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Chapter 1 – Introduction 
 

Report Organization 
 

Task three of the Perpetual Pavement Instrumentation Plan for the Marquette 

Interchange Project called for the installation of the various pavement sensors, data 

acquisition system, and various other components of the system outlined in the project 

proposal.  The MU-TRC research team has successfully completed the installation of 

these various components of the system.  This report fulfills the requirement of the 

installation report from task three in the project plan.  This report is organized to describe 

in detail each specific component of the system.  Most, but not all, of these details are 

written in the order they were completed.      

Not every activity described in this report is associated with the installation of a 

particular component but have been included because they are thought to have a 

significant impact on the methodologies and procedures used.  This report is intended to 

describe the installation processes in as much detail as possible.  To help accomplish this, 

many figures, pictures, data, and video were acquired / developed; many of which have 

obviously been filtered out and only the most pertinent included.  All of this material will 

be compiled into a single archive and will be submitted to WHRP.   

This report was also written to explain and document any blunders, failures, 

and/or deviations from any proposed designs regarding this particular project or the 

Marquette Interchange project itself.  These types of details are given so future research 

can learn from these experiences and make improvements upon them. 
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Communication/Planning/Coordination 
 

The re-construction of the Marquette Interchange is a large undertaking for any 

contractor and the amount of communication and planning is great, even for the smallest 

task. A project of this size requires all parties to be deeply involved and giving their 

fullest attention to allow things to go smoothly and on time.  This research project was 

particularly involved with the Northleg contract portion of the project as it contained the 

proposed pavement test section.  The exact location of the test section chosen is located 

on Interstate 43 between stations 385+00 and 385+50 in the rightmost lane of the 

northbound direction, illustrated in Figure 1-1. 

 

Figure 1-1 - The highlighted area was the proposed location for instrumentation test section. 
  

The research team attended all possible weekly construction meetings to have up-

to-date information regarding construction progress as well as having a voice and 
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presence within the project planning.  Meeting minutes and weekly schedules for the 

attended sessions have been filed and archived at Marquette.  When work in the field 

began, it was not always possible to attend meetings, but every effort was made to be in 

constant contact with all the contractors.   

It is the belief of the team that their tasks were conducted with very little 

interference to the other contractors.  The most affected would be the paving contractor 

and electrical contractor, as many of the work activities were intertwined with their 

trades.  The best efforts were made to minimize the amount of time these contractors had 

to spend dealing with these rather unusual intrusions into the construction project.  
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Chapter 2 - Sensor Installations 
 

This chapter is dedicated to explaining step-by-step how the specific instruments 

were installed into their final locations.  For instruments such as the WIM system, the 

installation procedures have already been set forth by the manufacturer with strict 

procedures, whereas other instruments have much less strict requirements.  In all cases 

the procedures used follow the manufacturer recommended procedures when available.   

Sub-Grade Instruments 
 

The equipment that was installed during this operation was the following: soil 

moisture probes, soil temperature probes, and sub-grade earth pressure cells.  The steps 

needed to complete this step included excavating soil for installation of the native soil 

instruments, taking density measurements and soil samples of the native soil layers, and 

finally installation of the native soil instruments.   

The native soil pressure plates, moisture probes, and temperature probes were 

prepared and calibrated well before their scheduled installation target date.  However, the 

installation of these instruments could only be completed after the underdrain for the 

main line was placed.  This eliminated the risk of damaging conduits and wiring from the 

excavation needed for the underdrain.  The underdrain was installed on June 26th and was 

adjusted days later on June 30th (adjustment was necessary because the drain was 

installed at improper elevations with areas where the drain was at or near the surface of 

the select crushed layer).    The dense graded aggregate layer was placed around the same 

time as the underdrain installation. 
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On July 13th, the sub-grade pressure plates, moisture probes, and soil temperature 

probes were installed.  Two holes were excavated through the dense-graded aggregate 

and select crushed material at stations 385+16 and 385+26 for the two sensor groups.  

Upon excavation, it was noticed that there was a slight deviation from the planned 

pavement cross-section design.  When the mainline was being stripped of the existing 

pavement structure, some cutting below the finish elevation of the native soils was done 

primarily to remove areas containing some very poor soils.  (It was also noticed that there 

were areas of very damp soil throughout the pavement structure during construction.  

Very weak sections of the select material could be easily deformed with pressure exerted 

by a person’s foot.  Spots that appeared weak, later exhibited signs of pumping of the 

clay soils up through the select material.  These areas were clearly evident as relatively 

small portions of clay within the select material had worked up to the surface of the select 

material.  They could have been easily mistaken as soil that spilled off a truck or loader 

as it passed, but closer inspection showed that the material came from the soil layers 

below.)  Due to this over-cutting, the layer of select material was slightly thicker in some 

areas.  This was recognized as a standard construction practice and the variation was 

merely documented for the purpose of the research.  No action was taken to try to correct 

the issue.   

The excavation was cleaned of loose material and further excavated by hand to 

reach the proper elevations.  Nuclear density readings along with soil samples using 

Shelby-Tubes were taken at the bottom of the excavations.  Previously installed conduits 

were located, cleaned, and trimmed to the desired location.  The conduits had been 

installed by the contracted electricians, Outdoor Lighting.  



 11 

All of the instruments to be installed were unpacked, cables unwound, and 

prepared for installation.  The bare ends of the wire were protected and pulled into the 

conduits to the first pull box.  The first and deepest instruments to be installed were the 

Decagon EC-5 soil moisture probes (see inset Figure 2-1) and Romus Inc. soil 

temperature probes.  Where stiff soil was encountered, a Phillips screwdriver was used to 

create a void that the temperature probes could be inserted.  The moisture probes were 

designed to be pushed into the soil and require this to function properly.  A few probes 

experienced some extra resistance to insertion and required a little more effort to push 

into the soil.   

 

Figure 2-1 - Geokon Model 3500 Earth Pressure cell with protective foam removed from transducer.  
Inset: Decagon moisture sensor. 

 

After each set of temperature and moisture probe was installed (moisture probes 

were installed with the pointed end of the prongs pointed east and the temperature probes 
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were installed with the end pointing south), the excavation was filled in lifts with the 

previously excavated material and re-compacted by hand up to the level of the next 

sensor set.  Care was taken to route and cover the vulnerable senor leads to prevent 

damage to the wires. This involved creating some strain relief in the leads and packing 

fine soil without rocks around leads.  The next temperature/moisture probe set was 

installed in a similar fashion and soil level brought up to the next level and so on until all 

temperature/moisture sensors were installed as shown below in Figure 2-2. 

 

Figure 2-2 - The final arrangement of the sensors after installation.  The EPC is aligned so that the 
sensor leads point into the direction of traffic.  All moisture sensors have the pronged end facing east 
and all temperature sensors have their leads facing north. 

 

All six temperature probes and six moisture probes were installed successfully 

with target elevations of 3”, 12”, and 24” inches below the top of the native soils.  The 

soil level was brought up higher to the proper elevation for installation of the Geokon 
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Model 3500 Earth Pressure Cell (see Figure 2-1).  About a two to four inch thick cushion 

of densified fine sand was placed over the re-compacted native soils.  The sand was then 

checked for sufficient area, thickness, flatness, and levelness.  The pressure cell was then 

carefully placed and supported on the bed of sand.  A level was placed directly on the 

plate and the supporting sand was reworked until the plate was level in all directions.  

The location of the center of the plate was measured and recorded with the help of a GPS 

based surveying locator as shown in Figure 2-3.   Once the location was satisfactory, 

another layer (about two to four inches) of fine sand was placed over the pressure cell and 

its leads.  The sand was densified in layers using the palm of a hand.  Once the fine sand 

was placed, slightly coarser sand from the site was placed and densified (about six inches, 

see Figure 2-3).  It is extremely important to keep large rocks or other large objects away 

from the instrument.  Not only can they damage the instrument, but large objects can 

disrupt the natural stress field around the instrument.  The final orientations of the sensors 

are similar to that found in Figure 2-2; the final locations of the sensors are listed below 

in Table 2-1. 

Table 2-1- Final locations of moisture and temperature sensors and earth pressure cells. 
 

