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Abstract 
Two indicators of conformational variability of Escherichia coli acyl carrier protein (ACP) have been investigated, 
namely backbone dynamics and chemical shift variations of ACP. Hydrophobic interactions between the 4′-PP 
prosthetic group and the hydrophobic pocket enclosed by the amphipathic helices resulted in chemical shift 
perturbations in the residues near the prosthetic group binding sites and contact sites in the hydrophobic 
pockets upon conversion from apo- to holo-forms. At pH 7.9, destabilization of ACP due to negative charge 
repulsions and the deprotonated state of His 75 resulted in observed chemical shift changes in the C-terminal 
region. Model-free analysis showed that the α1α2 loop region near the prosthetic group binding site in ACP 
shows the greatest flexibility (lowest S2 values) and this result may suggest these flexibilities are required for 
structural rearrangements when the acyl chain binds to the prosthetic group of ACP. Flexibility of ACP shown in 
this study is essential for its ability to interact with functionally different enzyme partners specifically and weakly 
in the rapid delivery of acyl chain from one partner to another. 
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Introduction 
Acyl carrier protein (ACP) is a small (∼9 kDa) acidic protein whose function is essential for numerous 
biosynthetic pathways that depend upon acyl group transfer. The structures of several acyl carrier proteins have 
been solved by solution NMR and X-ray crystallography [1], [2], [3], [4], [5]. The overall structure consists of four 
α-helices (helix I (3–15), helix II (37–51), helix III (56–61), and helix IV (65–75)) connected by three loops. The 
crucial prosthetic group and acyl chain carrying residue, Ser36, is located at the junction of the α1α2 loop near 
the N-terminal region of helix II. However, relatively little data on the dynamics of the structure and the changes 
which occur on introduction of the prosthetic group exist. We provide some of those data here. 
 
The predominant role of ACP in Escherichia coli is in the biosynthesis of fatty acids. To function in this regard, 
inactive apo-ACP is first converted to the active holo form by the enzyme ACP-synthase, which catalyzes the 
transfer of 4′-phosphopantetheine group (4′-PP) of coenzyme A to the γ-OH group of the strictly conserved 
residue, serine 36, through the formation of a phosphodiester linkage. Acyl groups are activated for transfer to 
the growing lipid chain through thioester bond formation with the terminal cysteamine group of 4′-PP-ACP 
(holo-ACP). Activated ACP then interacts with other members of the fatty acid synthase pathway so that 2-
carbon units are added to the beginning of the growing acyl chain. In prokaryotes, the biosynthesis of fatty acids 
is accomplished by individual enzymes whereas in mammalian fatty acid synthesis the task is achieved by large 
multifunctional enzymes. In prokaryotes, protein: protein interactions are necessary for fatty acid production. 
therefore, disruption of these interactions is the subject of therapeutic efforts. 
 
Acyl carrier proteins also function in a variety of other processes that require acyl transfer steps such as 
synthesis of polyketide antibiotics [6], lipopolysaccharides [7], rhizobial nodulation signaling factors [8], 
lipoteichoic acids [9], as well as prohemolysin toxin activation [10]. In addition, ACP is required for 
glucosyltransfer in a 4′-PP independent process [11]. It is therefore essential for ACP to specifically interact with 
numerous proteins during the process of cell growth and distinct regions of ACP are known to be essential for 
proper biological function [5], [12], [13], [14]. Some of these regions must communicate information about 
functionalization of ACP’s prosthetic group. However, structural studies indicate that at least the apo- and holo-
forms of ACP are identical. Therefore, it is unclear how functional specificity is achieved. One possibility is that 
protein dynamics may play a role modulating specific protein interactions [15], [16], [17], [18], [19], [20]. 
 
