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Equivalence of the Ehrenfest theorem and the fluid-rotor model for mixed
quantum/classical theory of collisional energy transfer
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Department of Chemistry, Wehr Chemistry Building, Marquette University, Milwaukee,
Wisconsin 53201-1881, USA

(Received 26 February 2013; accepted 27 March 2013; published online 23 April 2013)

The theory of two seemingly different quantum/classical approaches to collisional energy transfer
and ro-vibrational energy flow is reviewed: a heuristic fluid-rotor method, introduced earlier to
treat recombination reactions [M. Ivanov and D. Babikov, J. Chem. Phys. 134, 144107 (2011)],
and a more rigorous method based on the Ehrenfest theorem. It is shown analytically that for the
case of a diatomic molecule + quencher these two methods are entirely equivalent. Notably, they
both make use of the average moment of inertia computed as inverse of average of inverse of
the distributed moment of inertia. Despite this equivalence, each of the two formulations has its
own advantages, and is interesting on its own. Numerical results presented here illustrate energy
and momentum conservation in the mixed quantum/classical approach and open opportunities for
computationally affordable treatment of collisional energy transfer. © 2013 AIP Publishing LLC.
[http://dx.doi.org/10.1063/1.4801430]

I. INTRODUCTION

Collisional energy transfer (CET)1 encompasses a rela-
tively broad spectrum of molecular phenomena where the en-
ergized molecule (typically small polyatomic molecule or a
diatomic molecule) exchanges translational, rotational, and
vibrational energy with a quencher (an atom, molecule, or
even a surface). The result of such collision is usually a non-
reactive inelastic scattering process, but dissociation of the
molecule and/or the quencher may also occur. In some ap-
plications, the focus is on quenching of the low-lying inter-
nal states of the molecule (e.g., few quanta of ro-vibrational
excitation2–8) while in other processes, such as recombination
reactions,9–13 the molecule is initially at energy above the dis-
sociation threshold (scattering resonance). Several processes
that are reverse to quenching, such as collisional excitation
and the collision-induced dissociation, also fall into the cate-
gory of the collisional energy transfer.

The relevant range of temperatures is very broad too.
In recent years, the interest in collisional energy trans-
fer at ultra-cold conditions has been high14–16 and in
those cases the inelastic scattering calculations must be
done using the full-fledged quantum mechanics.17, 18 On the
other hand, for the processes relevant to combustion,19, 20

photochemistry,21, 22 or hyper-thermal phenomena,23, 24 when
high energies are involved, the classical-trajectory picture is
quite appropriate.25–29 In between those limits, the quantum
mechanical calculations of collisional energy transfer become
unaffordable computationally even for the smallest molecu-
lar systems (due to a large number of coupled channels and
partial waves) while the classical trajectory calculations are
not entirely justified and contain serious drawbacks (such as

a)Author to whom correspondence should be addressed. Electronic mail:
dmitri.babikov@mu.edu

vibrational zero-point energy leakage30, 31). Indeed, the vibra-
tional frequencies are typically on order of one-to-few thou-
sand wave numbers, so, the classical approximation for vi-
brational motion becomes truly valid only at very high tem-
peratures. In polyatomic molecules, the vibrational spacing
may be smaller but still, for the temperature range say 30 < T
< 3000 K (depending on system), there is no practical method
of computing the collisional energy transfer. And this is ex-
actly the temperature interval where majority of chemical pro-
cesses occur.

The general idea to use a mixture of quantum and clas-
sical mechanics for description of collisional energy transfer
is not new.32–34 However, it has never been developed to the
level of predictive computational tool. The literature on this
topic is surprisingly sparse. Some authors neglect rotational
motion of the molecule,35–37 which is physically incorrect be-
cause the rotational energy transfer is usually a major path-
way of the process. There are very few papers where rota-
tional excitation of the molecule by the quencher was actually
treated,33, 34 but even there the molecule was assumed to have
zero angular momentum prior to collision. Such an approach
is able to give some insight into rotational excitation, but no
information about rotational quenching. It is also obvious that
collision of a rotationless molecule with quencher would lead
to overestimated rotational excitation (even statistically) since
all the available rotational states are unpopulated before colli-
sion. It is desirable to specify adequate thermal initial condi-
tions for rotation.

Clearly, there are ample opportunities for development
of new theories of collisional energy transfer. Recently, the
mixed quantum/classical theory (MQCT) for CET and ro-
vibrational energy flow (RVEF) was proposed11, 12 and ap-
plied to treat a very complicated problem – recombina-
tion reaction that forms ozone.13, 38 In this approach, the
time-dependent quantum mechanics (wave packet method) is

0021-9606/2013/138(16)/164110/10/$30.00 © 2013 AIP Publishing LLC138, 164110-1
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used to treat vibrational motion of the energized molecule,
while its rotational motion and scattering of the quencher are
treated with classical trajectories. The rotation-vibration in-
teraction is included in an adiabatic manner, within the fluid-
rotor model. Energy is exchanged between translational, ro-
tational, and vibrational degrees of freedom, while the total
energy of the system is conserved. This method allows cap-
turing major quantum effects associated with vibrational mo-
tion of the molecule (i.e., zero-point energy, quantization of
states, tunneling, scattering resonances) while the advantage
is taken of the quasi-classical regime usually valid for rota-
tional and translational degrees of freedom. This mixed quan-
tum/classical approach is expected to be accurate in the inter-
mediate temperature range 30 < T < 3000 K and computa-
tionally affordable for small polyatomic molecules.

