlabeled band corresponds to the d enantiomer. The 

intensity of the two bands was found to decrease with time. However, as indicated by the arrow in the figure, 

the intensity of the l enantiomer decreases relatively faster than that of the d enantiomer. For the 100% CS 

composite, the band for the l enantiomer decreases and disappears completely after about 96 h whereas the 

band for the d enantiomer had changed only slightly. For the [CEL+CS] composite, about 288 h was required for 

the band of the l enantiomer to disappear. For the 100% CEL composite, both bands were still present in the 

chromatograms even after 288 h. However, even though both bands were still present, the intensity of 

the l enantiomer band decreased more than that of the d enantiomer. Similar results were also found for Trp, 

His, and Phe. The results seem to suggest that these polysaccharide composite materials selectvively adsorb 

more of the l enantiomer than the d enantiomer. Such selective adsorption of one enantiomer over the other 

can lead to an enrichment of the racemic mixtures that potentially could be used for enantiomeric resolution. 

Results also indicate that the rate at which the intensity of the l band decreases seems to be dependent on the 

polysaccharide composite used. For example, it took about 96 h for the l band to disappear with the 100% CS 

composite whereas the [CEL+CS] composite required about 288 h. For the 100% CEL, both HPLC bands were still 

present even after 288 h. 



 
Figure 1. HPLC chromatograms for the sorption of d- and l-Tyr on the different polysaccharide composites. 
 

These HPLC results were then used to calculate the solution concentration of each enantiomer at each 

measurement time point. The change in solution concentration with time for the three polysaccharide 

composites is shown in Figure 2A. This figure also illustrates what was observed with the chromatograms where 

the solution concentrations of the enantiomers are decreasing with time. Also, for each of the three composites, 

the solution concentration of the l enantiomer (squares, solid line) was found to decrease faster than that of 

the d enantiomer (diamond, dashed line). From these HPLC results, the amount of each enantiomer that has 

been adsorbed onto the composite material can be calculated using the following mass balance equation 

𝑞𝑡 = (
Ci − C𝑡

𝑚
) 𝑉 

(1) 

where qt (mg/g) is the amount of enantiomer adsorbed at any given time, t, Ci and Ct (mg/L) are the initial and 

time t solution concentrations of the enantiomer, respectively. V (L) is the volume of the solution, and m (g) is 

the weight of the composite material. Typical results for the adsorption of the d- and l-Tyr forms of a racemic 

mixture by all three composite materials are shown in Figure 2B. Essentially, these results show similar 

information that is depicted in Figure 2A; namely, the amount of l enantiomer adsorbed onto the composite 

material is greater than that of the d enantiomer. For both l and d enantiomers, the order of adsorption capacity 



for the composites as explained earlier was found to be 100% CS > [CEL+CS] > 100% CEL. This finding was not 

unexpected because CS is generally known to be a good adsorbent. The purpose of adding CEL to CS is, as 

explained before and verified in our previous publication, to improve the poor mechanical and rheological 

properties of CS.(23-25) The results in Figure 2B show that after about 96 h, 100CS had adsorbed about 5.7 

times more l enantiomer than 100% CEL. Interestingly, even though the adsorption of the l enantiomer by the 

[CEL+CS] composite is expectedly lower than that of 100% CS, it is still about 3.5 times higher than that of the 

100% CEL composite material. This adsorption performance is still relatively high considering the improvement 

in mechanical and rheological properties that is gained by adding 50% CEL to CS. Specifically, as described in our 

previous publication, whereas the tensile strength of the 50:50 CEL/CS composite material is 2 times greater 

than that of 100% CS, the swelling in water of the former is only about 1.2 times less than that of the 100CS 

material.(23-25) These observations clearly indicate that stronger, more stable, effective enantiomeric selective 

polysaccharide composite materials can be fabricated by judiciously controlling the composition and 

concentration of the CEL/CS composite. 

 
Figure 2. (A) Change in solution concentration with time for a Tyr racemic solution. (B) Adsorption of different 
Tyr enantiomers by the different composites. 
 