Inherent flexibility in E. coli holo-ACP has been previously shown to account for inconsistent NOE constraints 
[21]. Furthermore, hydrogen–deuterium exchange experiments at pH 6.0 indicate rich ACP dynamics that 
portray helix II (residues 37–51) as the least stable of the secondary structure elements in the apo form [22]. 
These experiments additionally identified the C-terminal portion (residues 26–34) of the α1α2 loop as having 
greater protection factors than residues at the N-terminal region (residues 15 and 17) of this loop. NMR and X-
ray studies of the homologous Bacillus subtilis ACP suggest that the α1α2 loop becomes ordered and populates 
helical conformational space upon binding to ACP synthase [2], [5]. The frenolicin holo-ACP, which shares 21% 
sequence identity to the E. coli form, exhibits extensive mobility (low NMR order parameters, S2) in the α1α2 loop 
and the C-terminal residues (56–63) exhibit a slow conformational exchange process [4]. Thus, a myriad of 
dynamics appear throughout the ACP family of proteins, perhaps reflecting their functional plasticity. 
 
Flexibility is believed to be essential for the ability of ACP to interact with multiple enzyme partners and undergo 
conformational changes as its reversibly directs acyl groups to the active sites for these enzymes. There are two 
important factors that could influence the conformational stability of E. coli ACP. First, ACP can have 
hydrophobic interactions between the various acyl moieties of the modified 4′-PP prosthetic group and the 
hydrophobic pocket enclosed by the amphipathic helices [23], [24]. Second, ACP is highly acidic protein, 
therefore solution pH or the binding of divalent cations at discrete sites on the protein can neutralize the 
repulsive effects of the 20 acidic residues in ACP and result in its conformational stabilization [25], [26], [27], 
[28]. Here, we investigated the factors that can influence the conformational stability of E. coli ACP through 
observation of backbone dynamics changes and chemical shift variation of ACP. 
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Experimental procedures 
Expression and purification of15N-labeled ACP. The cDNA of E. coli acyl carrier protein (ACP) was previously 
cloned [29] into a pET11a vector (Novagen) containing an IPTG inducible promoter and resistance to ampicillin. 
15N-labeled ACP was produced in 1 L M9 minimal media supplemented with 100 μg/ml ampicillin and 1 g/L 
15NH4Cl (Cambridge Isotope Laboratories). Purification of ACP follows methods previously described [29], [30]. 
Mixed apo- and holo-ACP was converted entirely to the holo-ACP using the crude synthase isolated directly from 
a cation exchange column and coenzyme A (Sigma, St. Louis, MO) as described previously [31]. NMR samples 
were dialyzed against 25 mM Mes buffer, pH 6.1, containing 5 mM DTT and 5 mM CaCl2. 
 
NMR experiments. All protein NMR experiments were performed on 1 mM 15N-labeled apo-ACP and 0.5 mM 15N-
labeled-ACP samples using a 3-channel Varian Unity+ 600 MHz instrument and a Z-gradient equipped Varian 
HCN probe located in the Yale University Chemical Instrumentation Center. Typically, 40 μs 15N 90°-pulse widths 
were achievable with this probe. The experimental temperature was calibrated to 298 K using a 100% methanol 
standard. Ambiguities in resonance assignments were resolved by recording a 15N-edited NOESY-HSQC [32], [33] 
and 15N-edited TOCSY-HSQC [34]. NMR spin-relaxation experiments were performed using published, gradient-
selected sensitivity-enhanced pulse sequences [35], [36], [37]. The longitudinal (R1) spin-relaxation rates were 
measured with relaxation delays of 0.0 (×2), 0.112, 0.222, 0.352 (×2), 0.532, 0.802 s. The transverse (R2) 
relaxation rates were obtained with 1.0 ms spacing between 15N 180° CPMG pulses at total relaxation delays of 
0.0 (×2), 0.02, 0.04, 0.076, 0.124 (×2), 0.184, 0.284 seconds. For R2 measurements, temperature-compensating 
15N 180° pulses were applied during the recycle delay [38]. The heteronuclear cross-relaxation rate (NOE) was 
obtained by interleaving pulse sequences with and without proton saturation. All relaxation spectra were 
acquired with the 1H carrier set coincident with the water resonance and 15N frequency set to 118 ppm; spectral 
widths were 7000 and 2000 Hz in the t2 and t1 dimensions with 2048 and 120 complex points in each dimension, 
respectively. A recycle delay of 2.5 s was used in all (R1, R2) relaxation experiments. NMR data were processed 
with NMRPipe [39] and visualized with Sparky [40]. Longitudinal and transverse relaxation rates were 
determined by fitting the peak heights (obtained from a 3 × 3 grid located at the peak maxima) to a single 
exponential decay by a non-linear least-squares routine using in-house written software and the program 
‘Curvefit’ provided by Professor Arthur G. Palmer 
(http://cpmcnet.columbia.edu/dept/gsas/biochem/labs/palmer/software.html). The heteronuclear NOE was 
determined from the ratio of peak heights for experiments with and without 1H-saturation pulses. 
 
