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Abstract: We propose a new financial indicator and risk metric embedded in a currency trading model to 
assist investors in currency markets. Since our model is highly nonlinear, we utilize global optimization 
technology to maximize the performance of the currency basket, based on our selection of key decision 
variables. We introduce the model and present numerical results based on actual market data. 
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strategy; Numerical results. 

1. Introduction 
The differences in interest rates between countries have always played an important role for inves-

tors when making an investment decision in currency markets. The strategy of buying the currency of the 
country with the higher interest rate and simultaneously selling the currency of the country with the lower 
interest rate, which is also known in financial markets as the “carry trading strategy”, is often perceived as 
one of the most popular trading strategies in currency markets. While this type of a strategy can bring 
very good returns over the years, another key financial factor that needs to be kept in mind at all times is 
the volatility of the currency pair in question. We have developed an indicator which we name Interest 
Rate Differentials Adjusted for Volatility (IRDAV), to capture both the interest rate differentials and the 
volatility of the currency pairs in a single indicator. We measure IRDAV for each currency pair in our 
analysis as the ratio of one-month London Inter-Bank Offer Rate (LIBOR) interest rate differential be-
tween the high-yielding and low-yielding currencies to the annualized standard deviation of the daily ex-
change rate returns. This measure uses the same concept as the well-known Sharpe ratio (SR) defined by  
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In (1) rp is the return on the asset or portfolio p, rf is the risk-free rate and pr∂  is the standard deviation of 
returns from asset or portfolio p. For further background and application, we refer to Sharpe (1966, 1975, 
1992), Treynor and Black (1973), and Bodie, Kane, and Marcus (1993). Under positive market condi-
tions, buying a currency with high interest rate and simultaneously selling a currency with low interest 
rate, after adjusting for volatility of the currency pair in question can generate significant positive returns. 
However, when crisis situations evolve, investors exit such money making strategies suddenly: as a result, 
significant losses can occur. In an effort to minimize these potential losses, we also developed a risk met-
ric that evaluates the total risk by looking at various risk indicators across different markets. We use this 
risk metric to get timely signals of evolving crises and to flip the strategy from long to short in a timely 
fashion, to prevent losses and make further gains even during crisis periods.  

Since our model is highly nonlinear (multi-modal), and for all practical purposes it can be perceived 
as a “black box” computational procedure, we need to utilize suitable global optimization technology and 
software to maximize the performance of the currency basket, based on our selection of key decision 
variables. Specifically, we use the LGO solver suite for global-local optimization with a direct link and 
interface to handle our Excel based currency trading model. 
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2. Model Description 
For each currency pair included in this analysis, we calculate IRDAV as the interest rate differential 

between the high-yielding and low-yielding currencies, divided by the annualized standard deviation of 
the daily exchange rate returns calculated over a six-month period. 
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In (2) iA is the high(er) interest rate in country A, iB is the low(er) interest rate in country B, and 
FXbFXa /∂ is the annualized standard deviation of the daily exchange rate returns between countries A and 

B. For further background, we refer to Çağlayan and Giacomelli (2005), Çağlayan (2003), Çağlayan and 
Giacomelli (2003), Çağlayan, and Kantor (2001, 2002), Normand et al. (2004). The major market cur-
rency pairs included in the sample are determined according to the liquidity and transaction volume of the 
Foreign Exchange (FX) pairs in currency markets. At the beginning of each month, we rank these cur-
rency pairs according to their IRDAV values, and we pick the top IRDAV-ranked FX pairs to compose 
the currency basket, where each currency pair in the basket receives an equal portfolio weight. The top 
IRDAV-ranked FX pairs constitute our basket for the month considered until new rankings are computed 
at the beginning of the following month. The positive “carry” positions in the basket are held until our 
risk metric (computed daily) reaches a certain threshold value, whereupon the basket is flipped to nega-
tive “carry” positions.  In currency markets, timing the change from normal markets’ “search for yield” 
status to crisis periods’ “flight to quality” status is a crucial subject. Hence, investors need to be aware of 
sentiment changes in financial markets to better protect themselves against a sharp decline in the per-
formance of positive “carry” trades. We attempt to gauge the timing of these sentiment shifts in the finan-
cial markets with our risk metric. In order to measure risk across a wide spectrum of markets, this risk 
metric includes six different proprietary risk measures, each representing a unique risk for liquidity, credit 
markets, emerging markets, equity markets, commodity markets, and currency markets. All of the chosen 
risk measures have given timely signals when to exit positive “carry” positions, and to reverse these posi-
tions – thereby making further gains even during crisis periods. To be more specific regarding the con-
struction of the risk metric, on a daily basis, we first calculate Z-scores (number of standard deviations 
away from a 3-month average) for each of the six individual risk measures mentioned above: 
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In (3) RMt
i is the risk measure i in month t, i