It is possible that for racemic mixtures the presence of one enantiomer may have some effect on the adsorption 

of other enantiomer. To determine if such an effect is present, the adsorption of optically active 

(pure) d and l enantiomers was measured separately by UV/vis spectrophometry. The experimental setup and 

conditions (mass of film and volume of solution) were the same as those used for the racemic mixture. The 

concentration of the optically active amino acid solutions used for this experiment was 5.0 × 10–4 M, which is the 

same as that of the individual enantiomers used for the HPLC racemic experiment described above 

The results obtained for the adsorption of Tyr enantiomers by all three polysaccharide composite materials, 

determined by UV/vis, are plotted together with the HPLC results for the racemic experiment (Figure 3). The 

concentration of each enantiomer in the solution at the beginning of the experiment and the method used for 

the measurement (HPLC or UV) are indicated in the figure legend. The plots on the left side of the figure are a 

comparison of the HPLC method and the UV method (Figure 3A–C). It can be seen from this figure that for both 

methods the adsorption of the l enantiomer is higher than that of the d enantiomer. The results of the UV 



method in this figure further confirm that the adsorption of the l enantiomer is selectively favored, even when 

the enantiomers are measured separately (optically active solutions). However, it can also be observed from this 

figure that the rate of adsorption of the enantiomers from racemic solutions (HPLC) is different from that of 

adsorption from optically active solutions (UV). It should be noted, however, that the total amino acid 

concentration in these two experiments was not the same. The HPLC racemic experiment was performed at a 

total concentration of 1.0 × 10–3 M (i.e., 5.0 × 10–4 M for each enantiomer). Conversely, the concentration used 

in the UV experiment for the pure enantiomers was 5.0 × 10–4 M. Because the adsorption capacity is known to 

be dependent on the type and concentration of chemicals present in the solution, the differences in the type 

(racemic mixture compared to optically active compounds) and concentration of the amino acid in these two 

experimental methods may be responsible for the observed differences in the adsorption profiles for the two 

methods. Nevertheless, additional experiments were then carried out under different conditions to gain more 

insight into the processes governing the adsorption and ultimately the resolution of the amino acid 

enantiomers. The results of these experiments are shown in the plots on the right side of Figure 3 (i.e., panels 

D–F). 

 
Figure 3. Sorption of d- and l-Tyr enantiomers from different solutions using (A, D) 100% CS, (B, E) the [CEL+CS] 
composite, and (C, F) the 100CEL composite. 
 

As expected, the adsorption of both d and l enantiomers is dependent not only on the type (ie., optically active 

or racemic mixture) but also on the concentration of the amino acid present in solution. For example, in the 

adsorption of d-Tyr (Figure 3D, the right plot), the adsorption profile of d-Tyr in which the initial concentration 

was 1.0 × 10–3 M (yellow diamond plot) is nearly twice as high as in the sorption profile where the initial 

concentration was 5.0 × 10–4 M (blue diamond plot). Similarly, the adsorption profile of l-Tyr with an initial 

concentration of 1.0 × 10–3 M (pink square plot) is also twice as high as the sorption profile where the initial 

concentration was 5.0 × 10–4 M (blue square plot). However, when the adsorption experiment was done with 

two samples of the same total concentration but with a different enantiomeric composition (i.e., 1.0 × 10–3 M dl-

Tyr racemic mixture (purple square plot) and 1.0 × 10–3 M pure optically active l solution (pink square plot)), 

interesting adsorption profiles were observed. The adsorption profile of the pure l enantiomer solution was 

found to be nearly twice as high as that of the dl racemic solution. Because the total amino acid concentration of 

these two solutions is the same, the observed differences in the adsorption profiles are clearly due to the 

difference in the enantiomeric composition of the solutions. The solution that gave the highest adsorption 

profile is that of the pure optically active l solution. The relatively lower adsorptivity observed for the dl racemic 

mixture can be explained using results previously obtained with HPLC measurements. Specifically, in the HPLC 

experiments of the racemic mixtures, adsorption favors the l-Tyr component of the dl-Tyr solution, and not 

much of the d-Tyr component is adsorbed. Because the concentration of the l-Tyr component in this racemic 



solution is only half (5.0 × 10–4 M) of that in pure l solution (1.0 × 10–3 M), the adsorption profile of the entire 

racemic solution equals the adsorption of l-Tyr (i.e., Ql-Tyr) + Qd-Tyr where Ql-Tyr is much higher than Qd-Tyr . As a 

consequence, the adsorption of the racemic mixture is relatively lower than the adsorption of 1.0 × 10–3 M pure 

optically active l-Tyr. These results are further confirmed by the observation that the adsorption profiles of the 

1.0 × 10–3 M dl racemic solution (purple square plot) and the 5.0 × 10–4 M pure l solution (blue square plot) are 

almost the same. As shown in Figure 3A,D and Figure 3B,E, similar results were observed for both 100% CS and 

the [CEL+CS] composite, respectively, whereas the trend for the 100CEL material (Figure 3C,F) was not as 

obvious as a result of the low adsorption capacity of this material. 

