Marquette University
e-Publications@Marquette

De novo synthesis of polyhydroxyl aminocyclohexanes

Anobick Sar
Marquette University
Sergey Lindeman
Marquette University, sergey.lindeman@marquette.edu
William Donaldson
Marquette University, william.donaldson@marquette.edu

Follow this and additional works at: https://epublications.marquette.edu/chem_fac
Part of the Chemistry Commons

Recommended Citation

Sar, Anobick; Lindeman, Sergey; and Donaldson, William, "De novo synthesis of polyhydroxyl aminocyclohexanes" (2010). Chemistry Faculty Research and Publications. 42.
https://epublications.marquette.edu/chem_fac/42

Marquette University

e-Publications@Marquette

Chemistry Faculty Research and Publications/College of Arts and Sciences

This paper is NOT THE PUBLISHED VERSION; but the author's final, peer-reviewed manuscript. The published version may be accessed by following the link in the citation below.

Organic and Biomolecular Chemistry, Vol. 8, No. 17 (2010): 3908-3917. DOI. This article is © Royal Society of Chemistry and permission has been granted for this version to appear in ePublications@Marquette. Royal Society of Chemistry does not grant permission for this article to be further copied/distributed or hosted elsewhere without the express permission from Royal Society of Chemistry.

De novo synthesis of polyhydroxyl aminocyclohexanes ${ }^{\dagger}$

Anobick Sar
Department of Chemistry, Marquette University, Milwaukee, WI
Sergey Lindeman
Department of Chemistry, Marquette University, Milwaukee, WI
William A. Donaldson
Department of Chemistry, Marquette University, Milwaukee, WI

Abstract

The syntheses of 12 stereochemically diverse polyhydroxyl aminocyclohexane ("aminocyclitols") derivatives are described. These short syntheses require $2-5$ steps from $N-(2,4-c y c l o h e x a d i e n-1-y l)$ phthalimide, which is prepared in two steps from tricarbonyl(cyclohexadienyl)iron(1+). The relative stereochemistries of the aminocyclitols were assigned by ${ }^{1} \mathrm{H}$ NMR spectroscopy as well as X -ray diffraction analysis.

Introduction

Polyhydroxyl aminocyclohexanes ("aminocyclitols", cf.Fig. 1) and derivatives are important biological entities. For example, 2-deoxy-scyllo-inosamine (1) is an intermediate in the biosynthesis of deoxystreptamine, a component of the aminoglycoside antibiotics, ${ }^{1}$ while the isomeric 5 -amino- $1,2,3,4$ -
cyclohexanetetraols $\mathbf{2}^{2}$ and $\mathbf{3}^{3}$ were found to be inhibitors of α-glucosidase and α-galactosidase ($\mathrm{IC}_{50}=12.5$ and $20 \mu \mathrm{M}$, respectively). Similarly, 1-amino-2,5-cyclohexanediols are structural components of potential antibiotics such as $5 .{ }^{4}$ A variety of synthetic routes to aminocyclitols have been reported starting from quercitols (deoxyinositols), ${ }^{2,3}$ from inositols via deoxygenation, ${ }^{5}$ from carbohydrates via Ferrier carbocyclic ringclosure, ${ }^{4,6}$ via6-exo radical cyclization of carbohydrate derived oximes, ${ }^{7}$ and from chiral 1,7-octadienes viaringclosing metathesis. ${ }^{8}$ We herein report the de novo synthesis of a series of aminocyclitols from the readily available ${ }^{9}$ tricarbonyl(cyclohexadienyl)iron(1+) cation.

1

4

2

3

Fig. 1 Representative polyhydroxyl aminocyclohexanes.

Results and discussion

Reaction of tricarbonyl(cyclohexadienyl)iron(1+)6 with potassium phthalimide proceeded via attack at the dienyl terminus to afford the complex (\pm)-7 (Scheme 1). Decomplexation of 7 with Ce^{4+} gave the free ligand $N-(2,4-$ cyclohexadien- 1 -yl)phthalimide, (\pm)-8. The structures of $\mathbf{7}$ and $\mathbf{8}$ were assigned on the basis of their NMR spectral data. In particular, the ${ }^{1} \mathrm{H}$ NMR signals for 7 at $\delta 2.77,3.13,5.53$ and 5.67 ppm and the ${ }^{13} \mathrm{C}$ NMR signals at $\delta 57.1,58.2,86.0$ and 86.7 ppm correspond to the hydrogens and carbons of an η^{4}-bound cyclohexadiene ligand. ${ }^{10}$ Similarly, the ${ }^{1} \mathrm{H}$ NMR spectrum of 8 exhibits two signals for the diastereotopic methyleneprotons at $\delta 2.38$ and 2.78 ppm while the ${ }^{13} \mathrm{C}$ NMR spectrum of 8 exhibits signals at $\delta 27.0$ and 47.9 ppm corresponding to the two sp^{3} hybridized carbons.

Scheme 1 Preparation of (cyclohexadienyl)phthalimide.
Cycloaddition of $\mathbf{8}$ with singlet oxygen gave a separable mixture of endoperoxides (\pm)- $\mathbf{9}$ and (\pm)- $\mathbf{1 0}$ (eqn (1)). The relative stereochemistry of 9 and 10 were tentatively assigned by comparison of their ${ }^{1} \mathrm{H}$ NMR spectral data. For each, assignment of the signals for the diastereotopic methyleneprotons (H^{3} and $\mathrm{H}^{3^{\prime}}$) was facilitated by the magnitude of their vicinal couplings to H^{2}; the syn-coupling (ca. 0° dihedral angle) is larger than the anti-coupling (ca. 120° dihedral angle). ${ }^{11}$ The signal for $\mathrm{H}^{3^{\prime}}$ of 9 appears upfield of that for 10 , while the signal for H^{3} of 9 appears downfield of that for $\mathbf{1 0}$. These relative chemical shifts are due to the anisotropic effect of the olefin functionality. These tentative stereochemical assignments were eventually corroborated by single crystal diffraction analysis of each. \ddagger The facial selectivity of this cycloaddition reaction (i.e. the major product arises via approach on the face opposite to the phthalimide substituent), is similar to that previously reported for the cycloaddition of nitrosobenzene and 3-methyl-5-phenyl-1,3-cyclohexadiene. ${ }^{12}$

(\pm)-9 (52\%)
(\pm)-10 (18\%)
(1)

Kornblum-DeLaMare rearrangement ${ }^{13}$ of 9 with DBU gave a mixture of 11-13 (eqn (2)). While cyclohexenone13 could be obtained pure by chromatographic separation, the epimers 11 and 12 were only characterized as a mixture. The structure of 13 was assigned by comparison of its NMR spectral data with that of 5-azido-4-(triisopropylsilyloxy)-2-cyclohexen-1-one. ${ }^{14}$ The structures of $11 / 12$ were assigned on the basis of their ${ }^{1} \mathrm{H}$ NMR spectral data. In particular, the signals for the diastereotopic protons (H-6/H-6') of 11 ($\delta 2.26$ and $3.02 \mathrm{ppm})$ and $12(\delta 2.47$ and 2.81 ppm$)$ appear upfield of those for $13(\delta 2.67$ and 3.43 ppm$)$ while the signals for $\mathrm{H}-1$ of $11(\delta 5.34 \mathrm{ppm})$ and $12(\delta 4.98 \mathrm{ppm})$ appear downfield of the signal for $\mathrm{H}-1$ of $\mathbf{1 3}$ ($\delta 4.65 \mathrm{ppm})$. These relative chemical shifts are due to either the presence or absence of a neighboring carbonyl group. Furthermore, the relative stereochemistry of the substitutents at C-1/C-5 of $\mathbf{1 1}$ (trans-) and $\mathbf{1 2}$ (cis-) were assigned on the based on coupling patterns for $\mathrm{H}-6^{\prime} ;(11, \mathrm{dt}, J=3.6$ and $13.2 \mathrm{~Hz} ; \mathbf{1 2}, \mathrm{td}, J=11.4$ and 14.4 Hz). The smaller doublet coupling for 11 (compared to 12) is consistent with an axial-equatorial relative stereochemistry of $\mathrm{H}-5 / \mathrm{H}-6^{\prime}$ in this structure.

The regioisomeric cyclohexenones arise due to deprotonation at either position adjacent to the endoperoxide; i.e. deprotonation of $\mathrm{H}-1$ results in the formation of $\mathbf{1 1 / 1 2}$ while deprotonation of $\mathrm{H}-4$ (see eqn (1)) results in formation of 13 . The stereoisomers 11 and 12 presumably are the result of base catalyzed epimerization α to the carbonyl; the diequatorial stereoisomer 12 being more stable than the axial-equatorial stereoisomer 11.

Thioureareduction of 9 gave (\pm)-14 in good yield (Scheme 2), similarly reduction of 10 with thiourea gave (\pm)-15, albeit in attenuated yield (40\%). Alternative reduction conditions ($\mathrm{Zn} / \mathrm{HOAc},{ }^{15 \mathrm{a}} \mathrm{KI} / \mathrm{HOAc} / \mathrm{H}_{2} \mathrm{O},{ }^{15 \mathrm{~b}}$ or $\mathrm{NaBH}_{4} / \mathrm{MeOH}^{15 c}$) did not result in improved yield. Reduction of 13 under Luche conditions ${ }^{16}$ gave (\pm)-16, while reduction of the mixture of $11 / 12$ gave a mixture of $(\pm)-14,(\pm)-15$ and (\pm)-16 (ca. 1:3:7 by ${ }^{1} \mathrm{H}$ NMR integration). Separation of this mixture by preparative TLC gave additional 16 (20\%). The structures of 14-16 were assigned on the basis of their ${ }^{1} \mathrm{H}$ NMR spectral data. In particular, each of these N-(3-cyclohexen-1-yl)phthalimides is anticipated to adopt a half-chair conformer in which the bulky phthalimide substituent occupies a pseudoequatorial orientation. The signals for the $\mathrm{H}-6_{\mathrm{ax}}$ proton of 15 and 16 appear as a doublet of doublet of doublets ($15, J=10.8,12.8$ and $14.4 ; 16, J=10.0,12.0$ and 13.2). These three large couplings are due to the diaxial relative orientations of $\mathrm{H}-6_{\mathrm{ax}}$ with respect to $\mathrm{H}-1$ and $\mathrm{H}-5$ in both 15 and 16 as well as the geminal coupling to H $6_{\text {eq }}$). In comparison, the signal for $\mathrm{H}-6_{a x}$ of 14 appears as a doublet of triplets ($\mathrm{dt}, \mathrm{J}=4.8$ and 13.6); the smaller coupling corresponds to the axial-equatorial relative orientation of $\mathrm{H}-6_{\mathrm{ax}}$ and $\mathrm{H}-5$. The signals for $\mathrm{H}-1$ of 14 and 16 appear as a doublet of doublet of doublets (14, $J=3.2,10.0$ and $13.6 ; 16, J=3.0,9.2$ and 13.6); the $c a .9-10 \mathrm{~Hz}$ coupling for each is indicative of a diaxial orientation of the $\mathrm{H}-1$ and $\mathrm{H}-2$ protons.
(\pm)-9

(\pm)-10
$\downarrow \begin{gathered}\text { thiourea } \\ \mathrm{MeOH}\end{gathered}$

(\pm)-15 (40\%)
(\pm-14 (75\%)
(\pm)-13

(\pm)-16 (61\%)
$\mathrm{NaBH}_{4} / \mathrm{CeCl}_{3}$ $14+15+16(1: 3: 7)$

Scheme 2 Preparation of stereoisomeric (2,5-dihydroxy-3-cyclohexen-1-yl)phthalimides.
Brief exposure (30 min) of (\pm)-8 to catalytic dihydroxylation conditions gave the diol (\pm)-17 (Scheme 3), whose structure was tentatively assigned on the basis of its ${ }^{1} \mathrm{H}$ NMR spectral data. In particular, the signal for the axial H-6'proton of 17 appears at $\delta 2.35 \mathrm{ppm}$ (ddd, $J=2.0,10.2$ and 13.6 Hz); the small coupling corresponds to the axial-equatorial relative orientation of $\mathrm{H}-6$ ' and $\mathrm{H}-5$. Reaction of 17 with acetic anhydride gave the diacetate (\pm)-
18. The relative configuration of 18 was assigned on the basis of single crystal X-ray diffraction, \dagger which consequently corroborated the structural assignment of 17. Dihydroxylation of 8 occurs more rapidly at the olefin remote to the electron withdrawing phthalimide substituent.

Scheme 3 Dihydroxylation of (cyclohexadienyl)phthalimide8.

Catalyticreduction of 14, 15, 16 and 17 gave the saturated N-(dihydroxycyclohexyl)phthalimides (\pm)-19, (\pm)-20, $(\pm)-\mathbf{2 1}$, and (\pm)-22 (Scheme 4). The structures for diols 19-22 were assigned on the basis of the structures of each precursor; the ${ }^{1} \mathrm{H}$ NMR spectra for 19-22 are consistent with these assignments (vide infra).

