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Abstract 
This paper develops estimates of environmental improvement based on a two-stage hedonic price 
analysis of the single family housing market in the Puget Sound region of Washington State. The 
analysis — which focuses specifically on several EPA-designated environmental hazards and 
involves 226,918 transactions for 177,303 unique properties that took place between January 
2001 and September 2009 — involves four steps: (i) ten hedonic price functions are estimated 
year-by-year, one for each year of the 2000s; (ii) the hedonic estimates are used to compute the 
marginal implicit price of distance from air release, superfund, and toxic release sites; (iii) the 
marginal implicit prices, which vary through time, are used to estimate a series of implicit 
demand functions describing the relationship between the price of distance and the quantity 
consumed; and, finally (iv) the demand estimates are compared to those obtained in other 
research and then used evaluate the potential scale of benefits associated with some basic 
environmental improvement scenarios. Overall, the analysis provides further evidence that it is 
possible to develop a structural model of implicit demand within a single housing market and 
suggests that the benefits of environmental improvement are substantial. 
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1. Introduction  

 

Environmental quality — a commodity that, over the past several decades, has emerged as one of 

the most powerful forces acting on the economic landscape of the United States and other 

developed nations (see Kahn 2006) — is not traded in conventional markets, so its value can only 

be estimated, never measured directly. Estimation, which requires knowledge of a demand 

function describing the relationship between price and the quantity consumed, is achieved 

through either stated or revealed preference approaches (Freeman 2003; Mäler and Vincent 

2005). As the name implies, stated-preference approaches examine individuals’ direct responses 

to hypothetical changes in environmental goods. The most common of these is the contingent 

valuation method, in which respondents are asked to state their willingness to pay or, as the case 

may be, to accept compensation for changes in the quality and/or quantity of the commodity of 

interest. These responses are then used to construct demand functions that, in turn, are used to 

estimate the benefits of marginal and non-marginal changes in consumption.1

The two main ways around the information problem are the following. First, because 

hedonic equilibria are inherently nonlinear (Ekeland et al 2002, 2004) it is possible to use 

functional form restrictions in the first-stage hedonic price function to non-parametrically identify 

the second-stage demand function (see, for example, Chattopadhyay 1999; Noelwah et al 2010). 

Ultimately, the viability this strategy depends on the validity of assumptions about the exact 

nature of the relationships involved. Second, it is possible to use multiple markets and/or 

 This compares to 

revealed preference approaches, which examine actual behavior within housing and labor markets 

to get at the value of environmental quality. The most common of these approaches is the hedonic 

price method — first implemented in a study of the automobile industry by Court (1939) and later 

formalized by Rosen (1974) — which has consistently shown that households pay higher (lower) 

housing prices and/or are compensated with lower (higher) wages in environmentally desirable 

(undesirable) locations. The so-called marginal implicit prices that come out of hedonic analysis 

can be used to construct implicit demand functions describing household willingness to pay for 

environmental quality. There is, however, a major barrier to doing this, which is information: the 

hedonic function is a composite of unique, individual demand and supply, so the implicit prices it 

yields are also composites and, for this reason, it is difficult to identify and estimate a structural 

demand function. 

                                                 
1 See Carson and Hanemann (2005) for an extensive review of the contingent valuation method. 
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submarkets single market (Brown and Rosen 1982; Bartik 1987) to come up with varying 

marginal implicit price estimates that help to identify the demand function (see, for example, 

Brasington and Hite 2005; Carruthers and Clark 2010). The bottom line for this strategy is that it 

requires that different consumers pay different prices for the same quantity/quality of a given 

environmental good — that is, the identical commodity must be priced differently from place-to-

place or time-to-time. 

This paper employs the latter strategy to develop estimates of environmental 

improvement based on a two-stage hedonic price analysis of the single-family housing market in 

the Puget Sound region of Washington State. The analysis — which focuses specifically on 

several EPA-designated environmental hazards and involves 226,918 transactions for 177,303 

unique properties that took place between January 2001 and September 2009 — involves four 

steps: (i) ten hedonic price functions are estimated year-by-year, one for each year of the 2000s; 

(ii) the hedonic estimates are used to compute the marginal implicit price of distance from air 

release, superfund, and toxic release sites; (iii) the marginal implicit prices, which vary through 

time, are used to estimate a series of implicit demand functions describing the relationship 

between the price of distance and the quantity consumed; and, finally (iv) the demand estimates 

are compared to those obtained in other research and then used evaluate the potential scale of 

benefits associated with some basic environmental improvement scenarios. In the second stage 

demand functions, time — measured as the number of days since January 1, 2000 when the 

transaction occurred — is used as an instrument. 

 

2. Background — the Two-stage Hedonic Model 
 

Although the hedonic model actually has its foundations in the work of Adam Smith (1776) who 

discussed compensating wage differentials in the context of job characteristics,2

 

˜ p i = α0 +α1 ⋅ zi1 +α2 ⋅ zi2 + ...+α k ⋅ zik +εi

 the application of 

hedonic methods to housing markets was first explored by Ridker and Henning (1967) and 

Anderson and Crocker (1971), the model was first formalized by Rosen (1974) and later refined 

by Freeman (1979). Rosen envisioned a two-stage process. In the first stage, the sale price of sold 

homes are regressed on all of the attributes of the home, as well as the characteristics of the 

neighborhood and jurisdictions in which the home is located.  This is shown in equation (1) 

below. 

. (1) 

                                                 
2 Smith identified five different characteristics of jobs including: (1) the agreeableness, or disagreeableness of the job, 
(2) the difficulty to learn the job, (3) the extent to which there are interruptions in employment for the job, (4) the 
amount of trustworthiness required of the job, and (5) the likelihood of success in the job.  
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In this equation, 

 

˜ p i represents the natural logarithm of the sales price of home i; the 

 

z s represent 

measures of various housing attributes; the 

 

α s represent estimable parameters; and 

 

εi represents 

a stochastic error term. The implicit price for attribute, k, is derived as the partial derivative of (1) 

with respect to that attribute. Given that the hedonic function is in semi-log form, the implicit 

price is:

 

ˆ π ik = ˆ α k ⋅ pi.  