Sensor Station, 
ft 

Offset, ft Elevation, 
ft 

Sensor Station, 
ft 

Offset, ft Elevation, 
ft 

Moisture_A0 385+16 33.55 RT 655.0 Moisture_B0 385+24 33.90 RT 654.9 

Moisture_A1 385+16 33.55 RT 655.9 Moisture_B1 385+24 33.90 RT 655.7 

Moisture_A2 385+16 33.55 RT 656.2 Moisture_B2 385+24 33.90 RT 656.2 

Temperature_A0 385+16 33.55 RT 655.0 Temperature_B0 385+24 33.90 RT 654.9 

Temperature_A1 385+16 33.55 RT 655.9 Temperature_B1 385+24 33.90 RT 655.7 

Temperature_A2 385+16 33.55 RT 656.2 Temperature_B2 385+24 33.90 RT 656.2 

Earth 
Pressure_A0 385+16 33.40 RT 656.6 Earth 

Pressure_B0 385+24 33.30 RT 656.5 

 

The excavated native soils were replaced followed by the select and dense graded 

materials, all compacted in lifts.  The energy used to densify the materials increased 
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significantly as the distance between the surface level and the instruments grew.  The 

particle size of the select crushed material is on the order of 6-12 inches in diameter, so 

compaction essentially consisted of placing the first few inches by hand in a dense state.  

Following this, the rest of the materials were placed in lifts and compacted by dynamic 

force from the bucket of a backhoe being dropped repeatedly.  The possibility of damage 

to the instruments after the fine sand layers were placed became minimal.    

 

Figure 2-3 –Top: Placing EPC in a bed of fine sand and routing sensor cable carefully. Bottom left: 
Measuring and recording the final location of the EPC with a GPS based measuring device.  Bottom 
right: Backfilling against the EPC with sand. 
 

Measuring the electrical resistance of the instruments is a quick and easy way to 

verify the sensor’s operability.  This can readily indicate whether or not a sensor has 

survived the installation process (installation carries most of the risk of failure - broken 
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leads being the most common problem).  After installation was complete, resistance 

checks with a general purpose multi-meter were made and indicated that all the installed 

sensors were functioning properly (i.e. the resistance showed that the circuit was not 

open).  Subsequent field monitoring showed that all sensors were in good working 

condition and provided logical data. 

Base Layer Earth Pressure Cell 
 

The installation base layer earth pressure cells (EPCs) had been delayed until just 

prior to paving of the first asphalt layer.  This was done to reduce the probability of the 

equipment being damaged due to passing traffic and other construction operations.  The 

final location of the base layer EPCs was just inches below the surface.  Because of this 

decision, the EPCs were installed the same day as the asphalt strain gauges in two 

separate operations which took place on August 7th 2006.   

  The dense graded base layer earth pressure cells were installed in a 

manner quite similar to the plates installed in the native soils.  The conduits placed prior 

were found using the GPS surveying locator device.  The open graded, and some of the 

dense graded, base layers were then removed, exposing the conduits.  An area large 

enough to contain the EPCs were cleaned out and the approximate proposed elevation 

was brought up with fine sand.  The plates were placed on the sand and the elevation to 

the center of the plate was checked.  Adjustments were made to the bed of fine sand until 

the elevation of the plate was suitable and the plate itself was level in all directions. 

 After the checks, another layer of fine sand was placed on top of the plate and 

carefully densified using the palm of a hand.  The dense and open graded base layers 

were replaced and re-compacted using a hand operated tamper.  All procedures for 
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installing the plates followed the manufacturer’s instructions provided with the 

instruments.  A few important steps for installing the pressure cells are shown pictorially 

in Figure 2-4. 

 

Figure 2-4 - Steps in installing EPC. 1) Filling the cleaned excavation with a bed of fine sand. 2) 
Leveling the sand out and preparing for EPC placement. 3) Leveling the cell and routing the sensor 
lead in a safe direction. 4) Backfill against the cell with more sand which would then be followed by 
the pre-existing base material, compacting each layer by hand.  The inset sketch shows the layout of 
the sensor schematically. 
 

Asphalt Strain Gauges 
 

As stated before in the previous section, the asphalt strain gauges were installed 

the same day as the earth pressure cells.  The first layer of asphalt was scheduled for 

placement in the test section during the late afternoon of August 7th 2006.  During paving 

strain and pressure data would be recorded throughout various paving operations such as 

asphalt placement and compaction. 

Through meetings with the paving contractor, the paving crews would be crossing 

the test section during the mid to late-afternoon hours.  The median-shoulder and passing 

1 2 

3 4 

2" 

4" 

Fine 
Sand 
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lanes would be paved first followed by the shoulder and the lane adjacent to it.  Paving 

started at the Fond du Lac overpass and extended to North Avenue.  The placement of the 

asphalt would follow standard procedures which included dump-trucks backing up to the 

asphalt pavers and dumping their load while the paver progressed.  This presented a 

problem for installation of the asphalt strain gauges since the gauges could not be driven 

over by dump trucks supplying the paver with material.  Luckily a transfer vehicle was 

available from the paving contractor which allowed paving to continue without having to 

drive over the test section (and the sensors).  This change allotted more time to arrange 

and prepare the gauges and is likely a necessity for these types of instruments.      

The first step for installation of the ASGs involved finding the previously 

installed conduits and exposing them.  The proposed locations and spacing (see Figure 

2-5 and Figure 2-6 below) of each strain gauge was marked on the open graded base layer 

with paint.  The leads on the ASGs were unwound and readied for pulling into the 

conduits.  One team would work on pulling the leads to the bottom pull-box and screwing 

them into the terminals on the data acquisition system while another worked on preparing 

the gauges for placement into the asphalt layer.   

The cabinet for the project had not been placed at this time, so after the operation 

was done the wiring for the sensors was left inside the lower pull-box.  It was protected 

from the elements as best as possible.  A permanent power supply had not been installed 

yet either, so a gas powered generator was used in conjunction with proper surge 

protection to power the computer systems needed for data recordation during the 

installation. 
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Figure 2-5 - Spacing of the strain gauges and earth pressure cells are shown above.  All units are in 
feet.  Note that the orientation of the two gauges in the middle of the array alternate rotation angles 
(transverse vs. longitudinal) for the two CTL arrays as shown in Figure 2-6. 
 
 

 

Figure 2-6 - Final configuration of strain gauges, earth pressure cells, and pavement temperature 
gradient probes. 
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The locations of the ASGs were checked again and re-marked as necessary.  A 

pre-mixed matrix of sand and binder (the same binder used in the lower asphalt layer 

mix) was re-heated and brought from the lab into the field.  This was placed in a ½ inch 

thickness on the open graded base layer in the location of each sensor and served as the 

base pad that the ASGs would sit on.  The ASGs were then placed on their respective 

base pads the leads were organized and buried into the open graded base layer shown in 

Figure 2-7.  The cable armor installed on the exposed length of the leads protected the 

wiring from puncture from the sharp stone edges during placement of the asphalt.  The 

ASGs were placed so that the leads exiting the protected portion of the gauge did so 

against the direction of paving; otherwise forces and motions generated by the paving 

equipment may have a tendency to pull the sensor leads away from the strain gauge, 

destroying the gauge.  Strain relief was provided multiple times, but survival of the 

gauges was a priority and every precaution was taken to prevent foreseeable damage. 

 

Figure 2-7 - Left: Marking the proposed locations of the gauges. Right: Placing sand/binder pad and 
fitting gauges. 
 

At this time it was noticed that some of the Dynatest strain sensors had curled 

from their original shape.  The curled shape was that of a frown, i.e. the center portion of 
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the H-shape was lifted off the asphalt pad.  A note was made of the observation along 

with some small repositioning.   Curling of the gauges may have been due to the gauges 

multi-layered construction along with the heat from the asphalt material underneath the 

gauge.  This may have caused some temperature differential causing a curling effect 

similar to that of a concrete slab.  The coefficient of thermal expansion for epoxy resins is 

significantly higher than steel, so this conclusion is reasonable.   

Just before the paver was about to arrive at the gauges, asphalt material from the 

paver hopper was screened off on the 3/8” sieve and placed on the gauges, roughly 1 inch 

thick.  The material was compacted using mild compaction force using a hand tamper.  