Scheme 4 Hydrogenation and dihydroxylation of N-(dihydroxycyclohexenyl)phthalimides.
Osmium catalyzed dihydroxylation of 14 or 15 gave a single tetraol (\pm)-23 or (\pm)-24, while dihydroxylation of (\pm)17 gave (\pm)-26, albeit in low yield (Scheme 4). We attribute this lower yield to the diminished solubility of the product under the reaction conditions. In comparison, dihydroxylation of the diacetate (\pm)-18 proceeds in moderate yield; the product was characterized as the tetraacetate (\pm)-27. In contrast to these results, dihydroxylation of $\mathbf{1 6}$, followed by peracetylation, gave a nearly equimolar mixture of tetraacetates (\pm)$\mathbf{2 5 a}$ and \mathbf{b}. The structural assignment for $\mathbf{2 6}$ was determined by single crystal X -ray diffraction analysis (Fig.
2) $\ddagger \ddagger$ which indicated that the $\mathrm{C}-1$ phthalimide and the $\mathrm{C}-2$ and $\mathrm{C}-5$ hydroxyls are equatorial and the $\mathrm{C}-3$ and C 5hydroxylgroups are axial. Tetraol 23 was shown to be diastereomeric with $\mathbf{2 6}$ by NMR spectroscopy, and was thus assigned a structure which is consistent with this relationship and consistent with syn-dihydroxylation. The structures of $\mathbf{2 4}, \mathbf{2 5 a}, \mathbf{2 5 b}$ and $\mathbf{2 7}$ were assigned on the basis of their ${ }^{1} \mathrm{H}$ NMR spectral data and the stereochemistry of their presursors (vide infra), and the structure of 25a was confirmed by single crystal X-ray diffraction analysis (Fig. 3). In accord with the selectivity noted by Kishi, et al., ${ }^{17}$ dihydroxylation of 14 and 15 occurred preferentially on the face of the olefin opposite to the adjacent hydroxylgroups. In the case of $\mathbf{1 6}$, the stereodirection effect of the two resident hydroxyls is mismatched, and thus a mixture of two diastereomeric tetraacetates is isolated. For diol17 and diacetate18, dihydroxylation occurs on the face opposite to phthalimide substitutent. It should be noted that the directing influence of the phthalimidegroup is greater than that for the C-4hydroxylgroup.

Fig. 2 ORTEP of (\pm)-26 (arbitrary atomic numbering).

Fig. 3 ORTEP of (\pm)-25a (arbitrary atomic numbering).
Treatment of the major endoperoxide 9 with Grubbs' 2 nd generation catalyst, ${ }^{18}$ in the absense of any additional olefin, proceeded rapidly with the complete disappearance of starting material ($c a .30 \mathrm{~min}$). Analysis of the crude product mixture by ${ }^{1} \mathrm{H}$ NMR spectroscopy indicated this to be a mixture of Z-2-butendial, N vinylphthalimide (28), oxetane (\pm)-29 and bisepoxide (\pm)-30 in a ratio of $c a .2: 1.5: 1: 3$ (Scheme 5). Purification of this mixture by column chromatography gave $\mathbf{2 8}, \mathbf{2 9}$ and $\mathbf{3 0}$. While 2-butendial was not recovered after chromatography, it was identified in the crude reaction mixture by comparison to its literature ${ }^{1} \mathrm{H}$ NMR spectral data. ${ }^{19} \mathrm{~N}$-Vinylphthalimide (28) was identified by comparison to its literature mp and NMR spectral data. ${ }^{20}$ The structural assignment for 29 was based on its ${ }^{1} \mathrm{H}$ NMR spectral data. In particular, signals at $\delta 10.15$ ($\mathrm{d}, \mathrm{J}=7.2$ $\mathrm{Hz}), 6.88(\mathrm{ddd}, J=0.8,6.8$ and 11.5 Hz) and $6.07 \mathrm{ppm}(\mathrm{dd}, J=7.2$ and 11.6 Hz) correspond to the $3-\mathrm{oxo}-1-\mathrm{z}-$ butenyl sidechain. The signals at 6.33 ($q, J=7.2 \mathrm{~Hz}$) and 6.40 ppm (ddd, $J=1.2,5.0$ and 8.3 Hz) correspond to H 3 and $\mathrm{H}-1$ of the oxetane ring; similar chemical shifts have been reported for oxetane based nucleoside analogs. ${ }^{21}$ The structural assignment for $\mathbf{3 0}$ was also based on its NMR spectral data. In particular, the four relatively narrow one proton signals in the ${ }^{1} \mathrm{H}$ NMR spectrum of 30 at $\delta 3.26,3.30,3.54-3.56$ and $3.58-3.60 \mathrm{ppm}$ correspond to the four epoxide methine protons. These chemical shifts are similar to other cyclohexane bisepoxides. ${ }^{22}$

Scheme 5 Ru-catalyzed rearrangement of 9.
The metal-mediated rearrangement of 1,4-epiperoxides (endoperoxides), including the use of Ru(ii) reagents, has previously been reported. ${ }^{23}$ An inner-sphere radical mechanism may be proposed to account for formation of the products 27-30 (Scheme 6). Complexation of a coordinatively unsaturated Ru(ii) species with 9, at the less sterically hindered oxygen, generates 31. One electron exchange effects opening of the weak $\mathrm{O}-\mathrm{O}$ bond to give the oxyradical 32. Interaction with the double bond serves to generate the bisepoxide30. Alternatively, $\mathrm{C}-\mathrm{C}$ bond scission of 32 results in the nitrogen-stabilized radical species 33 . Radical 33 may undergo further $C-C$ cleavage to generate 27 and 28, or reaction of the carbon radical at oxygen generates the oxetane ring 29. A similar mechanism has been proposed to account for the formation of β-lactones from the keto endoperoxide of phenol. ${ }^{24}$

Scheme 6 Proposed mechanism for Ru-catalyzed rearrangement of 9.
Allowing the crude product from the reaction of 9 with Grubbs' catalyst to stand on a column of silica gel overnight led to the isolation of the epoxydiol (\pm)- $\mathbf{3 3}$ (Scheme 7). This product presumably arises via selective hydrolysis of the bisepoxide 30 . Treatment of 14 or 17 with mCPBA gave a single epoxide in each case [(\pm)- 34 or $(\pm)-35$, respectively, Scheme 7]. The structural assignments for 33-35 are based on single crystal X-ray diffraction analysis of each. $\dagger \ddagger$ Notably, $\mathbf{3 4}$ and $\mathbf{3 5}$ arise viaepoxidation on the same face of the olefin as the adjacent hydroxylgroup. ${ }^{25} \mathrm{Hydrolysis}$ of 33 gave tetraol (\pm)-24, while hydrolysis/acetoxylation of 35 gave tetraacetate (\pm)-
36. In contrast, hydrolysis/acetoxylation of 34 gave a mixture of diastereomeric tetraacetates (\pm)- 37 and (\pm)38 (ca. 2 : 1 ratio by ${ }^{1} \mathrm{H}$ NMR integration). Separation of the mixture of $37 / 38$ was aided by slow recrystallization from ethyl acetate. The two distinct crystalline forms were manually separated by tweezers. Tetraol 24 was identified by comparison of its spectral data with the sample prepared by dihydroxylation of 15 (vide supra). The products 36-38 are based on their NMR spectral data (vide infra); and the assignments for 37 and 38 were corroborated by single crystal X-ray diffraction analysis of each (Fig. 4 and 5, respectively). $\dagger \ddagger$ The products 24, 36 and 38 arise by a diaxial ring opening of the epoxide ring, while hydrolysis/acetoxylation of 34 via a diequatorial, boat-like transition state leads to 37 .

Scheme 7 Generation of aminocyclitol tetraacetates viaepoxidation and hydrolysis.

Fig. 4 ORTEP of (\pm)-37 (arbitrary atomic numbering).

Fig. 5 ORTEP of (\pm)-38 (arbitrary atomic numbering).
The structural assignments for many of the polyhydroxyl cyclohexylphthalimides are based on their ${ }^{1} \mathrm{H}$ NMR spectral data. In particular, for those compounds in which the C-1 phthalimide and the C-5hydroxy/acetoxy are cis (i.e. diequatorial; 20, 21, 24 and $\mathbf{2 5 a} / \mathbf{b}$) the signal for $\mathrm{H}-\mathrm{G}_{\mathrm{ax}}$ appears as either a quartet ($\mathrm{J} \sim 12 \mathrm{~Hz}$) or as a doublet of triplets ($J=10.9$ and 12.9). Conversely, for those compounds in which the $\mathrm{C}-1$ phthalimide and the C 5hydroxyl/acetoxy are trans ($\mathbf{1 9}, \mathbf{2 3}, \mathbf{2 6}, \mathbf{2 7}, \mathbf{3 6}, \mathbf{3 7}$ and $\mathbf{3 8}$), the signal for $\mathrm{H}-\mathrm{G}_{\text {ax }}$ appears as a doublet ($\mathrm{J} \sim 2.4$) of triplets (J~13). For structures in which the C-1 phthalimide and the C-2hydroxyl/acetoxy are trans (i.e. diequatorial; 19, 21, 25a/b, 27, $\mathbf{3 7}$ and $\mathbf{3 8}$) the signal for $\mathrm{H}-1$ appears as either a doublet of doublet of doublets ($J \sim 4.5,10.5$ and 13 Hz) or as a doublet ($J \sim 4.2$) of triplets ($J \sim 12$). Conversely, for those compounds in which the $\mathrm{C}-1$ phthalimide and the $\mathrm{C}-2$ hydroxyl/acetoxy are cis the signal for $\mathrm{H}-1$ appears as a broad doublet $\mathbf{(2 0 , J = 1 4}$) or a doublet of doublet of doublets ($\mathbf{2 4}$ or $\mathbf{3 6}$; $J \sim 3,4$ and 13 Hz). For the tetraacetates in which $\mathrm{H}-\mathbf{2}$ is axial (25a, 25b, $\mathbf{3 7}$ or 38), the magnitude of the coupling between $\mathrm{H}-2$ and $\mathrm{H}-3$ allows for assignment of their relative stereochemistry (diaxial, $\mathrm{J}_{\mathrm{H} 2} \mathrm{H3} \sim 10 \mathrm{~Hz}$; axial-equatorial, $\mathrm{J}_{\mathrm{H} 2}-\mathrm{H3} \sim 3-4 \mathrm{~Hz}$). Similarly, for tetraols or tetraacetates in which $\mathrm{H}-5$ is axial ($\mathbf{2 4} \mathbf{4} \mathbf{2 5 a} \mathbf{2 5} \mathbf{2 5}$), the stereochemistry of the $\mathrm{C}-4$ substitutent may be assigned axial or equatorial based on the magnitude of the coupling between $\mathrm{H}-4$ and $\mathrm{H}-5$.

Conclusions

By sequential oxidation (${ }^{1} \mathrm{O}_{2}$, dihydroxylation and/or epoxidation), rearrangement, reduction, or hydrolysis reactions, a single (cyclohexadienyl)phthalimide can be used to prepare a series of stereochemically diverse polyhydroxy aminocyclohexanes. The structural assignments of these products are based on their NMR spectral data as well as X-ray diffraction in certain cases.

Experimental

General methods

All reactions involving moisture or air sensitive reagents were carried out under an nitrogen atmosphere in oven-dried glassware with anhydrous solvents. Purifications by chromatography were carried out using silica gel $60(40-63 \mu \mathrm{~m})$. NMR spectra were recorded on either a Varian Mercury +300 MHz or a Varian UnityInova 400 MHz instrument. $\mathrm{CDCl}_{3}, \mathrm{CD}_{3} \mathrm{OD}, d_{6}$-acetone and d_{6}-DMSO were purchased from Cambridge Isotope Laboratories. ${ }^{1} \mathrm{H}$ NMR spectra were calibrated to 7.27 ppm for residual $\mathrm{CHCl}_{3}, 3.31 \mathrm{ppm}$ for $\mathrm{CD}_{2} \mathrm{HOD}, 2.05 \mathrm{ppm}$ for d_{5}-acetone or 2.50 ppm for d_{5}-DMSO. ${ }^{13} \mathrm{C}$ NMR spectra were calibrated from the central peak at 77.23 ppm for $\mathrm{CDCl}_{3}, 49.15 \mathrm{ppm}$ for $\mathrm{CD}_{3} \mathrm{OD}, 29.92 \mathrm{ppm}$ for d_{6}-acetone or 39.51 for d_{6}-DMSO. Coupling constants are
reported in Hz. Elemental analyses were obtained from Midwest Microlabs, Ltd., Indianapolis, IN, and highresolution mass spectra were obtained from the University of Nebraska Center for Mass Spectrometry.

Tricarbonyl-(5-phthalimido-1,3-cyclohexadiene)iron (\pm)-7

To a solution of $6(920 \mathrm{mg}, 2.95 \mathrm{mmol})$ in dry $\mathrm{CH}_{2} \mathrm{Cl}_{2}(40 \mathrm{~mL})$, at room temperature under N_{2}, was added solid potassium phthalimide ($820 \mathrm{mg}, 4.43 \mathrm{mmol}$). The mixture was stirred for 5 h , and then quenched with water and extracted several times with $\mathrm{CH}_{2} \mathrm{Cl}_{2}$. The combined extracts were washed with brine, dried $\left(\mathrm{Na}_{2} \mathrm{SO}_{4}\right)$ and concentrated. The residue was purified by column chromatography (SiO_{2}, hexane-ethyl acetate $=6: 1$) to afford (\pm)-7 ($807 \mathrm{mg}, 75 \%$) as a light yellow solid (Found: C, $56.10 ; \mathrm{H}, 3.18$. Calcd for $\mathrm{C}_{17} \mathrm{H}_{11} \mathrm{O} \mathrm{Fe}: \mathrm{C}, 55.92 ; \mathrm{H}, 3.04$.); mp $166-169^{\circ} \mathrm{C} ; \delta_{\mathrm{H}}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) 2.00(1 \mathrm{H}, \mathrm{brd}, J=15.1 \mathrm{~Hz}, \mathrm{H}-6 \alpha), 2.31(1 \mathrm{H}, \mathrm{ddd}, J=4.2,11.4$ and $15.1, \mathrm{H}-6 \beta)$, $2.77(1 \mathrm{H}, \mathrm{ddd}, J=1.0,3.2$ and $6.3, \mathrm{H}-4), 3.15-3.11(1 \mathrm{H}, \mathrm{m}, \mathrm{H}-1), 4.80(1 \mathrm{H}, \mathrm{td}, J=3.7$ and $11.5, \mathrm{H}-5), 5.53(1 \mathrm{H}$, $\mathrm{t}, \mathrm{J}=5.6, \mathrm{H}-3), 5.67(1 \mathrm{H}, \mathrm{t}, \mathrm{J}=5.7, \mathrm{H}-4)$ and $7.60-7.83(4 \mathrm{H}, \mathrm{m}, \mathrm{Phth}) ; \delta_{\mathrm{C}}\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) 27.3$ (C-6), $48.1(\mathrm{C}-5)$, 57.1, 58.2 (C-1, C-4), 86.0, 86.7 (C-2, C-3), 123.3, 132.1, 134.2 ($3 \times$ Phth), $168.2(\mathrm{~N}-\mathrm{C}=\mathrm{O}$) and 211.4 (M-CO).

