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Many fraud detection problems involve large numbers of financial transactions such as 

those associated with credit cards, accounts receivables, payments to vendors, payrolls, or other 

expense accounts (Panigrahi 2006; Bolton and Hand 2002). Computer Assisted Auditing Tools 

and Techniques (CAATTs) e.g., ACL (2006) allow auditors to perform digital analysis based on 

Benford’s Law (Benford 1938) for scrutinizing high volumes of complex financial data and 

detecting unintentional errors or fraud (AICPA 2008; Panigrahi 2006; Coderre 1999). However, 

the advantages that these software packages offer for assessing data conformity to Benford’s 

Law are limited due to problems associated with the underlying traditional statistical procedures. 

Specifically, previous studies (e.g., Cho and Gaines 2007; Geyer and Williamson 2004; 

Nigrini 2000) have issued caveats on the use of traditional statistical tests such as chi-square 

goodness-of-fit or Z-tests in the context of Benford’s Law because applications of these tests to 

large data sets may falsely lead auditors to believe that evidence of fraud exists when in fact 

there is none. Nigrini (2000) defines this situation as the problem of “excessive power” (p.75). 

Similarly, Geyer and Williamson (2004) note that “…one has to be careful in such 

situations…where the sample size may be very large, for this [ Z ] test is almost certain to reject 

the null hypothesis for a given significance level” (p. 234). Further, Cho and Gaines (2007) also 

indicate that “…chi-square goodness-of-fit tests are very sensitive to sample size, having 
                                                 
* The authors are, respectively, at Marquette University and Southern Illinois University Carbondale. 
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enormous power for large N, so that even quite small differences will be statistically significant” 

(p. 220). 

In view of the above, we introduce a bootstrap procedure to assess data conformity to 

Benford’s Law that addresses the problem of excessive power (false alarms). The proposed 

procedure is based on developing bootstrap confidence intervals for the mean, variance, skew, 

and kurtosis associated with the first two digits of Benford data (e.g. non-fraudulent data) and 

actual data that are subject to investigation. In addition, bootstrap confidence intervals for the 

Pearson correlation between the first digits and the second digits can also be used as a supportive 

(or decisive) analysis. Unlike the conventional analysis based on Benford’s Law that examines 

financial data on a digit-by-digit basis, the proposed procedure allows auditors to diagnose 

financial transactions on an overall basis. Thus, this procedure takes an approach that is similar 

to what Cleary and Thibodeau (2005) suggested “Perhaps the most prudent approach would be to 

begin the analysis stage with an overall analysis…” (p. 80). 

Applications of the proposed procedure to reported annual earnings of S&P 1500 

companies, Federal Election Commission data, and extremely fraudulent data demonstrate the 

robustness of our procedure over different periods of time and across small or large financial 

data sets. For example, the proposed bootstrap procedure and the traditional statistical tests were 

applied to data sets that closely follow Benford’s Law such as reported annual earnings from 

S&P 1500 companies. The results associated with the bootstrap procedure consistently 

confirmed that the S&P 1500 companies are not likely to be engaged in earnings rounding-up 

behaviors. In contradistinction, the results corresponding with the traditional statistical tests were 

inconsistent across various sample sizes and time periods. Further, the proposed procedure was 

applied to allegedly fraudulent data from the Federal Election Commission (Cho and Gaines 
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2007) and extremely fraudulent data (Geyer and Williamson 2004; Hill 1998). The overall 

results indicate that our procedure accurately detects fraud. 

In the next section we provide the essential requisite information associated with the 

bootstrap in the context of digital analysis and Benford’s Law. In Section III, we present 

applications of the bootstrap procedure to reported annual earnings of S&P 1500 companies, the 

allegedly fraudulent data from the FEC, and extremely fraudulent data. In Section IV, we discuss 

the applications of the procedure and make comments and suggestions for users of the 

methodology.   

II. METHODOLOGY: THE BOOTSTRAP AND BENFORD’S LAW 

The Bootrap 

The bootstrap is a statistical procedure that has the advantage of being able to make 

inferences about a fixed parameter, such as a population mean, without having to make 

assumptions about the shape of the sampling distribution associated with the parameter’s 

estimate. In the context of a population mean (ߠ), its sampling distribution can be thought of as 

the distribution of sample means (ߠ෠௜) from all possible samples of a given sample size. In 

contrast, traditional statistical tests such as Z or t-tests assume that the shape of the sampling 

distribution for the mean has a normal distribution (i.e., a bell-shaped curve). 

The bootstrap method consists of randomly sampling N observations from a data set of 

size N. The random sampling is conducted with replacement and where each observation is 

selected with equal probability. For each bootstrap sample, a sample statistic (e.g. ߠ෠௜) is 

computed. This process is repeated T times to obtain T sample statistics ߠ෠௜ where ݅ ൌ 1, … , ܶ. 

The sample estimates are subsequently ordered from minimum to maximum i.e., min൫ߠ෠௜൯ ൌ

෠௜൯ߠ෠ሺଵሻ,…,max൫ߠ ൌ ෠ሺ்ሻ and are used to construct a ሺ1ߠ െ  ሻ100% bootstrap confidence intervalߙ
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ఈכ෠ሺ்ߠൣ ଶ⁄ ሻ, ሺଵିఈሻכ෠ሺ்ߠ ଶ⁄ ሻ൧ where ߙ is the false alarm or Type I error rate (Efron and Tibshirani 

1998).  

For example, suppose we have a data set that consists of ܰ ൌ5,000 payroll transactions. 

Our first bootstrap sample is generated by sampling with replacement from the data 5,000 

transactions and then the mean (ߠ෠ଵ) is computed for this sample. We repeat this procedure until 

we have generated ܶ ൌ25,000 bootstrap samples and, thus, have computed 25,000 sample means 

ሺߠ෠௜ୀଵ,்ሻ based on the original 5,000 payroll transactions. The sample means ሺߠ෠௜ୀଵ,்ሻ are 

subsequently sorted from minimum to maximum. If one is willing to tolerate false alarms 1% of 

the time (i.e., a Type I error rate of 0.01), then one would select the 125th and 24,875th values 

from the ordered sample means of payroll transactions to be the lower and upper limits of the 

bootstrap confidence interval (C.I.), ൣߠ෠ሺଵଶହሻ,  ෠ሺଶସ଼଻ହሻ൧. In short, a 99% bootstrap C.I. has beenߠ

constructed for the sample mean of the payroll transactions. See Figure 1 for an illustration of 

this process. 

Given this introduction to the bootstrap, we subsequently discuss how bootstrapping can 

be used in the context of Benford’s Law and for determining whether or not data are fraudulent 

or contain unintentional errors. For additional details on the bootstrap see Hogg and Tanis 

(2001), Efron and Tibshirani (1998), and Mooney and Duval (1993). 