Model-free analysis. Protein amide backbone dynamics were characterized by fitting NMR spin-relaxation rates 
to 1 of 5 semi-empirical forms of the spectral density function using the model-free formalism [41], [42]. 
 
The five models used to describe the spin-relaxation data are described according to their corresponding free 
parameters in the following equation (1)[44]: 
 

Model1:𝑆𝑆2
Model2:𝑆𝑆2,𝜏𝜏e,

Model3:𝑆𝑆2,𝑅𝑅ex,
Model4:𝑆𝑆2,𝜏𝜏e,𝑅𝑅ex,
Model5:𝑆𝑆f2,𝑆𝑆2,𝜏𝜏e,

  (1) 

 
in which τe is the internal correlation time, S2 is the generalized order parameter, is the order parameter for fast 
motion, with a typical correlation time <10 ps, and Rex is the additional linebroadening due to assumed, two-site 
conformational exchange and depends on the equilibrium site populations, the chemical shift differences, and 
the rate of exchange between conformers. Fitting of motional parameters to the spin-relaxation data was 
performed using the selection method described for the program FAST-Model-free [44] interfaced with ‘Model-

https://www.sciencedirect.com/topics/biochemistry-genetics-and-molecular-biology/copurification
https://www.sciencedirect.com/topics/biochemistry-genetics-and-molecular-biology/escherichia-coli
https://www.sciencedirect.com/topics/biochemistry-genetics-and-molecular-biology/acyl-carrier-protein
https://www.sciencedirect.com/science/article/pii/S0006291X06000635?via%3Dihub#bib29
https://www.sciencedirect.com/topics/biochemistry-genetics-and-molecular-biology/ampicillin
https://www.sciencedirect.com/science/article/pii/S0006291X06000635?via%3Dihub#bib29
https://www.sciencedirect.com/science/article/pii/S0006291X06000635?via%3Dihub#bib30
https://www.sciencedirect.com/topics/biochemistry-genetics-and-molecular-biology/synthase
https://www.sciencedirect.com/topics/biochemistry-genetics-and-molecular-biology/cation-exchange
https://www.sciencedirect.com/topics/biochemistry-genetics-and-molecular-biology/coenzyme-a
https://www.sciencedirect.com/science/article/pii/S0006291X06000635?via%3Dihub#bib31
https://www.sciencedirect.com/topics/biochemistry-genetics-and-molecular-biology/sample
https://www.sciencedirect.com/topics/biochemistry-genetics-and-molecular-biology/ph
https://www.sciencedirect.com/topics/biochemistry-genetics-and-molecular-biology/temperature
https://www.sciencedirect.com/topics/biochemistry-genetics-and-molecular-biology/resonance-assignment
https://www.sciencedirect.com/science/article/pii/S0006291X06000635?via%3Dihub#bib32
https://www.sciencedirect.com/science/article/pii/S0006291X06000635?via%3Dihub#bib33
https://www.sciencedirect.com/science/article/pii/S0006291X06000635?via%3Dihub#bib34
https://www.sciencedirect.com/topics/biochemistry-genetics-and-molecular-biology/pulse-sequence
https://www.sciencedirect.com/science/article/pii/S0006291X06000635?via%3Dihub#bib35
https://www.sciencedirect.com/science/article/pii/S0006291X06000635?via%3Dihub#bib36
https://www.sciencedirect.com/science/article/pii/S0006291X06000635?via%3Dihub#bib37
https://www.sciencedirect.com/topics/biochemistry-genetics-and-molecular-biology/pulse-rate
https://www.sciencedirect.com/science/article/pii/S0006291X06000635?via%3Dihub#bib38
https://www.sciencedirect.com/topics/biochemistry-genetics-and-molecular-biology/cross-relaxation
https://www.sciencedirect.com/topics/biochemistry-genetics-and-molecular-biology/proton
https://www.sciencedirect.com/topics/biochemistry-genetics-and-molecular-biology/spectrum
https://www.sciencedirect.com/science/article/pii/S0006291X06000635?via%3Dihub#bib39
https://www.sciencedirect.com/science/article/pii/S0006291X06000635?via%3Dihub#bib40
https://www.sciencedirect.com/topics/biochemistry-genetics-and-molecular-biology/height
https://www.sciencedirect.com/topics/biochemistry-genetics-and-molecular-biology/software
http://cpmcnet.columbia.edu/dept/gsas/biochem/labs/palmer/software.html
https://www.sciencedirect.com/topics/biochemistry-genetics-and-molecular-biology/dynamics
https://www.sciencedirect.com/topics/biochemistry-genetics-and-molecular-biology/density
https://www.sciencedirect.com/science/article/pii/S0006291X06000635?via%3Dihub#bib41
https://www.sciencedirect.com/science/article/pii/S0006291X06000635?via%3Dihub#bib42
https://www.sciencedirect.com/science/article/pii/S0006291X06000635?via%3Dihub#fd1
https://www.sciencedirect.com/science/article/pii/S0006291X06000635?via%3Dihub#bib44
https://www.sciencedirect.com/topics/biochemistry-genetics-and-molecular-biology/order-parameter
https://www.sciencedirect.com/topics/biochemistry-genetics-and-molecular-biology/motion
https://www.sciencedirect.com/science/article/pii/S0006291X06000635?via%3Dihub#bib44