Additional experiments were also carried out by adsorption of all three composites (100CS, CEL/CS, and 100CEL) 

of Tyr with the same total concentration but different enantiomeric compositions, namely, a 1.0 × 10–3 M 

solution that contains 6.67 × 10–4 M l-Tyr and 3.33 × 10–4 M d-Tyr (on HPLC), 1.0 × 10–3 M pure l-Tyr, and 1.0 × 

10–3 M dl-Tyr as well as 6.67 × 10–4 M l-Tyr (via UV/vis). The obtained results are plotted together with those 

previously plotted in Figure 3A–F (for 5.0 × 10–4 M pure l- or pure d-Tyr and 1.0 × 10–3 M dl-Tyr) and shown in 

Figure SIA–C of the Supporting Information. Again, these results are in agreement with those presented in 

Figure 3 and further confirm the conclusion described in a previous paragraph; namely, all three 100CS, CEL/CS, 

and 100CEL composites can enantiomerically adsorb the amino acids, and the adsorption is more favorable to 

the l enantiomer than to the d enantiomer. 

Additional information on the adsorption mechanism can be gained by fitting the experimental data to Weber’s 

intraparticle diffusion model.(26-29) The intraparticle diffusion equation is given as follows(26-29) 

𝑞𝑡 = 𝑘i𝑡
1 2⁄ + 𝐼 

(2) 

where ki (mg g–1 min–0.5) is the intraparticle diffusion rate constant and I (mg g–1) is a constant that gives 

information regarding the thickness of the boundary layer.(26-29) Shown in Figure 4 are representative 

intraparticle pore diffusion plots (qt vs t1/2) for different Tyr samples adsorbed on (A) 100% CS, (B) 50:50 CS/CEL, 

and (C) 100% CEL. It is evident from the figure that there are two separate stages for all Tyr samples on all three 

composites. In the first linear portion (stage I), the adsorbate molecules (in this case, Tyr molecules) were 

transported from solution through the solution/composite interface and characterized by ki1. This can be 

attributed to the immediate utilization of the most readily available adsorbing sites on surfaces of the 

composites.(26-29) The first stage is followed by a second linear portion in which the adsorbate molecules 

diffuse into the pores within the particle of the composites and consequently are adsorbed by the interior of 

each particle, which is measured by ki2.(26-29) Table 1 lists values of ki1 and ki2 for the adsorption of different Tyr 

samples by 100% CS, 50:50 CS/CEL, and 100% CEL composite materials. (Similar values for His and Trp are listed 

in Tables 2 and 3, respectively.) Interestingly, it was found that ki2 is much larger than ki1 (from 6- to 14-fold) 

when Tyr molecules are adsorbed by 100% CS. When 50% CEL was added to CS (i.e, the 50:50 CS/CEL 

composite), ki2 is still larger than ki1, but the difference is much smaller than that by the 100% CS composite (0.8- 

and 7.7-fold compared to 6- and 10-fold). However, in the absence of CS (i.e., the 100% CEL composite), ki2 is 

either smaller than or within experimental error equal to ki1. These results may be explained by the differences 

in the structure of CS and CEL. It is well known that the strong inter- and intramolecular hydrogen bond network 

in CEL enables it to adopt a strong and very dense structure that makes it difficult for adsorbate molecules to 

diffuse from its surface to the interior, thereby leading to relatively low ki2 values. Compared to the hydroxy 

group, the amino group cannot form strong hydrogen bonds. The hydrogen bond network in CS is, therefore, 

not as extensive as in CEL. As a consequence, the inner structure of CS is relatively less dense than that in CEL. 

Tyr molecules can, therefore, diffuse from the outer surface to its inner structure relatively more easily than 

those in CEL. Therefore, ki2 values are much larger than ki1 and ki2 for CEL (because ki2 ≈ ki1 for CEL). It is evident 



from Figure 4 and Table 1 that in all Tyr samples and for all three composites ki1 is, within experimental error, 

the same for both enantiomers of l-Tyr whereas ki2 for l-Tyr is always higher than that for d-Tyr. The differences 

are, as expected, largest for 100% CS and smallest for 100% CEL. The results suggest that the enantiomeric 

selective adsorption is mainly due to the differences not in ki1 but rather in ki2. It seems that the binding sites 

available on the surface of the composites cannot effectively differentiate between l-Tyr and d-Tyr. 

