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Abstract 
Nanocomposites of polystyrene, high impact polystyrene, acrylonitrile–butadiene–styrene terploymer, 
polypropylene and polyethylene have been prepared using an organically-modified clay that contains 
polycaprolactone—PCL-modified clay. Depending upon the mode of preparation of the PCL-modified clay, all 
three types of nanocomposites, immiscible, intercalated and exfoliated, may be produced. The materials have 
been characterized by X-ray diffraction, transmission electron microscopy, cone calorimetry, thermogravimetric 
analysis, and the evaluation of mechanical properties. 
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1. Introduction 
Polymer clay nanocomposites exhibit many unique properties, including increased heat distortion 

temperature, reduced flammability and simultaneously improved physical properties of the polymer, which 
make these materials very attractive. The preparation of a nanocomposite can be accomplished either by a 
blending process or by polymerization. The type of nanocomposite that is obtained, immiscible, intercalated or 
exfoliated, is ordinarily quite dependent upon the preparative process that is used [1]. 

 
The most commonly used clay for polymer/clay nanocomposites is montmorillonite (MMT), which has 

an inorganic ion balancing the charge in the gallery space of the clay. This clay must be modified in order to 
make it organophilic enough so that it can interact with the typical organic polymer. This is usually accomplished 
by ion-exchanging the inorganic cation with an ammonium, or other ‘onium' ion, that contains at least one long 
alkyl chain. 

It is well-known that one can easily obtain exfoliated nanocomposites of polycaprolactone both by melt 
blending this polymer with a clay or by an in situ polymerization of ϵ-caprolactone in the presence of the clay. 
Poly (ϵ-caprolactone) may form hydrogen bonds with the hydroxy groups on the clay surface and it also exhibits 
compatibility with a great variety of other polymers [2]. Thus one may expect that the presence of 
polycaprolactone within the gallery space may permit one to form nanocomposites of other polymers. 
 

Nanocomposites of polycaprolactone have been widely reported [3], [4], [5], [6], [7], [8], [9], [10], [11], [12]. These have 
been prepared both by blending and by ring opening polymerization of ϵ-caprolactone. The preparation of 
exfoliated materials is easier for this polymer than for many other polymers. Two of the papers cited above are 
especially germane to the work herein described [6], [12]. In these papers PCL has essentially been used as a 
compatibilizer to enable the formation of an exfoliated nanocomposite with a polymer for which the formation 
is otherwise difficult; in one case polyurethane and in the other styrene–acrylonitrile (SAN) copolymer. 
In this study, poly(ϵ-caprolactone) (PCL) clay nanocomposites are prepared either by melt blending of PCL with 
organically-modified clay or by in situ ring opening polymerization of ϵ-caprolactone (CL) with organically-
modified clay. This new organically-modified clay was then melt blended with polystyrene (PS), high impact 
polystyrene (HIPS), acrylonitrile–butadiene–styrene terpolymer (ABS), polypropylene (PP) and polyethylene (PE) 
to give nanocomposites. 

2. Experimental 
2.1. Materials 

Most chemicals used in this study, including poly(ϵ-caprolactone) (Mw=65,000, Tm=60 °C), ϵ-caprolactone 
(99%, bp=98–99 °C/2 mmHg), PS (Melt flow index 200 °C/5 kg, 7.5 g/10 min, Mw=230,000), PE (low density, Melt 
flow index, 190 °C/2.16 kg, 7 g/10 min), PP (Isotactic, Melt flow index, 230 °C/2.16 kg, 0.5 g/10 min) were 
acquired from Aldrich Chemical Co. ABS (Magnum 275, 230 °C/3.8 kg, 2.6 g/10 min) and HIPS (Melt flow index 
200 °C/5 kg, 6 g/10 min) were provided by the Dow Chemical Company. Methyl tallow bis-2-hydroxyethyl 
ammonium modified clay, Cloisite 30B and dimethyl dehydrogenated tallow alkyl ammonium modified clay, 
Cloisite 15A, were provided by Southern Clay Products, Inc. 