N-(2,4-Cyclohexadien-1-yl)phthalimide (\pm)-8

To a stirring solution of iron complex $\mathbf{7}(800 \mathrm{mg}, 2.19 \mathrm{mmol})$ in methanol (110 mL) was added solid ceric ammonium nitrate ($360 \mathrm{mg}, 6.56 \mathrm{mmol}$). The mixture was stirred for 2 h and then quenched with water and extracted several times with $\mathrm{CH}_{2} \mathrm{Cl}_{2}$. The combined extracts were washed with brine, dried $\left(\mathrm{Na}_{2} \mathrm{SO}_{4}\right)$ and concentrated. The residue was purified by column chromatography (SiO_{2}, hexane-ethyl acetate $=4: 1$) to give (\pm)-8 ($400 \mathrm{mg}, 81 \%$) as a colorless solid (Found: C, 74.60 ; H, 4.94; N, 6.24. Calcd for $\mathrm{C}_{14} \mathrm{H}_{11} \mathrm{O}_{2}$: C, 74.65; H, 4.92; N, 6.22); $\mathrm{mp} 138-140^{\circ} \mathrm{C}$; $\delta_{\mathrm{H}}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) 2.38(1 \mathrm{H}, \mathrm{ddd}, \mathrm{J}=5.6,10.0$ and $17.2, \mathrm{H}-6), 2.78(1 \mathrm{H}, \mathrm{tdd}, J=3.1,15.2$ and $\left.17.6, \mathrm{H}-6^{\prime}\right), 5.20(1 \mathrm{H}, \mathrm{tdd}, J=2.9,9.6$ and $15.2, \mathrm{H}-1), 5.68(1 \mathrm{H}, \mathrm{dd}, J=3.0$ and $9.6, \mathrm{CH}=\mathrm{CH}), 5.89-6.10(3 \mathrm{H}, \mathrm{m}$, $\mathrm{CH}=\mathrm{CH}$) and $7.71-7.86$ ($4 \mathrm{H}, \mathrm{m}, \mathrm{Phth}$); $\delta_{\mathrm{C}}\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) 27.5$ (C-6), 45.9 (C-1), 123.2 (Phth), 123.7, 125.3, 125.5, 125.6 ($\mathrm{C}-2, \mathrm{C}-3, \mathrm{C}-4, \mathrm{C}-5$), 132.1, 133.9 ($2 \times \mathrm{Phth}$) and 176.2 ($\mathrm{N}-\mathrm{C}=\mathrm{O}$).

Singlet oxygencycloaddition

To a 100 mL two-necked round-bottomed flask, equipped with a condenser, was added a solution of (\pm)-8 (1.00 $\mathrm{g}, 4.44 \mathrm{mmol}$) in $\mathrm{CHCl}_{3}(16 \mathrm{~mL})$ and tetraphenylporphine ($138 \mathrm{mg}, 5 \mathrm{~mol} \%$). The deep purple solution was stirred at $0^{\circ} \mathrm{C}$ and irradiated with a 60 W tungsten-halogen lamp for 8 h while ultrapure O_{2} was bubbled through the solution. The reaction mixture was concentrated under reduced pressure and the residue purified by column chromatography $\left(\mathrm{SiO}_{2}\right.$, hexane-ethyl acetate $\left.=4: 1\right)$ to give $(\pm)-9(593 \mathrm{mg}, 52 \%)$ as a colorless solid. Further elution (hexane-ethyl acetate $=3: 1$) gave (\pm)-10 ($201 \mathrm{mg}, 18 \%$) as a colorless solid.

N-(8,9-Dioxobicyclo[2.2.2]oct-5-en-2-yl)phthalimide (\pm)-9

(Found: C, 65.45; H, 4.39. Calcd for $\mathrm{C}_{14} \mathrm{H}_{11} \mathrm{NO}_{4}$: C, $65.36 ; \mathrm{H}, 4.31$); mp $155-157^{\circ} \mathrm{C}$; $\delta_{\mathrm{H}}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) 2.42(1 \mathrm{H}$, ddd, $J=2.0,4.4$ and 13.6, $\mathrm{H}-3), 2.80\left(1 \mathrm{H}, \mathrm{ddd}, J=4.0,9.6\right.$ and $\left.13.6, \mathrm{H}-3^{\prime}\right), 4.84-4.98(3 \mathrm{H}, \mathrm{m}, \mathrm{H}-1, \mathrm{H}-2$ and $\mathrm{H}-4)$, $6.65(1 \mathrm{H}, \mathrm{ddd}, J=1.6,6.0$ and $8.0, \mathrm{CH}=\mathrm{CH}), 6.88(1 \mathrm{H}, \mathrm{ddd}, J=1.6,6.0$ and $8.0, \mathrm{CH}=\mathrm{CH}), 7.71-7.74$ and $7.79-7.83$ (4 H total, $\mathrm{AA}^{\prime} \mathrm{BB}^{\prime}, \mathrm{Phth}$); $\delta_{\mathrm{C}}\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) 28.5$ (C-3), 45.9 (C-2), 71.2 (C-1 or $\mathrm{C}-4$), 123.5, 129.5, 131.6, 134.0, 134.5 ($\mathrm{CH}=\mathrm{CH}$ and Phth), and $168.3(\mathrm{~N}-\mathrm{C}=\mathrm{O}$); one peak obscured by solvent.

N-(8,9-Dioxobicyclo[2.2.2]oct-5-en-2-yl)phthalimide (\pm)-10

(Found: C, 65.46; H, 4.34. Calcd for $\mathrm{C}_{14} \mathrm{H}_{11} \mathrm{NO}_{4}$: C, $65.36 ; \mathrm{H}, 4.31$); mp $235-240{ }^{\circ} \mathrm{C}$; $\delta_{\mathrm{H}}\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) 1.88(1 \mathrm{H}$, ddd, $J=1.9,11.8$ and $13.8, \mathrm{H}-3), 3.64\left(1 \mathrm{H}, \mathrm{td}, J=4.2\right.$ and $\left.13.8, \mathrm{H}-3^{\prime}\right), 4.41(1 \mathrm{H}, \mathrm{ddd}, J=1.8,4.5$ and $12.0, \mathrm{H}-2)$, $4.67(1 \mathrm{H}, \mathrm{qd}, \mathrm{J}=1.7$ and $6.3, \mathrm{H}-1), 4.89(1 \mathrm{H}, \mathrm{qdd}, \mathrm{J}=1.8,3.6$ and $5.7, \mathrm{H}-4), 6.75-6.87(2 \mathrm{H}, \mathrm{m}, \mathrm{H}-5$ and $\mathrm{H}-6), 7.70-$ 7.74 and $7.78-7.83\left(4 \mathrm{H}\right.$ total, $\left.\mathrm{AA}^{\prime} \mathrm{BB}^{\prime}, \mathrm{Phth}\right) ; \delta_{\mathrm{C}}\left(75 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) 21.0(\mathrm{C}-3), 47.2(\mathrm{C}-2), 70.9,75.2(\mathrm{C}-1, \mathrm{C}-4), 123.5$, $130.8,132.0,134.0,134.3$ ($\mathrm{C}-5, \mathrm{C}-6$ and Phth) and 168.9 ($\mathrm{N}-\mathrm{C}=0$).
N-(5-Hydroxy-2-oxo-3-cyclohexen-1-yl)phthalimide11/12 and N-(2S*-hydroxy-5-oxo-3-cyclohexen-1S*-yl)phthalimide (\pm)-13
To a solution of cyclic peroxide $9(690 \mathrm{mg}, 2.68 \mathrm{mmol})$ in $\mathrm{dry}_{\mathrm{CH}}^{2} \mathrm{Cl}_{2}(25 \mathrm{~mL})$ at room temperature was added dropwise 1,8-diazabicyclo[5.4.0]undec-7-ene ($0.70 \mathrm{~mL}, 4.0 \mathrm{mmol}$). The mixture was stirred for 15 min , diluted with additional $\mathrm{CH}_{2} \mathrm{Cl}_{2}(20 \mathrm{~mL})$, neutralized with amberlite IRC-76, filtered and concentrated. Purification of the residue by column chromatography $\left(\mathrm{SiO}_{2}\right.$, hexane-ethyl acetate $\left.=1: 1\right)$ gave (\pm) $\mathbf{- 1 3}(278 \mathrm{mg}, 40 \%)$ as a colorless solid, followed by a mixture of $\mathbf{1 1 / 1 2}\left(164 \mathrm{mg}, 24 \%, \mathrm{mp} 192-195^{\circ} \mathrm{C}\right.$) as a colorless solid.
(\pm)-13: (Found: C, 65.01; H, 4.31. Calcd for $\mathrm{C}_{14} \mathrm{H}_{11} \mathrm{NO}_{4}$: C, $65.36 ; \mathrm{H}, 4.31$); mp $175-177^{\circ} \mathrm{C} ; \delta_{\mathrm{H}}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$ 2.67 ($1 \mathrm{H}, \mathrm{dd}, J=4.8$ and $16.4, \mathrm{H}-6_{\text {eq }}$), $3.43\left(1 \mathrm{H}, \mathrm{dd}, J=13.6\right.$ and $\left.16.4, \mathrm{H}-6_{\mathrm{ax}}\right), 4.65(1 \mathrm{H}, \mathrm{ddd}, J=4.8,10.0$ and 14.0 , $\mathrm{H}-1), 5.33(1 \mathrm{H}, \mathrm{brd}, J=10.4, \mathrm{H}-2), 6.11(1 \mathrm{H}, \mathrm{d}, J=10.0, \mathrm{H}-4), 7.02(1 \mathrm{H}, \mathrm{dd}, J=1.6$ and $10.0, \mathrm{H}-3)$ and $7.78-7.89$ ($4 \mathrm{H}, \mathrm{m}, \mathrm{Phth}$); $\delta_{\mathrm{C}}\left(75 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) 40.2$ (C-6), 53.6 (C-1), 67.7 (C-2), 123.8 (Phth), 129.6 (C-4), 131.8, 134.6 ($2 \times$ Phth), 152.3 ($\mathrm{C}-3$), 168.5 ($\mathrm{N}-\mathrm{C}=\mathrm{O}$) and 196.4 ($\mathrm{C}=\mathrm{O}$).

12: $\delta_{\mathrm{H}}\left(400 \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{OD}\right) 2.43-2.51(1 \mathrm{H}, \mathrm{m}, \mathrm{H}-6), 2.81\left(1 \mathrm{H}, \mathrm{td}, \mathrm{J}=11.4\right.$ and $\left.14.4, \mathrm{H}-6^{\prime}\right), 4.75-4.84(1 \mathrm{H}, \mathrm{m}, \mathrm{H}-5)$, $4.98(1 \mathrm{H}, \mathrm{dd}, \mathrm{J}=5.0$ and $14.6, \mathrm{H}-1), 6.09(1 \mathrm{H}, \mathrm{dd}, \mathrm{J}=2.4$ and $10.8, \mathrm{H}-3), 7.12(1 \mathrm{H}, \mathrm{d}, \mathrm{J}=10.4, \mathrm{H}-4)$ and $7.78-7.96$ ($\mathrm{m}, 4 \mathrm{H}$, Phth).

11: δ_{H} (partial, $\left.400 \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{OD}\right) 2.26(1 \mathrm{H}, \mathrm{brd}, \mathrm{J}=13.2, \mathrm{H}-6), 3.02\left(1 \mathrm{H}, \mathrm{dt}, \mathrm{J}=3.6\right.$ and $\left.13.2, \mathrm{H}-6^{\prime}\right), 4.58-4.60(1 \mathrm{H}$, $\mathrm{m}, \mathrm{H}-5)$ and $5.35(1 \mathrm{H}, \mathrm{dd}, \mathrm{J}=4.8$ and $13.2, \mathrm{H}-1)$.

N-(2R*,5S*-Dihydroxy-3-cyclohexen-1S*-yl)phthalimide (\pm)-14

To a solution of $9(25 \mathrm{mg}, 0.097 \mathrm{mmol})$ in methanol (1.5 mL) at room temperature under nitrogen was added solid thiourea ($7.0 \mathrm{mg}, 0.097 \mathrm{mmol}$). The mixture was stirred for 15 h , then concentrated under vacuum and the residue purified by column chromatography (SiO_{2}, hexane-ethyl acetate $=3: 1$) to afford (\pm)-14 ($19 \mathrm{mg}, \mathbf{7 5 \%}$) as a colorless solid (Found: C, 64.92; H, 5.11. Calcd for $\mathrm{C}_{14} \mathrm{H}_{13} \mathrm{NO}_{4}$: C, 64.86; H,5.05); mp $180-183^{\circ} \mathrm{C} ; \delta_{\mathrm{C}}(400 \mathrm{MHz}$, $\left.\mathrm{CDCl}_{3}\right) 1.97\left(1 \mathrm{H}, \mathrm{brd}, \mathrm{J}=14.0, \mathrm{H}-6_{\text {eq }}\right), 2.28(1 \mathrm{H}, \mathrm{br} \mathrm{s}, \mathrm{OH}), 2.35(1 \mathrm{H}, \mathrm{br} \mathrm{s}, \mathrm{OH}), 2.82\left(1 \mathrm{H}, \mathrm{dt}, \mathrm{J}=4.8\right.$ and $\left.13.6, \mathrm{H}-6_{\mathrm{ax}}\right)$, $4.42(1 \mathrm{H}, \mathrm{br} \mathrm{s}, \mathrm{H}-5), 4.58(1 \mathrm{H}, \mathrm{ddd}, J=3.2,10.0$ and $13.6, \mathrm{H}-1), 4.84(1 \mathrm{H}, \mathrm{br}, \mathrm{J}, \mathrm{J}=9.2, \mathrm{H}-2), 5.92(2 \mathrm{H}$, narrow m, $\mathrm{CH}=\mathrm{CH}$), $7.70-7.74$ and $7.81-7.85$ (4 H total, $\mathrm{AA}^{\prime} \mathrm{BB}^{\prime}, \mathrm{Phth}$); $\delta_{\mathrm{C}}\left(100 \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{OD}\right) 35.1$ (C-6), 51.5, 65.2, 68.5 (C-1, $\mathrm{C}-2$ and $\mathrm{C}-5), 124.1,130.1,133.5,134.8,135.4$ ($\mathrm{CH}=\mathrm{CH}$ and Phth) and 170.2 ($\mathrm{N}-\mathrm{C}=\mathrm{O}$).