In the present paper, we review this approach and demon-
strate that it is, in fact, equivalent to the Ehrenfest theorem
treatment of the process. Detailed theory is presented for
the simplest energy-transfer process – collision of a diatomic
molecule with a quencher. The paper is organized as follows.
In Sec. II, we outline major components of MQCT for CET
and RVEF. In Sec. III, we review the Ehrenfest theorem treat-
ment of the diatom + atom collision and show analytically
that it is equivalent to the fluid-rotor model. Some illustrative
numerical results are presented in Sec. IV. Conclusions and
possible applications of this theory are given in Sec. V.

II. THEORETICAL FRAMEWORK

A set of internal coordinates of the molecule is denoted
RQ, where subscript “Q” is used to stress that these degrees
of freedom are treated quantum mechanically. The vibrational
wave function �(RQ) is expressed in these coordinates and is
represented by a suitable grid of points. For example, in the
case of a diatomic molecule RQ represents only one degree
of freedom – the bond length R. In the case of a triatomic
molecule RQ = {R1, R2, θ} defines two bond lengths and
bending angle, so, the grid is three-dimensional. The time-
dependent Schrödinger equation for vibrational motion (ne-
glecting rotation)

i
∂

∂t
�(RQ, t) = Ĥ (t)�(RQ, t), (1)

Ĥ (t) = T̂ + V (RQ; RC(t)), (2)

is propagated using the wave packet method.39 Note that
Hamiltonian Ĥ (t) is time dependent and this dependence
comes from the potential energy term. If the quencher is at
infinity, this term represents potential energy surface of the
molecule V (RQ). As the quencher approaches and scatters
off the molecule, the potential energy surface is continuously
modified due to the quencher-molecule interaction, which is
formally written as V (RQ; RC(t)) dependence. Here, RC de-
notes the external (scattering) degrees of freedom, treated
classically. If rotational motion is neglected, those are just
the center-of-mass positions for molecule and quencher –
six Cartesian coordinates in the laboratory-fixed reference
frame, RC = {qmol, qque}. So, the time-dependence of RC(t)

is governed by the classical trajectory of motion, which in-
troduces time-dependence into the Hamiltonian Ĥ (t). In this
way, scattering of the quencher affects vibrational motion of
the molecule and classical part of the system affects its quan-
tum part.

For the translational (scattering) degrees of freedom, the
classical equations of motion are simply

q̇ = p/m, (3)

ṗ = −∇Ṽ , (4)

where subscripts were omitted for transparency. The moiety
Ṽ is the mean-field potential, which represents average of the
potential energy of the system over the vibrational wave func-
tion of the molecule (quantum expectation value)

Ṽ (RC) = 〈�(RQ)|V (RQ, RC)|�(RQ)〉, (5)

where integration is over RQ. Thus, gradients of the mean-
field potential with respect to classical variables RC = {qmol,
qque} drive the scattering process. Note also that Ṽ reflects
the internal vibrational state of the molecule, through average
over the vibrational wave function �(RQ). In this way, the
vibrational degrees of freedom affect the dynamics of scatter-
ing, and the state of the quantum part of the system affects
motion of its classical part.

A. The fluid-rotor model

If the rotational motion of molecule is included and is
treated classically, the set of classical degrees of freedom
should be expanded to include Euler angles40 used to define
orientation of molecule in space: RC = {qmol, qque, α, β, γ }.
The effect of rotational motion on vibration is taken into ac-
count adiabatically,41–46 by introducing the centrifugal poten-
tial term Vrot into the Hamiltonian operator

Ĥ (t) = T̂J=0 + V (RQ; RC(t)) + Vrot(RQ; RC(t)). (6)

This term represents rotational energy of the molecule and is
a continuous smooth function of its shape (i.e., of the inter-
nal coordinates RQ). Also, Vrot is a function of time, since
rotational energy changes along the trajectory RC(t). At ev-
ery moment of time and for every point RQ of the grid, we
compute this potential numerically as

Vrot(RQ) = 1
2 (J, I−1(RQ)J), (7)

where I(RQ) is the tensor of inertia on the grid and J(t) is the
instantaneous vector of angular momentum of the molecule,
both expressed in the laboratory reference frame. Note that
this adiabatic rotation approximation is expected to work bet-
ter than any other method of angular momentum decoupling,
simply because tensor of inertia of the molecule is not fixed at
a single chosen molecular configuration (e.g., equilibrium po-
sition), but changes smoothly as molecular shape is distorted
by vibration. This feature is important for treatment of the
large-amplitude vibrational motion (e.g., highly excited vibra-
tions or even dissociation).

Equation (7) is also used to define the average tensor of
inertia of the classical rotor, Ĩ, that corresponds to vibrational

 



164110-3 A. Semenov and D. Babikov J. Chem. Phys. 138, 164110 (2013)

wave function �(RQ). For this, we require that quantum ex-
pectation value of rotational energy,

Ẽ
Q
rot = 〈�(RQ)|Vrot(RQ)|�(RQ)〉, (8)

coincides with energy of the average classical rotor,

EC
rot = 1

2 (J, Ĩ−1J), (9)

at every moment of time. From Ẽ
Q
rot = EC

rot, one obtains11

Ĩ = 〈�(RQ)|I−1(RQ)|�(RQ)〉−1, (10)

which guarantees conservation of total ro-vibrational energy
and describes how evolution of vibrational wave function
(treated with quantum mechanics) affects the tensor of iner-
tia of the classical rotor.