Next, it is increasingly recognized that hedonic price models must address the problem of 

spatial dependence (Kim et al. 2003; Theebe 2004; Brasington and Hite 2005; Anselin and 

LeGallo 2006; Anselin and Lozano-Gracia 2008; Cohen and Coughlin 2008). On the supply side, 

proximate homes tend to be similar to each other, and, on the demand side, homebuyers regularly 

emulate one another’s behavior. The result is a process of spatial interaction among market 

participants, which, at a minimum, suggests that the first stage hedonic price function shown in 

equation (1) should be modified to include a spatial lag of its dependent variable (Anselin 1988; 

Anselin and Bera 1998):  

 

˜ p i = β0 + λ ⋅Wij ⋅ ˜ p + β1 ⋅ zi1 + β2 ⋅ zi2 + ...+ βk ⋅ zik +υi . (2) 

The notation in this equation is essentially the same as before, except that the 

 

β s stand in for the 

 

α s; 

 

υi  replaces 

 

εi as the stochastic error term; 

 

Wij ⋅ ˜ p  represents the spatial lag of the dependent 

variable (

 

Wij , j ≠ i, is a row-standardized n × n weights matrix describing the connectivity of 

observations) giving the average sales price of nearby homes; and 

 

λ  is an estimable spatial 

autoregressive parameter. Because the behavioral underpinning of equation (2) says that the sales 

prices of nearby homes influence each other, 

 

Wij ⋅ ˜ p  is endogenous to 

 

˜ p i and the function cannot 

be properly estimated using ordinary least squares (OLS). A viable alternative is a spatial two 

stage least squares (S2SLS) estimator formalized by Kelejian and Prucha (1998), which, in a 

nutshell, involves regressing the spatially lagged variable on all explanatory variables plus spatial 

lags of those same variables to produce predicted values, and then using those predicted values in 

place of the actual values in equation (2). Like maximum likelihood estimation, S2SLS yields 

efficient, unbiased parameter estimates, even in the presence of spatial error dependence (Das et 

al. 2003).  

Over the years, variations on the first stage of hedonic price analysis have been used to 

examine many general forms of environmental quality (see Boyle and Kiel 2001 and Kiel 2006 

for in-depth reviews), plus a number of specific environmental hazards (for example, Kohlhase 

1991; Kiel and McClain 1995; Clark et al 1997; Hite 1998; Clark and Allison 1999; Dale et al 

1999; Hite et al 2001; Bae et al 2007; Brasington and Hite 2008). And, recently, there has been a 
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revived interest in the second stage of hedonic price analysis, which has been used to evaluate the 

demand for air quality (Chattopadhyay 1999; Zabel and Kiel 2000), neighborhood and school 

quality (Cheshire and Sheppard 1995, 1998, 2004; Black 1999; Brasington 2000, 2003), and 

distance from environmental hazards similar to those that are of concern here (Brasington and 

Hite 2005). 

Moving on, once the hedonic function has been estimated and the implicit prices have 

been derived, an implicit demand function is estimated in the second stage, by regressing the 

quantity of a particular neighborhood (or housing) attribute on its marginal implicit price, as well 

as other determinants of demand: 

 

qik = γ0 +δik ⋅ ˆ π ik +γ1 ⋅ xi1 + ...+γ s ⋅ xis +ψ i. (3) 

Within equation (3), ikq  the quantity of attribute k consumed at home i; 

 

ˆ π ik  represents the 

estimated marginal implicit price which is endogenous in this model; the   

 

x s represent various 

demand shifters; and 

 

δik  and the 

 

γ s represent estimable parameters on the endogenous variable 

and explanatory variables, respectively; and 

 

ψ i represents a stochastic error term.  

Since the estimated implicit price is an endogenous variable (

 

ˆ π ik) it must be estimated 

using a simultaneous equations approach, and Rosen (1974) suggested that the endogeneity 

inherent in equation (2) was typical of all market demand and supply functions, and the demand 

function could be estimated using supply shifters as instruments. However, various authors 

including Brown and Rosen (1982) and Diamond and Smith (1983) have noted that one cannot 

simply map out the demand function using supply shifters because each revealed implicit price 

function results from a unique interaction between an individual, rather than a market demand 

function. That is, the hedonic price function that is used to derive the implicit price is really a 

reduced form function containing both a unique individual demand function and a unique, 

individual supply function, and it does not contain the kind of information needed to identify a 

structural demand function. While there are a number of different ways of overcoming this 

problem — for example Chattopadhyay 1999, Ekeland et al 2002, 2004, and Noelwah et al 2010 

suggest functional form restrictions — the approach most widely used is to spatially identify 

unique housing market segments that have different implicit prices for the same attribute, and 

then use this independent variation in implicit prices to identify a market demand function. This 

approach was suggested by a number of different authors, including Palmquist (1984), Bartik 

(1987), and Epple (1987)).  

While most of these multi-market approaches focus on more than one region (that is, 

multiple cities), housing economists have long believed that there are multiple housing markets 
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within a single region. For example, Straszheim (1974) and Michaels and Smith (1990) suggested 

that implicit prices for housing attributes likely vary within a single region or city. In fact, in a 

recent paper, Carruthers and Clark (2010), show that the unique simultaneity inherent in the 

hedonic model can be addressed by examining spatial variation in the housing market within a 

single metropolitan area. Specifically, a geographically weighted regression (GWR) model is 

used to identify spatial variation in the implicit price function. That is, GWR models permit each 

observation to generate a unique set of parameters, and hence a unique implicit price function.  

Thus, the implicit price function waxes and wanes across space, with minor changes seen in 

relatively proximate properties and more significant changes seen in submarkets that are more 

distant. 