tµ is the 3-month rolling average of the risk measure i in 
month t, and i

tRM∂  is the 3-month standard deviation of the risk measure i in month t. Then, we take the 
weighted average of the six selected Zi scores to come up with the final daily reading on our risk metric. 
The weights on the individual risk measures that define each measure’s importance in the overall risk 
metric will be calculated by using global optimization, to maximize the performance of the currency bas-
ket. The threshold overall Z score level, upon which the basket positions are flipped to negative carry 
from positive carry will also be optimized. One can argue that (due to their financial background) the six 
risk measures used in constructing the risk metric are not independent. The optimized weights attempt to 
take care of this problem, since optimization can potentially give a zero weighting to a risk indicator that 
is highly correlated with another measure but that does not perform as well as the other risk measure. The 
generic optimization approach would work also for other risk metric constructions in which certain pa-
rameters need to be optimized after their overall effect is evaluated by the (“black box”) model. 

In addition to the outlined general information about the formation of the basket and the risk metric, 
our model incorporates all the specifications for a full currency trading model, including transaction costs, 
stop-loss levels, and take take-profit levels. The reported returns are all transaction cost adjusted in the 
tables presented later on. Specifically, the model deducts 0.05% return from each trade in the basket, a 
realistic assumption given the size of the bid-ask spreads for most of the major currency pairs. Moreover, 
the model calculates the drawdown from the peak of returns and the accumulated returns from the bottom 
of returns to use stop-loss and take-profit levels efficiently. We prefer to apply stop-losses and take-
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profits on the basket rather than on the individual currency pairs so that an extraordinary performance 
(negative or positive) in one of the currency pairs can be compensated by the performance of other pairs 
in the basket, without triggering stop-loss and take-profit signals frequently. Once a stop-loss or take-
profit signal is triggered on the basket portfolio, however, the model requires a certain number of days to 
wait before re-entering the trades again. Since from a financial perspective there is no definite “scientific” 
answer on what a stop-loss or take profit level should be, and on how many days should one wait before 
re-entering trades after a stop-loss or take-profit level, we will let global optimization to determine those 
trade parameters as well, in order to maximize the overall performance of the currency basket.  We define 
the information ratio IR  
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Here RIRDAV is the annualized and compounded full sample period return from IRDAV currency basket 
and IRDAVR∂  is the annualized standard deviation of daily returns from IRDAV currency basket for the 
full sample period 1998–2009.  Our proprietary Currency Trading Model (CTM can be summarized as 
follows. 
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Constraint:  1
6

1
=∑

=i
iw ;              wi is the weight that risk measure i receives in the risk metric.  

Decision variables, with corresponding (given) lower and upper bounds:  
 ncpl≤ncp≤ncpu; rmtl≤rmt≤rmtu; 0≤wi≤1 i=1,..,6; sll≤sl≤slu; tpl≤tp≤tpu; ndsl≤nds≤ndsu; ndtl≤ndt≤ndtu. 
Here ncp is the number of currency pairs to be included in the basket; rmt is risk metric threshold level 
where positions are switched from “positive carry” to “negative carry”, or vice versa; wi are the weights 
of our six risk measures that appear in the aggregated risk metric; sl is the stop-loss level; tp is the take-
profit level; nds is the number of days to wait after stop-loss; ndt is the number of days to wait after take-
profit. The lower and upper bounds are denoted by adding l and u to the corresponding variable name. 
 

CTM has been implemented in Excel as a stand-alone computational procedure with direct parameter 
sampling (input-output) possibility, but without access to gradient information. The embedded model 
functions leading to the calculation of the objective function are all continuous. In our numerical tests it 
has also become obvious that this “black box” model is multi-modal. Due to its outlined key features, the 
solution of CTM requires derivative-free global optimization software. Therefore, we use the Lipschitz 
Global Optimizer (LGO) software with a direct link to Excel to solve it.  