Thus, vibrational and rotational degrees of freedom are
treated explicitly and self-consistently. The rigid-rotor as-
sumption of any sort is avoided and we deal with fluid rotor,
whose tensor inertia Ĩ(t) is affected by vibration and is time-
dependent. Equations for rotation of such fluid rotor are ob-
tained as follows. Start with J = Ĩω and, assuming that each
of these quantities is time dependent, differentiate this ex-
pression (by parts) with respect to time: dJ/dt = ˙̃Iω + Ĩω̇.
Introduce average torque as

τ̃ = dJ/dt. (11)

Express angular velocities ω(t) and accelerations ω̇(t)
through Euler angles

ω = G

⎛
⎜⎜⎝

α̇

β̇

γ̇

⎞
⎟⎟⎠ , (12)

where, for convenience, we defined

G =

⎛
⎜⎝

0 cos α sin β sin α

0 sin α − sin β cos α

1 0 cos β

⎞
⎟⎠ . (13)

Further manipulations11 lead to the following final system of
second-order differential equations for rotation of the fluid
rotor⎛

⎜⎜⎝
α̈

β̈

γ̈

⎞
⎟⎟⎠ = G−1

⎡
⎢⎢⎣Ĩ−1

⎡
⎢⎢⎣τ̃ − ˙̃IG

⎛
⎜⎜⎝

α̇

β̇

γ̇

⎞
⎟⎟⎠

⎤
⎥⎥⎦ − Ġ

⎛
⎜⎝

α̇

β̇

γ̇

⎞
⎟⎠

⎤
⎥⎥⎦ . (14)

Time-derivative of the mean tensor, ˙̃I in Eq. (14), can be
computed by differentiating over time the definition of Ĩ,

Eq. (10)

˙̃I = ĨAĨ, (15)

where

A = 〈�| I−1

(
dI
dt

)
I−1 |�〉 − 2Re 〈�| I−1

∣∣∣∣ d

dt
�

〉
. (16)

Note that in the rigid-rotor case, when vibrational wave func-
tion of the molecule does not evolve, d�/dt = 0 and the sec-
ond term in Eq. (17) vanishes.

The mean torque τ̃ in Eq. (14) is computed as average
over the vibrational wave function

τ̃ = −〈�(RQ)|
∑

i

ri × ∇V |�(RQ)〉, (17)

where ri × ∇V represents torque of the quencher on each
atom in the molecule, ri = {xi, yi, zi} is radius vector of ith
atom relative to molecular center or mass, the gradient ∇V

is computed with respect to Cartesian position of each atom.
Summation in Eq. (17) is over all atoms in the molecule (e.g.,
three for a triatomic molecule).

In the way, formulated above this theory can be applied to
small polyatomic molecules. The fluid rotor treatment of ro-
tation is computationally inexpensive. The most demanding
part is propagation of the time-dependent Schrodinger equa-
tion for vibration, Eq. (1) with Hamiltonian (6). As size of the
molecule increases (3N − 6 vibrational degrees of freedom
for N-atomic molecule), integrating the quantum expectation
values in Eqs. (5), (10), (15), and (17) also becomes costly.
The case of triatomic molecule was discussed in detail in
Ref. 11. Diatomic molecule is a special case, discussed
in Sec. II B below.

B. Diatomic molecule + quencher

Relative to molecular center of mass, the coordinates of
two atoms (i = 1, 2) are given by

xi = R
mi

m1 + m2
cos α sin γ, (18a)

yi = R
mi

m1 + m2
sin α sin γ, (18b)

zi = R
mi

m1 + m2
cos γ. (18c)

Substitution of Eqs. (18a)–(18c) into standard expression for
the tensor of inertia,

I =

⎛
⎜⎜⎜⎜⎝

∑
mi

(
y2

i + z2
i

) −
∑

mixiyi −
∑

mizixi

−
∑

mixiyi

∑
mi

(
x2

i + z2
i

) −
∑

miziyi

−
∑

mizixi −
∑

miziyi

∑
mi

(
x2

i + y2
i

)

⎞
⎟⎟⎟⎟⎠ , (19)

leads to

I = I M, (20)
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where matrix M is defined as

M =

⎛
⎜⎝

sin2 γ sin2 α + cos2 γ − sin2 γ sin α cos α − sin γ cos γ cos α

− sin2 γ sin α cos α sin2 γ cos2 α + cos2 γ − sin γ cos γ sin α

− sin γ cos γ cos α − sin γ cos γ sin α sin2 γ

⎞
⎟⎠ , (21)

and a scalar I = μR2 gives the moment of inertia of the di-
atomic, expressed through its reduced mass μ = m1m2/(m1

+ m2). The matrix M is singular. Thus, the tensor of inertia
I cannot be inverted, and all equations above that contain I−1

should be rewritten in the way suitable for the case of diatomic
molecule. Those are Eqs. (7), (9), (10), and (14).

For rotational potential and rotational energy of the di-
atomic fluid rotor, instead of Eqs. (7) and (9), we can write

Vrot(RQ) = J2

2μR2
= J2

2I (R)
, (7′)

EC
rot = J2

2Ĩ
. (9′)

Substituting Eq. (7′) into Eq. (8) and equating the result to
Eq. (9′), leads to the following expression for the mean mo-
ment of inertia of the diatomic fluid rotor:

Ĩ = 〈�(R)| 1

μR2
|�(R)〉−1 . (10′)

Here, the vibrational wave function �(R) is one-dimensional.
This scalar expression replaces the vector expression of
Eq. (10). From Eq. (20), it also follows that Ĩ = Ĩ M.