Similarly, implicit price functions can also vary over time, with more significant shifts in 

the function occurring when there are wide swings in the business cycle. Indeed, the more income 

elastic are locational attributes, the larger should be the shift in the specific implicit price function 

resulting from a given change in income. The ongoing recession that (according to the National 

Bureau of Economic Research3) commenced in December 2007 was brought on by the implosion 

of a massive bubble4 in the housing market and it has substantially eroded household income and 

access to credit. It has also generated a significant increase in unemployment at the national level, 

as well as for regional economies such as the Puget Sound region of Washington State5. The 

Federal Housing Finance Agency generates a constant quality housing cost index by metropolitan 

area, and the index, which is benchmarked to 100 in 1991Q and shown in Figure 1, rose to 156.11 

in Q1 2000. Over the ensuing decade, the FHFA index6 increased from 156.11 to 301.58 in Q2 

2007, and then fell to 249.68 in the first quarter of 2010. This precipitous climb is also reflected 

in the well-known Case-Shiller housing price index, which is shown for the region from 1990 – 

2010 in Figure 2. Overall, it is clear that the general economy has covered almost an entire 

business cycle over the time period7

 

, and in addition, there has been substantial variation in home 

prices in the Seattle metropolitan area. It is this variation that the following empirical analysis 

exploits to identify the implicit demand for environmental quality. 

                                                 
3 For information on NBER’s recession dating procedure, see: http://www.nber.org/cycles/recessions.html. 
4 On December 15, 2008, the popular real estate website Zillow.com reported that, in that year alone, homes across the 
United States lost an estimated $2 trillion in value — an amount equal to about 20% of the nation’s GDP. See: 
http://zillowblog.com/2-trillion-in-home-values-lost-in-08/2008/12/. 
5 Specifically, the seasonally adjusted national unemployment rate rose from 4.0% in December 2007 to 10.0% in 
December 2010.  The Washington state seasonally adjusted unemployment rates increased from 4.7% to 9.2% over the 
same period, and the rate for the Seattle MSA rose from 4.1% to 8.9% over the period.   
6 The FHFA index is derived from housing transactions only and is seasonally adjusted. 
7 While the trough of the 2001 recession was dated November 2001, and the most recent recession began in December 
2007, the National Bureau of Economic Analysis has not yet dated its trough. 
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3. Empirical Analysis 
 

3.1 Research Design 
 

The empirical analysis is set in King County, Washington, the location of Seattle and the heart of 

the Puget Sound region. The data, which originates mainly from the King County Assessor,8

 

Wij

 

includes 226,918 transactions for 177,303 unique properties — all single-family home sales that 

took place between January 1, 2000 and September 30, 2009. The sales data, which is mapped 

year-by-year in Figure 3, was stripped of all non-arms-length transactions, like those with some 

type of deed other than a warrantee deed, and “bad” records, with missing information or some 

other problem. The transactions were then loaded into a geographic information system (GIS) 

wherein they were linked to parcel data, also from the King County Assessor. Once this was 

done, the data was matched with other relevant data from the 2000 Census of Population and 

Housing, the Environmental Protection Agency (EPA), and various regional sources, including 

school district boundaries, to create neighborhood level and distance-based metrics. Along the 

way, for each year of the study period, 2000 – 2009, a spatial weights matrix —  from 

equation (2) — matching each transaction to its four nearest neighbors was generated and used to 

calculate spatial lags of all variables engaged in the analysis. Table 1 lists descriptive statistics for 

all non-lagged variables involved in the analysis. 

The identification strategy involves three steps. In the first step, ten identical first-stage 

hedonic price functions, one for each year of the 2000s, are estimated.9

                                                 
8 This information is publicly available but, for this research, it was obtained from Metroscan, a proprietary database 
that collects assessor’s data from King County and elsewhere. 

 The process of model 

construction led to the following nine categories of explanatory variables: (i) lot, measured as the 

square footage of the of the home’s site, private access and whether or not the it is inaccessible to 

the public at large; (ii) structure, measured as the square footage of the home, its height in, its age 

in quadratic form, its number of bathrooms, its number of fireplaces, the proportion of its exterior 

composed of brick or stone, and weather or not it is a historic property; (iii) grade, a qualitative 

evaluation made by the assessor that rates the home as being of “below average,” “average,” 

“good,” “better,” “very good,” “excellent,” “luxury,” or “mansion” quality; (iv) condition, 

another qualitative evaluation made by the assessor that rates the home as being in “below 

average,” “average,” “good,” or “very good” shape; (v) amenities, measured as whether or not the 

9 In order to ensure the legitimacy of this initial step, Chow tests were used to formally test the hypothesis that the 
parameters vary from year to year. Following Brasington and Hite’s (2005) approach, a model pooling the ten years 
was tested against models estimating the ten years separately — then, each individual year was tested against the other 
nine pooled together. A total of 11 separate Chow tests were constructed, and each overwhelmingly indicates that the 
parameters differe from year-to-year. 
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home has a view of any kind, whether or not it is subject to some sort of a nuisance, and the 

number of linear feet of waterfront its site has, if any; (vi) neighborhood, measured as the school 

district tax rate, school performance, calculated as the average percentage of students achieving 

success in several state aptitude tests,10 plus, defined at the census tract level, median household 

income and density, calculated as housing units per acre; (vii) location, measured as distance from 

downtown Seattle, the average commute time to work in the census tract, and distance from the 

nearest arterial; (viii) environmental hazards, measured as the distance from the nearest air release 

site, hazardous waste generator, superfund site; and toxic release site; and (ix) time, measured as 

the number of days since January 1, 2001 when the home was sold.11

 

z

 Together, these 35 variables 

plus a spatial lag and an intercept form the vector  that explains the sales price of housing in 

King County’s portion of the Puget Sound region. All models are estimated using a 

heteroskedasticity-consistent covariance matrix. 

In the second step, the parameters from the hedonic price functions are used to 

calculate the marginal implicit price of distance from air release sites, superfund sites, and toxic 

release sites. Once calculated, the prices are adjusted for inflation, to 2010 dollars. The price 

estimates vary across geographic space due to the models’ non-linear form — but, importantly, 

also though time because of variation owing to the business cycle. Note that what’s required to 

identify the second-stage implicit demand model is that different consumers are observed to pay 

different prices for the same quantity of distance, which is the case across the years. The 

geographic variation in this case reflects the fact that households pay different marginal implicit 

prices for different values of distance, which is expected due to diminishing marginal utility: the 

first increment of distance away from an environmental hazard is valued greater than the nth 

increment. 