Free 4.01’ [43], [45]. Model selection was based on the statistical testing protocol described previously by 
Mandel et al. [43]. The rotational diffusion tensor for ACP was estimated from R2/R1 ratios and the program 
‘R2R1_diffusion’ using the solution coordinates, (1ACP) and the program ‘pdbinertia’ (provided by Professor 
Arthur G. Palmer). The criteria for inclusion of residues in the diffusion tensor estimate relied on the method of 
Tjandra et al. [46]. During the model-free analysis, an axially symmetric rotational diffusion tensor was used, the 
N–H bond lengths were assumed to be 1.02 Å, and the 15N chemical shift anisotropy was assumed to be 
−160 ppm [47], [48]. For each model, 300 randomly distributed data sets were generated. Models were selected 
by comparing the sum-squared error of the optimal fit with the 0.05 critical value of the distribution. In cases 
where F-statistics were applicable, comparisons were made with the 0.20 critical value of the distribution. 

Results and discussion 
Solution NMR experiments 
15N-labeled acyl-carrier protein (ACP) in the apo- and holo-forms was expressed and purified. The two-
dimensional 1H–15N HSQC spectra at pH 5.9 and 7.9 for the apo- and holo-forms of ACP are shown in Fig. 1. Using 
previous resonance assignments for apo-ACP [29] and TOCSY- and NOESY-HSQC experiments acquired at 14.1 T, 
a total of 74 out of 76 non-proline backbone residues could be assigned at pH 5.9 for the apo- and holo-forms, 
and 74 residues at pH 7.9 for both forms. Fig. 1 shows overlays of HSQC spectra at both pH values for the holo 
and apo forms. The typical fraction of the non-phosphopantetheine form of ACP (apo-ACP) obtained from 
protein preparations is 80% with the remainder being holo-ACP (20%). The relative amount of apo:holo proteins 
in the apo-ACP sample determined by a 1D trace through the 15N dimension for residue Leu37 is ∼80% apo and 
∼20% holo forms. 
 