Once all of the gauges were covered with screened asphalt, the gauges were checked 

once more for sensor leads that were misplaced.  A layer of unscreened asphalt (about 2 

inches thick), was placed on top of the gauge arrays and compacted using a gas powered 

plate tamper shown below in Figure 2-8. 

 

Figure 2-8 - Left: Placing screened asphalt on top of gauges and carefully compacting.  Right: 
Compacting the unscreened asphalt over the gauge arrays with the paving crew approaching. 
 

After this was complete the paver laying the shoulder passed over the strain gauge 

located in the shoulder of the roadway.  It was noticed that the left track of the paver 

traveled over the edge of the covered strain array, but did not run over any gauges.  Due 
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to the highway geometry, the lane-shoulder construction joint fell on the right side of the 

ASG arrays.  Since the shoulder and the adjacent lane were paved at the same time, it 

should have no effect on the functioning of the gauges.  The adjacent lane placement 

occurred seconds after the shoulder placement and covered all the strain arrays 

completely.  The right track and tire of this paver traveled just right of the center of the 

arrays.  It is likely that this put the gauges under a fairly high amount of stress and 

demonstrates a difference between instrumenting real-world pavements and typical 

closed circuit test tracks. 

The strain gauges were monitored during paving and rolling. Nuclear density 

measurements of the pavement at two different locations were taken after final rolling.  It 

was noticed during testing that a few of the gauges were not reading properly.  Initially it 

was not known if it was due to damage to the gauges themselves or because the 

anticipated values of strain were too large for the software setup created for the data 

acquisition system.  It was expected that some large values of strain would be measured 

since the gauges would be exposed to not only large stresses, but also extreme 

temperatures which affect the material properties of the gauges and the output of the 

sensors.  Over the progressive paving operations various testing procedures were carried 

out and any non-functional or poorly functioning gauges would be discovered during 

those tests.  The initial appearance of the data taken shows that all of the gauges were 

functioning with the exception of a one Dynatest strain gauge (Gauge ID – C6). 

Inductance Loop Detector 
 
 Soon after the first asphalt layer (C2 mix; four inch total thickness) was placed, 

the second layer (E30 mix; seven inch total thickness) was constructed in two lifts (four 
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inch lift followed by a three inch lift).  The loop detector for the weigh-in-motion system 

was installed between the two E30 lifts; the placement of the sensors can be seen in 

Figure 2-9.  Some testing and checking of all sensors was completed beforehand.   

 

Figure 2-9 - Layout of the WIM sensors (loop detector and two quartz piezo strips) and the wheel 
wander sensors.  The conduits installed into the pavement are also shown as hidden lines extending 
from the instruments to the curb. 
 
 The second lift of E30 was scheduled for placement on August 9th 2006, however 

due to inclement weather it was pushed back until the following day.  Paving started on 

the inside lanes first and worked towards the outer lanes similar to the pattern used during 

the first layer.  Two lanes were paved simultaneously with two different pieces of paving 

equipment. 

 The inductance loop detector was positioned and readied for paving.  Instead of 

using a traditional inductance loop detector, a Never Fail Loop Systems Inc. loop was 

8 ft. 

6 ft. 

6 ft. 
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used instead.  This was done because as the name implies, it has a very low risk of being 

damage and comes with a 10 year warranty.  The loop wiring is encased in rigid conduit 

sections and filled with bitumen, thus protecting the inside and maintaining its shape.  

The leads running from the loop to the roadside conduit are also protected in a rigid cable 

sleeve.  This level of protection means that it can be driven over by construction 

equipment reducing construction interference. Further more, since it is being paved over 

and into the pavement structure, there is no need to come back and saw-cut the new 

pavement to install the sensor.  The loop is pre-assembled as a single unit; installation 

required nothing more than laying the unit out on the pavement, pulling wires, and 

securing it in place - the loop installation required no extra specialized help or tools to 

install.   

 The inductance loop was secured to the pavement using a fiberglass adhesive-

backed tape (known as “Gorilla Tape” manufactured by the Gorilla Glue Company) 

shown in Figure 2-10.  The tape is similar in appearance to standard duct tape, but much 

stronger and has much more adhesive strength (it should noted that metal should not be 

used in close proximity to the loop detector as it may deteriorate its sensitivity).  Sections 

of the loop were secured in multiple locations and the wires were pulled to the conduits 

and secured.  A simple resistance and continuity check of the loop after placement 

showed that the wires had not been broken and the sensor should be operational. 

Once the loop was secured in its proper location, the paving crews simply needed 

to pave over the loop.  However, on most pavers it is important to note the scraper that is 

located in front of the tracks/tires.  Its purpose is to scrape any spilled asphalt out of the 

track/wheel path to promote smooth advancement of the paver.  However, it must be 
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raised out of the way when dealing with any instrument leads crossing the path of this 

scraper.  Failure to do so will result in damage to the instruments. 

 

 

Figure 2-10 - Pictures showing various parts of the loop detector installation.  Top: The fiberglass 
tape was hammered lightly to create a good bond to pavement.  Bottom left: The asphalt around the 
conduit was removed with a cold chisel and hammer to expose enough conduit to install a 
“homemade” 90° elbow.  The rather thick looking orange cable actually ends just inside this elbow 
and only two small wires actually pass through the elbow.  Bottom right: A close up showing how the 
corner was adhered to the pavement and also the construction of the Never Fail Loop.   
 
  

The paving train approached and construction proceeded as normal.  A quality 

control technician of the paving company was there taking density measurements of the 

freshly rolled asphalt.  Two separate nuclear density measurements were made at two 

different elevations.  These values were recorded for future research purposes.  
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Equipment Cabinet 
 

The roadside cabinet had been installed on its concrete pad (Figure 2-11 shows 

the project cabinet in place) by Outdoor Lighting and since the system was close to being 

complete, most of the equipment was prepared to be installed into the cabinet.  This work 

was done while waiting for the paving crews to reach the test section with the final SMA 

surface layer so the temperature probes could be installed. Many of the sensor leads 

(including moisture probes, temperature probes, strain gauges, etc) needed to be extended 

to reach the inside the cabinet (a “comfortable” distance from the lower pull-box into the 

cabinet is about 20 feet).  The data acquisition system, din-rails, power supplies, wireless 

radio, weather/antenna mast, and pavement temperature/camera mast were installed 

during this time period. 

 Once all of the wires were pulled into the cabinet they were connected to their 

appropriate terminals on the data acquisition system.  One component of the system 

which was not installed was the controllers for the WIM system.  The WIM controller 

would be installed with the WIM sensors which required factory certified installers.   

 The mast containing the environmental sensors (air temperature, anemometer, and 

pyranometers) and wireless antenna was fitted to the cabinet first and then brought back 

to the shop at Marquette and properly outfitted with the instruments.  The bottom of the 

mast is supported by a “street” elbow which connects the hollow mast tube to the inside 

of cabinet.  The wiring for the mounted equipment enters into the mast via ports and 

through the elbow into the cabinet.  The mast was sealed as best as possible to prevent 

moisture from entering the cabinet.  
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 The mast supporting the camera and infrared thermometer is made up of PVC 

conduit attached to the column supporting the sign structure.  A ball-and-socket joint was 

constructed for the infrared temperature probe and the camera came outfitted with its 

joint; both instruments have a wide range of adjustment range. 

The leads for these two instruments take a non-direct path to the instrument 

cabinet.  The wiring runs into a stainless steel box mounted to the east side of the column.  

This box has its own access panel and was originally intended for the sign-bridge 

equipment.  The instrument leads have a splice inside this box allowing them to be easily 

disconnected.  From this box, the leads travel to the WisDOT ITS cabinet and finally into 

the project cabinet.  This seemingly complicated wire routing is due to a deviation from 

the original plans.   

 

Figure 2-11 - The highlighted cabinet is occupied by the equipment for this project.  The mast 
connected to the cabinet holds environmental sensors as well as the wireless communications 
antenna.  The cabinet in the background houses various traffic control devices for WisDOT.  The two 
cabinets are connected by a limited number of conduits.    
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Wireless Antenna 
 
 The wireless antenna system is comprised of antennas at the roadside cabinet and 

on the roof of Carpenter Tower Hall at MU.  The antenna at the roadside cabinet had 

already been installed, but the wiring in Carpenter Tower Hall required much more work 

to complete.  The antenna is located on the northwest corner of the roof, as shown in 

Figure 2-12, with the wiring running from the antenna into an access hole on the upper 

level of the roof.  The wire was then strung through the floor and into the corner of the 

room below adjacent to the data drop provided by Marquette’s IT staff.  A shelf was 

provided for the wireless modem at that location.   