Benford’s Law 

Benford (1938) observed numerous cases where the probabilities associated with the first 

nine digits follow a logarithmic distribution. For example, digit 1 occurs more often than digit 2, 

in turn, digit 2 occurs more often than digit 3, and successively up to digit 8 which occurs more 

often than digit 9. See Table A.1 in Appendix A for the empirical probabilities associated with 

the Benford (1938) digits. Benford (1938) formalized his observations in formulae to determine 
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the exact probabilities (P) for the first digits (݀ଵ), the second digits (݀ଶ), and the joint 

probabilities for the first two digits (݀ଵ݀ଶ) as: ௗܲభ
ൌ logଵ଴ሺ1 ൅ 1 ോ ݀ଵሻ where ݀ଵ ൌ1,…9; 

ௗܲమ
ൌ ∑ logଵ଴ሺ1 ൅ 1 ݀ଵ݀ଶ⁄ ሻଽ

ௗభୀଵ  where ݀ଶ ൌ0,…9; and ௗܲభௗమ
ൌ logଵ଴ሺ1 ൅ 1 ോ ݀ଵ݀ଶሻ where 

݀ଵ݀ଶ ൌ 10,…,99. Tables A.1, A.2, and A.3 give the exact (Benford) probabilities associated with 

the first, second, and first two digits, respectively. It is noted that although Benford (1938) did 

not use financial data, research in accounting and auditing has demonstrated that the probabilities 

of the leading (first, second, or first two) digits of these types of data can also follow Benford’s 

Law (e.g., Caneghem 2004; Durschi et al. 2004; Kinnunnen and Koskela 2003; Nigrini 1996). 

More specifically, and for the purposes considered in this study, if the leading digits associated 

with a set of data follow Benford’s Law then these digits will have the exact probabilities listed 

in Tables A.1, A.2, and A.3. And, that these data are presumed not to contain fraudulent 

transactions or unintentional errors. 

As such, if data are assumed to follow Benford’s Law, then the probabilities listed in 

Tables A.1, A.2, and A.3 can be used to determine the population parameters of the mean (ߤ), 

variance (ߪଶ), skew (ߛ), and kurtosis (ߜ) for the distributions of the first digits, the second digits, 

and the first two digits from the data set1. More specifically, if we assume that data follow 

Benford’s Law then the following four null hypotheses (ܪ଴
௜ ) can be formulated using Table A.3 

for the first two digits (݀ଵ݀ଶ) as ܪ଴
ଵ: ߤଵଶ ൌ38.5898, ܪ଴

ଶ: ߪଵଶ
ଶ ൌ621.8317, ܪ଴

ଷ: ߛଵଶ ൌ0.771864, 

and ܪ଴
ସ: ߜଵଶ ൌ െ0.546544 (See Appendix B for more specific details on computing these 

parameters). That is, the first two digits (݀ଵ݀ଶ) of a Benford data set must have these parameters 

for the mean, variance, skew, and kurtosis. These parameters are referred to as “fraud-free” 

because they are derived under the assumption that data follow Benford’s Law. Similarly, using 

                                                 
1 Suppose we have the following payroll transactions: $5846, $2508, $8046, and $1174. The first digits related to 
these transactions are 5, 2, 8, and 1. The second digits are 8, 5, 0, and 1. The first two digits are 58, 25, 80, and 11. 
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Tables A.1 and A.2, null hypotheses could also be separately formulated for the first digits ሺ݀ଵሻ 

with fraud-free parameters of ߤଵ ൌ3.440237, ߪଵ
ଶ ൌ6.056513, ߛଵ ൌ0.795604, and ߜଵ ൌ

െ0.548225; and for the second digits ሺ݀ଶሻ with fraud-free parameters of ߤଶ ൌ4.18730, 

ଶߪ
ଶ ൌ8.25381, ߛଶ ൌ0.133114, and ߜଶ ൌ െ1.208390.  

Given the specified fraud-free parameters above, the proposed bootstrapping procedure 

has essentially three basic steps: (1) obtain the leading first two digits from the actual data set 

under investigation and the exact (or Benford) first two digits which are generated by the user, 

(2) construct bootstrap C.I.s for the mean, variance, skew, and kurtosis based on the actual and 

exact digits, and (3) use the decision criteria provided in Figure 2 to infer whether the actual data 

conform to Benford’ Law (see Figure 2). 

Specifically, and in terms of step (1), the exact digits are generated based on the specific 

N size of the actual data and the exact probabilities for the first, second, and first two digits listed 

in Tables A.1, A.2, and A.3. Algorithms and instructions for generating exact digits that have the 

probabilities listed in these tables are available at the following website: 

http://www.siuc.edu/~epse1/headrick/Benford/ExactDigits.doc. 

In terms of step (2), the bootstrap C.I.s for the exact and actual digits can be easily 

constructed using Spotfire S+ (2008) since there are no programming skills required. The 

notations in S+, under the command resample bootstrap, for the sample statistics are: mean(X), 

var(X), skewness(X), and kurtosis(X). We recommend that 99% C.I.s be generated for both the 

exact digits and actual digits using ܶ ൌ25,000 bootstrap samples with the Bias-Corrected 

accelerated (BCa) default option. The 99% C.I. is based on a Boneferroni adjustment to the 

usual false alarm rate (or Type I error rate) of 0.05. Thus, because there are four hypotheses, we 

have a false alarm rate of 0.05 4⁄ ൌ 0.0125 and then rounding to the more commonly used error 
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rate of 0.01. We recommend this conservative level of tolerance for false alarms to prevent 

auditors from making false conclusions when testing all four hypotheses. We note that additional 

step-by-step instructions are also provided for constructing bootstrap C.I.s using S+ at the 

website indicated above. 

The 99% C.I.s generated in step (2) for the exact digits and actual digits are then used in 

conjunction with the decision criteria in Figure 2 to assess whether the actual data contain any 

anomalies such as fraud or unintentional errors. As indicated in Figure 2, if the sample size of the 

actual data is ܰ ൒ 1,000  then the first two digits (݀ଵ݀ଶ) are considered first. Specifically, if all 

four 99% C.I.s based on the actual digits either (a) contain their corresponding population 

parameter (ߤଵଶ ൌ38.5898, ߪଵଶ
ଶ ൌ621.8317, ߛଵଶ ൌ0.771864, ߜଵଶ ൌ െ0.546544) or (b) overlap 

with their corresponding exact digit C.I., then we would fail to reject (or retain) the four null 

hypotheses that are associated with the first two digits (݀ଵ݀ଶ). For example, consider the 

population mean for the first two digits. Suppose that we have a 99% C.I. for the exact digits of 

[38.122 ൑ ଵଶߤ  ൑39.013] and a 99% C.I. for the actual digits of [38.557൑ ଵଶߤ ൑39.591]. 

Inspection of these C.I.s indicate that the latter C.I. contains the population mean ሺߤଵଶሻ. 

Alternatively, assume that the actual digit C.I. is [37.555൑ ଵଶߤ ൑38.529*]. This C.I. does 

not contain the population mean, but overlaps with the exact (Benford) digit C.I. [38.122* ൑

ଵଶߤ  ൑39.013] because the lower limit of the exact digit C.I. (38.122ሻ   is less than the upper 

limit of the actual digit C.I. ሺ38.529ሻ. Thus, to reiterate, if the C.I.s for the mean, variance, skew, 

and kurtosis either contain their associated parameter or overlap with their corresponding exact 

digit C.I. then the conclusion would be made that the actual data (e.g., payroll transactions) 

conform to Benford’s Law and, thus, do not have any anomalies (i.e., fraud or unintentional 

errors). Conversely, if we were to reject all four null hypotheses because the actual digit C.I.s 
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neither contain the parameters nor overlap with the exact digit C.I.s, then we would conclude that 

the actual data are likely to contain unintentional errors or fraud and that additional investigation 

is necessary. 