3. Global Optimization of “Black Box” System Models with LGO   

3.1. Problem Statement 
We shall consider the continuous global optimization (CGO) model 

 min f(x)       subject to x∈D:={x:  l≤x≤u   gj(x)≤0   j=1,...,m}. (5) 
In (5) we apply the following notation and assumptions: 
x∈Rn   n-dimensional real-valued vector of decision variables, 
f:Rn→R  continuous (scalar-valued) objective function, 
D⊂Rn  non-empty set of feasible solutions, a proper subset of Rn, 
l∈Rn, u∈Rn  component-wise finite lower and upper bounds imposed on x,  
g:Rn→Rm     m-vector of continuous constraint functions. 
Without going into technical details which are outside of the scope of the present discussion, we note 

that the concise model formulation (5) covers many special cases. This specifically includes also the fi-
nancial model discussed here, since we assume (only) a continuous model structure without requiring any 
further specifics of the actual model which may be a “black box”.  
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3.2. The LGO Software Package for Nonlinear (Global and Local) Optimization 
Let us briefly review the LGO solver suite that has been designed to address also “black box” prob-

lems as discussed above. In development since the late 1980’s, LGO is currently available for a range of 
compiler platforms (C, C++, C#, Fortran), with seamless links to several optimization modeling lan-
guages (AIMMS, AMPL, GAMS, MPL), and to the leading high-level technical computing systems Ma-
ple, Mathematica, and MATLAB. For algorithmic and implementation details not discussed here, we 
refer to Pintér (1996, 2009, 2010a).  

The overall design of LGO is based on the combination of global and local search strategies, with 
corresponding theoretical convergence properties. LGO hence can be used for both global and local (con-
tinuous nonlinear) optimization. Let us point out that LGO’s derivative-free design is markedly different 
from other nonlinear optimization software packages that require explicit analytical model information to 
support model parsing and function type specific operations (such as rigorous bounding procedures). Of 
course, we do not claim that one design is “universally superior” to the other. A model function decompo-
sition-parsing-bounding based approach supports the precise solution of a range of GO models which, 
however, have to be defined “only” in terms of a given set of possible component functions. In contrast to 
this approach, the design of LGO allows the handling of “black box” problems that will remain outside of 
the scope of the analytical global optimization approaches. In numerical practice LGO’s global search 
options generate a global solution estimate(s) that is (are) refined by the seamlessly following local search 
mode(s). The expected practical result of using LGO – barring numerical problems caused by a “tricky” 
multimodal objective and/or difficult feasible set, poor model scaling, etc. which could impede any 
nonlinear optimization software – is a global and local search based high-quality feasible solution that 
meets at least the local optimality criteria. (The latter are theoretically guaranteed only under standard 
local smoothness conditions). At the same time, one should keep in mind that no global (or other) optimi-
zation software will “always” work satisfactorily, with default settings and under resource limitations 
such as time, model function evaluation, or other preset usage limits. Extensive numerical tests and an 
increasing range of practical applications demonstrate that LGO and its platform-specific implementa-
tions can find a close numerical approximation of the global solution not only when using standard “aca-
demic” GO test problems, but also in far more complicated, sizeable GO models.  

3.3. The Excel-LGO Software Implementation 
Recently, we developed an LGO solver link to Microsoft Excel with an easy-to-use worksheet inter-

face to assist users in the model formulation process. Excel-LGO is described by the software documenta-
tion (Pintér, 2010b): therefore we only mention some key facts here. (We wish to point out, however, that 
the Excel-LGO link development is entirely independent from the Excel Premium Solver platform devel-
opment by Frontline Systems.)  

In order to use Excel-LGO, users need to have access to a personal computer with the following 
software: Microsoft Windows XP, Vista (or a more recent version); Microsoft Office 2003 or 2007 (or a 
more recent version), installed with .NET Programmability Support; and Microsoft .NET version 2 (or a 
more recent version). A typical (recommended) installation structure is shown below. 
 

C:\EXCEL-LGO 
 \Documentation  Includes the User’s Guide and optional technical notes; 
 \Models  Test examples and user models, in subdirectories; 
 \Work   Installation directory for the Excel-LGO runtime files. 