 
 
Fig. 1. NMR spectra of ACP. (A,B) Overlay of two-dimensional 1H–15N HSQC spectra of the apo (blue) and holo 
(red) forms of ACP. Spectra were acquired at pH 5.9 (A) and pH 7.9 (B). Peaks were assigned using a combination 
of 1H–15N NOESY-HSQC and 1H–15N TOCSY-HSQC and are shown using the one-letter amino acid code. 
 
Previous NMR studies on ACP have shown that the apo- and holo-forms of these proteins are essentially 
identical and no NOEs between the prosthetic group and holo-ACP residues are detected unless ACP is acylated 
[1], [3], [23], [24]. Based on 19F–1H heteronuclear nuclear Overhauser studies of acyl chain-binding site of ACP, 
19F located at the 5-position of the acyl chain is in close contact with the protein primarily through interactions 
with Ile54 and Ala59 [23]. 
 
To assess the effects of covalent attachment of the prosthetic group to ACP, the backbone 15N and 1HN chemical 
shift variations upon conversion of the apo form of ACP to the holo state were investigated. These changes in 
backbone chemical shifts calculated by the method of Wuthrich and co-workers [49] are depicted in Fig. 2. 
Deviations are small for most of the residues and suggest that the structures of apo-ACP and holo-ACP are 
almost identical. However, the residues near the prosthetic group binding site show chemical shift 
perturbations. At pH 5.9, residues from Asp35 to Met44, which are near the site of prosthetic group attachment, 
undergo significant chemical shift changes. Also, Ile54, Glu60, Ile62, and Ala68 show chemical shift variations 
between two forms. The side chains of these residues, with the exception of Glu60, are located in a hydrophobic 
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cleft that is purported to provide interactions with the prosthetic group. The sites of 4′-PP induced chemical shift 
changes at pH 5.9 are mapped onto the structure of ACP (Fig. 3A). The crystal structure of butyryl-ACP I62M 
where Ile62 was substituted with Met62 shows that the terminal methyl group of the butyryl moiety is located 
in a pocket lined by the side chains of residues Val7, Leu46, Ile54, Met62, Tyr71, and Ile72 [50]. The 
mercaptoethylamine moiety in the 4′-PP prosthetic group is stabilized by a hydrogen bond between its amide 
nitrogen atom and the main chain carbonyl group of Glu60. As shown in Fig. 2, Fig. 3, Glu60 shows the chemical 
shift variations between apo- and holo-forms. At pH 7.9 (Fig. 2B), the pattern of chemical shift changes between 
the apo-and holo-forms is similar to those seen at pH 5.9. These results suggest that while the structures of the 
apo- and holo-forms are very similar, the prosthetic group transiently interacts with residues in the hydrophobic 
cleft resulting in a perturbation of their chemical shifts. It has been reported that ACP from Mycobacterium 
tuberculosis also shows similar prosthetic group dynamics [51]. 
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Fig. 2. Chemical shift changes in ACP induced by phosphopantetheine modification and elevation of pH. (A) The 
deviation between holo- and apo-ACP at pH 5.9. (B) Deviation between holo- and apo-ACP at pH 7.9. (C) For 
holo-ACP, the deviation between pH 5.9 and 7.9 samples and for (D) chemical shift deviation for apo-ACP 
between pH 5.9 and 7.9. Δδav = {0.5[Δδ (1HN)2 + (0.2Δδ (15N))2]}1/2[49] where Δδ (1HN) and Δδ (15N) are the 
chemical shift differences for the 1HN and 15N atoms between apo- and holo-forms [49]. 
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Fig. 3. Spatial representation of chemical shift changes in ACP induced by phosphopantetheine modification and 
elevation of pH. The changes in chemical shift shown in Fig. 2 are mapped onto a worm representation of ACP. 
(A) The thickness of the worm is proportional to the chemical shift changes between the holo- and apo-ACP at 
pH 5.9 and reflects the magnitude, Δδav, of chemical shift changes upon covalent linkage between Ser36 and the 
phosphopantetheine prosthetic group. (B) The thickness of the worm is proportional to the chemical shift 
changes of holo-ACP between that at pH 5.9 and that at pH 7.9. The figure was prepared with MolMol [55]. 
 