The coaxial cable that the antennas used for signal transmission required that 

special connector be installed.  Service personnel from TAPCO Inc. installed the 

terminals on the cables on September 21 and the cable modems were powered up and 

checked for connectivity.  The results showed that the connection was excellent even 

though the line of sight from Carpenter Tower Hall to the test section is blocked by grain 

elevators from the now defunct Pabst Breweries.  The line of sight is visually shown in 

the right photograph in Figure 2-12. 
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Figure 2-12 - Left: The wireless antenna mounted on the corner of Carpenter Tower Hall at 
Marquette.  Right: View from the antenna location at Carpenter Tower.  The test section is located 
just behind the grain elevators in the highlighted area.   
 

Pavement Temperature Gradient Probe 
 

The original schedule for the installation of the temperature probes was the night 

of September 8th 2006 and into the following morning – most of the cabinet equipment 

was installed during this time as explained above.  However due to unknown reasons, 

paving stopped during the night and the temperature probes were not installed.   

The project contractor needed to open the highway to traffic on the morning of the 

15th to avoid penalties and final paving of the final wearing course in the test section 

occurred in the early morning of September 14th.    Installation of the two pavement 

temperature gradient probes proceeded as expected.   

 The installation of the probes consisted of a few, but relatively easy steps.  The 

first step was to locate and expose the previously installed conduits.  The second step is 
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to determine the location of the probes and drill the appropriate sized holes that the 

probes would be inserted into.  It was very important to drill only to the required depth so 

the probe didn’t settle below the desired elevation.  The probes used here actually 

protrude from the surface of the existing pavement about one inch so that the upper 

portion of the probe is embedded within the two inch thick SMA layer.  The holes and 

channels for the sensors were cleaned and the sensors were dry-fitted into final locations, 

making adjustments as necessary. 

The sensor leads were pulled almost all of the way into the conduit.  Since the 

conduit opening was close to the curb, the sensors were pulled off to the side of the 

roadway until the time approached to pave over the sensors.  When paving crews 

approached, the temperature probes were pushed in the drilled hole until they bottomed 

out.  The protruding end of the probe was re-measured to ensure that the probed would 

not be higher than the final pavement elevation and actually was designed to be one-half 

to one inch below the surface of the SMA as shown in Figure 2-13.  After this check the 

sensor leads were fitted into the channels and the excess wire was pulled into the pull 

box.  Sealant was then placed in the channel to secure the wire into the channel and also 

protecting it from the approaching paving equipment. 
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Figure 2-13 - The photograph on the left shows almost the entire length of the temperature probe.  
The photograph on the right shows the temperature probe fully inserted to its final position.  Note 
that the sensor lead is fitted into its channel, but has not been sealed yet.   

 

The next step consisted of watching the paving equipment pass over the sensor.  

Because of the location of the sensor on the pavement and the procedure used to place the 

SMA, the protruding temperature probes fell within the wheel base of the trucks charging 

the paving equipment.  Again, it is warned to pay close attention to the scrapers in front 

of the paver’s wheel path (see Figure 2-14) because it has the potential to destroy the 

sensor leads.  They can be (typically) easily lifted up and secured with chains (usually 

welded right to the paver). 
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Figure 2-14 – The scraper in the wheel paths of the pavers should be lifted off the pavement surface 
to avoid destroying sensors and their wiring.  The inset picture is a close-up of the scraper which is in 
the down position, resting on the pavement surface.   

 

After the material was placed and rolled the pavement surrounding the probes was 

inspected and appeared unaffected by the protruding probes.  The installation of the 

temperature gradient probes was successful up to this point, but the sensors still needed to 

be checked to see if they were operable.  During the installation the sensors were 

connected to the data acquisition system and seemed to produce logical values, however 

one probe was producing erratic data and it was determined that it was due to a shortage 

of power and would simply require another power supply.   
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Wheel Wander and Weigh-in-Motion System 
 

The wheel wander piezo strips and the weigh-in-motion (WIM) sensors were 

installed at roughly the same time.  These sensors are both installed into the SMA surface 

layer and required the use of two nighttime lane closures to complete the installation of 

both.  The first few steps in installing the sensors are quite similar.   

 The first night of work included laying out the exact locations of the sensors, saw-

cutting and chipping out the channels.  Layout of the sensors was done by two separate 

methods.  The first was done by using a series of reference points on the curb line to 

triangulate the ends of the conduits located within the asphalt.  The other method used 

involved using the GPS location tool to find the ends of the conduits. Both of the 

methods produced locations that were very similar and proved to be accurate when 

actually removing the asphalt.     

 Once the ends of the conduits were located and marked, the layout of the 

proposed sensor locations were done so that the sensors were perpendicular to the edge 

stripe painted on the pavement as well as the curb.  No drastic difference in these two 

layout references was found.  It was very important that the layout dimensions be as close 

as possible to that proposed in the original plans, but slight deviations were inevitable.  

The final locations of the sensors were measured and recorded so that any adjustments or 

calibrations to the system could be made.   

 Once the layouts were finished, the channels were cut with a wet-cut diamond 

blade.  It was very important that the cuts were made precisely due the limited volume of 

grout available for each sensor.  Once the saw-cutting had been finished, an electric Hilti 



 33 

chipping hammer was used to the cut out the asphalt.  For the WIM slots, the entire SMA 

layer was removed down to the layer below, which made chipping very easy.  The wheel-

wander piezo sensors only needed a slot depth of one inch.  Both slots were chipped out 

with relative ease with little refinement needed after the first inspection.   

 For access to the previously installed conduits, a four inch diameter core was cut 

at the end of the channels to a depth just below the elevation of the conduits.  The 

conduits for the WIM slots were located just slightly deeper in the pavement than the 

wheel-wander strips.  All of the conduits were located exactly under the layout marks.   

 

Wheel Wander Sensors 
 
 The wheel-wander sensors consist of three PK piezo sensors manufactured by 

Electronique Controle Mesure of France (ECM) arranged in a “Z” or “N” grid on the 

pavement.  Once the asphalt was removed from the channels for the wheel wander 

sensors, the void was cleaned thoroughly with compressed air and water.  After this, the 

slots were dried completely with a propane brush burner and re-inspected to make 

absolutely sure the slots were dry.  This is important because it allows the grout used to 

anchor the sensors have a good bond to the surrounding asphalt.   

 The sensors came with clips that held the sensor in the pavement slot at the proper 

elevation as shown in Figure 2-15.  The clips were attached and the sensors were dry 

fitted into their appropriate slots.  Once satisfactory, the sensors were removed and set 

aside.  Tape was placed on the pavement along the edge of the slot.  This would keep 

grout from getting onto the pavement and acted as an area for excess grout to be wiped 

off.   The wheel-wander sensors were installed one at a time.   
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Figure 2-15 – Cross section of the PK piezo strip used for the wheel wander grid showing how it is 
assembled in the pavement.   
 
 
 One bag of grout was thoroughly mixed using a cordless drill and mixing paddle.  

The hardener was introduced and the grout was mixed again for three to five minutes.  

The slot was filled about half full with grout.  The sensor was carefully lowered into 

grout being cautious that no voids would form between the sensor and grout.  A supplied 

depth tool was used to further set the sensor to the proper depth within the slot.  More 

grout was added as needed to fill the slot.  Any excess grout was struck off with a trowel, 

finished flush with the surrounding pavement, and the grout was allowed to set and 

harden as shown on the left in Figure 2-16. 

SMA Surface Layer 

Grout  

PK Piezo  

Sensor Clip  
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Figure 2-16 - Left: All three wheel-wander sensors have been installed and the grout on the final 
sensor is being leveled with the pavement surface before hardening.  Right: All three sensors 
installed with the tape removed.  
  