Finally, in the third step, with the marginal implicit prices in hand, three demand 

functions are estimated, using all observations across all years. Each of the demand equations 

contains the three inflation-adjusted marginal implicit prices estimated via the first and second 

steps, plus a set of four demographic variables (measured at the census tract) that act as demand 

shifters: (i) median household income; (ii) the percentage of adults having a graduate degree; (iii) 

the percentage of households having children; and (iv) the percentage of the population that is 

white. Going back to equation (3), note that, in each model, the own-price is an endogenous 

variable, so ordinary least squares estimation is not an option. Instead, each equation is estimated 

                                                 
10 The aptitude tests are for mathematics, reading, science, and writing. 
11 Because the models are estimated year-by-year, this variable acts to capture annual the daily appreciation rate — and, 
ultimately depreciation rate. This same variable is used as an instrument in the second-stage models, which pool all ten 
years worth of transactions together. 
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using two-stage least squares (2SLS), a technique that requires an instrumental variable, which 

must be both a good predictor of the marginal implicit price and uncorrelated with the structural 

models’ error terms. The instrument used for this purpose is time, measured as days since January 

1, 2009 – and it is subjected to two tests: (i) an F-test of the null hypothesis that its parameter is 

equal to zero in the first stage of the 2SLS routine; and (ii) a χ2 test of the null hypothesis that the 

variable is uncorrelated with the error term of the structural model, also known as a test of over-

identifying restrictions (see Wooldridge 2002 for overviews of both tests). The instrument must 

pass both tests in order for the econometric strategy — and, thus, the entire second-stage demand 

analysis — to be considered viable. 
 

3.2 Econometric Estimates 
 

The spatial two-stage least squares (Kelejian and Prucha 1998) estimates of each of the hedonic 

price functions are presented in Tables 1a – 1e. The models consistently do an outstanding job of 

explaining variation in the sales price of single-family housing — the adjusted R2 values range 

from 0.80 to 0.86 — and nearly all of the parameters are statistically significant (the critical t-

value for p > 90% in a two-tailed hypothesis test is 1.64) and appropriately signed. Note that 

evidence of the business cycle pictured in Figures 1 and 2 is visible in the parameters on the time 

variable. The rate of appreciation steadily escalates from 2000 – 2005, before it starts declining in 

2006, falls out all together in 2007, and then reverses in 2008 and 2009, years that witnessed 

widespread depreciation. Finally, note that the parameters on distance from the three 

environmental hazards that are the object of this analysis (air release, superfund, and toxic release 

sites) are all positive and statistically significant. Distance from hazardous waste generators is 

included in the first-stage models, but not in the second-stage analysis because previous research 

(Carruthers and Clark 2010) has found little evidence that households exhibit much concern for 

the sites. 

Next, the marginal implicit price (

 

ˆ π ik) of distance from the three hazards is calculated as 

follows: 

 

ˆ π ik = ˆ β k ⋅ pi / zik , 

which reflects the fact that both price and distance are expressed in natural log form in the 

estimated models. The results are displayed in Figures 4 – 6, which show surfaces that were 

interpolated from the inflation-adjusted marginal implicit price estimates based on the location of 

the transaction from each year. In the figures, it is clear to see that the estimated prices associated 

with the same distances vary from year-to-year — and result formally tested via the Chow tests 

described in the preceding section. 
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Finally, the 2SLS estimates of the second-stage implicit demand models are listed in 

Table 3. These models all register healthy adjusted R2 values and, most important, the 

instrumental variable, time, passes both validity tests at well over a 99 percent level of confidence 

— note that the F-values are very high and the χ2-values are all miniscule. Working down though 

the list of variables, and across models, the estimation results reveal the following. First, all of the 

own-price elasticities — –0.1437 for air release sites; –0.1890 for superfund sites; and –0.4315 

for toxic release sites — indicate that the demand for distance is price inelastic: changes in price 

do not lead to large changes in consumption. Second, distance from air release and distance from 

superfund sites are evidently substitutes while distance from air release and distance toxic release 

sites are complements; the picture is less clear for the relationship between distance from 

superfund sites and distance from toxic release sites. Third, all three models indicate that distance 

from environmental hazards is a normal good, although the elasticities for superfund and toxic 

release sites are quite small. Fourth, having a graduate degree (except in the case of air release 

sites), having children, and being while are all associated with higher levels of consumption: 

these demographics are positively correlated with distance. In sum, the models perform very well 

and, in general, just as expected. 
 

3.3 Benefit Estimates 
 

Estimates of benefits can be derived from the second stage demand functions.  Since the demand 

functions are derived as: 

ikj

n

j
jikik xq εδπδδ +⋅++= ∑

=2
10 ˆ~  (6) 

Where ikq~ is the natural log of the distance of home i from hazard k, ikπ̂ is the implicit price; xj 

are location specific demand shifters defined at the census tract level; the δ’s represent 

parameters, and ε is the error term. Since the goal is to derive benefits, equation (6) is inverted 

and solved for ikπ̂ .  Assuming xj are defined at the census tract level, this gives the expected 

value of the inverse demand function as:    

ikik q~ˆ 10 ββπ +=  (7) 

where )(/1
2

010 j

n

j
j x⋅+⋅= ∑

=

δδδβ and 11 /1 δβ = . Consumer surplus is by integrating equation 

(7) over some discrete improvement in distance from the hazard, ikq~∆ .  
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There are several ways to simulate hazard mitigation. One approach would be to consider 

the benefits associated with the removal of each individual hazard12

An alternative approach is to consider, for comparative purposes, the generic benefits 

associated with some absolute improvement in distance from the site (for example an additional 

1000 feet), or some relative improvement in distance from the site (like an additional 10%). 