N-(2S*,5R*-Dihydroxy-3-cyclohexen-1S*-yl)phthalimide (\pm)-15

Cyclic peroxide $\mathbf{1 0}(0.10 \mathrm{~g}, 0.40 \mathrm{mmol})$ was reduced with thiourea in a fashion similar to the preparation of 14. The reaction mixture was concentrated under vacuum and the residue was purified by column chromatography $\left(\mathrm{SiO}_{2}\right.$, hexane-ethyl acetate $\left.=1: 4\right)$ to give $(\pm)-\mathbf{1 5}(40 \mathrm{mg}, 40 \%)$ as a colorless solid (Found: C, 64.77; H, 5.08. Calcd for $\mathrm{C}_{14} \mathrm{H}_{13} \mathrm{NO}_{4}$: C, 64.86; H, 5.05); mp 167-174 ${ }^{\circ} \mathrm{C}$; $\delta_{\mathrm{H}}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) 2.21(1 \mathrm{H}, \mathrm{br} \mathrm{d}, \mathrm{J}=12.8, \mathrm{H}-6$ eq $), 2.26$ $(1 \mathrm{H}, \mathrm{d}, J=7.2, \mathrm{OH}), 2.81(1 \mathrm{H}, \mathrm{d}, J=8.8, \mathrm{OH}), 2.85(1 \mathrm{H}, \mathrm{ddd}, J=10.8,12.8$ and $14.4, \mathrm{H}-6 \mathrm{ax}), 4.17-4.23(1 \mathrm{H}, \mathrm{m})$, 4.43-4.45 ($2 \mathrm{H}, \mathrm{m}$), 5.96-5.97 (2 H , narrow m, CH=CH), 7.70-7.74 and 7.81-7.85 (4H total, AA'BB', Phth); δ_{c} (100 $\left.\mathrm{MHz}, \mathrm{CD}_{3} \mathrm{OD}\right) \delta 31.2(\mathrm{C}-6), 52.7,65.8,69.1$ (C-1, C-2, C-5), 124.1, 128.2, 133.4, 135.4, 136.8 ($\mathrm{CH}=\mathrm{CH}$ and Phth) and 170.4 ($\mathrm{N}-\mathrm{C}=\mathrm{O}$).

N-($2 R^{*}, 5 R^{*}$-Dihydroxy-3-cyclohexen-1S*-yl)phthalimide (\pm)-16

To a solution of $\mathbf{1 3}(270 \mathrm{mg}, 1.05 \mathrm{mmol})$ in methanol (6 mL) was added $\mathrm{CeCl}_{3} \cdot 7 \mathrm{H}_{2} \mathrm{O}(391 \mathrm{mg}, 1.05 \mathrm{mmol})$ followed by $\mathrm{NaBH}_{4}(80 \mathrm{mg}, 2.1 \mathrm{mmol})$. The reaction mixture was stirred for 45 min and then quenched with water. The mixture was extracted several times with ethyl acetate and the combined organic layers were washed with saturated aqueous NaHCO_{3}, dried $\left(\mathrm{Na}_{2} \mathrm{SO}_{4}\right)$ and concentrated. Purification of the residue by column chromatography $\left(\mathrm{SiO}_{2}\right.$, hexane-ethyl acetate $\left.=1: 1\right)$ gave $(\pm)-16(167 \mathrm{mg}, 61 \%)$ as a colorless solid (Found: C, 64.93; $\mathrm{H}, 5.27$. Calcd for $\mathrm{C}_{14} \mathrm{H}_{13} \mathrm{NO}_{4}$: C, 64.86; H, 5.05); mp 187-190 ${ }^{\circ} \mathrm{C}$; $\delta_{\mathrm{H}}\left(400 \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{OD}\right) 2.09-2.15(1 \mathrm{H}, \mathrm{m}$,
$\left.\mathrm{H}-6_{\mathrm{eq}}\right), 2.46\left(1 \mathrm{H}, \mathrm{ddd}, J=10.0,12.0\right.$ and $\left.13.2, \mathrm{H}-6_{\mathrm{ax}}\right), 4.19(1 \mathrm{H}, \mathrm{ddd}, J=3.0,9.2$ and $13.6, \mathrm{H}-1), 4.39-4.46(1 \mathrm{H}, \mathrm{m})$, $4.85-4.95(1 \mathrm{H}, \mathrm{m}), 5.73(1 \mathrm{H}, \mathrm{td}, J=1.6$ and $10.4, \mathrm{CH}=\mathrm{CH}), 5.78(1 \mathrm{H}, \mathrm{qd}, J=1.9$ and $10.4, \mathrm{CH}=\mathrm{CH})$ and $7.78-7.89$ ($4 \mathrm{H}, \mathrm{m}$, Phth); $\delta_{\mathrm{C}}\left(75 \mathrm{MHz}\right.$, d_{6}-acetone) 36.8 (C-6), 54.5 (C-1), 67.5, 67.7 ($\mathrm{C}-2$ and $\mathrm{C}-5$), 123.7, 131.8, 133.1, 134.0, 135.0 ($\mathrm{CH}=\mathrm{CH}$ and Phth) and $169.0(\mathrm{~N}-\mathrm{C}=\mathrm{O}$).

N-(4R*,5S*-Dihydroxy-2-cyclohexen-1S*-yl)phthalimide (\pm)-17

To a solution of diene $\mathbf{8}(750 \mathrm{mg}, 3.33 \mathrm{mmol}$) in acetone (15 mL) was added a solution of N -methylmorpholine N oxide ($960 \mathrm{mg}, 8.19 \mathrm{mmol}$) in water (4 mL) followed by a solution of OsO_{4} in toluene ($2 \mathrm{~mL}, 10 \mathrm{~mol} \%$). The reaction mixture was stirred for 30 min at room temperature and then solid $\mathrm{Na}_{2} \mathrm{~S}_{2} \mathrm{O}_{4}(0.6 \mathrm{~g})$ was added and stirring continued for another 30 min . The crude reaction mixture was adsorbed on silica gel, applied to the top of a chromatography column and purified (hexane-ethyl acetate $=1: 4$) to give (\pm) $-17(447 \mathrm{mg}, 52 \%)$ as a colorless solid (Found: C, 64.87; H, 5.02. Calcd for $\mathrm{C}_{14} \mathrm{H}_{13} \mathrm{NO}_{4}$: C, 64.86 ; H, 5.05); mp 178-181 ${ }^{\circ} \mathrm{C}$; $\delta_{\mathrm{H}}(400 \mathrm{MHz}$, $\left.\mathrm{CD}_{3} \mathrm{OD}\right) 2.12\left(1 \mathrm{H}, \mathrm{dtd}, J=1.6,5.8\right.$ and $\left.13.4, \mathrm{H}-6_{\text {eq }}\right), 2.35\left(1 \mathrm{H}, \mathrm{ddd}, J=2.0,10.2\right.$ and $\left.13.6, \mathrm{H}-6_{\mathrm{ax}}\right), 4.17-4.22(1 \mathrm{H}, \mathrm{m})$, $4.30-4.34(1 \mathrm{H}, \mathrm{m}), 5.11-5.17(1 \mathrm{H}, \mathrm{m}), 5.63(1 \mathrm{H}, \mathrm{dtd}, J=1.6,2.4$ and $10.2, \mathrm{CH}=\mathrm{CH}), 5.73(1 \mathrm{H}, \mathrm{dt}, \mathrm{J}=1.6,2.0$ and $10.4, \mathrm{CH}=\mathrm{CH}$) and $7.78-7.85$ ($4 \mathrm{H}, \mathrm{m}, \mathrm{Phth}$); $\delta_{\mathrm{c}}\left(100 \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{OD}\right) \delta 33.4$ (C-6), 45.4 (C-1), 68.6, 69.5 (C-4, C-5), 124.2 (Phth), 129.1 ($\mathrm{CH}=\mathrm{CH}$), 131.9, 133.4 ($2 \times$ Phth), $135.5(\mathrm{CH}=\mathrm{CH}$), and $169.6(\mathrm{~N}-\mathrm{C}=\mathrm{O})$.

N-(4R*,5S*-Diacetoxy-2-cyclohexen-1S*-yl)phthalimide (\pm)-18

To a suspension of diol17 ($30 \mathrm{mg}, 0.12 \mathrm{mmol}$) in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(0.8 \mathrm{~mL})$, at room temperature, was added dropwise pyridine ($0.10 \mathrm{~mL}, 1.2 \mathrm{mmol}$). Upon addition of pyridine the mixture became clear. Acetic anhydride (0.10 mL , 1.2 mmol) was added and the resultant mixture was stirred for 12 h . The reaction mixture was quenched with 1 $\mathrm{M} \mathrm{HCl}(5 \mathrm{~mL})$ and extracted several times with $\mathrm{CH}_{2} \mathrm{Cl}_{2}$. The combined extracts were washed with brine, dried $\left(\mathrm{Na}_{2} \mathrm{SO}_{4}\right)$ and concentrated. The residue was purified by column chromatography $\left(\mathrm{SiO}_{2}\right.$, hexane-ethyl acetate $=$ $1: 1$) to afford (\pm) $\mathbf{- 1 8}\left(27 \mathrm{mg}, 68 \%\right.$) as a colorless solid (Found: $\mathrm{C}, 63.64 ; \mathrm{H}, 5.12$. Calcd for $\mathrm{C}_{18} \mathrm{H}_{17} \mathrm{NO}_{6}: \mathrm{C}, 62.97 ; \mathrm{H}$, 4.99); mp 151-154 ${ }^{\circ} \mathrm{C}$; $\delta_{\mathrm{H}}\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) 2.07$ ($3 \mathrm{H}, \mathrm{s}, \mathrm{OAc}$), 2.15 ($3 \mathrm{H}, \mathrm{s}, \mathrm{OAc}$), 2.19-2.28 ($1 \mathrm{H}, \mathrm{m}, \mathrm{H}-6$ eq), 2.54 (1 H , ddd, $J=2.1,9.3$ and $13.8 \mathrm{~Hz}, \mathrm{H}-6_{\text {ax }}$), $5.17(1 \mathrm{H}, \mathrm{ddd}, J=2.9,6.3$ and $9.3 \mathrm{~Hz}, \mathrm{H}-1), 5.62-5.67$ and $5.68-5.72$ $(2 \mathrm{H}, 2 \times \mathrm{m}, \mathrm{H}-4$ and $\mathrm{H}-5), 5.78(2 \mathrm{H}, \mathrm{s}, \mathrm{H}-2$ and $\mathrm{H}-3), 7.72-7.77$ and $7.82-7.88$ (4 H total, $\mathrm{AA}^{\prime} \mathrm{BB}^{\prime}, \mathrm{Phth}$); $\delta_{\mathrm{C}}(75 \mathrm{MHz}$, $\left.\mathrm{CDCl}_{3}\right) 21.1$ and $21.3\left(2 \times \mathrm{CH}_{3} \mathrm{CO}_{2}\right), 30.0(\mathrm{C}-6), 44.1(\mathrm{C}-1), 67.9,68.3(\mathrm{C}-4$ and $\mathrm{C}-5), 123.6,127.1(2 \times \mathrm{Phth}), 129.9$ ($\mathrm{CH}=\mathrm{CH}$), 132.0 (Phth), $134.4(\mathrm{CH}=\mathrm{CH}), 168.0(\mathrm{~N}-\mathrm{C}=\mathrm{O}), 170.4$ and $170.7\left(2 \times \mathrm{CH}_{3} \mathrm{CO}_{2}\right)$.

N-(2R*,5R*-Dihydroxycyclohex-1S*-yl)phthalimide (\pm)-19

A solution of $14(0.20 \mathrm{~g}, 0.77 \mathrm{mmol})$ in methanol $(20 \mathrm{~mL})$, containing a suspension of $10 \% \mathrm{Pd} / \mathrm{C}(60 \mathrm{mg})$ was stirred under $\mathrm{H}_{2}(40 \mathrm{psi})$ for 5 h . After releasing the excess H_{2} pressure, the reaction mixture was filtered through Celite. The filtrate was concentrated, adsorbed to silica and applied to a column of silica. Elution (hexane-ethyl acetate $=1: 4$) gave (\pm)-19 ($143 \mathrm{mg}, 76 \%$) as a colorless solid (Found: C, 64.20; H, 5.73. Calcd for $\mathrm{C}_{14} \mathrm{H}_{15} \mathrm{NO}_{4}: \mathrm{C}$, $64.36 ; \mathrm{H}, 5.79)$; mp 198-200 ${ }^{\circ} \mathrm{C}$; $\delta_{\mathrm{H}}\left(400 \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{OD}\right) 1.60-1.72(1 \mathrm{H}, \mathrm{m}), 1.84-1.91(4 \mathrm{H}, \mathrm{m}), 2.42(1 \mathrm{H}, \mathrm{dt}, J=2.4$ and $\left.13.2, \mathrm{H}-6_{\mathrm{ax}}\right), 4.14(1 \mathrm{H}$, pent, $J=2.6, \mathrm{H}-5), 4.26(1 \mathrm{H}, \mathrm{dt}, J=6.4$ and $9.8, \mathrm{H}-2), 4.47(1 \mathrm{H}, \mathrm{ddd}, J=4.0,10.0$ and $12.8, \mathrm{H}-1)$ and $7.75-7.88(4 \mathrm{H}, \mathrm{m}, \mathrm{Phth}) ; \delta_{\mathrm{c}}\left(100 \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{OD}\right) \delta 29.8,31.9,36.3(\mathrm{C}-3, \mathrm{C}-4$ and $\mathrm{C}-6), 53.5(\mathrm{C}-1)$, $66.7,70.2$ (C-2 and C-5), 124.0, 133.5, 135.3 ($3 \times$ Phth), 170.3 ($\mathrm{N}-\mathrm{C}=\mathrm{O}$).