Positioning the diatomic molecule in space requires only
two Euler angles, α and γ , that correspond to spherical polar
coordinates. The value of β is constant, arbitrary, and can be
set to β = π /2, for convenience. Thus, Eqs. (12) and (13)
transform into

ω = G

⎛
⎜⎜⎝

α̇

0

γ̇

⎞
⎟⎟⎠ (12′)

and

G =

⎛
⎜⎝

0 cos α sin α

0 sin α − cos α

1 0 0

⎞
⎟⎠ . (13′)

Equation (14) can be formally rewritten as

ĨG

⎛
⎜⎜⎝

α̈

0

γ̈

⎞
⎟⎟⎠ = τ̃ − [˙̃IG + ĨĠ]

⎛
⎜⎝

α̇

0

γ̇

⎞
⎟⎠ . (14′)

Note that although many elements of these 3 × 3 matrixes
are zero, it is impossible to express Eq. (14′) through 2 × 2
matrixes, simply because the torque τ̃ , occurring during the
molecule-quencher collision, is represented by a 3 × 3 matrix
and, in general, none of its elements is zero. This property

is also related to evolution of the angular momentum vector,
due to torque supplied by the quencher, according to Eq. (11).
Of course, in the absence of external torque, rotation of a di-
atomic is essentially two-dimensional and could be described
by 2 × 2 matrixes in the appropriate reference frame.

III. THE EHRENFEST THEOREM

The theorem of Ehrenfest provides a link between the ex-
pectation values of quantum operators 〈q̂〉 and 〈p̂〉, and their
classical counterparts – generalized positions and momenta,
q and p. This theorem is employed in order to obtain classi-
cal equations of motion for the system which contains quan-
tum and classical degrees of freedom. The main idea is to
start with “mixed” Hamiltonian of the system, which already
includes classical variables and quantum operators, and de-
rive classical Hamiltonian by averaging quantum part over the
wave function. From such classical Hamiltonian, one can de-
rive equations of motion for classical variables. The Ehrenfest
approach involves assumption that each classical trajectory is
independent from other individual trajectories.47 Generally,
the Ehrenfest approach is valid if state-to-state transitions in
the quantum part of the system do not modify drastically the
dynamics of its classical part.48 This is the case if transition
probabilities are relatively small, or if wave functions of dif-
ferent quantum states lead to similar expectation values.

A. General theory for diatomic + atom

Using notations of Sec. II A, the total Hamiltonian opera-
tor for the system of diatomic molecule + atom can be written
as

Ĥ = − ¯2

2μR2

∂

∂R
R2 ∂

∂R
+ T̂rot + p̂2

mol

2mmol
+ p̂2

que

2mque

+V (R, α, γ, qmol, qque). (22)

Replacing the radial wave function 	(R) by new wave func-
tion �(R) = 	(R)/R permits to simplify the kinetic en-
ergy operator and calculate the volume element as |�(R)|2dR
= |	(R)|2R2dR. Expressing the rotational kinetic energy op-
erator in spherical polar coordinates in the Laplace-Beltrami
form,49 using p̂α = −i¯∂/∂α and p̂γ = −i¯∂/∂γ , leads to
the following expression for the Hamiltonian operator:

Ĥ = − ¯
2

2μ

∂2

∂R2
+ p̂γ sin γ p̂γ

2μR2 sin γ
+ p̂2

α

2μR2 sin2 γ
+ p̂2

mol

2mmol

+ p̂2
que

2mque
+ V (R, α, γ, qmol, qque). (23)
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Next step is to separate all degrees of freedom in the system
onto quantum (vibration) and classical (rotation and transla-
tion). Thus, RQ = {R} and RC = {qmol, qque, α, γ }. For classi-
cal degrees of freedom, we replace quantum operators p̂α , p̂γ ,
p̂mol, and p̂que by their classical analogues, and split Hamilto-
nian onto two parts. The quantum Hamiltonian is

ĤQ = − ¯
2

2μ

∂2

∂R2
+ p2

γ

2μR2
+ p2

α

2μR2sin2γ
+ V (RQ; RC(t)).

(24)

The classical Hamiltonian is obtained as expectation value

HC = 〈�(R)| Ĥ |�(R)〉

= p2
mol

2mmol
+ p2

que

2mque
+ 〈�(R)| ĤQ |�(R)〉

= p2
mol

2mmol
+ p2

que

2mque
+

(
p2

γ

2μ
+ p2

α

2μ sin2 γ

)

× 〈�(R)| 1

R2
|�(R)〉 + T̃Q + Ṽ (RC). (25)

Note that this expression can be conveniently rewritten by in-
troducing Ĩ defined in Eq. (10′). Indeed,

HC = p2
mol

2mmol
+ p2

que

2mque
+ p2

γ

2Ĩ
+ p2

α

2Ĩ sin2 γ
+ T̃Q + Ṽ (RC).

(26)

Here, Ṽ (RC) is the mean field potential, just as one in Eq. (5).
Expectation value of quantum kinetic energy in Eq. (26),

T̃Q = − ¯
2

2μ
〈�(R)| ∂2

∂R2
|�(R)〉 , (27)

is not a function of any classical coordinates. It is only a func-
tion of time.

From classical Hamiltonian of Eq. (26), the equations of
motions can be obtained in a standard way: q̇ = ∂HC/∂p and
ṗ = −∂HC/∂q. For translational degrees of freedom qmol and
qque, one obtains equations exactly equivalent to Eqs. (3)–(5).
For rotational degrees of freedom α and γ , this gives

α̇ = pα

Ĩ sin2 γ
, (28a)

γ̇ = pγ

Ĩ
, (28b)

ṗα = −∂Ṽ

∂α
, (28c)

ṗγ = −∂Ṽ

∂γ
+ p2

α cos γ

2Ĩ sin3 γ
. (28d)

Similar equations for rigid rotor are well known,49 but here
the emphasis is on definition of the average moment of inertia
Ĩ given by Eq. (10′).