These estimates are as follows. The benefit to the average homeowner (based on the entire 10-

year long sample of home sales in the region) from an additional 1000 feet of distance varies 

across hazards: $6,123 for air release sites; $7463 for superfund sites; and $2,450 for toxic release 

sites. The second set of benefits is associated with a 10% improvement in distance. Hence, for 

those hazards that are less densely located throughout the region (Superfund sites), the 

improvement in relative terms is substantially larger more densely located sites (air release and 

toxic release sites). This type of simulation is more akin to the derivation of the benefits from an 

average mitigation across hazard types, since the mitigation of a single Superfund site will move 

the average distance by a larger margin (given that there are only 5 of them in the region) than 

would the mitigation of an air release site. The average benefits from a 10% mitigation are: 

$6,530 for air release sites; $32,954 for superfund sites; and $3,307 for toxic release sites. These 

. Recall that distance is 

measured from a sold home to the closest hazard, so the mitigation of a particular site will 

influence only those properties in our sample for which that site was the closest. Thus, the 

geographic impact of a particular hazard mitigation project will depend on the density of hazards 

in the neighborhood. Other things equal, the larger are the number of hazards and the more evenly 

distributed they are across space, the smaller should be the number of homes for which a given 

site would be the closest. The benefits will also depend on the density of homes in a particular 

area. That is, for a given density of hazards in a region, the mitigation of those hazards that are 

located in more densely populated areas will generate larger benefits than those found in more 

sparsely populated areas. This is because the average benefits per household are then spread 

across more households. If benefits from the mitigation of each hazard are estimated, then cost-

benefit ratios can be constructed to prioritize public policy efforts. Unfortunately, time constraints 

prevented precluded the precise derivation of individual benefits that could be then extrapolated 

to community-wide benefits in this version of the paper. However, that will be done in a 

subsequent version.  

                                                 
12 Since the hedonic approach derives a Marshallian demand function, rather than a utility invariant Hicksian demand 
function, deriving benefits by integrating the inverse demand function over the change in distance will give an estimate 
of Consumer Surplus (CS), rather than the ideal Compensating Variation (CV) or Equivalent Variation (EV) measures 
of utility change.  However, Willig (1976) has shown that it is rare that CS differs significantly from CV or EV.  Thus, 
we present CS in this paper. 
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findings suggest that the mitigation of high profile hazards like superfund sites, are more 

prevalent in the region. 

Finally, it is worth noting that the benefit estimates derived in the present analysis are 

nearly identical to those derived from the estimates presented in Carruthers and Clark (2010). In 

that case, the benefit to the average homeowner (based on 2004 data and a wholly different 

identification strategy) from an additional 1000 feet of distance varies across hazards: $6,720 for 

air release sites; $7,243 for superfund sites; and $7,239 for toxic release sites. Similarly, the 

average benefits from a 10% mitigation were: $7,092 for air release sites; $31,681 for superfund 

sites; and $9,736 for toxic release sites. Though it is important to note that both sets of estimates 

are very coarse — and for illustrative purposes only — it is encouraging that two very different 

identification strategies involving different data sets have produced such similar benefit estimates. 

It suggests that the methodology laid out here and in Carruthers and Clark (2010) is viable for a 

more detailed (and planned) welfare analysis. 

 

4 Summary and Conclusion 
 

This paper has presented estimates of implicit demand for environmental improvement from a 

two-stage hedonic housing price model applied to the Puget Sound region of Washington State. 

Specifically, demand for three different types of environmental goods (air release sites, superfund 

sites, and toxic release sites) are derived from a single region, and these estimates are similar to 

those found by a previous analysis (Carruthers and Clark 2010). These estimates are then used to 

derive hypothetical benefits from hazard mitigation. Specifically, the benefit estimates were 

derived by simulating hypothetical changes in distance from the hazards. When the improvement 

in distance was uniform (1,000 feet) across hazard types, the typical benefits were relatively 

consistent. However, when the improvement was expressed relative to existing distances, 

substantial differences in estimated benefits emerged, with the reduction of high profile hazards 

like superfund sites, generating much larger average benefits than those that are more prevalent in 

a region. 

These findings are only a preliminary first attempt at the derivation of community-wide 

benefits from hazard mitigation and much more work is needed before definitive conclusions can 

be drawn. First, the benefits from the mitigation of specific hazards have not considered. Given 

that the spatial distribution of both households and hazards is non-uniform, it is important to 

refine the simulations to consider precisely how the mitigation of a particular hazard site may 

impact a neighborhood by recognizing that most individual hazards have little impact on the 

entire region. Rather the benefits are more localized within the region. Second, the distribution of 
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benefits across population groups has not considered. The environmental justice literature 

suggests that the costs of exposure to environmental hazards are borne disproportionately by 

those at the lower end of the income distribution. Since average benefits can be derived by census 

tract, it is possible to further explore this aspect of the distribution of benefits from environmental 

improvement. Third, whereas the estimation of the first-stage hedonic model employed spatial 

econometric approaches, the second-stage estimators did not. While such an approach will 

complicate the estimation of benefits, it may also improve the efficiency of the estimators, and 

potentially reduce any bias as well. These and other issues will be evaluated in a subsequent 

version of this paper.  
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Table 1. Summary Statistics 
 Mean  Std. Dev.  Min.  Max. 
Sales Price 420,228.9

 
 351,082.20  50,000.00  20,000,000.00 

Lot        
Size 14,776.67  44,083.76  592.00  4,638,269.00 
Private Access 0.05  0.22  0.00  1.00 

Structure        
Size 2,058.74  895.45  500.00  14,030.00 
Stories 1.40  0.50  1.00  4.00 
Age 34.16  28.16  0.00  109.00 
Age Squared 1,959.74  2,515.00  0.00  11,881.00 
Baths 2.38  0.96  0.00  16.00 
Fireplaces 1.04  0.57  0.00  7.00 
Percent Brick 3.56  16.92  0.00  100.00 
Historic Property 0.00  0.01  0.00  1.00 

Grade        
Average 0.42  0.49  0.00  1.00 
Good 0.26  0.44  0.00  1.00 
Better 0.11  0.32  0.00  1.00 
Very Good 0.05  0.22  0.00  1.00 
Excellent 0.02  0.13  0.00  1.00 
Luxury 0.00  0.07  0.00  1.00 
Mansion 0.00  0.03  0.00  1.00 