 

2.2. Instrumentation 
Thermogravimetric analysis (TGA) was performed on a Cahn TG-131 instrument under a flowing 

nitrogen atmosphere at a scan rate of 10 °C/min from 20 to 600 °C; temperatures are reproducible to ±3 °C, 
while the error bars on the fraction of nonvolatile material is ±3%. Cone calorimetry was performed using an 
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Atlas Cone 2 instrument according ASTM E 1354-92 at an incident flux of 35 kW/m2 or 50 kW/m2 using a cone 
shaped heater. Exhaust flow was set at 24 l/s and the spark was continuous until the sample ignited. Cone 
samples were prepared by compression molding the sample (20–50 g) into square plaques using a heated press. 
Typical results from Cone calorimetry are reproducible to within about±10%. These uncertainties are based on 
many runs in which thousands of samples have been combusted [13], [14]. X-ray diffraction was performed on a 
Rigaku Geiger Flex, 2-circle powder diffractometer; scans were take from 2 theta 0.86 to 10, step size 0.1, and 
scan time per step of 10 s. Bright field transmission electron microscopy (TEM) images of the composites were 
obtained at 60 kV with a Zeiss 10c electron microscope. The samples were ultramicrotomed with a diamond 
knife on a Riechert-Jung Ultra-Cut E microtome at room temperature to give ∼70 nm thick sections. The sections 
were transferred from the knife-edge to 600 hexagonal mesh Cu grids. The contrast between the layered 
silicates and the polymer phase was sufficient for imaging, so no heavy metal staining of sections prior to 
imaging is required. Mechanical properties were obtained using a Reliance RT/5 (MTS System Corporation, 
Model NO 4501029) computerized system for material testing at a crosshead speed of 0.2 in/min and 5 kN load 
cell. The samples were prepared both by injection molding, using an Atlas model CS 183MMX mini-max molder, 
and by stamping from a sheet; the reported values are the average of six determinations. 
 

2.3. Preparation of PCL/clay by in situ polymerisation [6] 
A 90 g sample of ϵ-caprolactone (dried over CaH2 and distilled under reduced pressure prior to use) and 

10 g of 30B were combined in a three neck flask and stirred at room temperature for 4 h, then heated to 170 °C 
and maintained at this temperature for 48 h. After cooling, the resulting solid was dispersed in THF and then 
precipitated by the addition of hexane and dried in vacuo. In order to determine if any polymer had become 
attached to the clay, the new organically-modified clay was extracted with acetone overnight and the fraction 
that was recovered was compared to the amount of clay that was originally present. When 10% 30B clay was 
used, the residue after extraction had a mass of 21–27%; between 10 and 20% of the mass of polymer was 
attached to the clay. 

 

2.4. Preparation of PCL/clay by melt blending 
A sample of clay (pre-dried at 80 °C for 12 h) and PCL were initially dry-mixed in a beaker, typically using 

10% clay. This was then melt blended in a Brabender Plasticorder, which was equipped with 50 cm3 cell, at high 
speed (60 rmp) at 100 °C for 30 min. The material was removed from the mixer and permitted to cool to room 
temperature. It was then again charged to the Brabender and blended at 90 °C for 20 min. 

 

2.5. Preparation of polymer–clay nanocomposites 
All the nanocomposites prepared in this study were melt blended in a Brabender Plasticorder at high 

speed (60 rmp) at 190 °C for 15 min for the PS, HIPS, ABS, PP and PE. The composition of each nanocomposite is 
calculated from the amount of organic clay and polymer charged to the Brabender. The typical ratio is 70% 
polymer and 30% PCL/clay, which corresponds to 3% clay in the final system. The material code used shows first 
of all the clay used, 30B or 15A, then the way in which the polycaprolactone clay was obtained, either CL for the 
monomer or PCL for the polymer. In all cases the polycaprolactone clay was prepared using 10% clay and the 
nanocomposite contained 70% polymer and 30% organically-modified clay; this corresponds to 3% clay in all 
systems. 