For smaller sample sizes of data (ܰ ൏ 1,000) or for cases where the four hypotheses 

associated with the first two digits (݀ଵ݀ଶ) are inconsistent i.e. the four hypotheses were not all 

rejected (retained), separate single digit analyses are appropriate. That is, check whether the first 

digits and the second digits bootstrap C.I.s contain their corresponding population parameter or 

overlap with their respective Benford C.I.s. If either of these criteria is met, then infer that the 

actual data do not contain unintentional errors or fraud. Otherwise, use the bootstrap C.I. for the 

Pearson correlation between the first digits (݀ଵ) and the second digits (݀ଶ). In a situation where 

the population correlation ሺߩௗభௗమ
ሻ falls within the bootstrap C.I., then conclude that the actual 

data (e.g., payroll transactions) do not contain fraudulent transactions. Otherwise, further 

investigation is necessary. Applications of single digit analysis and Pearson correlation bootstrap 

C.I.s are discussed in more detail using actual data sets in the next section.   

III. APPLICATIONS 

Data 

The proposed bootstrap procedure was applied to three different kinds of data sets. The 

first data set is the reported annual earnings of S&P 1500 companies (1990-2008) from 

Compustat. Specifically, we used positive net income and income before extraordinary items 

(IBEIs) to assess whether the U.S. publicly trading companies engage in cosmetic earnings 

management. Our approach consisted of examining leading (first, second or first two) digits on 

an overall basis rather than on a digit-by-digit basis.  
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Kinnunnen and Koskela (2003) defined a cosmetic earnings management when upward 

(downward) rounding of positive (negative) earnings cause leading digit (first or second digit) 

frequencies to deviate significantly from their expected probabilities according to Benford’s 

Law. For example, Carslaw (1988) found that the frequencies of second digit zeros and nines 

associated with positive reported earnings of New Zealand companies significantly differ from 

their expected probabilities. Further, Thomas (1989) indicated that U.S. companies also engaged 

in cosmetic earnings managements by reporting more second digit zeros and less second digit 

nines for positive earnings. However, the pattern of the actual probabilities for second digits 

zeros and nines is reversed for negative earnings.  

Subsequent studies provide evidence of European and Japanese listed companies also 

exhibited cosmetic earnings management behaviors (Kinnunen and Koskela 2003, Caneghem 

2004, Skousen et al. 2004, Caneghem 2002, Niskanen and Keloharju 2000). Nevertheless, study 

results suggest that external auditors (Guan et al. 2006) or the Sarbanes-Oxley Act [SOX] (Aono 

and Guan 2008) likely deter companies from rounding up second digits of earnings towards the 

nearest reference points. All of the above studies examined reported earnings on a digit-by-digit 

basis. However, Cleary and Thibodeau (2005) indicated that conducting nine (or ten) separate 

tests to examine first (second) digits likely increases false alarms (or Type I error). For example, 

a digit-by-digit analysis of the first nine digits likely increases false alarms seven times more 

often than an overall basis analysis of first nine digits for a Type I error rate of 0.05 (Cleary and 

Thibodeau 2005, 80). In view of this problem, it is important to examine reported annual 

earnings on an overall basis. The bootstrap procedure can be used to address this issue.  

In addition, Aono and Guan (2008) used a conservative approach, i.e., a two-year 

window period before and after SOX, to control the problem of excessive power. The authors 
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commented that “…larger sample size due to the longer pre-SOX windows would increase the Z-

statistic used to measure the significance of changes in the observed proportion of digits between 

the two [pre- and post-SOX] period[s]…” (p. 218). We consider the use of the proposed 

procedure to be appropriate in the context of larger sample sizes. As a result, we selected S&P 

1500 reported earnings for pre- (1990-2002) and post-SOX (2003-2008) periods to examine the 

effects of SOX on U.S. listed companies rounding-up behaviors. 

The second data set relates to the Federal Election Commission (FEC) committee-to-

committee in-kind contributions. The FEC in-kind contributions represent a cash value for 

services donated or bills paid by a third party on behalf of a campaign committee. Unlike regular 

funds raised for candidates that must meet the maximum level requirements (e.g., individual 

contributions up to $2,000 per federal candidates), in-kind contributions (i.e., soft money for 

party committees) are exceptions for this limitation. As a result, the data qualifies for digital 

analysis based on Benford’s Law.  

The third data set concerns known fraudulent data (i.e., cash disbursements and payroll 

information) taken from a 1995 King’s County, New York, District Attorney’s Office study 

(Geyer and Williamson 2004, Hill 1998). We replicated first digits of the fraudulent data based 

on the first digit probabilities listed in Table A. 1 provided by Hill (1998, 363).  

Results 

Tables 1 through 3 give the 99% bootstrap confidence intervals (C.I.s) associated with 

the first two digits of Benford data and reported earnings. The S&P 1500 reported earnings relate 

to the pre- (1990-2002) and post-SOX (2003-2008) periods as well as the combined period 

(1990-2008). Inspection of these tables indicates that evidence of cosmetic earnings management 

is unlikely. In fact, we find no evidence of U.S. listed companies to engage in rounding-up 
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behaviors because the bootstrap C.I.s for the first two digits of net income (or income before 

extraordinary items) either contain population parameters or overlap with the Benford C.I.s in 

each period (see Tables 1, 2, and 3).  

For example, the results in Table 1 show that the lower and upper limits of the 99% 

bootstrap C.I.s associated with the mean of the first two digits of net income (1990–2002) are 

37.743 and 38.658, respectively, and contain the population mean ሺߤଵଶ ൌ 38.58976ሻ—i.e., the 

fraud free parameter. To indicate this result visually, the lower and upper limits are bold and 

double asterisks (**) are included at the end of the upper limit of the actual digits C.I. in each of 

the Tables. On the other hand, the population parameter for the kurtosis ߜଵଶ ൌ െ0.54654 does not 

fall within the 99% bootstrap C.I. associated with the first two digits of net income (1990–2002). 

However, its lower limit (-0.544) overlaps with the upper limit of exact (or Benford) C.I. In this 

case, the lower limit of the bootstrap C.I. for the actual digits (e.g., net income) and the upper 

limit of the Benford C.I. are bold and one asterisk (*) at the end of each lower or upper limits is 

included.  

Likewise, the results in Table 1 related to income before extraordinary items (IBEIs) 

during the pre-SOX period (1990-2002) indicate that the population mean does not fall within 

the actual digits’ C.I. Nevertheless, its upper limit (38.419) overlaps with the lower limit of the 

Benford C.I. The other bootstrap C.I.s associated with the variance, skew, and kurtosis also 

display overlapping C.I.s. In addition, we find either overlapping C.I.s or the population 

parameter falling within the actual digit C.I.s in Tables 2 and 3.  