Enantiomeric selective adsorption is realized as adsorbate molecules diffuse to the interior of the composite 

because the chirality of CS and CEL makes it possible for them to discriminate chirally against both enantiomers 

of Tyr, and the discrimination increases as Tyr molecules diffuse into pores of the particle in the interior of the 

composite. Selectivity is highest for 100% CS because the greater the binding between Tyr molecules to the 

interior particles, the larger the enantiomeric selectivity. 

 
Figure 4. Intraparticle diffusion plots for the sorption of d- and l-Tyr from solutions with different concentrations 
and/or enantiomeric compositions by (A) 100CS, (B) CEL/CS, and (C) 100CEL composites. 
 



Table 1. Intraparticle Diffusion Model Parameters for the Sorption of Tyr Enantiomers 

  100CS    CEL/CS    100CEL    

  ki1 R2 ki2 R2 ki1 R2 ki2 R2 ki1 R2 kis R2 

d-Tyr opt active (UV) 
(5 × 10–4 M) 

    0.27 ± 0.
02 

0.908
6 

    0.28 ± 0.
01 

0.976
9 

    0.109 ± 0.0
06 

0.961
6 

l-Tyr opt active (UV) (5 × 10–

4 M) 
    1.34 ± 0.

06 
0.972
2 

    0.67 ± 0.
02 

0.983
3 

    0.28 ± 0.02 0.949
5 

d-Tyr racemic (HPLC) 
(5 × 10–4 M) 

    1.0 ± 0.2 0.845
5 

    0.17 ± 0.
04 

0.891
6 

    –
0.05 ± 0.08 

0.143
8 

l-Tyr racemic (HPLC) 
(5 × 10–4 M) 

    1.5 ± 0.1 0.980
3 

    0.81 ± 0.
05 

0.993
3 

    0.07 ± 0.07 0.348
2 

d-Tyr (HPLC) (3.33 × 10–4 M) 0.02 ± 0.
09 

0.009
2 

0.29 ± 0.
06 

0.773
9 

0.27 ± 0.
06 

0.851
8 

0.23 ± 0.
03 

0.869
7 

0.08 ± 0.
08 

0.198
6 

0.03 ± 0.02 0.197
4 

l-Tyr (HPLC) (6.67 × 10–4 M) 0.2 ± 0.1 0.297
0 

1.5 ± 0.1 0.953
9 

0.52 ± 0.
09 

0.884
5 

1.02 ± 0.
07 

0.965
8 

0.14 ± 0.
08 

0.431
1 

0.30 ± 0.04 0.858
4 

dl-Tyr racemic (UV) (1 × 10–

3 M) 
0.22 ± 0.
02 

0.967
8 

1.34 ± 0.
05 

0.984
1 

0.25 ± 0.
06 

0.841
1 

0.43 ± 0.
02 

0.964
1 

0.12 ± 0.
05 

0.604
2 

0.036 ± 0.0
08 

0.629
7 

pure l-Tyr (UV) (1 × 10–3 M) 0.26 ± 0.
04 

0.931
4 

2.71 ± 0.
07 

0.993
5 

0.22 ± 0.
02 

0.954
7 

1.71 ± 0.
04 

0.993
1 

0.13 ± 0.
02 

0.958
0 

0.19 ± 0.01 0.938
2 

 

The 100% CS has the highest and 100% CEL has the lowest enantiomer selectivity. The fact is that the 50:50 CS/CEL composite exhibits not only relatively 

high selectivity but also is more similar to 100% CS than to 100% CEL. This is very encouraging because as described in our previous work CS has 

relatively poor rheological and mechanical properties and is known to undergo swelling in water. Adding CEL to CS not only improves its rheological and 

mechanical properties but also reduces its swelling.(24, 25) In fact, we showed that adding 50% CEL to CS increases its tensile strength by 2-fold and 

reduces its swelling by 35%.(24, 25) Taken together, the results indicate that a 50:50 CS/CEL composite has good enantiomer selectivity and adequate 

rheological properties required for daily practical use. 