N-(2S*,5S*-Dihydroxycyclohex-1S*-yl)phthalimide (\pm)-20

The reduction of $15(40.0 \mathrm{mg}, 0.154 \mathrm{mmol})$ in methanol $(7 \mathrm{~mL})$ with $\mathrm{H}_{2}(40 \mathrm{psi})$ catalyzed by $10 \% \mathrm{Pd} / \mathrm{C}(c a .5 \mathrm{mg})$ was carried out in a fashion similar to the reduction of 14. Purification of the residue by column chromatography (hexane-ethyl acetate $=1: 4$) gave (\pm)-20 $(25 \mathrm{mg}, 62 \%$) as a colorless solid (Found: C, 62.03; H, 5.70. Calcd for $\mathrm{C}_{14} \mathrm{H}_{15} \mathrm{NO}_{4} \cdot 1_{2} \mathrm{KH}_{2} \mathrm{O}: \mathrm{C}, 62.21 ; \mathrm{H}, 5.96$); mp $175-177^{\circ} \mathrm{C}$; $\delta_{\mathrm{H}}\left(300 \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{OD}\right) 1.60-1.95\left(5 \mathrm{H}, \mathrm{m}, \mathrm{H}-3, \mathrm{H} 3^{\prime}, \mathrm{H}-4, \mathrm{H}^{\prime}\right.$, $\mathrm{H} 6_{\text {eq }}$), $2.88\left(1 \mathrm{H}, \mathrm{td}, J=11.7\right.$ and $\left.13.5, \mathrm{H}-6_{\mathrm{ax}}\right), 3.60-3.72(1 \mathrm{H}, \mathrm{m}), 3.98(1 \mathrm{H}, \mathrm{brs}), 4.18(1 \mathrm{H}, \mathrm{ddd}, J=2.2,3.8,13.5)$
and 7.75-7.90 (4H, m, Phth); $\delta_{C}\left(100 \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{OD}\right) \delta_{\mathrm{C}} 29.5,30.4,33.6(\mathrm{C}-3, \mathrm{C}-4, \mathrm{C}-6), 55.4(\mathrm{C}-1), 68.5,70.8$ (C-2 and $\mathrm{C}-5), 124.2,133.3,135.5$ (Phth) and 170.6 ($\mathrm{N}-\mathrm{C}=\mathrm{O}$).

$N-\left(2 R^{*}, 5 S^{*}\right.$-Dihydroxycyclohex-1S*-yl)phthalimide (\pm)-21

The reduction of $16(56.0 \mathrm{mg}, 0.216 \mathrm{mmol})$ in methanol (10 mL) with $\mathrm{H}_{2}(40 \mathrm{psi})$ catalyzed by $10 \% \mathrm{Pd} / \mathrm{C}$ (ca. 5 mg) was carried out in a fashion similar to the reduction of 14. Filtration of the reaction mixture through Celite and concentration of the filtrate gave (\pm) $-21(36 \mathrm{mg}, 64 \%)$ as a colorless solid (Found: C, 64.01; H, 5.76. Calcd for $\mathrm{C}_{14} \mathrm{H}_{15} \mathrm{NO}_{4}: \mathrm{C}, 64.36 ; \mathrm{H}, 5.76$); mp 243-245 ${ }^{\circ} \mathrm{C} ; \delta_{\mathrm{H}}\left(300 \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{OD}\right) 1.38-1.55(2 \mathrm{H}, \mathrm{m}), 1.93-2.18(3 \mathrm{H}, \mathrm{m}), 2.25$ $(1 \mathrm{H}, \mathrm{q}, J=12.0, \mathrm{H}-6 \mathrm{ax}), 3.64-3.76(1 \mathrm{H}, \mathrm{m}), 4.02(1 \mathrm{H}, \mathrm{ddd}, J=4.4,9.3$ and $13.5, \mathrm{H}-1), 4.21-4.31(1 \mathrm{H}, \mathrm{m}), 7.78-7.90$ ($4 \mathrm{H}, \mathrm{m}, \mathrm{Phth}$); $\delta_{\mathrm{C}}\left(75 \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{OD}\right) \delta 32.4,34.3,38.2(\mathrm{C}-3, \mathrm{C}-4, \mathrm{C}-6), 55.9(\mathrm{C}-1), 69.6,70.0$ (C-2 and C-5), 124.1, 133.4, 135.4 (Phth), 170.1 ($\mathrm{N}-\mathrm{C}=\mathrm{O}$).

N-(3S*,4R*-Dihydroxycyclohex-1R*-yl)phthalimide (\pm)-22

The reduction of $17(0.10 \mathrm{~g}, 0.38 \mathrm{mmol})$ in methanol $(10 \mathrm{~mL})$ with $\mathrm{H}_{2}(40 \mathrm{psi})$ catalyzed by $10 \% \mathrm{Pd} / \mathrm{C}(c a .5 \mathrm{mg})$ was carried out in a fashion similar to the reduction of 14. Purification by column chromatography $\left(\mathrm{SiO}_{2}\right.$, hexane-ethyl acetate $=1: 4)$ gave $(\pm)-22(75 \mathrm{mg}, 74 \%)$ as a colorless solid; $\mathrm{mp} 243-245^{\circ} \mathrm{C} ; \delta_{\mathrm{H}}(300 \mathrm{MHz}$, $\left.\mathrm{CD}_{3} \mathrm{OD}\right) \delta 1.60-1.80(2 \mathrm{H}, \mathrm{m}), 1.84-1.96(2 \mathrm{H}, \mathrm{m}), 2.28(1 \mathrm{H}, \mathrm{dq}, J=4.2$ and $13.0, \mathrm{H}-2 \mathrm{ax}), 2.52(1 \mathrm{H}, \mathrm{dt}, J=2.4$ and 12.8, $\mathrm{H}-2_{\mathrm{ax}}$), $3.67(1 \mathrm{H}, \mathrm{ddd}, J=2.9,4.5$ and $11.5, \mathrm{H}-4), 4.03-4.07(1 \mathrm{H}$, narrow $\mathrm{m}, \mathrm{H}-3), 4.58(1 \mathrm{H}, \mathrm{tt}, J=4.1$ and $12.8, \mathrm{H}-1$) and $7.75-7.88(4 \mathrm{H}, \mathrm{m}, \mathrm{Phth}) ; \delta_{\mathrm{C}}\left(100 \mathrm{MHz}, \mathrm{d}_{6}-\mathrm{DMSO}\right) \delta 27.3,27.6,34.3(\mathrm{C}-2, \mathrm{C}-5, \mathrm{C}-6), 44.3(\mathrm{C}-1), 68.6$, 70.2 (C-3 and C-4), 122.9, 131.5, 134.3 (Phth), 168.0 ($\mathrm{N}-\mathrm{C}=\mathrm{O}$); FAB-HRMS calcd for $\mathrm{C}_{14} \mathrm{H}_{15} \mathrm{NO}_{4} \mathrm{Li}\left(\mathrm{M}+\mathrm{Li}^{+}\right) 268.1161$, found 268.1157.

N-(2R*, $3 S^{*}, 4 R^{*}, 5 S^{*}-$ Tetrahydroxycyclohex-1S*-yl)phthalimide (\pm)-23

To a stirring solution of $14(60 \mathrm{mg}, 0.23 \mathrm{mmol})$ in acetone $(1 \mathrm{~mL})$ was added a solution of N methylmorpholine N-oxide ($70 \mathrm{mg}, 0.58 \mathrm{mmol}$) in water $\left(0.3 \mathrm{~mL}\right.$) followed by a solution of OsO_{4} in toluene (0.1 $\mathrm{mL}, 10 \mathrm{~mol} \%$). The reaction mixture was stirred for 20 h at room temperature and then $\mathrm{Na}_{2} \mathrm{~S}_{2} \mathrm{O}_{4}(35 \mathrm{mg})$ was added and stirred for another 30 min . The mixture was concentrated, adsorbed to silica using methanol and purified by column chromatography $\left(\mathrm{SiO}_{2}, \mathrm{CH}_{2} \mathrm{Cl}_{2}-\right.$ methanol $\left.=9: 1\right)$ to give (\pm) - $23(42 \mathrm{mg}, 62 \%)$ as a colorless solid (Found: C, 57.29; H, 5.34. Calcd for $\mathrm{C}_{14} \mathrm{H}_{15} \mathrm{NO}_{6}$: C, 57.33; H, 5.15); mp 267-270 ${ }^{\circ} \mathrm{C}$; $\delta_{\mathrm{H}}\left(400 \mathrm{MHz}, \mathrm{CD}{ }_{3} \mathrm{OD}\right) 1.69$ $\left(1 \mathrm{H}, \mathrm{td}, J=2.8\right.$ and $\left.13.2, \mathrm{H}-6_{\text {eq }}\right), 2.82\left(1 \mathrm{H}, \mathrm{dt}, J=2.8\right.$ and $\left.13.2, \mathrm{H}-6_{\mathrm{ax}}\right), 3.73(1 \mathrm{H}, \mathrm{dd}, J=3.2$ and $9.6, \mathrm{H}-3), 3.93-4.00$ ($2 \mathrm{H}, \mathrm{m}, \mathrm{H}-4$ and $\mathrm{H}-5$), 4.43-4.50 ($2 \mathrm{H}, \mathrm{m}, \mathrm{H}-1$ and $\mathrm{H}-2$) and $7.78-7.87(4 \mathrm{H}, \mathrm{m}, \mathrm{Phth}) ; \delta_{\mathrm{C}}(100 \mathrm{MHz}, \mathrm{CD} 3 \mathrm{OD}) 31.2$ (C6), 51.6 (C-1), 70.4, 70.7, 74.0, 74.4 (C-2, C-3, C-4 and C-5), 124.1, 133.5, 135.4 ($3 \times$ Phth) and 170.2 ($\mathrm{N}-\mathrm{C}=\mathrm{O}$).

$N-\left(2 S^{*}, 3 R^{*}, 4 S^{*}, 5 R^{*}\right.$-Tetrahydroxycyclohex-1S*-yl)phthalimide (\pm)-24

The dihydroxylation 15 ($30.0 \mathrm{mg}, 0.115 \mathrm{mmol}$) with catalytic OsO_{4} and NMO was carried out in a fashion similar to the dihydroxylation of 14. Purification of the residue by column chromatography (SiO_{2}, ethyl acetate) gave $(\pm)-24$ ($20 \mathrm{mg}, 59 \%$) as a colorless solid (Found: C, 57.53; H,5.11. Calcd for $\mathrm{C}_{14} \mathrm{H}_{15} \mathrm{NO}_{6}$: C, 57.33; H,5.15); mp $253-255^{\circ} \mathrm{C}$; $\delta_{\mathrm{H}}\left(400 \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{OD}\right) 1.89\left(1 \mathrm{H}, \mathrm{td}, J=3.8\right.$ and $\left.12.4, \mathrm{H}-6_{\mathrm{eq}}\right), 2.86(1 \mathrm{H}, \mathrm{q}, J=12.4, \mathrm{H}-6 \mathrm{ax}), 3.71(1 \mathrm{H}$, dd, $J=2.8$ and $9.6, \mathrm{H}-4), 3.82(1 \mathrm{H}, \mathrm{ddd}, J=4.8,10.0$ and $11.6, \mathrm{H}-5), 3.94-3.99(2 \mathrm{H}, \mathrm{m}, \mathrm{H}-2$ and H 3$), 4.69(1 \mathrm{H}$, ddd, $J=2.0,4.4$ and 14.0, $\mathrm{H}-1$) and $7.78-7.87(4 \mathrm{H}, \mathrm{m}, \mathrm{Phth}) ; \delta_{\mathrm{C}}\left(100 \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{OD}\right) \delta 31.3(\mathrm{C}-6), 50.1(\mathrm{C}-1), 70.5$, 74.0, 74.1, 74.2 ($\mathrm{C}-2, \mathrm{C}-3, \mathrm{C}-4$ and $\mathrm{C}-5$), 124.2, 133.3, 135.5 ($3 \times \mathrm{Phth}$) and 170.7 ($\mathrm{N}-\mathrm{C}=\mathrm{O}$).
$N-\left(2 S^{*}, 3 S^{*}, 4 R^{*}, 5 S^{*}\right.$-Tetraacetoxycyclohex-1R*-yl)phthalimide (\pm)-25a and N ($2 S^{*}, 3 R^{*}, 4 S^{*}, 5 S^{*}$-tetraacetoxycyclohex- $1 R^{*}$-yl)phthalimide (\pm)-25b
The dihydroxylation of 16 ($160 \mathrm{mg}, 0.620 \mathrm{mmol}$) with catalytic OsO_{4} and NMO was carried out in a fashion similar to the dihydroxylation of 14. Purification of the crude product (SiO_{2}, ethyl acetate-methanol = 9:1) gave a mixture of two tetraols (82 mg) as a colorless solid. The mixture ($82 \mathrm{mg}, 0.27 \mathrm{mmol}$) was suspended in acetic
anhydride (0.6 mL) at room temperature and pyridine (0.4 mL) was added dropwise. After stirring overnight, the reaction mixture was diluted with ethyl acetate and quenched with $1 \mathrm{M} \mathrm{HCl}(7 \mathrm{~mL})$. The mixture was extracted several times with ethyl acetate and the combined extracts were washed with brine, dried $\left(\mathrm{Na}_{2} \mathrm{SO}_{4}\right)$ and concentrated. Purification of the residue by column chromatography (SiO_{2}, hexane-ethyl acetate $=1: 1$) gave a mixture of (\pm)-25a and (\pm)-25b (ca. $9: 11$ by ${ }^{1} \mathrm{H}$ NMR integration) ($104 \mathrm{mg}, 36 \%$) as a colorless solid (Found: C , 57.27; $\mathrm{H}, 5.03$. Calcd for $\mathrm{C}_{22} \mathrm{H}_{23} \mathrm{NO}_{10}$: C, $\left.57.26 ; \mathrm{H}, 5.02\right)$; mp $150-160^{\circ} \mathrm{C}$; $\delta_{\mathrm{H}}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)(13 \mathrm{H}, 8 \times \mathrm{s}$ and $2 \times \mathrm{m}$, $\mathrm{H}-6$ and OAc for \mathbf{a} and \mathbf{b}), $2.56\left(0.45 \mathrm{H}, \mathrm{dt}, \mathrm{J}=10.9\right.$ and $\left.12.9, \mathrm{H}-\mathrm{G}_{\mathrm{ax}} 25 \mathrm{a}\right), 3.14\left(0.55 \mathrm{H}, \mathrm{q}, \mathrm{J}=12.7, \mathrm{H}-6_{\mathrm{ax}} 25 \mathrm{~b}\right), 4.40$ ($0.55 \mathrm{H}, \mathrm{ddd}, J=4.8,10.4$ and $13.6, \mathrm{H}-125 \mathrm{~b}$), 4.77 (0.45 H , ddd, $J=4.8,11.0$ and $13.4, \mathrm{H}-125 \mathrm{a}$), 5.04 (0.55 H , ddd, $J=2.0,4.4$ and $12.0, \mathrm{H}-525 \mathrm{~b}), 5.07(0.55 \mathrm{H}, \mathrm{dd}, J=2.8$ and $10.4, \mathrm{H}-325 \mathrm{~b}), 5.24-5.22(0.45 \mathrm{H}, \mathrm{dd}, J=2.6$ and 10.2, H-425a), 5.33 ($0.45 \mathrm{H}, \mathrm{m}, \mathrm{H}-525 \mathrm{a}$), 5.63 (0.55 H, narrow $\mathrm{m}, \mathrm{H}-425 \mathrm{~b}$), 5.71 ($0.45 \mathrm{H}, \mathrm{t}, \mathrm{J}=2.8, \mathrm{H}-325 \mathrm{a}$), 5.77 ($0.45 \mathrm{H}, \mathrm{dd}, J=2.6$ and $11.0, \mathrm{H}-225 \mathrm{a}$), 5.92 ($0.55 \mathrm{H}, \mathrm{t}, J=10.4, \mathrm{H}-225 \mathrm{~b}$), $7.70-7.88$ ($4 \mathrm{H}, \mathrm{m}, \mathrm{Phth})$.