It is well known that fatty acid synthesis is stimulated by the addition of divalent cations that give rise to ion-
induced changes in the structure of ACP [11]. Two sites, each capable of binding Mg2+ or Ca2+, have been 
proposed [25], [26], [27], [28]. Manganese paramagnetic effects, identified using the T1-accordian COSY 
experiment, have identified two ion-binding sites on the protein [28]. These sites appear to cluster around two 
distinct well-separated regions involving E30 (site A) and E48 (siteB), respectively. Site A appears to utilize E30, 
D35, and D38 in its ion coordination. Site B is near a proline-containing bend and appears to involve stronger 
interactions with acidic residues, E47, D51, E53, and D56. Mn(II) EPR-binding studies with holo-ACP also 
suggested the presence of two high affinity metal-binding sites at physiological pH [25]. 
 
In order to investigate the effects of solution pH on the structure of ACP, the backbone 15N and 1HN chemical 
shift variations at pH 5.9 and at pH 7.9 for holo-ACP and apo-ACP were analyzed. As shown in Figs. 2C and D, the 
effects of pH on the apo- and holo-proteins are similar. The largest pH effects are localized to the C-terminal 
region and to residues 50–60. Fig. 3B shows the change in chemical shifts at low and high pH for the holo-ACP. 
The pH-dependent chemical shift variations occur in the C-terminal helical region, which includes His75, Ala59 
located in helix III, and Ile62 located in the loop joining helices III and IV as well as residues comprising the 
consensus metal-site B. In contrast, Site A does not show any variations in chemical shift with pH. These studies 
indicate that the predominant pH effects are manifest near the C-terminus of ACP and in residues surrounding 
metal-site B. CD spectroscopic analysis of the effect of Mg2+ on the ACP structure showed that the native ACP 
conformation can be stabilized by divalent cation [26], [27], [52]. The imidazole side chain of His residue has a 
pKa value near 6–7 and it is one of the strongest bases at neutral pH. Therefore, not only divalent cation but also 
His 75 at C-terminus of ACP can stabilize the electrostatic repulsion between the acidic residues at neutral pH. 
However, at high pH, the imidazole ring becomes a much weaker base and His 75 cannot prevent loss of 
secondary structure that occurs due to electrostatic repulsion of acidic residues at elevated pH. Consequently, 
destabilization of these regions of ACP could result in the observed chemical shift changes between two 
different pH 5.9 and 7.9. 
 
To further investigate the origins of the pH-dependent chemical shift changes, NMR spin-relaxation 
measurements were performed. Longitudinal (R1) and transverse (R2) relaxation rates and the heteronuclear 
NOE were measured. Because there are relatively few changes in chemical shifts upon conversion of apo- to 
holo-ACP, the NMR spin-relaxation rates for a majority of the residues for the ‘contaminated’ apo-ACP sample 
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will be a population-weighted average of the two forms. For this reason a quantitative assessment of dynamics 
will be restricted to holo-ACP at pH 5.9 and 7.9 where this contamination has little effect. 
 
The results of the spin-relaxation experiments are shown in Fig. 4. There are minor effects of pH on the spin-
relaxation rates. The average (10% trimmed) R1, R2, and NOE values at pH 5.9 and 7.9 (henceforth unless 
specified all discussion will concern the holo form), respectively, are 2.10 ± 0.06, 6.44 ± 0.25, 0.790 ± 0.096, 
2.02 ± 0.07, 6.92 ± 0.18, and 0.734 ± 0.079 s−1. The relaxation rates in ACP show relatively uniform behavior 
across the protein sequence with the exception of loop regions, including Glu53 and residues at the C-terminus. 
In addition for holo-ACP, relaxation data are obtained for both NH groups in the 4′-PP moiety; these are also 
shown in Fig. 4, indicated as positions 79 and 80. The significantly reduced relaxation rates for NH groups in the 
prosthetic group compared to those of the protein backbone are consistent with 4′-PP being very mobile and 
making few long-lived interactions with ACP (vide supra). Because the NH group of Glu53 is very close to that of 
the mercaptoethylamine moiety in the 4′-PP prosthetic group, the distinct relaxation behavior of Glu53 may be 
caused by the transient interactions with this region of the prosthetic group. 
 