Condition        
Average 0.67  0.47  0.00  1.00 
Good 0.27  0.44  0.00  1.00 
Very Good 0.06  0.23  0.00  1.00 

Amenities        
View 0.05  0.21  0.00  1.00 
Nuisance 0.08  0.27  0.00  1.00 
Waterfront Feet 1.10  13.97  0.00  1,860.00 

Neighborhood        
Tax Rate 2.94  1.03  1.68  4.54 
School Performance 0.68  0.08  0.39  0.87 
Median HH Income 

 
64.03  19.41  16.29  133.76 

Density 2.64  2.23  0.00  26.40 
Location        

Dist. from Seattle 66,664.74  36,755.24  1,888.93  196,516.50 
Commute Time 26.31  4.30  16.30  45.90 
Dist. from Arterial 1,149.67  1,424.29  0.00  23,602.50 

Environmental Hazards        
Dist from Air Site 10,666.64  9,729.20  19.35  76,671.39 
Dist from HWG 4,269.53  3,976.97  9.41  29,274.31 
Dist. from Superfund Site 44,230.85  27,411.06  276.08  150,831.30 
Dist. from TR Site 13,549.85  11,503.80  13.89  85,635.81 

Time 1,662.90  911.27  1.00  3,541.00 
Demographics        

% w/ Graduate Degree 0.13  0.08  0.00  0.43 
% w/ Kids 0.35  0.12  0.03  0.65 
% White 0.78  0.15  0.10  0.96 

Estimated Marginal Implicit 
 

       
Price of Dist from Air Site 0.95  1.72  0.005  208.00 
Price of Dist. from SF Site 

  
0.50  0.62  0.01  38.09 

Price of Dist. from TR 
 

0.91   2.02   0.004   278.24 
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Table 2a. S2SLS Estimates of Hedonic Price Functions, 2000 - 2001   
 2000      2001     
 Est.  t-value  Est.  t-value 
Constant 11.248490  78.06  11.043150  73.21 
Spatial Lag 0.210010  24.05  0.218838  23.42 
Lot        

Size 0.000001  11.57  0.000001  5.09 
Private Access 0.031030  4.25  0.023658  3.03 

Structure        
Size 0.000157  35.42  0.000154  37.34 
Stories 0.014833  3.43  0.020723  4.65 
Age –0.004754  –17.20  –0.005227  –17.37 
Age Squared 0.000048  16.97  0.000054  18.28 
Baths 0.010720  3.43  0.016727  5.01 
Fireplaces 0.027634  7.77  0.040450  11.60 
Percent Brick 0.000820  10.04  0.000953  10.61 
Historic Property –0.058674  –0.33  n/a  n/a 

Grade        
Average 0.115715  22.48  0.089933  18.25 
Good 0.213620  31.05  0.167790  25.22 
Better 0.335026  36.02  0.283246  31.01 
Very Good 0.449319  35.91  0.391586  31.87 
Excellent 0.598003  32.02  0.519476  29.03 
Luxury 0.790167  22.11  0.707707  15.78 
Mansion 1.058218  8.54  0.833656  9.29 

Condition        
Average 0.070560  1.44  0.156356  3.55 
Good 0.098625  2.02  0.194558  4.42 
Very Good 0.135599  2.74  0.212952  4.76 

Amenities        
View 0.210576  17.65  0.211792  16.94 
Nuisance –0.042707  –7.15  –0.044611  –7.72 
Waterfront Feet 0.001784  3.91  0.001231  2.51 

Neighborhood        
School Tax Rate –0.020476  –10.36  –0.020592  –10.83 
School Performance 0.062077  2.59  0.113422  4.64 
Median Income ($1000s) 0.001350  10.54  0.001270  9.95 
Density 0.003412  3.12  0.001655  1.47 

Location        
ln Dist. from Seattle –0.201195  –41.83  –0.191513  –39.49 
ln Commute Time –0.172136  –12.31  –0.167790  –10.93 
ln Dist. from Arterial 0.009017  6.03  0.011308  7.92 

Environmental Hazards        
ln Dist from Air Site 0.010528  4.18  0.005892  2.29 
ln Dist from HWG 0.006158  2.69  0.009338  4.08 
ln Dist. from Superfund 

 
0.034735  13.99  0.023429  8.72 

ln Dist. from TR Site 0.014234  5.98  0.018512  7.73 
Time 0.000122   9.08   0.000051   3.45 
n   22,429    21,895 
Adj. R Squared     0.85       0.83 
Note: S2SLS is Kelejian and Prucha’s (1998) spatial two-stage lease squares estimator; all 
models estimated using a heteroskedasticity-consistent covariance matrix.  

 



 17 

 
Table 2b. S2SLS Estimates of Hedonic Price Functions, 2002 - 2003   
 2002      2003     
 Est.  t-value  Est.  t-value 
Constant 11.513830  76.59  11.303140  83.89 
Spatial Lag 0.187698  21.03  0.195339  24.79 
Lot        

Size 0.000001  3.52  0.000001  9.00 
Private Access 0.016438  1.95  0.029704  4.17 

Structure        
Size 0.000161  44.29  0.000163  50.02 
Stories 0.023969  5.63  0.011259  2.94 
Age –0.004763  –16.85  –0.003902  –17.28 
Age Squared 0.000048  18.07  0.000040  18.95 
Baths 0.010436  3.61  0.010112  3.98 
Fireplaces 0.033634  9.67  0.029154  10.63 
Percent Brick 0.000736  8.71  0.000608  7.40 
Historic Property 0.719596  1.62  0.240657  1.92 

Grade        
Average 0.106007  21.79  0.092093  21.70 
Good 0.184985  27.47  0.181189  32.18 
Better 0.297488  32.06  0.300961  37.84 
Very Good 0.408532  34.20  0.393867  34.85 
Excellent 0.544118  31.90  0.495500  33.68 
Luxury 0.738228  17.93  0.677511  20.77 
Mansion 0.792421  9.62  0.606227  5.74 

Condition        
Average 0.112382  4.01  0.146844  3.53 
Good 0.153607  5.47  0.178865  4.29 
Very Good 0.183906  6.40  0.213663  5.10 