The overall results in Tables 1 through 3 indicate that separate digit analyses are not 

required. This is because all four first two digits bootstrap C.I.s for reported earnings either 

contain their corresponding population parameter or overlap with the Benford C.I.s. To 
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demonstrate this point, for example, the results in Tables 4 and 5 show that all four first (or 

second) digits 99% bootstrap C.I.s for IBEIs either contain their corresponding population 

parameter or overlap with their respective Benford C.I.s (see Tables 4 and 5). 

However, inspection of Table 6 indicates that the results associated with the Nigrini 

(1996) distortion factor indices (Z-tests) and chi-square goodness-of-fit tests differ from those 

reported under the bootstrap procedure and suggest evidence of cosmetic earnings management 

during the pre- and post-SOX periods. These differences indicate that traditional statistical 

procedures (e.g., Z-tests or chi-square goodness-of-fit tests) may exhibit the problem of 

excessive power. That is, the results of traditional statistical procedures may provide evidence of 

cosmetic earnings management as the number of transactions gets larger when, in fact, there is 

none. To demonstrate this problem, we used the Euclidean distance ሺܦܧሻ on the first digits and 

bootstrap C.I.s for the Pearson correlation ሺߩௗభௗమ
ሻ between the first digits and second digits.  

The application of the Euclidean distance (ED) in the context of Benford’ Law consists of 

finding an index of distance between the actual first digit probabilities (݌௜) and the first digit 

exact (Benford) probabilities (ܾ௜), where i=1,…9. Given these probabilities, the Euclidean 

distance in the context of Benford’s Law is computed as ܦܧ ൌ ට∑ ሺ݌௜ െ ܾ௜ሻଶଽ
௜ୀଵ . Intuitively, the 

larger the distance, the worse the fit of a data set to Benford’s Law (i.e., a data set with potential 

fraud). Despite its simple application in the context of Benford’s Law, the Euclidean distance is 

not an inferential statistic. Thus, it cannot be used to summarize the main characteristic of the 

actual digits (e.g., amount of variations in payroll transactions) and infer whether the actual data 

contain unintentional errors or fraudulent transactions for a given level of confidence.  

As such, the approach taken here will be that of Cho and Gaines (2007) who compared 

the Euclidean distance for each one of the FEC data sets (1998-2006) to the cut-off value of 
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כܦܧ ൌ0.024. This value of כܦܧ is computed by using the exact ሺܾ௜ሻ and empirical Benford 

(1938) probabilities ሺ݌௜ሻ listed in Table A.1. Cho and Gaines (2007) submitted that this distance 

measure of כܦܧ represents “a rough sense for what constitutes a realistic, small value [associated 

with empirical Benford data]” (p.221). Euclidean distances less than כܦܧ and closer to zero 

imply that data more closely conform to Benford’s Law than the Euclidean distance greater than 

 and nearer to one. Thus, the lower and upper limits of the Euclidean distance are zero and כܦܧ

one, respectively (i.e., ܦܧ א ሾ0,1ሿ), where a value of ܦܧ ൌ0 implies an exact correspondence to 

the first digit probabilities of Benford’s Law. The Euclidean distances reported in Table 6 are 

much smaller than כܦܧ ൌ0.024, suggesting that the reported earnings data more closely follow 

Benford’s exact probabilities than Benford’s (1938) empirical probabilities (see Table 6). 

In addition, the Pearson correlation coefficient indicates the strength and direction of the 

linear relationship between the first digits and second digits. In the context of hypothesis testing, 

we state that data free of fraud or unintentional errors will have a population correlation 

coefficient between the first digits (݀ଵ) and the second digits (݀ଶ) of ߩௗభௗమ
ൌ 0.0561. That is, 

the null hypothesis associated with the fraud-free parameter is ܪ଴: ௗభௗమߩ
ൌ 0.0561. See at the 

end of Appendix B for derivation of the population correlation. The results in Table 7 indicate 

that, for pre- and post-SOX periods, each of the bootstrap C.I.s for the Pearson correlation 

coefficient contains the population correlation ሺߩௗభௗమ
ሻ and, thus, lends to the bootstrap analyses 

that the annual reported earnings (net income and IBEIs) conform to Benford’s Law. Note that 

the bootstrap correlation C.I.s were based on 25,000 random samples for a given 99% confidence 

level that is consistent with the construction of leading digits bootstrap C.I.s (see Table 7). 

In summary, both the Euclidean distances and the Pearson correlation bootstrap C.I.s 

provide evidence that the bootstrap procedure does not exhibit the problem of excessive power. 
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Therefore, these two indices suggest that the Nigrini (1996) distortion factor index (Z-test) and 

the chi-square goodness-of-fit test have this problem. 

In addition to the S&P 1500 reported earnings, we applied the proposed procedure to the 

Federal Election Commission (FEC) committee to committee in-kind contributions for years 

1998, 2000, and 2002. The results in Table 8 indicate that the 1998 FEC data contain allegedly 

fraudulent transactions. Specifically, all of the four C.I.s associated with the first two digits of 

the 1998 FEC data do not contain the corresponding population parameter and, thus, suggest that 

single digit analyses are not necessary. In fact, the results in Tables 9 and 10 provide support for 

this conclusion (see Tables 8, 9, and 10).  

On the other hand, the results in Table 11 show that only one C.I. associated with the first 

two digits of the 2002 FEC data contain the population parameter (i.e., mean). As a result, single 

digit analyses are required. The results in Tables 12 and 13 indicate that the decision criteria for 

separate single digit analyses described in Figure 2 are not met. In other words, all C.I.s 

associated with the first digits and the second digits of the 2002 FEC data neither contain the 

corresponding population parameter nor overlap with the exact (Benford) digit C.I.s. Therefore, 

we conducted the Pearson correlation analysis and concluded that the 2002 FEC data are 

fraudulent.  That is, the 99% bootstrap C.I. for the Pearson correlation between the first digits 

and the second digits of the 2002 FEC data do not contain the population correlation ሺߩௗభௗమ
ሻ. 

See Table 7 for further details (see Tables 11, 12, and 13).  

The bootstrap C.I.s for the Pearson correlation can be used as a decisive factor when the 

results of the bootstrap procedure do not meet the decision criteria for the digit analyses 

described in Figure 2. In particular, the results associated with the 2000 FEC data in Tables 14, 

15, and 16 indicate that only two out of four C.I.s for the first two digits contain the population 
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parameters. The follow-up separate analyses also show that only two out of four C.I.s for the first 

digits and one out of four C.I.s for the second digits either contain the corresponding population 

parameter or overlap with the Benford C.I.s. Up to this point, the evidence is not clear enough to 

infer whether any potential anomalies (i.e., suspicious transactions from committees to 

committees) exist in the 2000 FEC data (see Tables 14, 15, and 16). 

However, the results in Table 7 show that the Pearson correlation between the first digits 

and the second digits of the 2000 FEC data is 0.144 which differs significantly from the 

population correlation ሺߩௗభௗమ
ൌ 0.0561ሻ. Altogether the first two digits or single digit analyses 

for the 1998, 2000, and 2002 FEC data present evidence that support the observations made by 

Cho and Gaines (2007). That is, allocations of “soft” money from committee to committee in 

each one of these election cycles (i.e., 1998, 2000, and 2002) were likely manipulated.  