2.6. Measurement of molecular weight 
The PCL/clay masterbatches, which were prepared via in situ polymerization, were extracted with 

refluxing acetone reflux for 48 h, then the molecular weights were determined by intrinsic viscosity 
measurements using the relation [η]=9.94×10−5 Mw0.82 in benzene at 30 °C [15]. The viscosity average molecular 
weight of the extracted PCL was 15,000±5000.Tm=60–70 °C. 
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3. Results and discussion 
Two new organically-modified clays were prepared in this study by either melt blending 

polycaprolactone (PCL) with a clay or by doing a ring-opening polymerization of ϵ-caprolactone in the presence 
of a clay. One of the clays that was used, 15A, contains no functionality, i.e., it simply contains alkyl moieties and 
organically-modified clays were prepared only by melt blending with PCL. The other clay, 30B, contains hydroxyl 
groups which could react with the oligomer as it forms. New organically-modified clays were prepared both by 
melt blending and by polymerization. When the amount of clay used was 10%, it was determined that there was 
between 20 and 30% insoluble material so a relatively large fraction of material did attach to the clay, 
presumably by reaction with the OH groups. 

3.1. XRD measurement of PCL/clay 
There is a big difference between the organically-modified clay that is prepared using the non-functionalized 
15A clay and the clay which has hydroxyl functionalities attached to it, as shown by the XRD traces that are seen 
in Fig. 1. For the 15A clay, peaks are apparent while there are no peaks for the 30B clay, regardless of whether it 
was prepared by melt blending or by in situ polymerization. Fig. 2 shows the XRD traces for the nanocomposites 
that were prepared using the in situ organically-modified 30B clay while Fig. 3 shows the analogous traces for 
the melt blended 30B system. Five different polymers, polystyrene (PS), high impact polystyrene (HIPS), 
acrylonitrile–butadiene–styrene terpolymer (ABS), polypropylene (PP) and polyethylene (PE), have been studied 
and no peaks are seen for all polymers. This would normally indicate either that an exfoliated nanocomposite 
had been produced or that there was sufficient disorder introduced by the preparation process so that peaks 
cannot be seen. In the case of the 15A clay, peaks are seen for each polymer, as shown in Fig. 4. The d-spacing is 
a little smaller for each of these nanocomposites than it is for the clay, but the change is quite small. Based only 
on the XRD traces, one must suggest that the nanocomposites formed with the 30B clay are likely to be 
exfoliated while those formed from 15A clay are intercalated. 
 

 
Fig. 1. XRD patterns of PCL/clay. 
 

 
Fig. 2. XRD patterns of polymer/30BCL nanocomposites. 
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Fig. 3. XRD patterns of polymer/30BPCL nanocomposites. 
 

 
Fig. 4. XRD patterns of polymer/15APCL nanocomposites. 
 

3.2. Transmission electron microscopy 
One may not rely only on XRD results to ascertain the type of nanocomposite that has been formed, 

some other technique is also required. The usual technique that is used is transmission electron microscopy, 
TEM, but other techniques, including cone calorimetry may be used. TEM images have been obtained at both 
low and high magnification for all of the systems that have been studied and the images are presented in Fig. 
5, Fig. 6, Fig. 7, Fig. 8. There are miscibility problems associated with the combination of PCL with some of these 
polymers and this is reflected in the TEM images, as a consequence in some cases only images obtained at low 
magnification are presented while in other cases those at high magnification, which show the exfoliated nature 
of the nanocomposites, are shown. Fig. 5 shows the low magnification image of the PS nanocomposite. Clay 
layers are not visible in this but one can clearly see the domains of PCL and PS [9]. Fig. 6 shows the images at 
both low and high magnification for the ABS nanocomposite. At low magnification, one can see the PCL domains 
but one can also see the clay layers. At high magnification, the individual clay layers are distinctly visible and it is 
clear that an exfoliated system has been produced. The low magnification image of the PE nanocomposite is 
shown in Fig. 7. Again, miscibility is an issue and the clay is not visible. On the other hand, Fig. 8 presents the 
high magnification image of the PP nanocomposite and again the individual clay layers and the exfoliated nature 
of the nanocomposite is clearly seen. 
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Fig. 5. TEM images for PS-30BPCL nanocomposites at low magnification. 
 