4. Numerical Results and Discussion 
The numerical results obtained for our IRDAV basket clearly show a significant improvement in the 

information ratio (IR) based performance of our currency basket after the optimization. Before doing for-
mal optimization, by manually selecting values for the key decision variables, we were able to increase 
the information ratio of the IRDAV basket for the entire 1998–2009 sample period up to 1.81. Table 1 
below shows the annual performance of the IRDAV basket as well the performance for the full sample 
period, together with manually selected values for the key decision variables, before the optimization.  

Next, we present our optimization results in Table 2. One can see a very clear improvement in the 
performance of the IRDAV basket when the selected decision variable values are determined by global 
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optimization. Specifically, if the decision variable values are determined by the LGO software, then we 
see that the objective function value has increased significantly to 2.71 (from 1.81) for the sample period 
1998–2009. In the world of finance, this is an eye-opening 50% improvement in the overall performance 
of the currency basket. Table 2 shows the annual performance of the IRDAV basket as well the perform-
ance for the full sample period, together with the optimized values for the decision variables. The compu-
tational effort related to the optimization is over 19 hours on a (current average capability) laptop 
computer. This is due to two factors. First, the number of decision variables is 12: hence one should at-
tempt a thorough global search in a 12-dimensional decision space. Based on our experience with LGO 
and other global optimization software, a direct sampling effort with tens or hundreds of thousands of 
sample points seems reasonable. Second, the function evaluations themselves are rather expensive, since 
each decision vector setting needs to be evaluated by the Excel implementation of the CTM. We also tried 
to use local optimization only from several starting points: the results clearly indicated that the “black 
box” model is indeed highly multi-modal.  

 
Table 1. Performance of the IRDAV basket before optimization 

 Annual Return (%) Std. Deviation (%) Information Ratio 
1998 16.01 6.40 2.50 
1999 9.18 4.91 1.87 
2000 4.88 4.50 1.08 
2001 7.59 5.26 1.44 
2002 15.62 4.67 3.35 
2003 12.95 5.00 2.59 
2004 5.55 4.84 1.15 
2005 8.51 3.96 2.15 
2006 9.47 4.18 2.26 
2007 13.28 7.63 1.74 
2008 12.95 9.37 1.38 
2009 15.52 8.50 1.83 

    

1998–2009 Sample 10.90 6.01 1.81 
    

Key Decision Variables  Risk Metric Weights  
Number of pairs in basket: 5 RM1: 0.1667 
Risk Metric threshold: 1.25 RM2: 0.1667 
Stop-loss level: –2.50 RM3: 0.1667 
Take-profit level: 8.00 RM4: 0.1667 
Number of days to wait after stop-loss: 5 RM5: 0.1667 
Number of days to wait after take profit: 1 RM6: 0.1667 

 
Table 2. Performance of the IRDAV basket after global optimization 

 Annual Return (%) Std. Deviation (%) Information Ratio 
1998 15.55 4.12 3.78 
1999 10.97 4.16 2.64 
2000 4.76 3.95 1.21 
2001 11.10 3.48 3.19 
2002 13.12 3.59 3.66 
2003 19.15 4.16 4.61 
2004 12.57 4.22 2.98 
2005 9.37 2.68 3.50 
2006 8.49 3.45 2.46 
2007 11.77 4.94 2.38 
2008 6.53 6.83 0.96 
2009 30.05 7.66 3.92 

    

1998–2009 Sample 12.61 4.65 2.71 
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Key Decision Variables  Risk Metric Weights  
Number of pairs in basket: 12 RM1: 0.206 
Risk Metric threshold: 1.73 RM2: 0.000 
Stop-loss level: –1.84 RM3: 0.073 
Take-profit level: 13.88 RM4: 0.264 
Number of days to wait after stop-loss: 12 RM5: 0.000 
Number of days to wait after take profit: 15 RM6: 0.457 

6. Conclusions 
In this paper we have introduced a new model to assist investors in currency markets and discussed 

its subsequent calibration by global optimization. Since the model has been developed using Excel, we 
have used the Excel-LGO software to optimize our selection of key decision variables. After an introduc-
tion to the model, we presented detailed numerical results based on actual market data. From a practical 
optimization point of view, our results show the validity of the approach followed. From the point of view 
of the financial application area, we have been able to produce a high-quality trading strategy that is ap-
plicable in currency markets. Our forthcoming research work will expand upon the current model and its 
results, with the objective to make available a robust and efficient tool for financial decision making. 
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