Finally, the proposed methodology was applied to simulated first digits of extremely 

fraudulent data based on the probabilities provided by Hill (1998). We note that Hill’s (1998) 

study is limited to first digits analysis. Despite this limitation, we generated two different sample 

sizes of data (N=20,229 and N=500) to demonstrate that our proposed procedure accurately 

detects fraudulent transactions regardless of sample size. The results listed in Table 17 indicate 

that the bootstrap procedure consistently rejects the four null hypotheses for both large 

Nൌ20,229 and small Nൌ500 sample sizes and provides the same conclusions as those made by 

Hill (1998) (see Table 17).  

IV. DISCUSSION AND COMMENTS 

The bootstrap procedure provides accurate and consistent results over different time 

periods and across different volumes of transactions as opposed to the Nigrini (1996) distortion 

factor index (Z-test) or chi-square goodness-of-fit tests. These results show that the bootstrap 
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procedure ameliorates the problem of excessive power described by Nigrini (2000). In addition, 

our procedure has advantages compared to other approaches such as the mean absolute deviation 

(MAD), the Euclidean distance, or Bayesian methods that do not exhibit the problem of 

excessive power. Specifically, the mean absolute deviation and the Euclidean distance do not 

allow practicing auditors to make probabilistic statements of whether data conform to Benford’s 

Law (Cho and Gaines 2007; Nigrini 2000). Geyer and Williamson (2004) restricted their 

Bayesian method to first digit analysis. This restriction may prevent auditors from detecting 

fabricated data where inspection of second, third, or later digits increases the likelihood of 

discovering suspicious fraudulent entries; and when, in some instances, first digit probability 

distribution of fabricated data does result in a Benford-like pattern (Diekmann 2007; 328).  

It is also noteworthy to point out that the bootstrap procedure allows auditors to examine 

financial data sets on an overall basis. This approach differs from the statistical procedure used 

by Aono and Guan (2008) et al. who conducted multiple Z-tests on a digit-by-digit basis. To 

assess data conformity to Benford’s Law, we recommend that an overall analysis be used rather 

than a digit-by-digit analysis because the latter approach inflates false alarms (Type I error) as 

the number of digits to be examined increases (Cleary and Thibodeau 2005). Further, we suggest 

that bootstrap confidence intervals (C.I.s) of the Pearson correlation between the first digits and 

the second digits be used as a decisive factor in situations where the evidence does not clearly 

indicate whether data follow Benford’s Law. Furthermore, we note that the minimum sample 

size required to conduct the first and second digit analysis is Nൌ1,000 observations. For samples 

sizes of less than 1000, it is recommended that only separate single digit analyses be performed. 

The primary reason is that the proposed bootstrap procedure does not provide stable upper or 

lower limits for the first two digits exact (Benford) C.I.s for sample sizes less than 1000. 
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As a final point, we would recommend that practicing auditors be aware of certain 

conditions where applications of the proposed procedure to large data sets (e.g., transaction-level 

or large data sets) may not be appropriate. Some of these situations involve assigned numbers, 

numbers influenced by human thoughts, accounts set up to record firm specific numbers, or 

numbers with maximum or minimum thresholds that comprise financial data subject to 

investigations. Also our procedure may not be useful to detect fraud in the case where financial 

data do not have records of suspicious transactions such as “thefts, kickbacks, bribes or contract 

rigging” (Durtschi, Hillison and Pacini 2004, p. 24).  
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APPENDIX A 
 

Table A.1. Exact, Benford (1938), and Fraudulent data empirical first digit probabilities.  

First Digits (݀ଵሻ 

 1 2 3 4 5 6 7 8 9 
Exact Benford 0.301 0.176 0.125 0.097 0.079 0.067 0.058 0.051 0.046 

Empirical Benford 0.289 0.195 0.127 0.091 0.075 0.064 0.054 0.055 0.051 
Fraudulent Data 0.000 0.019 0.000 0.097 0.612 0.233 0.010 0.029 0.000 

Exact = theoretical probabilities are computed as ௗܲభ
ൌ ଵ଴ሺ1݃݋݈ ൅ 1 ോ ݀ଵሻ where ݀ଵ ൌ1,…9. 

Benford = empirical first digit probabilities estimated by Benford (1938) who used a sample of 20,229 observations. 
Fraudulent data = fraudulent data relate to cash disbursement and payroll information that was taken from a 1995 
King’s County, New York, District Attorney’s Office study (Hill 1998, p.363). 
 
Table A.2. Exact second digit probabilities. 

Second Digits (݀ଶሻ 

 0 1 2 3 4 5 6 7 8 9 
Exact Benford 0.120 0.114 0.109 0.104 0.100 0.097 0.093 0.090 0.088 0.085 
ExactBenford = theoretical probabilities are computed as ௗܲమ

ൌ ∑ ଵ଴ሺ1݃݋݈ ൅ 1 ݀ଵ݀ଶ⁄ ሻଽ
ௗభୀଵ  where ݀ଶ ൌ0,…9. 

 
Table A.3. Exact (Benford) probabilities (p) for the joint occurrence of the first two digits ሺࢊ૚ࢊ૛ሻ. 

݀ଵ݀ଶ p ݀ଵ݀ଶ p ݀ଵ݀ଶ P ݀ଵ݀ଶ p ݀ଵ݀ଶ p 

10 0.041392 28 0.015240 46 0.009340 64 0.006733 82 0.005264 
11 0.037788 29 0.014723 47 0.009143 65 0.006630 83 0.005201 
12 0.034762 30 0.014240 48 0.008955 66 0.006531 84 0.005140 
13 0.032184 31 0.013788 49 0.008774 67 0.006434 85 0.005080 
14 0.029963 32 0.013364 50 0.008600 68 0.006340 86 0.005021 
15 0.028029 33 0.012965 51 0.008433 69 0.006249 87 0.004963 
16 0.026329 34 0.012589 52 0.008272 70 0.006160 88 0.004907 
17 0.024824 35 0.012234 53 0.008118 71 0.006074 89 0.004852 
18 0.023481 36 0.011899 54 0.007969 72 0.005990 90 0.004799 
19 0.022277 37 0.011582 55 0.007825 73 0.005909 91 0.004746 
20 0.021189 38 0.011281 56 0.007687 74 0.005830 92 0.004695 
21 0.020203 39 0.010995 57 0.007553 75 0.005752 93 0.004645 
22 0.019305 40 0.010724 58 0.007424 76 0.005677 94 0.004596 
23 0.018483 41 0.010465 59 0.007299 77 0.005604 95 0.004548 
24 0.017729 42 0.010219 60 0.007178 78 0.005532 96 0.004500 
25 0.017033 43 0.009984 61 0.007062 79 0.005463 97 0.004454 
26 0.016390 44 0.009760 62 0.006949 80 0.005395 98 0.004409 
27 0.015794 45 0.009545 63 0.006839 81 0.005329 99 0.004365 

Exact Benford = theoretical probabilities are computed as ௗܲభௗమ
ൌ ଵ଴ሺ1݃݋݈ ൅ 1 ോ ݀ଵ݀ଶሻ where ݀ଵ݀ଶ ൌ 