 
Fig. 6. TEM images for ABS-30BPCL nanocomposites at low (left) and high (right) magnification. 
 

 
Fig. 7. TEM images for PE-30BPCL nanocomposites at low magnification. 



 
Fig. 8. TEM images for PP-30BPCL nanocomposites at high magnification. 
 

3.3. TGA characterization of nanocomposites 
The thermal stability of the nanocomposites has been examined by thermogravimetric analysis (TGA); 

the information that seems to be most important to characterize thermal stability is the onset temperature of 
the degradation, which is measured both by the temperature at which 10% degradation occurs (T10%) and the 
mid-point of the degradation (T50%), and the fraction which is not volatile at 600 °C, denoted as char. The data 
for all of the nanocomposites is shown in Table 1 and the TGA curves are shown in Fig. 9, Fig. 10, Fig. 11, Fig. 
12, Fig. 13, Fig. 14. The first comments should be on the clays themselves; these clays show very good thermal 
stability, with 10% degradation occurring around 390 °C. This is significantly higher than what is observed for the 
starting materials, 15A shows 10% degradation at 330 °C while the value for 30B is 320 °C. The clays alone 
undergo degradation in two steps, a Hofmann elimination, giving a trialkylammonium cation, followed by the 
loss of the amine leaving only a proton as the counterion. The enhanced thermal stability in the presence of PCL 
must indicate this degradation is inhibited. There is very little temperature difference between 10 and 50% 
degradation, which shows the steepness of the degradation curve. In general, the temperatures of both 10 and 
50% degradation are enhanced for the nanocomposites relative to the virgin polymers. There is apparently a 
greater enhancement for the clays prepared by melt blending of the polymer than for that prepared by in situ 
polymerization. This is likely due to the higher molecular weight for the polymer as compared to the in situ 
polymerized material. In previous work from this laboratory, a clay which contains a styrene oligomer was 
prepared [16]. The enhancements in the onset temperature are larger for this PCL modified clay than for the 
styrene-modified clay. 

 
Table 1. TGA results for PCl/clay and its nanocomposites 

Sample T10% (°C) T50% (°C) Char (%) 
30BCl 387 408 11 
14APCl 395 419 11 
30BPCl 386 416 10     
PS 370 422 0 
PS-30BCl 391 447 8 
PS-15APCl 407 449 2 
PS-30BPCl 395 451 4     
HIPS 414 442 2 
HIPS-30BCl 394 459 6 
HIPS-15APCl 410 454 2 
HIPS-30BPCl 411 461 5     
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ABS 402 431 3 
ABS-30BCl 418 450 7 
ABS-15APCl 419 447 5 
ABS-30BPCl 424 455 4     
PP 354 431 1 
PP-30BCl 394 470 6 
PP-15APCl 415 473 2 
PP-30BPCl 404 479 5     
PE 398 469 1 
PE-30BCl 393 499 5 
PE-15APCl 412 493 2 
PE-30BPCl 401 504 4 

 

 
Fig. 9. TGA curve of PCL/clay hybrids. 
 

 
Fig. 10. TGA curve of PS-PCL/clay nanocomposites. 
 

 
Fig. 11. TGA curve of HIPS-PCL/clay nanocomposites. 
 

 
Fig. 12. TGA curve of ABS-PCL/clay nanocomposites. 



 
Fig. 13. TGA curve of PP-PCL/clay nanocomposites. 
 

 
Fig. 14. TGA curve of PE-PCL/clay nanocomposites. 
 

The TGA curves for both PP and PE nanocomposites show two steps in the degradation, while the virgin 
polymers show only a single step. The onset temperature is greatly enhanced for these systems; it appears that 
the PCLpresent in the clay must undergo the initial degradation and this must stabilize the PP and PE so that 
they will degrade at higher temperature. No explanation for these observations is currently available. 