While the grout was hardening, the other wheel-wander strips were installed using 

the same process.  The grout on the sensors required constant attention during curing 

because the grout had the tendency to flow into any cavity, such as over-cuts, due to its 

rather low viscosity.  After the grout had hardened (about fifteen to twenty minutes for 

the air temperature at the time of installation) the tape was removed and the pavement 

cleaned and any grout that may have spilled over.  The finished sensors can be seen in the 

right photograph in Figure 2-16.  According to the manufacturer, the sensors could be 

opened to traffic in about forty-five to sixty minutes leaving plenty of time for the length 

of the lane closure window.  In the meantime the coaxial cables for the sensors were 

pulled into the conduits and into the lower pull-box.  The coaxial cables were not quite 

long enough to reach into the cabinet and needed to be extended as well as have BNC 

style connector bodies installed. 
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The wheel-wander cable ended up being fifteen to twenty feet short of reaching 

into the cabinet.  The BNC style connectors were crimped onto the wires located into the 

lower pull-box.  Extension cables were made in the lab that were twenty feet long and 

each end of the cable received BNC connectors (it should be noted that the WIM and the 

wheel-wander sensors do not used the same style BNC connectors).  The wheel-wander 

and extension cables were then connected using a coaxial “barrel” (essentially a double-

ended male section that joins the two female connectors on the cables). 

 The connection was then coated in a layer of electrical tape followed by a paint-

on seal coat and another layer of tape.  The cables were then pulled into the cabinet and 

the spliced portion of the cable was pushed into the conduit adding extra protection from 

the environment.   

Weigh-In-Motion Sensors 
 

The WIM sensors consist of four Kister Quartz piezo WIM sensors which were 

pre-assembled in the lab beforehand.  The pre-assembly consisted of mechanically 

joining two sensors end-to-end into one unit, turning four individual sensors into two 

units.  All that was left to do in the field was to uncoil leads, make electrical property 

checks, tighten leveling bars, and install into the pavement.  The electrical property 

checks included measurements of the sensors resistance and impedance and were 

measured using specialized tools on loan from the manufacturer.  The identification, 

serial number, location, and orientation along with the measured electrical properties and 

temperature data were all documented in the Kistler Warranty Protocol.  Copies of these 

of documents were forwarded to the manufacturer as needed for the warranty. 
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After the channels had been chipped out, they needed to be cleaned and dried.  

The slots for the WIM quartz piezo sensors require extra care when preparing for 

installation.  The pavement is required to be at a specified temperature before installation 

can begin in order to satisfy the warranty requirements set forth by the manufacturer.  All 

of the channels were blown out with compressed air and dried with heat provided by a 

propane brush burner.  A small amount of moisture was observed leaching out of the 

SMA layer, potentially causing a problem for installation of the sensors.  It was reasoned 

that the recent wet weather and the porous nature of the SMA was to blame and the 

installation of the sensors was delayed until the following evening.   

 A special heating assembly was placed over the strips to initiate the heating 

process which is depicted in Figure 2-17.  The heating assembly consisted of a series of 

HVAC ducting and a kerosene force air heater.  Round sections of standard ducting from 

a home improvement store were bent to form a half circle and connected with other 

pieces of ducting that all came together at one junction.  The forced air heater was then 

placed at this junction and blew hot air through ducting and over the slots in the 

pavement. 
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Figure 2-17 - The heating assembly was placed over the two slots cut for the WIM sensors.  Heat was 
supplied by a forced-air kerosene fueled heater (not pictured).  The sections of the assembly were 
sealed with aluminum ducting tape to minimize heat loss.  Multiple temperature probes were in place 
to accurately measure pavement temperatures.   

 
Three holes were drilled near the proximity of each sensor channel as dictated by 

the manufacturer’s warranty protocol.  Temperature probes were inserted into the holes 

and were monitored during initial heating and throughout the majority of the installation 

process.  The hoods for the heaters were placed over the channels and the heat was turned 

on.   

 It would take almost three hours for the pavement to reach its required 

temperature of 68° F (20° C).  Once the pavement had reached the required temperature 

for installation the temperature probes were removed and the data acquisition halted.  The 

sensors were installed one at a time and the heating hoods where left running as long as 

possible and removed only to install and grind the sensors.  The key was to get the 

pavement warm enough along with the ambient air temperature near the sensor to speed 
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up the cure time of the grout.  There is a recommended maximum temperature, but for the 

weather conditions during the operation, it was unlikely to ever exceed it as exhaust 

temperatures never rose above 100° F.   

Once the heating hoods were moved out of the way, the sensors were dry-fitted 

into the channels.  No adjustments to the channels were needed as the width of the 

channel was meticulously cut and the depth was the same as the pavement layer 

thickness, making for easy removal of material.  Duct tape was placed around the 

perimeter of the channel to keep grout from getting on the pavement, thus making for 

easy cleanup and final grinding.  At the end of the channel where the coaxial cable exited 

the sensor, pieces of foam were placed to prevent the grout spilling into the conduits.  It 

was important to not have too much extra volume around the sensor itself because of the 

limited amount of grout available for each sensor. 

When the sensor was dry fitted and half of the foam inserted into the end, the 

grout for the sensors was prepared.  It is important that the grout be at a warm 

temperature due to its thick consistency, otherwise it can be difficult to mix.  In this 

instance, the grout material, which is a mixture of a two-part epoxy and fine sand, was 

stored in a vehicle with the heat turned on.  To mix the grout, the manufacturer 

recommends mixing the resin and sand first, blending well and then adding the hardener 

last.  The pot life of the grout at room temperatures is only about fifteen minutes so it is 

important that the installations operations are done in a timely manner.  To save time, the 

sand and resin can be pre-mixed several minutes before the introduction of the hardener 

component. 
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Once the hardener and resin had been combined, the grout was mixed for about 

five minutes or until well mixed.  Half of the grout was poured into the channel and was 

spread around evenly using disposable plastic trowels depicted in Figure 2-18.  Some of 

the grout was pushed up against the walls of the pavement channel making a “V” shape 

which helps the grout get around the sensor body and also works the grout into the pores 

of the asphalt surface.  The sensor was then carefully lowered into the pavement until the 

leveling beams sat on the pavement surface.  Immediately following, heavy pieces of 

steel were placed on the leveling beams to keep the sensors from floating out of the grout 

until it had cured.  Plastic trowels were used to smooth out the surface of the grout left 

between the pavement and the top of the sensor.  Because of the cohesive consistency of 

the grout getting a nice flat finish was difficult, especially after it began setting up.  Some 

parts of the grout were left high and would be knocked down flat with the pavement 

during grinding.  
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Figure 2-18 - Upper left: Channel for the WIM sensor ready for installation.  Upper right: Grout for 
the sensor being distributed into the channel.  Lower left: Sensor in place with pieces of steel placed 
across the leveling beams to keep sensor from floating out of the grout.  Touch up work to the grout 
was done before its initial set.  Lower right: The sensors were ground flush with the surrounding 
pavement and checked using an 18-inch long straight edge.   

 

Once the first sensor was installed and curing, heat was reapplied.  The second 

sensor was then prepared and the same process for installation was repeated. Total 

installation time from removal of heating hoods to the reapplication of heat was about 

one hour total for both sensors.  Heating continued for both as long as possible to achieve 

the full strength of the grout.  However, enough time had to be left to allow grinding the 

sensors flat, filling the conduits voids with quick setting grout, and cleaning up.  Heating 

continued for one-and-a-half hours at which point the grout should have been very near 
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full strength based on a time-temperature maturity relationship provided by the 

manufacturer.   

 Grinding consisted of using a belt sander fitted with an alumina zirconia belt and 

an angle grinder with a general purpose grinding wheel to abrade away excess grout.  The 

angle grinder was used for large amounts of grout needing removal, while the belt sander 

was used for the finish grinding.  To check for flatness, an eighteen inch aluminum 

straight-edge was placed across the sensor (in the direction of traffic) at different 

locations.  The pavement has to be perfectly smooth across the sensor or else they will 

not produce consistent measurements, thus degrading the accuracy of the WIM system. 

 During grinding, the ends of the sensor cable were protected and pulled through 

the conduits and up into the cabinet.  The ends of the sensor cable were protected because 

it is very important that the sensor cable is not exposed to moisture or other contaminants 

that can cause signal loss.  The sensor cables needed to have new BNC style connectors 

installed but this task was completed at a later time as the cut-off time for work was 

approaching. 