N-(2S*,3S*,4R*,5R*-Tetrahydroxycyclohex-1R*-yl)phthalimide (\pm)-26

The dihydroxylation $\mathbf{1 7}(100 \mathrm{mg}, 0.380 \mathrm{mmol})$ with catalytic OsO_{4} and NMO was carried out in a fashion similar to the dihydroxylation of 14. Purification of the residue by column chromatography (SiO_{2}, methanol $-\mathrm{CH}_{2} \mathrm{Cl}_{2}=$ $1: 4$, few drops of $\mathrm{NH}_{4} \mathrm{OH}$) gave (\pm)-26 ($22 \mathrm{mg}, 21 \%$) as a colorless solid. mp $243-245^{\circ} \mathrm{C} ; \delta_{\mathrm{H}}\left(\mathrm{d}_{6}\right.$ - DMSO, 300 $\mathrm{MHz}) \delta 1.79\left(1 \mathrm{H}, \mathrm{td}, J=3.6\right.$ and $\left.13.2, \mathrm{H}-6_{\text {eq }}\right), 2.19\left(1 \mathrm{H}, \mathrm{dt}, J=1.8\right.$ and $\left.13.2, \mathrm{H}-6_{\mathrm{ax}}\right), 3.46(1 \mathrm{H}, \mathrm{td}, J=2.7$ and $6.3, \mathrm{H}-$ $6), 3.86-3.96(2 \mathrm{H}, \mathrm{br} m), 4.02-4.10(1 \mathrm{H}, \mathrm{br} m), 4.55(1 \mathrm{H}, \mathrm{dt}, J=4.2$ and $12.0, \mathrm{H}-1), 4.84-4.94(3 \mathrm{H}, \mathrm{m}, 3 \times \mathrm{OH})$, 5.03 ($1 \mathrm{H}, \mathrm{d}, \mathrm{J}=5.7, \mathrm{OH}$) and $7.80-7.92$ ($4 \mathrm{H}, \mathrm{m}, \mathrm{Phth}$); $\delta_{\mathrm{C}}\left(75 \mathrm{MHz}, \mathrm{d}_{6}-\mathrm{DMSO}\right.$) 32.4 (C-6), 46.5 ($\mathrm{C}-1$), $68.3,69.2$, $70.4,75.3$ (C-2, C-3, C-4, C-5), 122.8, 131.6, 134.3 ($3 \times$ Phth) and 168.4 ($\mathrm{N}-\mathrm{C}=\mathrm{O}$); FAB-HRMS calcd for $\mathrm{C}_{14} \mathrm{H}_{15} \mathrm{NO}_{6} \mathrm{Li}$ ($\mathrm{M}+\mathrm{Li}^{+}$) 300.1059, found 300.1067.

$N-\left(2 S^{*}, 3 S^{*}, 4 R^{*}, 5 R^{*}\right.$-Tetraacetoxycyclohex-1R*-yl)phthalimide (\pm)-27

The dihydroxylation of diacetate 18 ($60 \mathrm{mg}, 0.17 \mathrm{mmol}$) with catalytic OsO_{4} and NMO was carried out in a fashion similar to the dihydroxylation of $\mathbf{1 4}$. Purification of the residue by column chromatography (SiO_{2}, hexanes-ethyl acetate $=1: 4$) gave a mixture of diol-diacetates as a colorless solid ($44 \mathrm{mg}, 67 \%$). Acetoxylation of the crude product ($40 \mathrm{mg}, 0.11 \mathrm{mmol}$) with acetic anhydride and pyridine was carried out in a fashion similar to the acetoxylation of 17. Purification of the residue by column chromatography (SiO_{2}, hexanes-ethyl acetate $=1: 1$) gave a (\pm)-27 as a colorless solid ($26 \mathrm{mg}, 51 \%$). (Found: C, $56.86 ; \mathrm{H}, 5.10$. Calcd for $\mathrm{C}_{22} \mathrm{H}_{23} \mathrm{NO}_{10}$: C, 57.26; $\mathrm{H}, 5.04$); $\mathrm{mp} 165-167^{\circ} \mathrm{C} ; \delta_{\mathrm{H}}\left(\mathrm{CDCl}_{3}, 400 \mathrm{MHz}\right) \delta 1.79(3 \mathrm{H}, \mathrm{s}, \mathrm{OAc}), 1.97(3 \mathrm{H}, \mathrm{s}, \mathrm{OAc}), 1.96-2.05\left(1 \mathrm{H}, \mathrm{m}, \mathrm{H}-6_{\mathrm{eq}}\right), 2.12(3 \mathrm{H}, \mathrm{s}$, $\mathrm{OAc}), 2.16(3 \mathrm{H}, \mathrm{s}, \mathrm{OAc}), 2.76\left(1 \mathrm{H}, \mathrm{br} \mathrm{t}, \mathrm{J}=14.0, \mathrm{H}-6_{\mathrm{ax}}\right), 4.90(1 \mathrm{H}, \mathrm{dt}, J=4.2$ and $12.2, \mathrm{H}-1), 5.11(1 \mathrm{H}, \mathrm{br} \mathrm{s}), 5.45$ ($1 \mathrm{H}, \mathrm{br}$ s), $5.64-5.74(2 \mathrm{H}, \mathrm{m})$ and $7.78-7.85(4 \mathrm{H}, \mathrm{m}, \mathrm{Phth})$; $\delta_{\mathrm{C}}\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) 20.6,20.7,21.0,21.2\left(4 \times \mathrm{CH}_{3} \mathrm{CO}_{2}\right)$, 29.6 (C-6), 44.3 (C-1), 67.5, 68.3, 68.5, 69.3 (C-2, C-3, C-4 and C-5), 123.7, 131.6, 134.5 ($3 \times$ Phth), 168.1, 169.6, 169.7, 170.2, 170.4 ($5 \times \mathrm{C}=0$).

Reaction of endoperoxide with Grubbs' catalyst

To a solution of endoperoxide (\pm)-9 ($50 \mathrm{mg}, 0.19 \mathrm{mmol}$) in $\mathrm{dry}_{\mathrm{CH}_{2} \mathrm{Cl}_{2}(1.5 \mathrm{~mL}) \text {, at room temperature, was added }}$ Grubbs' II catalyst ($1.6 \mathrm{mg}, 10 \mathrm{~mol} \%$). The mixture was stirred for 30 min and then concentrated under reduced pressure. Analysis by ${ }^{1} \mathrm{H}$ NMR spectroscopy indicated this to be mixture of Z -2-butendial, 28, (\pm)-29 and (\pm)- $\mathbf{3 0}$ in a ratio of $2: 1.5: 1: 3$. Z-2-Butendial was identified by comparison to the literature spectral data. ${ }^{15}$ The residue was purified by column chromatography (SiO_{2}, hexane-ethyl acetate gradient $10: 1$ to $1: 4$) to give $\mathbf{2 8}(8 \mathrm{mg}$, 24%) as a colorless solid, followed by (\pm)-29 ($7 \mathrm{mg}, 14 \%$) as a colorless oil, and finally (\pm)-30 ($14 \mathrm{mg}, 29 \%$) as a colorless solid.
N-Vinylphthalimide28
$\mathrm{mp} 84-86^{\circ} \mathrm{C}\left(\mathrm{lit} .{ }^{19} \mathrm{mp} 83-86^{\circ} \mathrm{C}\right) ; \delta_{\mathrm{H}}\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) 5.06(1 \mathrm{H}, \mathrm{d}, \mathrm{J}=10.3, \mathrm{H}-2$ trans $), 6.10\left(1 \mathrm{H}, \mathrm{d}, \mathrm{J}=16.3, \mathrm{H}-2_{\text {cis }}\right)$, 6.89 ($1 \mathrm{H}, \mathrm{dd}, \mathrm{J}=9.9$ and $16.5, \mathrm{H}-1$), $7.73-7.79$ and $7.86-7.91$ (4 H total, $\mathrm{AA}^{\prime} \mathrm{BB}^{\prime}, \mathrm{Phth}$); $\delta_{\mathrm{C}}\left(75 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) 104.8$, 123.9, 124.0, 131.8, 134.7, 166.7.

Oxetane (\pm)-29
$\delta_{\mathrm{H}}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) 3.04(1 \mathrm{H}, \mathrm{td}, J=8.0$ and $12.0, \mathrm{H}-2), 3.82\left(1 \mathrm{H}, \mathrm{ddd}, J=4.6,7.6\right.$ and $\left.12.0, \mathrm{H}-2^{\prime}\right), 6.07(1 \mathrm{H}$, $\mathrm{dd}, J=7.2$ and $11.6, \mathrm{H}-5), 6.33(1 \mathrm{H}, \mathrm{q}, J=7.2, \mathrm{H}-3), 6.40(1 \mathrm{H}, \mathrm{ddd}, J=1.2,5.0$ and $8.3, \mathrm{H}-1), 6.88(1 \mathrm{H}, \mathrm{ddd}, J=0.8$, 6.8 and 11.5, H-4), $7.78-7.80$ ($2 \mathrm{H}, \mathrm{m}, \mathrm{Phth}$), 7.92-7.94 ($2 \mathrm{H}, \mathrm{m}, \mathrm{Phth}$), 10.15 ($1 \mathrm{H}, \mathrm{d}, \mathrm{J}=7.2, \mathrm{CHO}$); $\delta_{\mathrm{c}}(75 \mathrm{MHz}$, CDCl_{3}) 33.8 (C-2), 74.9, 77.8 ($\mathrm{C}-1$ and $\mathrm{C}-3$), 123.9 (Phth), 129.8 (C-5), 131.9, 134.9 ($2 \times$ Phth), 150.5 (C-4), 167.4 ($\mathrm{N}-\mathrm{C}=\mathrm{O}$), 191.3 (CHO). FAB-HRMS calcd for $\mathrm{C}_{14} \mathrm{H}_{11} \mathrm{NO}_{4}\left(\mathrm{M}+\mathrm{H}^{+}\right) 258.0766$, found 258.0766.
N-(2,4-Cyclohexadien-1-yl)phthalimide bisepoxide (\pm)-30
(Found: C, 65.15; H, 4.36. Calcd for $\mathrm{C}_{14} \mathrm{H}_{11} \mathrm{NO}_{4}$: C, 65.36; H, 4.36); mp 205-207 ${ }^{\circ} \mathrm{C}$; $\delta_{\mathrm{H}}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) 2.13(1 \mathrm{H}$, ddd, $J=2.6,6.6$ and $15.0, \mathrm{H}-6), 2.40\left(1 \mathrm{H}, \mathrm{ddd}, J=2.4,9.2\right.$ and $\left.14.8, \mathrm{H}-6^{\prime}\right), 3.26(1 \mathrm{H}, \mathrm{dd}, J=2.6$ and 3.8$), 3.30(1 \mathrm{H}$, $\mathrm{td}, J=2.4$ and 4.0$), 3.54-3.56(1 \mathrm{H}, \mathrm{m}), 3.58-3.60(1 \mathrm{H}, \mathrm{m}), 4.59(1 \mathrm{H}, \mathrm{ddd}, J=2.4,6.8$ and $9.4, \mathrm{H}-1), 7.75-7.77(2 \mathrm{H}$, $\mathrm{AA}^{\prime} \mathrm{BB}^{\prime}$, Phth), $7.86-7.88$ ($2 \mathrm{H}, \mathrm{AA}^{\prime} \mathrm{BB}{ }^{\prime}$, Phth); $\delta_{\mathrm{C}}\left(75 \mathrm{MHz}, \mathrm{CDCl}_{3}\right.$) 26.0 (C-6), 43.5, 47.3, 49.3, 49.7, 50.7, 123.7, 131.9, 134.6 ($3 \times$ Phth), 168.0 ($\mathrm{N}-\mathrm{C}=\mathrm{O}$).