3.4. Cone calorimetric characterization of nanocomposites 
In previous work from this laboratory and other groups, it has been shown that nanocomposites have 

enhanced fire retardancy [13], [14], [16]. The suggested mechanism is that an aluminosilicate layer is built up on the 
surface during burning, which may act as a barrier to both mass transport of degrading polymer to the vapor 
phase and to insulate the polymer from the flame. Cone calorimetry is usually used to evaluate the fire 
properties of polymers; the parameters that are available include: the time to ignition, the heat release rate 
curve, the specific extinction area, SEA, a measure of smoke, and the mass loss rate. The normal observation for 
nanocomposites is that the time to ignition is normally decreased, i.e. the nanocomposites are actually easier to 
ignite than are the virgin polymer; the peak heat release rate is decreased, the% reduction is very polymer 
dependent; the total heat released is similar for the virgin polymer and nanocomposites, which means that all of 
the polymer will burn; the smoke increases by a small amount; and the mass loss rate is decreased. The results 
are shown in Table 2. The reduction in peak heat release rate (PHRR) must be compared with previous values for 
the various polymers in order to evaluate these reductions. The reduction expected for PS is about 60%, for 
HIPS, about 40%, for ABS, about 25%, for PP, about 35% and for PE, about 30%. A reduction of less than 15% 
should be taken as a indication that nanocomposite formation has not occurred. Thus all three organically-
modified clays give nanocomposite formation for PS and HIPS. The difference between the polymerized and the 
melt blended clays may be attributed to the difference in molecular weights of the materials used. The 
reduction in PHRR for HIPS is larger than any that have been previously reported. For ABS, no nanocomposite is 
formed with the in situ organically-modified clay nor for the 15A clay. Likewise nanocomposites are not formed 
for PP and PE with the 15A clay. The reductions observed for both PP and PE are larger than values that have 
been previously reported. The times to ignition are perhaps a little longer than have been previously observed 
and the total heat released is almost the same as that of the virgin polymer, indicating that all of the polymer 
does eventually burn. These values are about what would expect for nanocomposite formation. 
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Table 2. Cone data of PCl/clay nanocomposites at 35 kW/m2 
Sample Time to 

ignition 
(s) 

PHRRa, kW/m2 (% 
reduction)b 

Time top 
PHRR (s) 

Total heat 
released 
(MJ/m2) 

SEAc(m2/kg) Mass loss 
rate (g/s.m2) 

PS 53±7 1425±178 113±4 89±2 980±28 35±2 
PS-30BCl 47±4 735±34 (48%) 117±9 79±3 1203±56 21±1 
PS-15APCl 50±4 832±38 (42%) 77±2 84±3 1233±37 22±1 
PS-30BPCl 46±1 483±8 (66%) 79±6 78±2 1280±12 13±1        
HIPS 60±6 1348±11 99±1 93±3 1051±69 32±1 
HIPS-30BCl 47±1 854±4 (36%) 105±5 85±3 1211±7 24±0 
HIPS-15APCl 61±4 929±16 (31%) 120±19 86±5 1197±21 25±1 
HIPS-
30BPC1 

69±1 569±1 (58%) 114±1 80±2 1286±24 16±1 
       
ABS 57±3 1146±35 116±2 92±2 944±7 27±0 
ABS-30BCl 71±1 1114±41 (3%) 120±3 90±0 1201±1 29±1 
ABS-15APCl 71±2 1241±45 (0%) 110±3 92±0 1093±11 30±0 
ABS-30BPC1 67±3 831±94 (27%) 117±9 77±8 1070±2 24±2        
PP 55±3 1733±179 119±4 109±3 541±26 24±1 
PP-30BCl 40±6 850±78 (51%) 84±1 91±3 627±29 17±2 
PP-15APCl 52±2 1565±136 (11%) 122±8 122±5 657±11 23±1 
PP-30BPC1 49±4 704±8 (59%) 115±4 94±0 710±15 15±1        
PE 76±3 1740±37 134±6 114±6 533±32 22±1 
PE-30BCl 75±0 1156±106 (34%) 119±6 107±7 667±9 18±1 
PE-15APCl 79±2 1484±102 (15%) 165±4 98±1 531±8 23±1 
PE-30BPC1 71±2 861±21 (51%) 102±12 92±1 579±22 15±1 

