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Abstract 
A stereoselective route to cis-2-(2′-carboxycyclopropyl)glycine has been developed. exo-Nucleophilic 
addition to the (bicyclo[5.1.0]octadienyl)iron(1+) cation establishes the relative stereochemistry at the 
cyclopropane ring and the α-stereocenter. Subsequent removal of the metal and cleavage of the cyclic 
diene gave the protected target 10, which upon hydrolysis gave 1. 
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The cis- and trans-2-(2′-carboxycyclopropyl)glycines [CCG] (1 and 2) were isolated from the seeds 
of Aesculus parvifola and Blighia sapidarespectively.1a More recently both 1 and 2 as well as 3 were 
isolated from the stems and seeds of Ephedra altissima and E. foeminea.1b The cis-isomer 1 is a potent 
growth inhibitor of mung bean seedlings.1a Since these compounds may be considered 
conformationally restricted glutamate mimics, they have proven to be ‘useful pharmacological tools for 
analysis of glutamate neurotransmitter systems’.2 For example, (2S,1′S,2′R)-1 was found to be a potent 
and competitive inhibitor of glutamate uptake in glial plasmalemmal vesicles, (2S,1′S,2′S)-2 is a potent 
and selective group II mGluRs agonist, while (2S,1′R,2′S)-3 was found to be a potent and selective 
NMDA agonist. For this reason, considerable work has been reported on the synthesis of the CCGs and 
substituted derivatives.3,4 As part of our overall program on the development of novel iron-mediated 
methodology for substituted cyclopropane synthesis,5 we report on the diastereoselective preparation 
of cis-2-(2′-carboxycyclopropyl)glycine (rac-1). 
 

 
Protonation of (cyclooctatetraene)Fe(CO)3 (4a) gave the known 
(bicyclo[5.1.0]octadienyl)Fe(CO)3+ cation (5a, Scheme 1).6 Reaction of 5awith potassium phthalimide 
gave a separable mixture of diene complex 6aand recovered 4a. In view of the formation 
of 4a resulting from deprotonation, it was reasoned that the acidity of the bicyclo[5.1.0]octadienyl 
ligand could be attenuated by changing the spectator ligand(s). Ligand substitution of one of the 
carbonyls of 4a with triphenylphosphine, in the presence of trimethylamine N-oxide,7 gave 4b. 
Protonation of 4b afforded the (dicarbonyl)triphenylphosphine ligated cation 5b. Reaction of 5b with 
potassium phthalimide in ether gave 6b in quantitative yield.8 While the crude NMR spectrum of this 
reaction indicated only the presence of 6b, chromatography of this crude mixture generated 
some 4b (presumably via elimination of phthalimide) at the expense of diminished yields of 6b. 
Nucleophilic attack on the exo-face of the ligand was tentatively assigned by analogy to the direction of 
attack of this nucleophile on (cycloheptadienyl)Fe(CO)3+ cations.9 This stereochemical assignment was 
eventually corroborated by preparation of 1. 
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Scheme 1. 
Decomplexation of 6b with CAN gave bicyclo[5.1.0]octa-2,4-diene 7 (75% yield from 5b, Scheme 
1).10 The stereochemical assignment of the phthalimide substituent relative to the cyclopropane ring 
was corroborated by single crystal X-ray diffraction analysis.11 Catalytic osmylation of 7 afforded a 
separable mixture of two isomeric tetraols 8a/b. Glycol cleavage of the mixture 8a/b with periodate, 
followed by oxidation with Jones reagent and esterification gave the diester 9 (75%, three steps). 
Alternatively, oxidation of 7 with RuCl3/NaIO4 gave the intermediate diacid, albeit in lower overall 
yield. Brief hydrolysis of 9, followed by treatment of the resultant hydrochloride salt with propylene 
oxide gave rac-1, whose 1H and 13C NMR spectral data are consistent with the literature values.4d,f 
In summary, the heteroatom and stereochemically rich 2-(2′-carboxycyclopropyl)glycine was prepared 
in ten steps, 26% yield, from simple achiral (cyclooctatetraene)Fe(CO)3. The relative stereochemistry of 
the three centers is established by exo-nucleophilic attack on the 
(bicyclo[5.1.0]octadienyl)Fe(CO)2PPh3+ cation 5b. 
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