 
 
Fig. 4. Summary of NMR spin-relaxation results. NMR data are displayed as a function of ACP amino acid residue 
for the holo-form at pH 5.9 and pH 7.9. Breaks in the lines indicate regions of missing data as a result of proline, 
data peak overlap or data of inadequate S/N. The two data points at position 79 and 80 represent relaxation 
data for the NH groups of the phosphopantetheine moiety. 
 

NMR-derived dynamics parameters 
Model-free analysis was performed as described [43] to obtain global and site-specific dynamics information. 
Using an axially symmetric diffusion tensor, the rotational correlation time, τm, was found to be 4.40 ± 0.06 and 
4.79 ± 0.06 ns at pH 5.9 and 7.9 with D∥/D⊥ = 0.86 and 0.84, respectively. These values are in agreement with 
theoretical predictions based on the molecular mass of ACP and from hydrodynamic calculations [53]. In 
addition, the order parameter, S2, describing the degree of spatial restriction of the backbone NH bond vector 
was determined by model-free analysis and is shown in Fig. 5. The backbone dynamics for the majority of amino 
acid residues are best described by model 1. At pH 5.9, 58 residues are best fit by model 1, 2 residues are fit to 
model 2, 2 to model 3, and 1 (Ala77) to model 5. At pH 7.9, 52 residues are best described by model 1, 1 (Val18) 
by model 2, 6 by model 3, and 1 (Ala77) by model 5. The average S2 values for the entire protein (10% trimmed) 
determined at pH 5.9 and 7.9 are 0.862 ± 0.020 (63 quantifiable residues) and 0.864 ± 0.014 (61 quantifiable 
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residues). The overall results indicate that: (1) there are minimal quantitative overall differences in the 
equilibrium fluctuations of the backbone NH groups of ACP at the two pH values and (2) the site-specific pattern 
of S2 values does not show a pH dependence. The centers of loop regions in ACP show the greatest flexibility 
(lowest S2 values) which decreases nearer to the α-helices. Likewise the helix regions show increased flexibility 
at the ends where the helix enters and exits the intervening loops, while the center of helix shows the greatest 
rigidity. The backbone dynamics of an ACP (fren holo-ACP) involved in polyketide biosynthesis have been 
characterized [4]. This protein has little sequence identity (21%) to E. coli ACP studied here yet the overall helix 
topology of the two proteins is similar. Functionally, fren holo-ACP is able to interact with the E. coli holo-ACP 
synthase [54]. Yet, the overall backbone rmsd is ∼3 Å for the two proteins. The S2 values for fren holo-ACP are 
also high except in loop I, which connects helices I and II. Similarly, in the case of E. coli ACP, residues in α1α2 
loop which connects helix I and helix II show great flexibility. 
 

 

Fig. 5. NMR order parameters. Values of S2 are shown versus ACP amino acid sequence for the holo form (A) at 
pH 5.9 and (B) pH 7.9. Breaks in the lines indicated regions of missing data as a result of proline, data peak 
overlap, inadequate S/N, or residues in which no motional model could be fit. Secondary structure is shown 
above the data plot with rectangles indicating α-helical regions. 
 
Slower timescale (μs–ms) motions are also captured from the model-free analysis. These conformational 
exchange motions result in additional linebroadening (Rex) of the NMR signal. The pattern of exchanging residues 
in ACP shows slight pH dependence. At pH 5.9, Thr64, Asn73, and Gln 76 near His 75 are in chemical exchange. 
At pH 7.9, the exchanging residues are Ala26, Leu32, and Met44. These latter residues are in the α1α2 loop or in 
the second α-helix. Order parameters, S2, are colored onto the ribbon structure of holo at pH 5.9 and 7.9 in Fig. 
6. The values of Rex for the residues greater than 0.5 s−1 are shown with a larger ribbon diameter. In addition at 
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pH 7.9 there are two other residues that have Rex values slightly smaller than 0.5 s−1. They are Val40 and Glu41. 
It is interesting to note that they spatially cluster near residues with more significant Rex values. 
 