One could erroneously think that Ĩ should be com-
puted using the average value of vibrational coordinate R̃

= 〈�(R)|R|�(R)〉, but the theory presented above shows
that Ĩ �= μR̃2. Another possibility that may seem quite ap-
propriate (but is also incorrect) is to compute Ĩ as the av-
erage value of I(R). However, one should realize that Ĩ

�= 〈�(R)| I (R) |�(R)〉. Instead, Ĩ must be computed as in-
verse of average of the inverse: Ĩ = 〈�(R)| I−1(R)|�(R)〉−1.
This expression is not trivial and, to our best knowledge, is
not well known, even for a diatomic molecule. It originates
from averaging the rotational energy, rather than vibrational
coordinate or the moment of inertia.

What are the consequences of using an incorrect ex-
pression to compute Ĩ? For a compact wave packet �(R),
like the ground vibrational state wave function, the dif-
ferences between 〈�(R)| R|�(R)〉2, 〈�(R)| R2|�(R)〉, and
〈�(R)|R−2|�(R)〉−1 can be small. However, for the large-
amplitude vibrational motion characterized by a broad wave
function the effect can be sizable. Examples include such
processes as collision-induced dissociation, dynamics of the
van der Waals states, or large-amplitude bending motion of
a floppy molecule. Also, from the fundamental theory per-
spective, the total energy of the mixed quantum/classical
system is conserved only if the correct expression Ĩ

= 〈�(R)|I−1(R)|�(R)〉−1 is used for the classical rotor (see
Sec. IV).

B. Equivalence of the two methods

It is interesting that the expression Ĩ

= 〈�(R)|I−1(R)|�(R)〉−1 appears in both the fluid-rotor
equations and in the Ehrenfest theorem treatment. In the
first case, it emerges from the requirement that expectation
value of quantum rotational energy Ẽ

Q
rot equals to classical

energy of the fluid rotor EC
rot, at every moment of time, which

guaranteed conservation of total energy. In the second case,
it comes from averaging the quantum Hamiltonian, with the
purpose of obtaining its classical counterpart. These sources
seem to be related.

There are, however, two pronounced differences between
the two methods. First, the rigid rotor equation (14) include ˙̃I
and require the knowledge of d�/dt in Eq. (16), while there
is no time-derivative of wave function involved in Eqs. (28a)–
(28d). Second, expression (17) for the mean torque includes
summation over all atoms in a molecule, while there in noth-
ing like that in Eqs. (28a)–(28d). So, the question can be
raised: Are those two methods entirely equivalent, or the ex-
pression for Ĩ is the only thing they have in common?

On one side, the Hamiltonian equations (28a)–(28d) can
be combined into the second-order equations, by differentiat-
ing over time both sides of Eqs. (28a) and (28b), and substi-
tuting Eqs. (28c) and (28d) as appropriate

(Ĩ α̈ + ˙̃I α̇) sin2 γ = −2Ĩ α̇γ̇ cos γ sin γ − ∂Ṽ

∂α
, (29)

Ĩ γ̈ + ˙̃I γ̇ = 2Ĩ α̇2 cos γ sin γ − ∂Ṽ

∂γ
. (30)

On the other side, we can work with the fluid rotor equations
and substitute (13′), (20), and (21) into (14′). This leads to
the matrix equation given in Appendix A. Let us look at its
z-component first, Eq. (A3)

Ĩ α̈ sin2 γ = τ̃z − ˙̃I α̇ sin2 γ − 2Ĩ γ̇ α̇ sin γ cos γ. (31)
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Interestingly, this equation becomes equivalent to Eq. (29), if
we can show that

τ̃z = −∂Ṽ

∂α
. (32)

This is done in Eqs. (B1) and (B2) of Appendix B,
which proves that z-component of Eq. (14′) is equivalent to
Eqs. (28a) and (28c).

In a similar manner, we can combine x- and y-
components of Eq. (14′), given as expressions (A1) and
(A2) in Appendix A, into the expression similar to Eq. (30).
Namely, multiplying (A1) by sin α and subtracting (A2) mul-
tiplied by cos α, we obtain

Ĩ (γ̈ sin α − α̈ sin γ cos γ cos α) sin α

−Ĩ (−γ̈ cos α − α̈ sin γ cos γ sin α) cos α

= [τ̃x − ˙̃I (γ̇ sin α − α̇ sin γ cos γ cos α)

− Ĩ α̇2 sin γ cos γ sin α] sin α

− [τ̃y − ˙̃I (−γ̇ cos α − α̇ sin γ cos γ sin α)

+ Ĩ α̇2 sin γ cos γ cos α] cos α. (33)

In this expression, several terms cancel and it becomes, in-
deed, equivalent to Eq. (30), if we can prove that

τ̃x sin α − τ̃y cos α = −∂Ṽ

∂γ
. (34)

This finalizes our prove that Eqs. (28a)–(28d) are equivalent
to Eq. (14′). Here, we showed that not only the definition
of Ĩ is the same in both methods, but also that the heuris-
tic “fluid-rotor” approach (introduced ad hoc in Ref. 11 and
used to treat the collisional energy transfer in recombination
reaction13, 38) is, in fact, entirely equivalent to the Ehrenfest
theorem treatment of this process.