Amenities        
View 0.236460  20.93  0.196173  13.61 
Nuisance –0.035304  –6.27  –0.032176  –6.45 
Waterfront Feet 0.001051  2.15  0.001457  1.78 

Neighborhood        
School Tax Rate –0.018931  –9.23  –0.022797  –13.22 
School Performance 0.099588  4.16  0.101388  5.04 
Median Income ($1000s) 0.001110  8.31  0.001060  10.37 
Density 0.000031  0.03  0.001590  1.68 

Location        
ln Dist. from Seattle –0.209723  –43.65  –0.207061  –49.51 
ln Commute Time –0.173537  –12.09  –0.159588  –12.72 
ln Dist. from Arterial 0.006439  3.83  0.008428  6.90 

Environmental Hazards        
ln Dist from Air Site 0.011946  4.78  0.009372  4.26 
ln Dist from HWG 0.012578  5.66  0.009736  5.02 
ln Dist. from Superfund 

 
0.033294  13.28  0.031817  15.27 

ln Dist. from TR Site 0.015981  6.65  0.015313  7.51 
Time 0.000123   9.16   0.000190   16.61 
n   23,245    27,829 
Adj. R Squared     0.83       0.85 
        

Note: S2SLS is Kelejian and Prucha’s (1998) spatial two-stage lease squares estimator; all models 
estimated using a heteroskedasticity-consistent covariance matrix.  
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Table 2c. S2SLS Estimates of Hedonic Price Functions, 2004 - 2005   
 2004      2005     
 Est.  t-value  Est.  t-value 
Constant 10.764530  80.03  10.213330  74.50 
Spatial Lag 0.210583  26.90  0.225749  28.12 
Lot        

Size 0.000001  10.11  0.000001  4.91 
Private Access 0.017529  2.70  0.020891  2.95 

Structure        
Size 0.000156  49.14  0.000154  44.85 
Stories 0.015470  4.25  0.015880  4.36 
Age –0.002740  –13.43  –0.003283  –14.51 
Age Squared 0.000031  15.31  0.000035  16.28 
Baths 0.015081  5.92  0.014685  5.59 
Fireplaces 0.024923  9.27  0.027506  9.54 
Percent Brick 0.000661  8.31  0.000723  9.81 
Historic Property n/a  n/a  0.334203  1.97 

Grade        
Average 0.092266  21.52  0.089700  20.22 
Good 0.184160  33.79  0.171765  28.98 
Better 0.297974  40.95  0.279363  34.12 
Very Good 0.393511  39.19  0.379190  34.59 
Excellent 0.507297  33.16  0.445716  28.57 
Luxury 0.690968  22.96  0.626863  23.69 
Mansion 0.776150  6.22  0.634006  5.86 

Condition        
Average 0.207691  5.20  0.063387  2.04 
Good 0.243037  6.08  0.099716  3.21 
Very Good 0.278211  6.86  0.134864  4.29 

Amenities        
View 0.205097  19.51  0.209437  21.20 
Nuisance –0.031407  –6.82  –0.040353  –8.17 
Waterfront Feet 0.001426  2.55  0.001898  4.84 

Neighborhood        
School Tax Rate –0.024031  –14.52  0.029715  –17.14 
School Performance 0.152425  8.21  0.221031  10.64 
Median Income ($1000s) 0.001040  11.27  0.001260  11.85 
Density 0.002806  3.39  0.003256  3.63 

Location        
ln Dist. from Seattle –0.195904  –51.01  0.170887  –43.41 
ln Commute Time –0.153729  –13.04  –0.130357  –9.69 
ln Dist. from Arterial 0.009092  8.09  0.003614  2.57 

Environmental Hazards        
ln Dist from Air Site 0.011843  5.87  0.013955  6.51 
ln Dist from HWG 0.007203  3.96  –0.000500  –0.22 
ln Dist. from Superfund 

 
0.030096  15.89  0.021050  10.39 

ln Dist. from TR Site 0.010552  5.73  0.020616  9.24 
Time 0.000280   25.90  0.000396   27.94 
n   30,682    31,308 
Adj. R Squared     0.86      0.80 
        

Note: S2SLS is Kelejian and Prucha’s (1998) spatial two-stage lease squares estimator; all models 
estimated using a heteroskedasticity-consistent covariance matrix.  
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Table 2d. S2SLS Estimates of Hedonic Price Functions, 2006 - 2007   
 2006      2007     
 Est.  t-value  Est.  t-value 
Constant 10.911480  71.62  11.831240  69.57 
Spatial Lag 0.216208  24.31  0.211952  22.73 
Lot        

Size 0.000001  8.80  0.000001  7.18 
Private Access 0.020524  2.65  0.023705  2.91 

Structure        
Size 0.000161  46.38  0.000163  42.91 
Stories 0.022009  5.62  0.015604  3.19 
Age –0.002508  –11.10  –0.002262  –8.20 
Age Squared 0.000025  12.07  0.000025  9.55 
Baths 0.012849  4.99  0.022831  7.31 
Fireplaces 0.022421  7.38  0.017632  4.92 
Percent Brick 0.000598  6.74  0.000765  8.43 
Historic Property 0.311288  1.37  n/a  n/a 

Grade        
Average 0.065765  13.72  0.069698  11.71 
Good 0.142631  22.32  0.138530  17.43 
Better 0.234816  28.13  0.237247  22.94 
Very Good 0.319394  28.45  0.322532  24.28 
Excellent 0.423670  27.17  0.421373  22.89 
Luxury 0.516084  18.73  0.485896  14.41 
Mansion 0.607305  9.87  0.606709  9.73 

Condition        
Average 0.072025  1.82  –0.027828  –0.63 
Good 0.107112  2.72  0.005949  0.13 
Very Good 0.146130  3.67  0.062067  1.39 

Amenities        
View 0.214691  16.24  0.186326  16.68 
Nuisance –0.017857  –3.09  –0.012487  –1.84 
Waterfront Feet 0.001374  1.70  0.003832  6.65 