 

Fig. 6. Spatial location of NMR-derived dynamical parameters. Order parameters, S2, are colored onto the 
tubular drawing of holo at pH 5.9 and 7.9. The color scheme is red (S2 < 0.70) and yellow (S2 > 0.90). For values 
0.80 < S2 < 0.90, residues are colored from orange to yellow in a linear fashion. Residues with Rex > 0.5 s−1 are 
shown with larger ribbon diameter. The figure was prepared with MolMol [55]. 
 

Conclusion 
ACP is believed to be a mobile protein and flexibility is believed to be essential for its interaction with 
functionally different enzyme partners and conformational changes which facilitate the entry and exit of acyl 
groups attached to the prosthetic group from the active sites of these enzymes. In this work, observations point 
to two important factors that can influence the conformational stability of E. coli ACP. The effects of solution pH 
on ACP chemical shift variations and spin-relaxation data of holo-ACP point to electrostatic interactions which 
can also modulate stability. Hydrophobic interactions between 4′-PP prosthetic group and the hydrophobic 
pocket enclosed by the amphipathic helices can be the source of differences in the NMR data of holo-ACP and 
apo-ACP. 
 
No significant differences in the backbone 15N and 1HN chemical shift and NOE patterns were noted between 
apo- and holo-forms of ACP for most residues, suggesting that the structures of two forms are essentially the 
same. However, residues from Asp35 to Met44, which are near the site of prosthetic group attachment, 
undergo chemical shift perturbations. Ile54, Glu60, and Ile62 located in the segments between the second helix 
and the fourth helix show chemical shift variations between two forms and these residues are located in a 
hydrophobic cleft that is purported to provide interactions with the prosthetic group. These results suggest that 
while the structures of the apo- and holo-forms are very similar, the prosthetic group transiently interacts with 
residues in the hydrophobic cleft resulting in a perturbation of their chemical shifts. Low order parameters in 
this region and α1α2 loop as shown in Fig. 5 may imply the flexibilities that might be required for the structural 
rearrangements when the acyl chain binds to the prosthetic group of ACP. 
 
In order to investigate the effects of solution pH on the structure of ACP, the backbone 15N and 1HN chemical 
shift variations and spin-relaxation data at pH 5.9 and at pH 7.9 for holo-ACP were analyzed. The largest pH 
effects are localized to the C-terminal region and to residues comprising the consensus metal-site B. Raising the 
pH would enhance negative-charge repulsion, thereby destabilizing the structure. His75 at the C-terminus is 
surrounded by negatively charged residues such as Glu4, Glu5, Asp51, Glu53, and Glu58 as well as C-terminal 
carboxylate. It has been reported that partial positive charge of His 75 stabilizes the conformation of ACP in the 
C-terminal region [52]. However, at pH 7.9, destabilization of ACP due to electrostatic repulsion and the 
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different protonation state of His75 contribute to the pH-dependent stability of native state and result in the 
observed chemical shift changes in C-terminal region. 
 
However, according to the 15N nuclear spin-relaxation measurements on ACP, there are minor effects of pH on 
the spin-relaxation rates as a result of solution pH changes. There are minimal quantitative overall differences in 
the equilibrium fluctuations of the backbone NH groups of ACP at the two pH values and the site-specific pattern 
of S2 values does not show a pH dependence. At both pH, each element of secondary structure in ACP has higher 
S2 values than those of the loop regions. Model-free analysis showed that the α1α2 loop region near the 
prosthetic group binding site in ACP shows the greatest flexibility (lowest S2 values) and this result may imply 
that these flexibilities are required for structural rearrangements when the acyl chain binds to the prosthetic 
group of ACP. Flexibility of ACP shown in this study could be essential for its interaction with different enzyme 
partners specifically and weakly to allow rapid delivery of acyl chain from one to another. 
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