10,…,99.  
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APPENDIX B 
 

The formulae for the population mean ሺߤሻ, variance ሺߪଶሻ, skew (ߛሻ, and kurtosis ሺߜሻ for 

the probability distributions in Tables A.1, A.2, and A.3 in Appendix A are as follows (Kendall 

& Stuart, 1977, Eq’s 41, 89, 90): 

ߤ ൌ  ଵ (B.1)ߤ

ଶߪ ൌ ଶߤ െ ଵߤ
ଶ (B.2) 

ߛ ൌ ሺߤଷ െ ଵߤଶߤ3 ൅ ଵߤ2
ଷሻ ോ  ଷ (B.3)ߪ

ߜ ൌ ሺߤସ െ ଵߤଷߤ4 െ ଶߤ3
ଶ ൅ ଵߤଶߤ12

ଶ െ ଵߤ6
ସሻ ോ  ସ (B.4)ߪ

The moments ሺߤ௥ሻ for the probability distributions in Tables A.1, A.2, and A.3 are 

determined as ߤ௥ ൌ ∑ ݀ଵ
௥

ௗܲభ
ଽ
ௗభୀଵ ௥ߤ , ൌ ∑ ݀ଶ

௥
ௗܲమ

ଽ
ௗమୀ଴ , and  ߤ௥ ൌ ∑ ሺ݀ଵ݀ଶሻ௥

ௗܲభௗమ
ଽଽ
ௗభௗమୀଵ଴  where 

ݎ ൌ1,…,4. Substituting the moments into Eq’s (B.1), (B.2), (B.3), and (B.4) we obtain the 

population parameters for the leading digits (the first, second, or first two digits). 

For example, the first four moments ሺߤଵ, ,ଶߤ ,ଷߤ and ߤସሻ would be 3.44024, 17.89174, 

115.08205 and 823.27310, respectively. Given these values, the population mean  1 , variance 

 2
1 , skew  1  and kurtosis  1  would be ߤଵ ൌ ∑ ݀ଵ ௗܲభ

ൌ 3.44024ଽ
ௗభୀଵ ଵߪ ,

ଶ ൌ ଶߤ െ ሺߤଵ
ଶሻ ൌ

17.89174 െ ሺ3.44024ଶሻ ൌ ଵߛ  ,6.05651 ൌ ሺߤଷ െ ଵߤଶߤ3 ൅ ଷሻߤ2 ⁄ଷߪ ൌ 115.08205ۃ െ

3ሺ17.89174 ൈ 3.44014ሻ ൅ 2ሺ3.44024ଷሻ6.05651/ۄଷ/ଶ ൌ 0.79560 and 

ଵߜ ൌ ሺߤସ െ ଵߤଷߤ4 െ ଶߤ3
ଶ ൅ ଵߤଶߤ12

ଶ െ ଵߤ6
ସሻ ⁄ସߪ ൌ 823.2731ۃ െ 4ሺ115.08205 ൈ 3.440234ሻ െ

3ሺ17.89174ሻଶ ൅ 12ሺ17.891743 ൈ 3.44024ଶሻ െ 6ሺ3.44024ሻସ6.05651/ۄሺସ ଶ⁄ ሻ ൌ െ0.54823, 

respectively.  

Following the same steps as for the first digits, the population mean, variance, skew and 

kurtosis for the second digits would be ߤଶ ൌ ∑ ݀ଶ ௗܲమ
ଽ
ௗమୀ଴ ൌ ଶߪ ,4.18739

ଶ ൌ ଶߛ , ,8.25381 ൌ
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0.133114, and ߜଶ ൌ െ1.208390, respectively. Similarly, the population mean, variance, skew 

and kurtosis for the first two digits would be ߤଵଶ ൌ ∑  ሺ݀ଵ݀ଶሻ ௗܲభௗమ
ଽଽ
ௗభௗమୀଵ଴ ൌ ଵଶߪ  ,38.5898

ଶ ൌ

ଵଶߛ  ,621.8317 ൌ ଵଶߜ  ,0.771864 ൌ െ0.546544,   respectively. 

The population correlation between the first digits and the second digits is determined as 

ௗభௗమߩ
ൌ ሺܧሾ݀ଵ݀ଶሿ െ ଶሻߤଵߤ ሺߪଵ

ଶߪଶ
ଶሻ

భ
మ⁄ ൌ0.05605574. The ܧሾ݀ଵ݀ଶሿ ൌ14.801940 and is based on 

the probabilities given in Table A.3 and computed as 

ሾ݀ଵ݀ଶሿܧ ൌ ∑ ∑ ሺ݀ଵሻሺ݀ଶሻ logଵ଴ሺ1 ൅ 1 ോ ݀ଵ݀ଶ
ଽ
ௗమୀ଴

ଽ
ௗభୀଵ ሻ. 

  



167 
 

 

Figure 1. Basic bootstrap process for estimating sample statistics and constructing a 
confidence interval.
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Construct the 99% confidence interval 
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   
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Figure 2. Bootstrap procedure application to digital analysis based on Benford’s Law 
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Under the command resample using ܶ ൌ25,000 samples, compute bootstrap C.I.s based on notations 
for the sample statistics [mean(X), var(X), skewness(X), and kurtosis(X)], the Bias-corrected (BCa) 

C.I. default option and 99% confidence level.
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following Decision Criteria. 
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Do all (none) of the four C.I.s associated with 
the first two digits of the actual data overlap 

with Benford C.I.s or contain population 
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do not (do) contain 
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Conduct single digit analyses for the 
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do contain unintentional errors or fraud. 

Infer that the actual 
data do not contain 
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Table 1. The 99% Bootstrap Confidence Intervals for First Two Digits of S&P 1500 Companies Earnings (1990 - 2002) a/. 

Population Parameters for the Mean, Variance, Skew, and Kurtosis 
  

12 38.58976   2
12 621.83174   12 0.77186   12 0.54654    

 Exact Benford 37.951* 12  39.170 608.472* 2
12  636.277 0.729* 12  0.811 -0.603 12  -0.472* 

19,076N 
 

Net Income 
(Thousands) 

37.743 12  38.658** 590.304 2
12  618.271* 0.765 12  0.828** -0.544* 12  -0.404 

20,939N 
 

IBEIs*** 
(Thousands) 

37.555 12  38.419* 588.599 2
12  614.973* 0.774 12  0.836* -0.526* 12  -0.392 

 
Table 2. The 99% Bootstrap Confidence Intervals for First Two Digits of S&P 1500 Companies Earnings (2003 - 2008) a/. 

Population Parameters for the Mean, Variance, Skew, and Kurtosis 
  

12 38.58976   2
12 621.83174   12 0.77186   12 0.54654    

 Exact Benford 38.114* 12  39.113 605.754 2
12  636.380 0.738* 12  0.807 -0.619* 12  -0.474 

16, 455N 
 

Net Income 
(Thousands) 

38.577 12  39.591** 610.674 2
12  640.437** 0.706 12  0.773** -0.654 12  -0.517** 

18,391N   IBEIs ***  
(Thousands) 

38.870 12  39.821* 611.999 2
12  640.115** 0.697 12  0.760* -0.677 12  -0.548* 

 
Table 3. The 99% Bootstrap Confidence Intervals for First Two Digits of S&P 1500 Companies Earnings (1900 - 2008) a/. 