Neighborhood        
School Tax Rate –0.026731  –13.75  –0.038061  –17.17 
School Performance 0.150607  6.67  0.183394  7.00 
Median Income ($1000s) 0.001350  11.14  0.001230  9.78 
Density 0.003788  3.59  0.000401  0.37 

Location        
ln Dist. from Seattle –0.170392  –39.42  –0.186397  –36.05 
ln Commute Time –0.221530  –16.29  –0.212262  –13.83 
ln Dist. from Arterial 0.009284  7.21  0.012553  7.36 

Environmental Hazards        
ln Dist from Air Site 0.008898  3.60  0.009056  3.25 
ln Dist from HWG 0.011383  5.40  0.008820  3.94 
ln Dist. from Superfund 

 
0.028793  13.60  0.030370  11.05 

ln Dist. from TR Site 0.003616  1.66  0.009177  3.56 
Time 0.000266   21.22   0.000006   0.40 
n   27,410    21,327 
Adj. R Squared     0.82       0.81 
        

Note: S2SLS is Kelejian and Prucha’s (1998) spatial two-stage lease squares estimator; all models 
estimated using a heteroskedasticity-consistent covariance matrix.  
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Table 2e. S2SLS Estimates of Hedonic Price Functions, 2008 - 2009   
 2008      2009 (Q1 - 

 
  

 Est.  t-value  Est.  t-value 
Constant 13.560170  63.86  12.571640  43.96 
Spatial Lag 0.159774  13.04  0.177870  11.71 
Lot        

Size 0.000001  8.91  0.000001  4.38 
Private Access 0.009379  0.81  0.032189  2.37 

Structure        
Size 0.000163  29.81  0.000145  16.48 
Stories 0.014707  2.50  0.004997  0.61 
Age –0.001837  –5.78  –0.003300  –7.70 
Age Squared 0.000025  8.43  0.000036  8.70 
Baths 0.028299  6.80  0.031713  5.47 
Fireplaces 0.019396  3.97  0.022067  3.44 
Percent Brick 0.000448  4.07  0.000630  3.80 
Historic Property n/a  n/a  0.110401  1.67 

Grade        
Average 0.080055  10.10  0.119560  10.58 
Good 0.177176  18.46  0.218118  15.21 
Better 0.282110  22.90  0.338700  18.93 
Very Good 0.397459  24.36  0.434299  18.65 
Excellent 0.510163  20.81  0.451911  13.04 
Luxury 0.691360  15.39  0.609174  9.08 
Mansion 0.393071  2.39  0.523165  2.75 

Condition        
Average 0.119220  3.01  0.242441  3.96 
Good 0.155157  3.92  0.288879  4.72 
Very Good 0.206694  5.10  0.341468  5.48 

Amenities        
View 0.231084  16.00  0.251016  12.81 
Nuisance –0.025966  –3.22  –0.058585  –4.81 
Waterfront Feet 0.003331  5.24  0.003107  3.86 

Neighborhood        
School Tax Rate –0.035736  –12.57  –0.038907  –10.88 
School Performance 0.228001  6.28  0.287660  6.05 
Median Income ($1000s) 0.001290  7.73  0.001300  6.06 
Density 0.001093  0.75  0.002326  1.11 

Location        
ln Dist. from Seattle –0.216167  –31.03  –0.242288  –26.43 
ln Commute Time –0.233709  –11.06  –0.185325  –6.84 
ln Dist. from Arterial 0.013113  6.54  0.011674  3.98 

Environmental Hazards        
ln Dist from Air Site 0.012265  3.17  0.008120  1.65 
ln Dist from HWG 0.003575  1.05  0.010061  2.43 
ln Dist. from Superfund 

 
0.037266  10.48  0.032810  6.93 

ln Dist. from TR Site 0.012354  3.70  0.019939  4.39 
Time –0.000335   –16.58  –0.000121  –3.14 
n   12,922    7,871 
Adj. R Squared     0.83    0.82 
        

Note: S2SLS is Kelejian and Prucha’s (1998) spatial two-stage lease squares estimator; all models 
estimated using a heteroskedasticity-consistent covariance matrix.  
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Table 3. 2SLS Estimates of Second-stage Implicit Demand Functions 
 ln Dist from Air Release Site  ln Dist. from Superfund Site 

  
  

 ln Dist. from TR Site 
  
  

 Est.  t-value  Est.  t-value  Est.  t-value 
Constant 4.329364  163.68  7.119139  364.84  7.063127  303.60 
Price and Cross-price Elasticities            

ln Price of Dist from Air Site –0.143717  –24.59  0.121506  59.92  –0.120741  –39.45 
ln Price of Dist. from Superfund 

 
0.137528  65.00  –0.188993  –23.22  0.001835  1.06 

ln Price of Dist. from TR Site –0.217964  –79.25  –0.086655  –55.73  –0.431522  –84.49 
Demographic Factors            

ln Median Income (1000s) 0.814830  99.32  0.211271  28.82  0.097947  12.36 
% w/ Graduate Degree –2.044648  –63.28  0.844737  44.44  1.492587  78.94 
% w/ Kids 1.917294  110.90  1.373597  73.54  0.953211  60.30 
% White 0.954185   101.97   2.159097   107.64   1.078964   99.68 

n   226,918    226,918    226,918 
Adj. R Squared     0.65       0.62       0.70 
 Instrument: Time Since January 1, 2000 
F-value    13767.21       8315.06       10371.75 
c2-value   –3.78E-09    3.50E-09    3.75E-09 
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Figure 1. FHFA Housing Price Index - Seattle-Bellevue-Everett MSA 
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Figure 2. Case-Shiller Housing Price Index for Seattle, 1990 - 2010
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Figure 3. Inflation-adjusted Sales Price ($2010) of Single Family Homes, 2000 - 2009
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Figure 4. Estimated Marginal Implicit Price ($2010) of Distance from Air Release Sites, 2000 – 2009 
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Figure 5. Estimated Marginal Implicit Price ($2010) of Distance from Superfund Sites, 2000 – 2009 
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Figure 6. Estimated Marginal Implicit Price ($2010) of Distance from Toxic Release Sites, 2000 – 2009 
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