Table 2. Intraparticle Diffusion Model Parameters for the Sorption of His Enantiomers 

  100CS    CEL/CS    100CEL    

  ki1 R2 ki2 R2 ki1 R2 ki2 R2 ki1 R2 ki2 R2 

d-His opt active (UV) (5 × 10–4 M)     0.08 0.7954     0.11 0.4983     0.06 0.6409 

l-His opt active (UV) (5 × 10–4 M)     1.08 0.9057     0.94 0.9888     0.75 0.7015 

d-His racemic (HPLC) (5 × 10–4 M)     0.22 0.9010     0.11 0.8180     0.16 0.9257 

l-His racemic (HPLC) (5 × 10–4 M)     1.53 0.9753     1.41 0.9943     1.25 0.9949 



The sorption selectivity for the racemic mixtures of different amino acids can be calculated using the following 

equation(30) 

sorption seletivity (𝛼) =

CLi
− CLf

CLf

CDi
− CDf

CDf

 

(3) 

where CLi and CLf denote the initial and final l concentrations of the l enantiomer and CDi and CDf are the initial 

and final concentrations of the d enantiomer, respectively. The sorption selectivity was calculated for the HPLC 

experiments with 1.0 × 10–3 M racemic solutions after 96 h. The 96 h time period was selected because this was 

generally the amount of time it took for the HPLC band of the l enantiomer to disappear for the 100CS 

composite material. Results obtained for different amino acids together with the amount of each enantiomer 

adsorbed at this time are shown in Figure 5. The sorption selectivity is indicated by the gray bars, and 

adsorbed l and d enantiomers are shown as green diamonds and red squares, respectively. It is clear that except 

for Phe, for the other three amino acids (Tyr, Trp, and His), the enantioselectivity of the different composites 

was found to follow the order 100CS > CEL/CS > 100CEL. Because the amount of amino acid adsorption is highest 

for 100CS and lowest for 100CEL with that for CEL/CS in the middle, the order of enantioselectivity seems to be 

closely related to the adsorbed amount of amino acid. Also, the amount of l enantiomer adsorbed is 

progressively larger than that of the d enantiomer, and again the largest difference was found to be the largest 

for 100CS and smallest for 100CEL. As explained in a previous section, this was the reason for the 100CS 

composite to have the highest sorption selectivity. Interestingly, different from the other three amino acids, Phe 

exhibits different selectivity for all three composites. The adsorbed amounts of d-Phe and l-Phe were generally 

the same for 100% CS, 50:50 CS/CEL, and 100% CEL. Furthermore, the amount of l-Phe adsorbed by the 100CS 

composite was unexpectedly lower compared to that of the other three amino acids. This might have 

contributed to the relatively low selectivity observed for Phe with this composite material. Also, it is possible 

that the enantioselectivity is also dependent on the initial amino acid concentration. Further study is needed to 

determine this possibility. 



Table 3. Intraparticle Diffusion Model Parameters for the Sorption of Trp Enantiomers 

  100CS    CEL/CS    100CEL    

  ki1 R2 ki2 R2 ki1 R2 ki2 R2 ki1 R2 ki2 R2 

d-Trp opt active (UV) (5 × 10–4 M)     0.21 0.9038     0.18 0.9525     0.04 0.8653 

l-Trp opt active (UV) (5 × 10–4 M)     0.71 0.9712     0.55 0.9832     0.25 0.9905 

d-Trp racemic (HPLC) (5 × 10–4 M)     0.21 0.3962     0.10 0.5193     0.06 0.0782 

l-Trp racemic (HPLC) (5 × 10–4 M)     1.44 0.9224     0.84 0.9924     0.36 0.8891 



 

 
Figure 5. Comparison of the selectivity of the different composite materials with the four amino acids studied. 
The initial concentration of each racemic amino acid was 1.0 × 10–3 M. 
 

Conclusions 
The polysaccharide composite materials developed here have shown promising potential applications in chiral 

separations. Preliminary results with four different amino acids show that racemic mixtures can potentially be 

resolved by selective adsorption of the l enantiomer in a period from about 96 to 120 h for the 100% CS 

composite material. The [CEL+CS] composite material, which has relatively superior rheological and mechanical 

properties, also exhibits good enantioselectivity. The analysis of the enantiomeric adsorption using the 

intraparticle diffusion model showed that very little to no adsorption was occurring in the first 16 h. This is then 

followed by a period of steady adsorption in which the intraparticle diffusion rate constant of the l enantiomer is 

higher than that of the d enantiomer. This difference in diffusion rate constants possibly plays a significant role 

in the enantiomeric resolution that was observed with these polysaccharide composite materials. 
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