Once the grinding had been completed, holes in the pavement exposing the 

conduits needed to be filled.  Sealant was placed around the wire leads to prevent grout 

from entering the conduit and the foam placed at the ends of the sensors was also 

removed.  Fast setting grout (leftover grout used for the wheel-wander sensors) was then 

poured into the holes up to the level of the pavement surface.  Voids left in the pavement 

by over-cutting were also filled.  Once the grout was nearing its full strength, the 

pavement was cleaned up and the highway was reopened to traffic.  The finished 

products (including the wheel wander grid) are shown below in Figure 2-19 
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Figure 2-19 – Test section opened to traffic with the wheel-wander and WIM sensors installed 
(circled areas). 

 
The WIM sensor cables were long enough to reach into the cabinet but required 

new BNC connectors.  The cables came with BNC connectors pre-installed, but it was 

not possible to pull the cables through the conduits with the connectors on so they had to 

be removed.  The tools required to install the BNC connectors onto the WIM sensor cable 

were provided in the tool kit on loan from Kistler Instruments.   

 The charge amplifier for the WIM sensors was installed inside the cabinet using a 

plastic spacer block and bolted the chassis of the cabinet.  Each WIM sensor strip is 

actually composed of two individual sensors with two separate leads, the cables “tee” into 

each other just before the charge amplifier.  The plastic spacer block brings the charge 

amplifier away from the cabinet chassis so the cable connections can fit nicely with no 

interference and also making it easier to remove the cables if needed.  

The WIM system is independent of the data acquisition system and data generated 

from the WIM system is exported to the database and is combined with the rest of the 
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data.  However the WIM system still functions like it would if it were a stand alone unit.  

Users can access the WIM controls and monitor vehicles as they pass over the system and 

modify the configuration settings.  One very important step in setting up the WIM system 

is to calibrate the system using a test vehicle.   

Setting up the WIM system is actually quite simple after the sensors are installed.  

Once the controller rack is placed into the cabinet a handful of sensor leads need to be 

connected.  There are two wires for the loop detector that have two designated screw 

terminals and a BNC connection for the charge amplifier must be plugged in.  The unit 

must also be plugged into an electrical receptacle for power.  Beyond this, a connection 

to the controller must be made with a serial cable into a computer.  Software provided 

with the equipment allows users to view data being generated by traffic and also change 

settings.   

To calibrate the WIM a flat bed truck was used with a large weight placed in the 

back as shown in Figure 2-20.  The total truck weights were obtained by driving the 

entire truck onto a static scale and recording the weight and then advancing the truck 

forward so that only the rear axle was measured.  The scale platform was very flat, so this 

method should be accurate.  To obtain individual wheel loads the axle weights were 

divided in two.   

There are already plans to use portable scales provided by the Wisconsin State 

DOT to measure individual wheel loads.  The truck used is owned by Marquette 

University and the large weight is easily loaded with a forklift.  A standard positioning of 

the weight has been created so in the future, weighing out the wheel loads will not be 

necessary.  Furthermore, when the wheel loads are measured, it is proposed to position 



 45 

the loaded truck so that it is on a similar cross-slope and grade as the test section to catch 

any weight bias between wheels.   

 

 

Figure 2-20 - Vehicle used to calibrate the WIM system.  Note the concrete slab placed in the bed of 
the truck over the rear axle.    

 

To calibrate the system, the truck was driven over the WIM sensors while a user 

connected to the WIM system watched the response generated.  To correct for speed 

adjustments the distance between the quartz piezo strips is modified in the software setup.  

If an accurate measurement of the spacing between the sensors has been made and 

entered into the software setup, it is unlikely that this will need to be modified.   

To adjust the system for weight corrections, there is simply one correction factor 

that needs to be modified.  There is actually a slider bar that can be clicked and changed, 
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or the user can enter a factor by entering the number in the text box.  These operations 

should only be done by a trained individual as there are many steps needed to get to these 

points.  A detailed explanation is beyond the scope of this report.  
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Chapter 3 - Testing Procedures 
 

This chapter highlights the tests and data collections conducted on various sensors 

and materials.  The test done on the sensors were done so to confirm that the specific 

sensor had survived installation or not.  In terms of materials testing, information was 

collected and archived for future research purposes.   

Strain Data Collection During Paving 
 

During the strain gauge installation, data was collected which included responses 

from the earth pressure cells as well as the strain gauges.  Initially it appeared that one of 

the Dynatest gauges had not survived the installation (Dynatest C6).  The data was 

downloaded and analyzed after paving.  It should be noted that the heat generated from 

the asphalt material creates large fluctuations in the strain gauges due to the circuitry on 

board the gauges.  Many of the signals had drifted out of the range of measurement, but 

did not necessarily mean the gauges were destroyed.   

The following plots were generated from the rolling operations.  Figure 3-1 and 

Figure 3-2 are examples of gauges that are functioning properly.  They both show 

significant induced strain values, with two peaks indicating the time at which the steel 

wheel roller passed over the gauges.  Figure 3-3 shows the output from the Dynatest C7 

gauge which was showing a substantial amount of signal noise.   

These plots confirmed that the gauges were function properly immediately after 

paving.  More in-depth tests were carried out on the gauges the day following the paving 

and presented in the following section.   
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Figure 3-1 - Dynatest PAST II - AC gauge C4 response to roller pass. 
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Figure 3-2 – CTL ASG gauge B0 response to roller pass. 
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Figure 3-3 –Dynatest PAST II – AC gauge C7 output.  Although not explicitly clear, this sensor has a 
substantial amount of signal noise compared to similar gauges. 

 

Marshall Hammer Testing 
 

This testing was conducted the day after the strain gauges were installed and was 

done so to check the functionality of the strain gauges.  Each strain gauge was located 

using the GPS based location device and its position marked with paint directly on the 

pavement.  The data acquisition systems were set up and all of the sensor leads 

connected.  (Some sensors such as a few of the moisture and temperature probes were not 

measured or connected due insufficient lead lengths that needed to be lengthened.  Low 

speed samples were taken using a low speed data acquisition device set up for the 

purpose of measuring sensors during construction.  The system purchased for the project 

was being set-up for taking high speed strain and pressure measurements.) 
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 Once everything was connected and running, a series of tests were run to check 

that the sensors were alive and functioning.  A Marshall hammer with a rubber pad on the 

foot was used to stimulate the ASG sensors with four drops in succession.  The data 

acquisition system was started and stopped for each of the series of drops.  The series of 

drops was conducted directly above each ASG sensors.   

 The data was downloaded and analyzed for functionality of the gauges.  Upon 

inspection, one DynaTest strain gauge (Gauge ID - C6) was unresponsive to the Marshall 

Hammer drops.  A subsequent resistance check of the gauge showed that the resistance 

was much higher than its gauge resistance of 120 ohms, indicating that the gauge (ID C6 

in layout) was damaged and no longer functional (see Table 3-1 for the correct resistance 

values for the two types of strain gauges).  Unfortunately, an adjacent strain gauge 

(DynaTest ID C7) appeared to have an unusual amount of signal noise.  This was an 

indication that the gauge may have been damaged during paving.  All of the CTL ASGs 

appeared to be in proper working order, as well as the earth pressure cells (although the 

pressure cells did not respond to the Marshall Hammer drops, passing vehicles did cause 

observed responses.)  

Table 3-1 - Correct resistance values for the two different types of strain sensors.  A resistance that is 
extremely high implies an open circuit.  Resistance values lower than the correct value indicates that 
the sensor is shorting out.   

Sensor Sensor Lead 1 Sensor Lead 2 Correct Resistance 
Across Lead1 / Lead2, Ohms 

Black Red 350 CTL Asphalt Strain 
Gauge White Green 350 

Dynatest PAST II - AC Black or Yellow Blue or Brown 120 
 

 Figure 3-4 is a plot of the data generated from the tests using the Marshall 

Hammer on CTL gauge A0.  The plot shows four significant increases in strain that seem 

to accumulate and slowly return to its previous state.  The shape and behavior of these 
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strain impulses were not of much interest at the time, but may be for future research.  The 

point of conducting the test was to stimulate the sensors and get an indication of their 

functionality.  Other gauges produced very similar results to this, with the exception of 

the damaged gauges. 
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Figure 3-4 – CTL gauge A0 strain in response to a series of four Marshall Hammer drops in 
succession.   