IV. NUMERICAL RESULTS

In order to gain further insight into the mixed quan-
tum/classical approach to collisional energy transfer, we car-
ried out numerical simulations of CO (v = 1) quenching by
He impact, using Eqs. (28a)–(28d) and (10′). Potential energy
surface from Ref. 7 was employed. Calculations of converged
cross sections for this process in a broad range of tempera-
tures, 30 < T < 3000 K, will be reported in Ref. 50. Here,
we focus on fundamentally important issues of ro-vibrational
energy transfer, total energy conservation, and time evolution
of Ĩ (t). We used the Runge-Kutta method of 4th order51 for
classical degrees of freedom and the Lanczos propagator39 for
quantum degrees of freedom.

We will analyze one representative trajectory that starts
with CO (v = 1) in a highly excited rotational state J = 45.
The He atom collides with the molecule with relatively small
impact parameter b = 2.58 a0 and the center-of-mass trans-
lational energy Ecol = 4000 cm−1. The collision geometry is
rather arbitrary, neither planar nor perpendicular.

Figure 1 shows evolution of Ĩ (t). Before collision the
vibrational wave packet corresponds to an eigenstate v = 1
and we see that the value of Ĩ remains constant. During the

t (a.u.)

10000 14000 18000 22000

I 
x 

10
5 (a

.u
.)

1.72

1.73

1.74

1.75

~

FIG. 1. Time evolution of the average moment of inertia of CO molecule
Ĩ (t) along the example trajectory discussed in the text. The post-collisional
dynamics is clearly seen.

collision it starts changing, and oscillates quite dramatically
at the post-collisional state. Clearly, oscillations of Ĩ (t) cor-
respond to the motion of vibrational wave packet which, in
this case, includes appreciable populations of eigenstates up
to v = 3. This is illustrated by Fig. 2, where we plotted pop-
ulations of vibrational states along the trajectory, determined
by projecting the vibrational wave packet onto the instanta-
neous vibrational basis, i.e., the vibrational eigenstates com-
puted at each moment of time using the instantaneous value

of J (t) =
√

p2
γ + p2

α/ sin2 γ . Vibrational state-to-state transi-
tions are clearly seen for v = 0, 1, 2, and 3. Note that for
this trajectory the angular momentum transfer is quite sig-
nificant, �J ≈ −19, so that the initial and the final vibra-
tional spectra are very different. However, despite dramatic
vibrational motion and oscillations of Ĩ (t) during the post-
collisional dynamics, the value of J remains constant (within
accuracy of the numerical method, very high here, δJ ≈ 10−6).
This demonstrates conservation of the angular momentum.

t (a.u.)
10000 14000 18000 22000

P

10
-7
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-3
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-1

10
0

v = 0

v = 1

v = 2

v = 3

FIG. 2. Evolution of vibrational state populations in CO during its collision
with He atom, as they follow the example trajectory discussed in the text.
Vibrational state-to-state transitions occur during the relatively short time of
collision.
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t (a.u.)

10000 14000 18000 22000

E
vi

b 
(c

m
-1

)

2190

2210

2230

2250

FIG. 3. Evolution of average vibrational energy of CO (quantum expectation
value) during its collision with He atom, as they follow the example trajectory
discussed in the text. The post-collisional dynamics is seen.

Figure 3 shows expectation value of quantum vibrational
energy Ẽvib = 〈�(R)|T̂ + V (R)|�(R)〉 computed along the
trajectory and Fig. 4 shows evolution of classical rotational
energy Ẽrot = J 2/2Ĩ . Clearly, the post-collisional stage of the
process exhibits very pronounced and ongoing ro-vibrational
energy exchange, with amplitude close to 10 cm−1. Indeed,
comparing Figs. 3 and 4, one can see that oscillations of Ẽvib

and Ẽrot are out of phase (shifted by π ). The total energy
is conserved with very high precision, δE ≈ 10−2cm−1, de-
fined only by accuracy of the numerical integration method.
Overall, in this collision the molecule lost about �Etot

= 2580 cm−1. On average, �Ẽrot ≈ 2560 cm−1 and �Ẽvib

≈ 20 cm−1.
Careful analysis of the long time behavior during the

post-collisional stage shows two characteristic frequencies of
oscillations in Ĩ (t), Ẽvib, and Ẽrot. One (higher) frequency
is very obvious from Figs. 1, 3, and 4. It corresponds to vi-
brational motion of the molecule. The second (lower) fre-
quency corresponds to vibrational inharmonicity. It manifests
as slight modulation of the vibrational oscillation amplitude

t (a.u.)

10000 14000 18000 22000

E
ro

t (
cm

-1
)

1260

1280

1300

1320

FIG. 4. Evolution of classical rotational energy of CO during its collision
with He atom, as colliding partners follow the example trajectory discussed
in the text. The post-collisional dynamics is seen.

t (a.u.)

10000 14000 18000 22000

τ 
(a

.u
.)

-0.03

-0.02

-0.01

0.00

τx

τy

τz

FIG. 5. Evolution of three Cartesian components of torque τ̃ , as CO collides
with He atom, following the example trajectory discussed in the text.

in Ĩ (t), Ẽvib, and Ẽrot. Although not very clear but, still, this
effect can be seen in Fig. 1, which captures quarter-period of
this low frequency dynamics.

Figure 5 shows evolution of three components of the
mean torque τ̃ during the moment of collision. All of them
contribute to rotational de-excitation of the molecule and van-
ish when the collision is over. This is expected, since the
geometry of collision is pseudo-arbitrary and the process is
treated in the three-dimensional space, even though the in-
stantaneous rotation of the diatomic molecule at each moment
of time is essentially two-dimensional.