N-(2,3-Epoxy-4R*,5S*-dihydroxycyclohex-1R*-yl)phthalimide (\pm)-33

To a stirring solution of $9(150 \mathrm{mg}, 0.584 \mathrm{mmol})$ in dry $\mathrm{CH}_{2} \mathrm{Cl}_{2}(5 \mathrm{~mL})$ at room temperature was added Grubbs' second generation catalyst ($50 \mathrm{mg}, 10 \mathrm{~mol} \%$). The mixture was stirred for 30 min and then concentrated under reduced pressure and applied to a column of silica (prepared with hexanes). The column was eluted (hexaneethyl acetate $=4: 1$); however, before any material exited the column the solvent flow was stopped and left to stand overnight. After 12 h continued elution (ethyl acetate), gave (\pm)- $\mathbf{3 3}$ as a colorless solid ($40 \mathrm{mg}, 26 \%$). mp $215-218^{\circ} \mathrm{C} ; \delta_{\mathrm{H}}\left(400 \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{OD}\right) 1.81-1.91\left(1 \mathrm{H}, \mathrm{m}, \mathrm{H}-\mathrm{G}_{\mathrm{eq}}\right), 1.98\left(1 \mathrm{H}, \mathrm{q}, \mathrm{J}=12.0, \mathrm{H}-6_{\mathrm{ax}}\right), 3.38(1 \mathrm{H}, \mathrm{dd}, J=1.5$ and $3.6), 3.45(1 \mathrm{H}, \mathrm{dd}, J=1.5$ and 3.6$), 3.64(1 \mathrm{H}, \mathrm{ddd}, J=3.6,8.4$ and $12.0, \mathrm{H}-5), 3.87(1 \mathrm{H}, \mathrm{dd}, J=1.5$ and $8.5, \mathrm{H}-4)$, 4.58 (1 H , dd, $J=6.9$ and 11.4, H-1), 7.78-7.90 (4H, m, Phth); $\delta_{\mathrm{c}}\left(75 \mathrm{MHz}, \mathrm{CH}_{3} \mathrm{OD}\right) \delta 35.3,46.6,58.8,59.8,68.3$, $74.8,124.4,133.3,135.8$ (Phth), 169.1 ($\mathrm{N}-\mathrm{C}=\mathrm{O}$); FAB-HRMS calcd for $\mathrm{C}_{14} \mathrm{H}_{14} \mathrm{NO}_{5}\left(\mathrm{M}+\mathrm{H}^{+}\right) 276.0872$, found 276.0875.

N-(3,4-Epoxy-2S*,5R*-dihydroxycyclohex-1R*-yl)phthalimide (\pm)-34

To a stirring solution of $(\pm)-14(50.0 \mathrm{mg}, 0.193 \mathrm{mmol})$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(1 \mathrm{~mL})$ was added a solution of $\mathrm{mCPBA}(0.1 \mathrm{~g}, \sim 70$ $w t \%, \sim 0.4 \mathrm{mmol})$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(1 \mathrm{~mL})$. The reaction mixture was stirred for 7 h and then quenched with 10% aqueous $\mathrm{NEt}_{3}(10 \mathrm{~mL})$. The resulting mixture was extracted several times with ethyl acetate and the combined extracts washed with brine, dried $\left(\mathrm{Na}_{2} \mathrm{SO}_{4}\right)$ and concentrated. The crude product was purified by column chromatography (SiO_{2}, ethyl acetate) to give (\pm) $-34(22.0 \mathrm{mg}, 42 \%$) as a colorless solid. (Found: C, $60.58 ; \mathrm{H}, 4.80$. Calcd for $\mathrm{C}_{14} \mathrm{H}_{13} \mathrm{NO}_{5} \cdot 0.1 \mathrm{H}_{2} \mathrm{O}: \mathrm{C}, 60.69 ; \mathrm{H}, 4.80$); mp 203-206 ${ }^{\circ} \mathrm{C}$; $\delta_{\mathrm{H}}\left(400 \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{OD}\right) 1.68(1 \mathrm{H}, \mathrm{brd}, \mathrm{J}=14.0, \mathrm{H}-$ $6_{\text {eq }}$), $2.52\left(1 \mathrm{H}, \mathrm{ddd}, \mathrm{J}=6.0,12.4\right.$ and 14.4, $\mathrm{H}-\mathrm{G}_{\mathrm{ax}}$), 3.47-3.49 (2 H, narrow $\mathrm{m}, \mathrm{H}-3$ \& H-4), 4.25-4.29 ($1 \mathrm{H}, \mathrm{m}, \mathrm{H}-5$), $4.52(1 \mathrm{H}, \mathrm{ddd}, J=3.2,9.6$ and $13.0, \mathrm{H}-1), 4.66(1 \mathrm{H}, \mathrm{d}, J=9.2, \mathrm{H}-2), 7.78-7.89(4 \mathrm{H}, \mathrm{m}, \mathrm{Phth}) ; \delta_{\mathrm{c}}\left(100 \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{OD}\right)$ 36.1 (C-6), 48.8 (C-1), 57.3, 59.0, 64.9, 68.6 (C-2, C-3, C-4, C-5), 124.1, 133.4, 135.5 ($3 \times$ Phth), 170.1 ($\mathrm{N}-\mathrm{C}=0$).

N-(2,3-Epoxy-4R*,5R*-dihydroxycyclohex-1R*-yl)phthalimide (\pm)-35

The epoxidation of (\pm)-17 ($100 \mathrm{mg}, 0.400 \mathrm{mmol}$) with mCPBA ($0.2 \mathrm{~g}, 0.8 \mathrm{mmol}$) was carried out in a fashion similar to the epoxidation of $\mathbf{2 7}$, except that the reaction was stirred for 12 h . The resulting mixture was extracted several times with $\mathrm{CH}_{2} \mathrm{Cl}_{2}$, and the combined extracts were washed with brine, dried $\left(\mathrm{Na}_{2} \mathrm{SO}_{4}\right)$ and concentrated. The excess $\mathrm{Et}_{3} \mathrm{~N}$ was removed under high vacuum to give (\pm)- $\mathbf{3 5}$ ($73 \mathrm{mg}, 70 \%$) as a colorless solid (Found: C, 59.95; H, 4.69. Calcd for $\mathrm{C}_{14} \mathrm{H}_{13} \mathrm{NO}_{5}{ }^{1 / 14} \mathrm{H}_{2} \mathrm{O}: \mathrm{C}, 60.10 ; \mathrm{H}, 4.86$); mp $167-170^{\circ} \mathrm{C} ; \delta_{\mathrm{H}}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) 2.03$ (1 H , ddd, $J=2.0,10.7$ and 13.7, $\mathrm{H}-\mathrm{G}_{\mathrm{ax}}$), 2.25 (1 H , dddd, $J=1.6,4.2,6.9$ and $13.7, \mathrm{H}-6_{\text {eq }}$), $2.89(1 \mathrm{H}, \mathrm{d}, J=11.6, \mathrm{OH}$), $3.05(1 \mathrm{H}, \mathrm{d}, \mathrm{J}=10.0, \mathrm{OH}), 3.48(1 \mathrm{H}, \mathrm{dd}, J=1.6$ and 3.6$), 3.65-3.68(1 \mathrm{H}$, narrow m), 3.97-4.25 (1H, m, H-4), 4.19 ($1 \mathrm{H}, \mathrm{ddd}, J=1.6,4.3$ and $9.5, \mathrm{H}-5$), $4.88(1 \mathrm{H}, \mathrm{dd}, J=6.9$ and $10.6, \mathrm{H}-1), 7.75-7.80$ and $7.85-7.89$ (4 H total, AA'BB', Phth); $\delta_{\mathrm{C}}\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) 32.3$ (C-6), 41.7 (C-1), 58.7, 58.9, 67.2, 68.4 (C-2, C-3, C-4 and C-5), 123.8, 131.9, 134.7 ($3 \times$ Phth), 167.8 ($\mathrm{N}-\mathrm{C}=\mathrm{O}$).

Hydrolysis of epoxydiol33

To a solution of $(\pm)-33(65 \mathrm{mg}, 0.236 \mathrm{mmoL})$ in water $(3 \mathrm{~mL})$ was added concentrated $\mathrm{H}_{2} \mathrm{SO}_{4}$ (6 drops). The suspension was heated at reflux, after 30 min all of the material dissolved, and after an additional 20 min a colorless solid began to precipitate. The mixture was heated for a total of 70 min , cooled to room temperature and concentrated under reduced pressure. The concentrated syrup was adsorbed to a small amount of silica gel and this was applied to the top of a column of silica. Elution (ethyl acetate) gave (\pm)-24 as a colorless solid (48 $\mathrm{mg}, 74 \%)$. The mp and ${ }^{1} \mathrm{H}$ NMR spectral data for this material was identical to that previously obtained.

N-($2 R^{*}, 3 S^{*}, 4 R^{*}, 5 R^{*}$-Tetraacetoxycyclohex- $1 R^{*}$-yl)phthalimide (\pm)-36

To a suspension of epoxide35 ($137 \mathrm{mg}, 0.498 \mathrm{mmol}$) in water (10 mL) was added 70% aqueous HClO_{4} (6 drops) and the suspension was heated at reflux. After 20 min of heating the suspension turned clear and after a further 30 min a colorless solid compound began to separate from solution. The mixture was heated for an additional 20 min (total 70 min), cooled to room temperature, filtered, and the residue dried under high vacuum to afford a crude tetraol (86 mg); mp 265-267 ${ }^{\circ} \mathrm{C}$. A sample of the crude tetraol ($70 \mathrm{mg}, 0.24 \mathrm{mmol}$) in acetic anhydride $(0.20 \mathrm{~mL})$ and pyridine (0.15 mL) was stirred for 18 h . During this time the undissolved material went into solution. The reaction mixture was diluted with ethyl acetate (5 mL) and quenched with 1 M aqueous HCl (10 mL) and the resulting mixture was extracted twice with ethyl acetate. The combined extracts were washed with brine, dried $\left(\mathrm{Na}_{2} \mathrm{SO}_{4}\right)$ and concentrated. The residue was purified by column chromatography $\left(\mathrm{SiO}_{2}\right.$, hexaneethyl acetate $=1: 1$) to afford (\pm)-36 as a colorless solid ($79 \mathrm{mg}, 42 \%$ overall). (Found: C, 57.15; H, 5.04. Calcd for $\mathrm{C}_{22} \mathrm{H}_{23} \mathrm{NO}_{10}$: C, 57.26; H, 5.04); mp 67-70 ${ }^{\circ} \mathrm{C}$; $\delta_{\mathrm{H}}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) 2.02,2.06,2.11,2.17\left(13 \mathrm{H}, 4 \mathrm{xs}\right.$ and $\mathrm{m}, \mathrm{H}-6_{\mathrm{eq}}$ \& $\mathrm{OAc}), 3.18(1 \mathrm{H}, \mathrm{br} \mathrm{t}, \mathrm{J}=11.0, \mathrm{H}-6 \mathrm{ax}), 5.04(1 \mathrm{H}, \mathrm{ddd}, J=3.3,4.5$ and $11.1, \mathrm{H}-1), 5.31-5.36(1 \mathrm{H}$, narrow m$), 5.38-$ $5.43\left(2 \mathrm{H}\right.$, narrow m), 5.64-5.70(1H, m, H-5), 7.70-7.86 (4H, m, Phth); $\delta_{\mathrm{C}}\left(75 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) 20.95,21.0,21.2$ (2 $\times \mathrm{CH}_{3} \mathrm{CO}_{2}$), $27.4(\mathrm{C}-6), 44.8(\mathrm{C}-1), 67.9,68.2,69.3,70.0(\mathrm{C}-2, \mathrm{C}-3, \mathrm{C}-4, \mathrm{C}-5), 123.6,131.7,134.5$ ($3 \times$ Phth), 168.7, 170.1, 170.2 ($3 \times \mathrm{C}=\mathrm{O}$).