 

FWD Testing 
 

The final lift of asphalt (SMA wearing surface) in the test section was scheduled 

for paving in the test section on the night of September seventh and finishing the next 

morning.  Falling Weight Deflectometer (FWD) testing was done beforehand for two 

reasons.  The first was to provide loading to the sensor arrays and record sensor data.  

The second reason was to record FWD data to gain some insight into the material 

properties of the pavement.  Although FWD testing would be done after the pavement 
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structure was complete, the data was collected as part of an effort to obtain as much 

information as possible about the pavement.   

 The FWD was used to create a heavy impulse loading on the pavement while 

simultaneously recording strain data.  Although no detailed analyses of the data have 

been carried out as of right now, future research may find the data valuable.   

 FWD tests were done is a series of three tests, each with four drops.  Figure 3-5 is 

a plot of strain response of gauge B1 due to the impulse loading of the FWD.  Similar to 

the Marshall Hammer tests, we see the four distinct drops from the FWD and that the 

strains seem to accumulate with each drop.  There is also a small recovery in between 

each drop, and over a longer period of time, there is almost a full recovery of strain to it 

pre-loaded state (this full recovery is not visible in Figure 3-5).   

 Another set of FWD was acquired on the completed pavement structure at a much 

later time.  Since there was a very narrow window between the final SMA paving and the 

highway opening, FWD was not conducted during construction.  However, a highway 

shutdown was used (night of October 25th into the following morning) to set a sign bridge 

structure and FWD testing was conducted on the finish pavement at that time. 
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Figure 3-5 – CTL gauge B1 strain response to an impulse loads generated from and FWD.   
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Chapter 4 – Infrastructure 
 

Some of the critical components of the project are merely incidental items, but 

took a considerable amount of time to install.  These infrastructure components outline 

the basic framework and provide the necessary means to allow the system to exist.  The 

designs used here were done so in the most simplistic and logical form.   

Pull-boxes and Conduit Network 
 

After the majority of the excavation of the Fond Du Lac (FDL) on-ramp concrete 

pads were cast which would be the future home of cabinets for both the ITS controllers 

and the equipment for this project.  Along with these, pull-boxes were placed, along with 

conduits running between them.  All of the electrical components were installed by 

Outdoor Lighting according to WisDOT specifications.  Two pull-boxes were placed 

along side the mainline at stations corresponding to the center of the strain arrays and 

center of the weigh-in-motion/wheel wander systems.  A third pull-box exists at an 

elevation below the roadside cabinet which serves as a drain for the entire conduit 

system.  Open graded stone was used to backfill all of the pull-boxes to drain water.  In 

the case of the pull-box located below the elevation of the cabinet, the backfill material 

extended, partially, into the select crushed layer and the dense and open graded base 

layers in the FDL on-ramp.  This network is illustrated below in Figure 4-1. 

A link between the two different cabinets does exist in the form of two two-inch 

conduits.  One of the conduits is dedicated to supplying the project cabinet with power.  

Currently the other two-inch conduit is used being used by cables for the sensors 

mounted to the mast alongside the roadways (infrared thermometer and camera). 
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Figure 4-1 - Pullbox locations and the network of conduits connecting them. 
 
 Figure 4-1 above shows a conduit running from the column of the sign bridge 

running to the WisDOT ITS cabinet.  The conduits at the sign bridge end are housed in a 

stainless-steel box.  A weatherproof port and flexible conduit mounted into the side of the 

box allows access for the leads to the instrument mast. 

Sensor Conduits - Part I 
 

A week after the installation of the sub-grade sensor arrays and before slip-

forming of the concrete curb, conduits were installed which would house wiring for the 

following equipment: strain gauge arrays, dense graded aggregate layer EPCs, 

temperature gradient probes, loop detector, wheel wander piezo strips, and weigh-in-

motion quartz piezo strips.  The layouts of these conduits are identified in Figure 4-2 

within the clouded section. 
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 At the time of installation of the conduits, the open graded base layer was being 

prepared for placement.  In part of the test section it had already been placed and 

stockpiles of the material were left in various locations waiting to be cut to its finish 

grade.  A large area was opened in the open graded aggregate layer along with some of 

the dense graded aggregate base layers to accommodate the installation of the numerous 

conduits.  The conduits were installed into the lower layer of the dense graded base layer.   

 It was pre-determined to use a two inch diameter conduit for each strain sensor 

array and one inch diameter conduits for all others.  The ends of the conduits for the earth 

pressure cells, strain arrays, and temperature gradient probes were placed so that they 

were as close as possible to the edge of the proposed sensor locations, minimizing the 

amount exposed wires (this was difficult for the strain sensors, since eight sensors would 

use one conduit; adding cable armor to the leads took care of this).  The ends of the 

conduits for the weigh-in-motion system, loop detector, and wheel wander strips, were 

terminated at the proposed face of the curb gutter and were later extended vertically to 

accommodate the higher elevations of the instruments.  All of the placements of the 

conduits were made using the help of a GPS surveying locator tool.   
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Figure 4-2 – The conduits within the cloud are those installed for the strain sensors, base EPCs, WIM 
and Wander components. 
 
 Since the proposed location of the weigh-in-motion system and wheel wander 

strips were farther north than the strain sensor arrays, the conduits were run to the 

northern pull-box which connects to the pull-box housing the strain arrays, pressure cells, 

etc. and finally into the lower pull-box and up into the cabinet.   

 After the proposed conduit termination locations were marked, the conduits were 

laid out, trimmed and inserted into the steel pull-box via ports cut with a hole-saw.  The 

open ends of the conduits were covered with duct tape to prevent foreign material from 

entering.  Before the conduits were backfilled, the exact locations of the ends of the 

conduits were measured and recorded so that they could be found later and are listed in 

Table 4-1.  The dense graded base layer was replaced and compacted followed by the 

open graded base layer.  Care was taken to keep the layers separate, but some mixing of 
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the layers was inevitable.  The open graded base layer was re-worked and re-graded just 

prior to paving to remove any deficiencies. 

Table 4-1 – Location of the conduit ends within the pavement structure.  Conduits with an offset of 
45.0 feet were terminated at the proposed curb face – in these cases, the locations below are not final 
and where later modified after paving.   

Conduit Description 
Conduit 

Diameter, in. Station, ft Offset (RT Of Mainline R/ L), ft Elevation, ft 

Strain Array "A" 2 385+12 36.0 659.0 

Strain Array "B" 2 385+20 36.0 659.0 

Strain Array "C" 2 385+25 36.0 659.0 

Base Earth Pressure Cell A1 1 385+16 33.5 659.0 

Base Earth Pressure Cell B1 1 385+24 33.5 659.0 

Shoulder Strain Gauge 1 385+20 41.0 659.0 

Temperature Gradient Probes 1 385+20 45.0 659.6 

Wheel Wander 1 385+36 45.0 659.6 

WIM #1 1 385+48 45.0 659.6 

WIM #2 1 385+54 45.0 659.6 

WIM - Inductance Loop Detector 1 385+55 45.0 659.6 

 

Sensor Conduits - Part II 
 

At the time of installation of the base layer earth pressure cells the conduits for 

the WIM and wheel wander systems (WIM system includes the loop detector) needed to 

be extended appropriately.  This was not done before during the previous conduit work 

because the concrete mountable curb had not been slip-formed yet.  After the curb was 

placed the conduits were located, excavated, and cut back accordingly to accept 90º 

elbows so the conduit would run vertically along the face of the flange.  These would 

have to be repositioned once more after the upper layers of asphalt were placed. 

 Just before the SMA layer was scheduled to be paved, the conduits for the WIM 

sensors, wheel-wander sensors, and pavement temperature gradient probes were installed.  

The proposed locations for the sensors were marked on the pavement surface with paint.  

It was decided to use one one-inch diameter conduits for each WIM strip (two coaxial 

cables per conduit), one one-inch conduit for all three wheel-wander sensors (three 
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coaxial cables per conduit) and one one-inch conduits to house both pavement 

temperature gradient sensors (two 16 conductor wires).   