Coming back to the question of energy conserva-
tion, we repeated calculations for the same trajectory two
more times: one using μ〈�(R)|R|�(R)〉2 and second us-
ing μ〈�(R)|R2|�(R)〉 for Ĩ , instead of the correct Ĩ

= μ〈�(R)|R−2|�(R)〉−1 of Eq. (10′). In each test-case, we
computed the change of total energy in the system, δE. Re-
sults are presented in Fig. 6 and we see that the total energy
is conserved only in the original correct case (green line). In
two test-cases, some energy was lost: δE ≈ 6.0 cm−1 and

t (a.u.)

10000 14000 18000 22000

δE
  (

cm
-1

)

-10

-8

-6

-4

-2

0

2

FIG. 6. Total energy conservation in the mixed quantum/classical calcula-
tions. Correct method (green) uses Eq. (10′) for the mean tensor of inertia.
Alternative methods discussed in the text (blue and red) give wrong results,
δE �= 0.
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8.7 cm−1, respectively. Figure 6 shows that energy is lost dur-
ing the short time interval of the molecule-quencher collision,
when response of the molecule to the torque of the quencher is
essential. We also checked probabilities of state-to-state tran-
sitions in the two test-cases and found that they changed by
∼5% and ∼10%, respectively. This demonstrates that in dy-
namics calculations one should use only the correct expres-
sion for Ĩ , that of Eq. (10′).

V. CONCLUSIONS

In this paper, we reviewed theory of two mixed quan-
tum/classical approaches to collisional energy transfer and ro-
vibrational energy flow: the heuristic fluid-rotor method (in-
troduced earlier to treat recombination reactions11) and the
more rigorous method based on the Ehrenfest theorem.47 For
the case of diatomic molecule + quencher, we showed ana-
lytically that these two methods are entirely equivalent. No-
tably, they both make use of the average moment of inertia ex-
pressed as Ĩ = 〈�(R)| I−1(R) |�(R)〉−1. Although diatomic
molecule is the simplest case, this work serves as a proof-of-
principle and gives us transparent tools for similar treatments
of triatomic and small polyatomic molecules.

Despite the equivalence discussed above, each of the two
formulations has its own advantages, and is interesting on its
own. For example, the Hamiltonian equations (28a)–(28d)
for the diatomic molecule are easier to propagate numerically
compared to the fluid-rotor equation (14′). But the fluid-rotor
approach gives some additional insight, not immediately
present in the Hamiltonian equations of motion (28a)–
(28d). One example is the equivalence of the expectation
value of quantum rotational potential, Eq. (8), and the classi-
cal rotational energy, Eq. (9), which is built into the fluid-rotor

approach and leads to the central equation (10). Second ex-
ample is the role played by the angular momentum and the
torque in Eq. (11). These intuitive features provide better
understanding of the mixed quantum/classical methodology.
Another important aspect is generality of the fluid-rotor ap-
proach. Namely, Eqs. (10), (14), and (17) are expressed in
Cartesian coordinates and can be directly applied to basically
any molecule (triatomic, small polyatomic), irrespective to the
choice of the internal vibrational coordinates.

Numerical results presented here illustrate energy and
momentum conservation in the mixed quantum/classical ap-
proach and open opportunities for computationally affordable
treatment of collisional energy transfer. Calculations of con-
verged cross sections for CO (v = 1) quenching by He impact
in a broad range of temperatures, 30 < T < 3000 K, are in
progress and will be reported in Ref. 50.
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APPENDIX A: MATRIX EVOLUTION