Population Parameters for the Mean, Variance, Skew, and Kurtosis 
  

12 38.58976   2
12 621.83174   12 0.77186   12 0.54654    

 Exact Benford 38.211 12  38.907 611.915 2
12  632.071 0.748 12  0.795 -0.594 12  -0.496 

35,531N   Net Income 
(Thousands) 

38.250 12  38.931** 604.647 2
12  624.709** 0.748 12  0.794** -0.578 12  -0.478** 

39,330N   IBEIs ***  
(Thousands) 

38.282 12  38.930** 602.968 2
12  622.665** 0.745 12  0.788** -0.577 12  -0.485** 

* Bold numbers mean bootstrap intervals of the actual data overlap with Benford intervals, and thus retain the corresponding null hypothesis. 
** Bold numbers mean bootstrap intervals of the actual data contain population parameter, and thus retain the corresponding null hypothesis. 
*** IBEIs=Income before extraordinary items. 
a/ Source of data is Compustat. 
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Table 4. The 99% Bootstrap Confidence Intervals for First Digits of S&P 1500 Companies Earnings (2003-2008) a/. 
Population Parameters for the Mean, Variance, Skew, and Kurtosis 

  
1 3.440237   2

1 6.056513   1 0.795604   1 0.548225    

 Exact Benford 3.391 1  3.486* 5.920 2
1  6.196 0.765* 1  0.831 -0.619 1  -0.478 

18,391N   IBEIs *** 
(Thousands) 

3.472* 1  3.564 5.959 2
1  6.234** 0.724 1  0.789* -0.678 1  -0.547** 

 
Table 5. The 99% Bootstrap Confidence Intervals for Second Digits of S&P 1500 Companies Earnings (2003-2008) a/. 

 Population Parameters for the Mean, Variance, Skew, and Kurtosis 
  

2 4.18739   2
2 8.25381   2 0.133114   2 1.208390    

 Exact Benford 4.131 2 4.240 8.124 2
2  8.403 0.108 2 0.162 -1.230 2  -1.184 

18,391N   IBEIs *** 
(Thousands) 

4.108 2  4.217** 8.119 2
2  8.396** 0.124 2 0.179** -1.235 2  -1.188** 

* Bold numbers mean bootstrap intervals of the actual data overlap with Benford intervals, and thus retain the corresponding null hypothesis. 
** Bold numbers mean bootstrap intervals of the actual data contain population parameter, and thus retain the corresponding null hypothesis. 
*** IBEIs=Income before extraordinary items. 
a/ Source of data is Compustat. 
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Table 6. Nigrini (1996) Distortion Factor Z-Test ሺࢆሻ, Euclidean Distance ൫ࢊࡰࡱ૚൯, and Chi-Square 

Goodness of Fit Test ൫࣑૛൯  for Earnings of S&P 1500 Companies.  

Period Reported Earnings N Z ܦܧௗభ
 ߯ଶ 

1990 - 2002 Net Income a/ 19,076 
 

-2.22949 b/  0.008503 c/ 19.592 b/ for d1  
16.926 b/ for d2 

1990 - 2002 Income before 
Extraordinary Items 

(IBEIs) a/ 

20,939 
 

3.61030 b/  0.007760 c/ 17.367 b/ for d1  
27.939 d/ for d2 

2003 - 2008 Net Income a/ 16,455 
 

2.41083 b/  0.014034 c/ 19.592 b/ for d1 

 21.958 d/ for d2 
2003 - 2008 Income before 

Extraordinary Items 
(IBEIs) a/ 

18,391 
 

3.92758 b/  0.018900 c/ 38.391 d/ for d1  
24.001 d/ for d2 

1990 - 2008 Net Income a/ 35,531 
 

-0.00261 
 

 0.009116 c/ 23.001 d/ for d1 

 28.213 d/ for d2 
1990 - 2008 Income before 

Extraordinary Items 
(IBEIs) a/ 

39,330 
 

0.04239 
 

 0.008579 c/ 11.056 b/ for d1  
16.140 b/ for d2 

a/  Source of data is Compustat. 
b/  p-value < 0.05  
c/  ED < Empirical Benford (1938) Euclidean Distance ED*=0.024  (Cho and Gaines, 2007). 
d/  p-value < 0.01 
 
where 

d1 = first digits and d2 = second digits 
ܼ ൌ ܨܦ ോ ܨܦ where ܦܵ ൌ ሺܯܣ െ ሻܯܧ ോ  is the actual mean of N  collapsed numbers scaled to ܯܣ ,ܯܧ
the interval ሾ10,100ሻ and ܯܧ is the expected mean equal to ܯܧ ൌ 90 ോ ሺܰ൫10ଵ ே⁄ െ 1൯ሻ, and  ܵܦ ൌ
0.63825342 ോ √ܰ (Nigrini, 1996).  

ܦܧ ൌ ට∑ ሺ݌௜ െ ܾ௜ሻଶଽ
௜ୀଵ  where ݌௜ and ܾ௜ are the probabilities associated with a data set and exact Benford 

probabilities, respectively. 

߯ଶ ൌ ∑ ሺ ௜ܱ െ ௜ሻଶܧ ോ ௜௜ܧ  where Oi  and Ei  are the observed and expected frequencies for the i-th digit. 
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Table 7. The 99% Confidence Intervals for the Pearson Correlation Coefficients.  

Population Correlation (ߩௗభௗమ
= 0.05605574) 

 Sample Size Time Period Pearson 
Correlation 
Coefficient 

൫ߩොௗభௗమ
൯ 

99% Bootstrap Confidence 
Intervals (C.I.s) for Pearson 
Correlation Coefficient ሺߩሻ 

Net Income a/ 

19,076N   1990-2002 0.048 c/ 0.028018
1 2d d  0.065154**

16, 455N   2003-2008 0.057 c/ 0.037630
1 2d d  0.077312**

35,531N   1990-2008 0.052 c/ 0.038199
1 2d d  0.065419**

     
Income before 

Extraordinary Items 
(IBEIs) a/ 

20,939N   1990-2002 0.049 c/ 0.032228
1 2d d  0.067095**

18,391N   2003-2008 0.053 c/ 0.033172
1 2d d  0.070844**

39,330N   1990-2008 0.051 c/ 0.038450
1 2d d  0.063920**

     

Committee-to-
Committee In-Kind 

Contribution b/ 

9,878N   1998 -0.010 -0.037859
1 2d d  0.014954

10,759N   2000 0.144 c/ 0.118483
1 2d d  0.167231

10,745N   2002 0.178 c/ 0.152893
1 2d d  0.201943

a/ Source of data is Compustat. 
b/ Data is accessed at the Federal Election Commission website 

http://www.fec.gov/finance/disclosure/ftpdet.shtml. 
c/ p-value < 0.01 
 
** Bold numbers mean bootstrap intervals of the actual data contain population parameter, and thus retain 

the corresponding null hypothesis. 
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Table 8. The 99% Bootstrap Confidence Intervals for First Two Digits of All Committee-To-Committee, In-Kind Contributions 1998 b/. 
Population Parameters for the Mean, Variance, Skew, and Kurtosis 

9,878N   
12 38.58976   2

12 621.83174   12 0.77186   12 0.54654    

Exact Benford 37.968 12  39.255 602.032 2
12  641.456 0.729 12  0.817 -0.636 12  -0.452 

Net Income 
(Thousands) 

35.528 12  36.686 466.633 2
12  503.718 0.880 12  0.969 0.051 12  0.292 

 
Table 9. The 99% Bootstrap Confidence Intervals for First Digits of All Committee-To-Committee, In-Kind Contributions 1998 b/. 