 Most of the conduit runs for these components had already been complete prior to 

the placement of the concrete curb and were extended upwards against the face of the 

curb after it had been placed.  Conduits needed to be installed into the pavement layer 

(the surface of the 7-inch E30 layer) that extended from the conduits at the curb to the 

edge of the proposed sensor location.  Since the WIM and wheel-wander sensors needed 

to be installed into the surface of the SMA layer, it was proposed to install conduits so 

that only a small hole was needed to run the sensor cables to the cabinet, thus eliminating 

cutting unnecessary groves into the new pavement surface.  However this was not needed 

for the pavement temperature sensors, as they would be installed during paving of the 

SMA layer.   

 For the two temperature sensors, grooves were cut from the stubbed up conduit at 

the curb line to the proposed sensor locations.  The grooves were cut with a gas powered 

saw with an abrasive bladed mounted (Figure 4-3 - top left).  The grooves were about ¾ 

inch wide and about ¾ inch deep, just large enough to accommodate the large diameter 

sensor leads that would be installed into it plus extra room for sealant to be used to secure 

the wire.  One conduit would house both sensor leads.  The holes for the temperature 

probes were not drilled until they were ready to be installed.   

 For the WIM and wheel-wander sensors, a much larger groove was needed to 

house the one-inch diameter conduits.  A two-inch wide milling wheel mounted on a 

skid-loader was used to cut the pavement from the conduits to a location just short of the 

proposed sensor locations (Figure 4-3 - top right).  The pavement around the conduits had 
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been cut open and exposed by hand, making it possible to install elbows onto the 

previously installed conduit stubs. 

 After the grooves for the WIM sensors were cut, the conduits were placed in the 

groove.  The conduit for the wheel-wander had three extra cuts made that would 

accommodate the three sensor leads.  Pieces of armor cable were used to create smaller 

access channels for the sensor leads that extended from the base of the proposed wheel-

wander sensor locations and inserted into the conduit (though this made it possible to 

push the wires in only one direction).  It is important to note that sharp edges exist on the 

armor cable when freshly cut and were covered with electrical tape to prevent damage to 

the sensor leads.  In the future it is advised to use flexible tubing that has a smooth 

interior wall as pushing wire through the armor cable proved to be quite difficult.  It is 

also important that all conduits are sealed tightly just prior to being buried or debris, 

especially fine material, can be carried into the conduits creating blockages.   
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Figure 4-3 - Installation of the WIM, wheel wander, and temperature sensor conduits.  Top left: 
Grooves were cut with a saw for the sensor leads for the pavement temperature gradient probes.  
Top right and bottom left: Groove cut with conduit in place for a WIM sensor.  Bottom right: 
Asphalt being re-compacted into groove cut for the wheel-wander sensors.  The plate tamper had a 
bolt-on bar (circled) mounted on the bottom to fit into the cut to increase compaction efficiency.   
  

After all of the conduits were placed in their proper locations, the exact location 

of the ends the conduits were measured with the GPS locator and also by using a set of 

triangulation points.  The triangulation points were based off of three nails that were 

installed into the concrete curb, all of which were located near saw-cut construction joints 

towards the back of the curb.   

 Fresh asphalt was then replaced into the grooves in the pavement as seen in the 

bottom photographs in Figure 4-3 above.  Some areas were compacted by hand using a 

hand tamper, while most the longitudinal portions of the groove were compacted with a 
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gas powered plate-tamper.  The day after the conduits were placed, the bucket of a skid-

loader was used to trim the re-compacted asphalt flat with the surrounding pavement. 
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Chapter 5 - Miscellaneous Project Activities 
 

A handful of other tasks were carried out that were important but were not 

involved with the installation of any equipment.  Some of these tasks were important 

because they dealt with gathering information for future research while others were just 

observations, but considered noteworthy.   

Site Survey and Soil Sampling 
 

As most typical construction projects go, progress takes place in multiple stages.  

The first steps taken in accomplishing the goal of this project were to take a couple of site 

surveys where general information was gathered about the chosen location.  The initial 

visits were made before any demolition of the existing pavement and occurred in late 

April.  The first task in the project which consisted of collecting soil samples didn’t take 

place until mid-June.   

 The project detailed a change in the design of the Fond du Lac (FDL) on-ramp, 

adjacent to the test section.  The existing ramp had a pavement elevation slightly higher 

than the mainline elevation.  The proposed ramp would be many feet below the previous 

design, thus calling for major work in constructing a secant-pile retaining wall and 

removal of large amount of soil.  Excavation of the ramp at the test location would have 

to wait until the retaining wall was complete so that excavation of the entire section could 

begin.   

As soon as the mainline excavation was finishing up, select crushed material was 

placed and graded.  Shortly thereafter, excavation began for a sign bridge structure, 

which included a series of piles for the foundation (it was noted that a large deposit of 
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very gravelly material existed in the excavation for the piles, most likely due some pre-

existing construction.  It was also noticed that the soil was very wet and the excavation 

for the piles had to be constantly pumped out.  Soils in the excavation were mostly clays).  

As the structure was being constructed samples of the sub-grade soils were taken at the 

proposed mainline elevations of the sub-grade (or native materials) from earth slope 

between the mainline and the FDL on ramp as shown in Figure 5-1. 

 

Figure 5-1 - Location of soil samples taken for the project. 
 

The types of soils taken from these locations varied significantly in the small 

amount of distance that separated them.  The soils taken from location #1 in Figure 5-1 

were generally very clayey with some gravel throughout.   The samples from the location 

#2 in Figure 5-1 could be better characterized as silty-clays.  It was somewhat unknown 

what the states of the materials were in regards to the previous construction of the 
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highway many years ago.  During construction it was noticed that several locations had 

seams of very gravelly material which, upon further inspection, appeared to be locations 

of an old system of sewers or other ducts.  When installation took place, the soils in the 

location of the test section appeared to be in an undisturbed state and are assumed to be 

such.   

Pavement Coring 
 

Permission was granted from the guarantor of the pavement to take four four-

inch-diameter cores samples, just prior to final of the SMA layer, for future testing and 

other uses (see Figure 5-2 below).  They were taken a substantial distance away from the 

test section; two taken south of the test section and another two north of the section.  

Upon removal of one core, the upper pavement layer (upper lift of E30 mix, the SMA 

layer had yet to be paved) fell away from the rest of the layers.  The bond between layers 

has not been investigated, so the only action taken was to take note of the observation.  

The core samples were taken back to the lab at Marquette University, preserved by 

packaging them appropriately, and are currently in storage.   

 The voids left by the coring were re-compacted in the proper lifts using the 

properly matched material.  A Marshall Hammer was used to compact the asphalt and 

were finished as flush as possible to the pavement adjacent to it. 
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Figure 5-2 – Left: Core sample removed from the pavement.  Right: The core-drill was secured 
against the weight of a vehicle to produce samples with very smooth side walls for possible future 
testing.   
 

Sign Bridge Lift 
 

Poor weather conditions had pushed some of final construction activities behind 

schedule.   It was due to these delays that the wheel-wander and WIM sensors were 

installed using nightly lane closures, whereas the original plans called for installing them 

before the highway opened.  One aspect of construction that was pushed behind schedule 

was the erection of large sign bridge structure near station 385+00, just south of the test 

section.   

 The sign bridge structure was supposed to be erected before SMA paving, but 

unknown issues prevented it from being installed.  Lagging was set up along roadside in 

the areas of the project pull-boxes, and the sign structure was lifted and placed on it.  The 

structure remained there until after SMA paving and barrier walls were erected just 

before the highway opening.   

 Installation of the sign bridge was scheduled for October 25th and 26th during a 

night-time full highway closure.  The entire highway had to be closed because a heavy-

lift crane was brought in to lift the sign structure as one unit over all lanes of traffic as 
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shown in Figure 5-3Error! Reference source not found..  The physical positioning of 

the crane and its outriggers on the pavement was unknown, but it was understood that this 

could potentially damage the surface mounted instruments.  The operation was monitored 

throughout equipment set-up and lifting.  The crews were notified of the sensitive 

pavement and were very cooperative with avoiding the area.   

 The closure time was also used as a window to conduct FWD testing on the 

finished pavement structure.  The testing was done in multiple locations while the 

construction crews were awaiting the arrival of their equipment.   

 

Figure 5-3 - Heavy lift crane lowering the sign bridge into its final resting position.  Note that the 
outriggers for the crane came close to the sensor locations. 
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