aPHRR, peak heat release rate 
b(% reduction), [PHRR (virgin polymer) - PHRR (nanocomposite)]/PHRR 
cSEA, Specific Extinction Area 
 

3.5. Evaluation of mechanical properties 
All the mechanical properties, including Young's modulus, stress at break, strain at break of all 

nanocomposites and virgin polymers, are reported in Table 3. The variation in Young's modulus is not consistent 
for all of the polymers. For PP and PE, the in situ polymerized material gives the largest value while this gives the 
lowest Young's modulus for PS, HIPS and ABS. Since this material has the lowest molecular weight for the clay, 
one may expect the results observed for the styrenics, but not for the polyolefins. No explanation can be offered 
at this time to explain the variation in mechanical properties. 

 
Table 3. Mechanical properties of PCL/clay nanocomposites 

Sample Stress at break (Mpa) Strain at break (%) Modulus (Gpa) 
PS 34.4±7.4 1.62±0.28 4.06±0.30 
PS-30BCl 17.4±2.5 0.82±0.16 3.97±0.48 
PS-15APCl 31.4±4.9 1.21±0.20 4.09±0.30 
PS-30BPCl 41.2±7.2 1.21±0.15 4.97±0.34     
HIPS 17.5±1.2 2.40±1.80 2.87±0.09 
HIPS-30BCl 12.4±1.5 0.80±0.06 2.55±0.23 
HIPS-15APCl 21.2±2.0 1.06±0.10 2.69±0.14 
HIPS-30BPCl 19.7±1.7 0.84±0.07 3.03±0.14     
ABS 26.8±1.7 11.78±6.13 2.58±0.04 

https://www.sciencedirect.com/science/article/pii/S0141391003001976?via%3Dihub#TBLFN2A
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ABS-30BCl 17.9±0.3 11.16±0.36 1.54±0.17 
ABS-15APCl 21.5±0.8 30.03±10.53 2.01±0.10 
ABS-30BPCl 20.4±0.5 55.68±7.52 1.92±0.11     
PP 30.5±2.1 3.07±0.52 2.53±0.20 
PP-30BCl 13.8±4.7 1.42±0.49 2.59±0.32 
PP-15APCl 23.1±2.8 3.39±1.24 2.30±0.37 
PP-30BPCl 23.0±3.3 2.45±0.68 2.69±0.39     
PE 9.0±0.8 41.05±6.02 0.31±0.04 
PE-30BCl 7.9±0.9 8.41±2.73 0.86±0.10 
PE-15APCl 11.5±1.0 46.01±10.96 0.75±0.15 
PE-30BPCl 11.9±1.1 67.73±10.21 0.56±0.03 

4. Conclusions 
Polymer/clay nanocomposites of polystyrene, HIPS, ABS, PP and PE can be the prepared by blending 

with organically-modified clays that contain polycaprolactone. The PCL is essentially serving as a compatibilizer 
to enhance the compatibility between the polymer and the clay. Exfoliated nanocomposites result when a clay 
which contains hydroxyl functionality is used while either immiscible or intercalated nanocomposites are formed 
when the starting clay does not contain functional groups on the ammonium cation. Most nanocomposites of 
polypropylene are produced using PP-g-MA as a compatibilizer while, in this system, virgin polypropylene may 
be used. The starting clay and the mode by which the PCL is added to the clay has a large effect on the type of 
material that is produced. The reduction in peak heat release rate is larger, for some polymers, than has been 
previously observed. Cone calorimetry is a useful technique to probe nanocomposite formation. 
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