Population Parameters for the Mean, Variance, Skew, and Kurtosis 
9,878N   

1 3.440237   2
1 6.056513   1 0.795604   1 0.548225    

Exact Benford 3.373 1  3.500 5.867 2
1  6.248 0.751 1  0.841 -0.636 1  -0.446 

Net Income 
(Thousands) 

3.185 1  3.298 4.604 2
1  4.956 0.861 1  0.948 -0.103 1  0.123 

 
Table 10. The 99% Bootstrap Confidence Intervals for Second Digits of All Committee-To-Committee, In-Kind Contributions 1998 b/. 

Population Parameters for the Mean, Variance, Skew, and Kurtosis 
9,878N   

2 4.18739   2
2 8.25381   2 0.133114   2 1.208390    

Exact Benford 4.113 2 4.261 8.072 2
2  8.456 0.095 2 0.170 -1.237 2  -1.174 

Net Income 
(Thousands) 

3.635 2 3.789 8.653 2
2  9.057 0.215 2 0.292 -1.241 2  -1.168** 

 
Table 11. The 99% Bootstrap Confidence Intervals for First Two Digits of All Committee-To-Committee, In-Kind Contributions 2002 b/. 

Population Parameters for the Mean, Variance, Skew, and Kurtosis 
10,745N   

12 38.58976   2
12 621.83174   12 0.77186   12 0.54654    

Exact Benford 37.943 12  39.183 603.429 2
12  640.802 0.733 12  0.815 -0.634 12  -0.457 

Net Income 
(Thousands) 

38.251 12  39.528** 633.833 2
12  680.387 0.953 12  1.037 -0.117 12  0.127 

* Bold numbers mean bootstrap intervals of the actual data overlap with Benford intervals, and thus retain the corresponding null hypothesis. 
** Bold numbers mean bootstrap intervals of the actual data contain population parameter, and thus retain the corresponding null hypothesis. 
b/ Data is accessed at the Federal Election Commission website http://www.fec.gov/finance/disclosure/ftpdet.shtml. 
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Table 12. The 99% Bootstrap Confidence Intervals for First Digits of All Committee-To-Committee, In-Kind Contributions 2002 b/. 
Population Parameters for the Mean, Variance, Skew, and Kurtosis 

10,745N   
1 3.440237   2

1 6.056513   1 0.795604   1 0.548225    

Exact Benford 3.378 1  3.500 5.862 2
1  6.229 0.753 1  0.840 -0.634 1  -0.451 

Net Income 
(Thousands) 

3.401 1  3.528** 6.011 2
1  6.422** 0.908 1  0.994 -0.283 1  -0.055 

 
Table 13. The 99% Bootstrap Confidence Intervals for Second Digits of All Committee-To-Committee, In-Kind Contributions 2002 b/. 

Population Parameters for the Mean, Variance, Skew, and Kurtosis 
10,745N   

2 4.18739   2
2 8.25381   2 0.133114   2 1.208390    

Exact Benford 4.113 2 4.255 8.060 2
2  8.427 0.097 2 0.168 -1.241 2  -1.180 

Net Income 
(Thousands) 

4.126 2 4.276** 8.908 2
2  9.284 0.017 2 0.090 -1.322 2  -1.268 

 
Table 14. The 99% Bootstrap Confidence Intervals for First Two Digits of All Committee-To-Committee, In-Kind Contributions 2000 b/. 

Population Parameters for the Mean, Variance, Skew, and Kurtosis 
10,759N   

12 38.58976   2
12 621.83174   12 0.77186   12 0.54654    

Exact Benford 37.949 12  39.194 603.981 2
12  640.660 0.733 12  0.817 -0.631 12  -0.451 

Amount 38.258 12  39.543** 619.184 2
12  661.486** 0.866 12  0.951 -0.324 12  -0.107 

 
Table 15. The 99% Bootstrap Confidence Intervals for First Digits of All Committee-To-Committee, In-Kind Contributions 2000 b/. 

Population Parameters for the Mean, Variance, Skew, and Kurtosis 
Exact Benford 

1 3.440237   2
1 6.056513   1 0.795604   1 0.548225    

Benford 3.377 1  3.500* 5.880 2
1  6.243 0.751 1  0.836 -0.642 1  -0.459 

Amount 3.441* 1  3.563 5.894 2
1  6.283** 0.826 1  0.909 -0.433 1  -0.232 

* Bold numbers mean bootstrap intervals of the actual data overlap with Benford intervals, and thus retain the corresponding null hypothesis. 
** Bold numbers mean bootstrap intervals of the actual data contain population parameter, and thus retain the corresponding null hypothesis. 
b/ Data is accessed at the Federal Election Commission website http://www.fec.gov/finance/disclosure/ftpdet.shtml. 
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Table 16. The 99% Bootstrap Confidence Intervals for Second Digits of All Committee-To-Committee, In-Kind Contributions 2000 b/. 

Population Parameters for the Mean, Variance, Skew, and Kurtosis 
10,759N   

2 4.18739   2
2 8.25381   2 0.133114   2 1.208390    

Exact Benford 4.115 2 4.260 8.081 2
2  8.447 0.097 2 0.168 -1.238 2  -1.177 

Amount 3.911 2 4.067 9.550 2
2  9.953 0.132 2 0.206** -1.343 2  -1.284 

 
Table 17. The 99% Bootstrap Confidence Intervals for First Digits of an Extreme Fraud Data c/. 

Population Parameters for the Mean, Variance, Skew, and Kurtosis 
20, 229N   

1 3.440237   2
1 6.056513   1 0.795604   1 0.548225    

Exact Benford 3.400 1  3.491 5.925 2
1  6.193 0.767 1  0.828 -0.612 1  -0.477 

Extreme Fraud Data 5.171 1  5.203 0.735 2
1  0.803 -0.0382 1  0.200 3.910 1  4.275 

 
500N   1 3.440237   2

1 6.056513   1 0.795604   1 0.548225    

Exact Benford 3.142 1  3.714 5.265 2
1  6.953 0.602 1  0.996 -0.920 1  -0.078 

Extreme Fraud Data 5.084 1  5.286 0.570 2
1  1.004 -0.693 1  0.897 3.067 1  5.491 

* Bold numbers mean bootstrap intervals of the actual data overlap with Benford intervals, and thus retain the corresponding null hypothesis. 
** Bold numbers mean bootstrap intervals of the actual data contain population parameter, and thus retain the corresponding null hypothesis. 
b/ Data is accessed at the Federal Election Commission website http://www.fec.gov/finance/disclosure/ftpdet.shtml. 
c/ First digits are generated in MINITAB based on the fraud data provided by Hill (1998, p. 363) 
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