Substitution of Eqs. (13′), (20), and (21) into Eq. (14′)
gives

Ĩ

⎛
⎜⎜⎝

sin2 γ sin2 α + cos2 γ − sin2 γ sin α cos α − sin γ cos γ cos α

− sin2 γ sin α cos α sin2 γ cos2 α + cos2 γ − sin γ cos γ sin α

− sin γ cos γ cos α − sin γ cos γ sin α sin2 γ

⎞
⎟⎟⎠

⎛
⎜⎜⎝

0 cos α sin α

0 sin α − cos α

1 0 0

⎞
⎟⎟⎠

⎛
⎜⎜⎝

α̈

0

γ̈

⎞
⎟⎟⎠

=

⎛
⎜⎜⎝

τx

τy

τz

⎞
⎟⎟⎠ −

⎛
⎜⎜⎝

sin2 γ sin2 α + cos2 γ − sin2 γ sin α cos α − sin γ cos γ cos α

− sin2 γ sin α cos α sin2 γ cos2 α + cos2 γ − sin γ cos γ sin α

− sin γ cos γ cos α − sin γ cos γ sin α sin2 γ

⎞
⎟⎟⎠

×

⎛
⎜⎜⎝ ˙̃I

⎛
⎜⎜⎝

0 cos α sin α

0 sin α − cos α

1 0 0

⎞
⎟⎟⎠ + Ĩ α̇

⎛
⎜⎜⎝

0 − sin α cos α

0 cos α sin α

0 0 0

⎞
⎟⎟⎠

⎞
⎟⎟⎠

⎛
⎜⎜⎝

α̇

0

γ̇

⎞
⎟⎟⎠

−Ĩ γ̇

⎛
⎜⎜⎝−

sin 2γ sin2 α − sin 2γ − sin 2γ sin α cos α − cos 2γ cos α

sin 2γ sin α cos α sin 2γ cos2 α − sin 2γ − cos 2γ sin α

− cos 2γ cos α − cos 2γ sin α 2 sin γ cos γ

⎞
⎟⎟⎠

⎛
⎜⎜⎝

0 cos α sin α

0 sin α − cos α

1 0 0

⎞
⎟⎟⎠

⎛
⎜⎜⎝

α̇

0

γ̇

⎞
⎟⎟⎠

−Ĩ α̇

⎛
⎜⎜⎝

sin2 γ sin 2α − sin2 γ cos 2α sin γ cos γ sin α

− sin2 γ cos 2α − sin2 γ sin 2α − sin γ cos γ cos α

sin γ cos γ sin α − sin γ cos γ cos α 0

⎞
⎟⎟⎠

⎛
⎜⎜⎝

0 cos α sin α

0 sin α − cos α

1 0 0

⎞
⎟⎟⎠

⎛
⎜⎜⎝

α̇

0

γ̇

⎞
⎟⎟⎠ .
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Three components of this matrix equation can be analyzed separately. For x-component, we obtain

Ĩ (γ̈ sin α − α̈ sin γ cos γ cos α) = τ̃x − ˙̃I (γ̇ sin α − α̇ sin γ cos γ cos α)

− Ĩ α̇γ̇ cos2 γ cos α + Ĩ α̇γ̇ cos 2γ cos α + Ĩ α̇γ̇ sin2 γ cos α − Ĩ α̇2 sin γ cos γ sin α

= τ̃x − ˙̃I (γ̇ sin α − α̇ sin γ cos γ cos α) − Ĩ α̇2 sin γ cos γ sin α. (A1)

For y-component, we obtain

Ĩ (−γ̈ cos α − α̈ sin γ cos γ sin α) = τ̃y − ˙̃I (−γ̇ cos α − α̇ sin γ cos γ sin α)

− Ĩ α̇γ̇ cos2 γ sin α + Ĩ α̇γ̇ cos 2γ sin α + Ĩ α̇γ̇ sin2 γ sin α + Ĩ α̇2 sin γ cos γ cos α

= τ̃y − ˙̃I (−γ̇ cos α − α̇ sin γ cos γ sin α) + Ĩ α̇2 sin γ cos γ cos α. (A2)

For z-component, we obtain

Ĩ α̈ sin2 γ = τ̃z − ( ˙̃I α̇ sin2 γ + Ĩ γ̇ α̇ sin γ cos γ + 2Ĩ γ̇ α̇ sin γ cos γ − Ĩ γ̇ α̇ sin γ cos γ )

= τ̃z − ˙̃I α̇ sin2 γ − 2Ĩ γ̇ α̇ sin γ cos γ. (A3)

APPENDIX B: CHAIN RULE

Although in Sec. III A we expressed Ṽ as a function of
RC = {qmol, qque, α, γ }, here we will have to switch vari-
ables to Cartesian coordinates with respect to molecular cen-
ter of mass, r1 = {x1, y1, z1} and r2 = {x2, y2, z2}, defined by
Eqs. (18a)–(18c) and consistent with Eq. (17). Using the chain
rule of differentiation, we can write

∂Ṽ

∂α
= ∂Ṽ

∂x1

∂x1

∂α
+ ∂Ṽ

∂x2

∂x2

∂α
+ ∂Ṽ

∂y1

∂y1

∂α

+ ∂Ṽ

∂y2

∂y2

∂α
+ ∂Ṽ

∂z1

∂z1

∂α
+ ∂Ṽ

∂z2

∂z2

∂α

= − ∂Ṽ

∂x1
y1 − ∂Ṽ

∂x2
y2 + ∂Ṽ

∂y1
x1 + ∂Ṽ

∂y2
x2. (B1)

Here, we used the following properties: ∂xi/∂α = −yi, ∂yi/∂α

= xi, and ∂zi/∂α = 0, which follow from the definitions of
Eqs. (18a)–(18c). Introducing forces expressed in Cartesian
coordinates, rearranging the terms, and using the definition of
torque τ = r × F, we obtain

∂Ṽ

∂α
= F̃x1y1 − F̃y1x1 + F̃x2y2 − F̃y2x2

= −τ̃z1 − τ̃z2 = −
∑

i

τ̃zi
= −τ̃z. (B2)

Here, summation is over two atoms in the diatomic, just as in
Eq. (17).

Similarly, using Eqs. (18a)–(18c) we can write

∂Ṽ

∂γ
= ∂Ṽ

∂x1

∂x1

∂γ
+ ∂Ṽ

∂x2

∂x2

∂γ
+ ∂Ṽ

∂y1

∂y1

∂γ
+ ∂Ṽ

∂y2

∂y2

∂γ

+ ∂Ṽ

∂z1

∂z1

∂γ
+ ∂Ṽ

∂z2

∂z2

∂γ

= ∂Ṽ

∂x1
z1 cos α + ∂Ṽ

∂x2
z2 cos α + ∂Ṽ

∂y1
z1 sin α

+ ∂Ṽ

∂y2
z2 sin α − ∂Ṽ

∂z1
(x1 cos α + y1 sin α)

− ∂Ṽ

∂z2
(x2 cos α + y2 sin α) . (B3)

Introducing forces expressed in Cartesian coordinates, rear-
ranging the terms and using the definition of torque, we obtain

∂Ṽ

∂γ
= (

F̃z1x1 − F̃x1z1 + F̃z2x2 − F̃x2z2
)

cos α

+ (
F̃z1y1 − F̃y1z1 + F̃z2y2 − F̃y2z2

)
sin α

=
∑

i

τ̃yi
cos α −

∑
i

τ̃xi
sin α

= τ̃y cos α − τ̃x sin α. (B4)
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