Hydrolysis/acetylation of epoxide (+)-34

The hydrolysis/acetylation of epoxide34 ($160 \mathrm{mg}, 0.582 \mathrm{mmol}$) in water (7 mL) was carried out in a fashion similar to that for the hydrolysis of 35, except that concentrated $\mathrm{H}_{2} \mathrm{SO}_{4}$ (14 drops) was used as acid instead of HClO_{4}. The crude tetraol mixture was peracetylated ($\mathrm{Ac}_{2} \mathrm{O} / \mathrm{pyr}$) in a fashion similar to the preparation of 36. Purification of the residue by column chromatography (SiO_{2}, hexane-ethyl acetate $=1: 1$) gave a colorless solid ($137 \mathrm{mg}, 51 \%$ overall). Analysis of the ${ }^{1} \mathrm{H} \mathrm{NMR}$ of this product indicated that it consisted of a mixture of diastereomers ($\sim 2: 1$). Slow recrystallization of the mixture (ethyl acetate) gave (\pm)-37 as long rectangular crystals and (\pm)-38 as more cubic crystals. These were manually separated (tweezers) to afford the pure diastereomers.
$N-\left(2 S^{*}, 3 R^{*}, 4 R^{*}, 5 R^{*}-T e t r a a c e t o x y c y c l o h e x-1 R^{*}-y l\right) p h t h a l i m i d e ~(\pm)-37$
(Found: C, 57.18; H, 4.96. Calcd for $\mathrm{C}_{22} \mathrm{H}_{23} \mathrm{NO}_{10}$: C, $57.26 ; \mathrm{H}, 5.04$); mp $215-217^{\circ} \mathrm{C}$; $\delta_{\mathrm{H}}\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) 1.85$, 2.02, $2.21\left(13 \mathrm{H}, 4 \times \mathrm{s}\right.$ and $\mathrm{m}, \mathrm{H}-6_{\mathrm{eq}}$ and OAc$), 2.93\left(1 \mathrm{H}, \mathrm{dt}, J=2.1\right.$ and $\left.14.0, \mathrm{H}-6_{\mathrm{ax}}\right), 4.70(1 \mathrm{H}, \mathrm{ddd}, J=4.8,10.5$ and 13.2, $\mathrm{H}-1), 5.11(1 \mathrm{H}, \mathrm{dd}, J=2.8$ and $10.7, \mathrm{H}-4), 5.51-5.58(2 \mathrm{H}, \mathrm{m}, \mathrm{H}-3$ and $\mathrm{H}-5), 5.73(1 \mathrm{H}, \mathrm{dd}, J=9.6$ and $10.5, \mathrm{H}-$ 2), $7.70-7.88$ ($4 \mathrm{H}, \mathrm{m}, \mathrm{Phth}$); $\delta_{\mathrm{C}}\left(75 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) 20.6,20.8,20.7,21.3\left(4 \times \mathrm{H}_{3} \mathrm{CO}_{2}\right), 28.7(\mathrm{C}-6), 47.4(\mathrm{C}-1), 67.5$, 70.4, 71.6, 71.7 (C-2, C-3, C-4, C-5), 123.8, 131.6, 134.6 ($3 \times$ Phth), 168.0, 170.0, 170.1, 170.15, 170.17 ($5 \times \mathrm{C}=0$).
N-(2S*, $3 S^{*}, 4 S^{*}, 5 R^{*}$-Tetraacetoxycyclohex- $1 R^{*}$-yl)phthalimide (\pm)-38
(Found: C, 57.17; H, 4.98. Calcd for $\left.\mathrm{C}_{22} \mathrm{H}_{23} \mathrm{NO}_{10}: \mathrm{C}, 57.26 ; \mathrm{H}, 5.04\right) ; \mathrm{mp} 218-221{ }^{\circ} \mathrm{C} ; \delta_{\mathrm{H}}\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) 1.85(3 \mathrm{H}$, $\mathrm{s}, \mathrm{OAc}), 2.00-2.13(1 \mathrm{H}, \mathrm{br} d, J=14.4, \mathrm{H}-6$ eq $), 2.15,2.17,2.21(9 \mathrm{H}, 3 \times \mathrm{s}, \mathrm{OAc}), 2.99(1 \mathrm{H}, \mathrm{ddd}, J=3.6,12.5$ and 14.4 , $\left.\mathrm{H}-6_{\mathrm{ax}}\right), 4.92(1 \mathrm{H}, \mathrm{ddd}, J=4.2,10.9$ and $12.2, \mathrm{H}-1), 5.10-5.13(1 \mathrm{H}$, narrow m$), 5.16(1 \mathrm{H}, \mathrm{dt}, J=1.5$ and 3.0$), 5.48$ $(1 \mathrm{H}, \mathrm{dt}, J=1.2$ and $3.5, \mathrm{H}-5), 5.87(1 \mathrm{H}, \mathrm{dd}, J=3.6$ and $10.8, \mathrm{H}-2), 7.73-7.90(4 \mathrm{H}, \mathrm{m}, \mathrm{Phth}) ; \delta_{\mathrm{C}}\left(75 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$
20.8, 21.0, 21.1, $21.2\left(4 \times \mathrm{CH}_{3} \mathrm{CO}_{2}\right), 29.2(\mathrm{C}-6), 44.5(\mathrm{C}-1), 68.1,68.6,68.7,69.0(\mathrm{C}-2, \mathrm{C}-3, \mathrm{C}-4, \mathrm{C}-5), 123.7,131.7$, 134.5 ($3 \times$ Phth), 168.2, 169.0, 169.7, 169.74, $169.9(5 \times \mathrm{C}=0$).

Acknowledgements

This work was supported by the National Science Foundation (CHE-0848870) and NSF instrumentation grants (CHE-0521323) and a Marquette University Research Incentive Grant. High-resolution mass spectra were obtained at the University of Nebraska-Center for Mass Spectrometry.

Notes and references

1. (a) H. Tamegai, E. Nango, M. Kuwahara, H. Yamamoto, Y. Ota, H. Kuriki, T. Eugchi and K. Kakinuma, J. Antibiot., 2002, 55, 707 -714. (b) F. Huang, Y. Li, J. Yu and J. B. Spencer, Chem. Commun., 2002, 2860 2861. (c) F. Huang, S. F. Haydock, T. Mironenko, D. Spiteller, Y. Li and J. B. Spencer, Org. Biomol. Chem., 2005, 3, 1410 - 1419.
2. S. Wacharasindhu, W. Worawalai, W. Rungprom and P. Phuwapraisirisan, Tetrahedron Lett., 2009, 50, 2189-2192.
3. S. Ogawa, M. Asada, Y. Ooki, M. Mori, M. Itoh and T. Korenaga, Bioorg. Med. Chem., 2005, 13, 4306 — 4314.
4. I. F. Pelyvas, M. Madi-Puskas, Z. G. Toth, Z. Varga, G. Batta and F. Saztaricskai, Carbohydr. Res., 1995, 272, C5 -C9.
5. J. Yu and J. B. Spencer, Tetrahedron Lett., 2001, 42, 4219 - 4221.
6. C. Bauder Org. Biomol. Chem., 2008, 6, 2952 -2960.
7. J. Marco-Contelles, C. Pozuelo, M. L. Jimeno, L. Martinez and A. Martinez-Grau, J. Org. Chem., 1992, 57, 2625-2631.
8. (a) V. R. Doddi, A. Kumar and Y. D. Vankar, Tetrahedron, 2008, 64, 9117 -9122. (b) C. Alegret, J. BenetBuchholz and A. Riera, Org. Lett., 2006, 8, 3069 -3072.
9. E. O. Fischer and R. D. Fischer, Angew. Chem., 1960, 72, 919. D. Jones, L. Pratt and G. Wilkinson, J. Chem. Soc., 1962, 4458 -4463. C. Tao Encyclopedia of Reagents in Organic Synthesis, L. A. PaquetteJohn Wiley \& Son, 1995, pp. 5043-5044.
10. A. J. Birch, A. J. Liepa and G. R. Stephenson, J. Chem. Soc., Perkin Trans. 1, 1982, 713 -717.
11. E. Salamci, H. Secen, Y. Sutbeyaz and M. Balci, J. Org. Chem., 1997, 62, 2453 -2457.
12. C. E. Anson, S. Hartmann, R. D. Kelsey and G. R. Stephenson, Polyhedron, 2000, 19, 569 -571.
13. N. Kornblum and H. E. DeLaMare, J. Am. Chem. Soc., 1951, 73, 880 - 881. D. R. Kelly, H. Bansal and J. J. G. Morgan, Tetrahedron Lett., 2002, 43, 9331 -9333.
14. R. Larouche-Gauthier and G. Belanger, Org. Lett., 2008, 10, 4501 -4504.
15. (a) M. E. Jung and S.-J. Min, Tetrahedron, 2007, 63, 3682 -3701. (b) A. G. Griesbeck, C. Miara and J. Neudorfl, ARKIVOC, 2007, 216 -223. (c) Y. Sato, M. Sodeoka and M. Shibasaki, J. Org. Chem., 1989, 54, 4738-4739.
16. A. L. Gemal and J. L. Luche, J. Am. Chem. Soc., 1981, 103, 5454 -5459.
17. J. K. Cha, W. J. Christ and Y. Kishi, Tetrahedron Lett., 1983, 24, 3943 -3946. W. J. Christ, J. K. Cha and Y. Kishi, Tetrahedron Lett., 1983, 24, 3947 -3950. J. K. Cha, W. J. Christ and Y. Kishi, Tetrahedron, 1984, 40, $2247-2255$.
18. M. Scholl, S. Ding, C. W. Lee and R. H. Grubbs, Org. Lett., 1999, 1, 953 -956. M. Sanford, J. A. Love and R. H. Grubbs, J. Am. Chem. Soc., 2001, 123, 6543 -6554.
19. J. Wahlen, B. Moens, D. E. De Vos, P. L. Alsters and P. A. Jacobs, Adv. Synth. Catal., 2004, 346, 333 - 338.
20. (a) M. H. Benn and R. E. Mitchell, Can. J. Chem., 1972, 50, 2195 -2202. (b) A. G. Griesbeck, A. Henz, J. Hirt, V. Ptatschek, T. Engel, D. Loffler and F. W. Schneider, Tetrahedron, 1994, 50, 701 -714.
21. M. Kitagawa, S. Hasegawa, S. Saito, N. Shimada and T. Takita, Tetrahedron Lett., 1991, 32, 3531 3534. D. R. Hahn, P. R. Graupner, E. Chaplin, J. Gray, D. Heim, J. R. Gilbert and B. C. Gerwick, J. Antibiot., 2009, 62, 191 -194.
22. O. Block, G. Klein, H.-J. Altenbach and D. J. Brauer, J. Org. Chem., 2000, 65, 716 - 721.
23. (a) W. Herz, R. C. Ligon, J. A. Turner and J. F. Blount, J. Org. Chem., 1977, 42, 1885 -1895. (b) Y. Sutbeyaz, H. Secen and M. Balci, J. Org. Chem., 1988, 53, 2312 - 2317. (c) M. Suzuki, H. Ohtdake, Y. Kameya, N. Hamanaka and R. Noyori, J. Org. Chem., 1989, 54, 5292 - 5302.
24. W. Adam, M. Balci and H. Kilic, J. Org. Chem., 2000, 65, 5926 -5931.
25. H. B. Henbest and R. A. Wilson, J. Chem. Soc., 1957, 1958 -1965.

Footnotes

1. † Electronic supplementary information (ESI) available: Copies of ${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR spectra of new compounds and ORTEPs for $\mathbf{9}, \mathbf{1 0}, \mathbf{1 8}, \mathbf{3 3}, \mathbf{3 4}$, and $\mathbf{3 5}$. CCDC reference numbers 767841, 767844-767848. For ESI and crystallographic data in CIF or other electronic format see DOI: 10.1039/c004730a
2. \ddagger The cif files for $\mathbf{9}, \mathbf{1 0}, \mathbf{1 8}, \mathbf{3 3}, \mathbf{3 4}$, and $\mathbf{3 5}$ have been deposited with the CCDC. $+\mathbf{9}$: CCDC \# 767847; $\mathbf{1 0}$: CCDC \# 767848; 18: CCDC \# 767846; 25a: CCDC \# 767841; 33: CCDC \# 768802; 34: CCDC \# 767845; 35: CCDC \# 767844. The crystal structures for 26, $\mathbf{3 3}$ and $\mathbf{3 4}$ are all heavily disordered. The nature of the disorder is that the H -bonding networks have a quasi-mirror symmetry and thus can accommodate both enantiomers. These three crystals are centrosymmetric, so they are racemates on the macro level; however, on the micro level, the two enantiomeric forms randomly substitute each other in H -bonded networks. Crystal structure data for compound (\pm)-26: $\mathrm{C}_{14} \mathrm{H}_{15} \mathrm{NO}_{6} ; M=293.27$; monoclinic, $\mathrm{P} 21 / \mathrm{n} ; a=$ $12.0696(6), b=6.9279(4), c=15.8178(8) \AA, \quad B=108.536(2)^{\circ} ; U=1254.02(11) \AA^{3} ; T=100(2) \mathrm{K} ; Z=4$; 10253 reflections measured, 2215 unique ($R_{\text {int }}=0.0278$). The final $w R^{2}$ was 0.2512 (all data). CCDC \# 768801. Crystal structure data for compound (\pm)-25a: $\mathrm{C}_{22} \mathrm{H}_{23} \mathrm{NO}_{10} ; M=461.41$; monoclinic, $\mathrm{C} 2 / \mathrm{c} ; a=$ $27.7646(12), b=11.6104(5), c=16.3768(7) \AA, b=123.535(2)^{\circ} ; U=4400.5(3) \AA^{3} ; T=100(2) \mathrm{K} ; Z=8$; 17563 reflections measured, 3843 unique ($R_{\text {int }}=0.0431$). The final w R^{2} was 0.1035 (all data). CCDC \# 767841. Crystal structure data for compound (\pm)-37: $\mathrm{C}_{22} \mathrm{H}_{23} \mathrm{NO}_{10} ; M=461.41$; monoclinic, $\mathrm{P} 21 / \mathrm{n} ; a=$ $8.8800(3), b=10.6102(3), c=23.7595(8) \AA, B=91.799(2)^{\circ} ; U=2237.48(12) \AA^{3} ; T=100(2) \mathrm{K} ; Z=4 ; 18364$ reflections measured, 3972 unique ($R_{\text {int }}=0.0193$). The final w R^{2} was 0.0839 (all data). CCDC \# 767842. Crystal structure data for compound (\pm)-38: $\mathrm{C}_{22} \mathrm{H}_{23} \mathrm{NO}_{10} ; M=461.41$; monoclinic, $\mathrm{P} 21 / \mathrm{c} ; a=$ $7.3527(2), b=21.4079(7), c=14.1359(5) \AA, B=93.921(2)^{\circ} ; U=2219.87(12) \AA^{3} ; T=100(2) \mathrm{K} ; Z=4 ; 17338$ reflections measured, 3890 unique ($R_{\text {int }}=0.0265$). The final $w R^{2}$ was 0.1019 (all data). CCDC \# 767843.
