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Abstract

Subjective Logic (SL) is a type of probabilistic logic, which is suitable for rea-
soning about situations with uncertainty and incomplete knowledge. In recent
years, SL has drawn a significant amount of attention from the multi-agent
systems community as it connects beliefs and uncertainty in propositions to a
rigorous statistical characterization via Dirichlet distributions. However, one
serious limitation of SL is that the belief updates are done only based on com-
pletely observable evidence. This work extends SL to incorporate belief updates
from partially observable evidence. Normally, the belief updates in SL presume
that the current evidence for a proposition points to only one of its mutually ex-
clusive attribute states. Instead, this work considers that the current attribute
state may not be completely observable, and instead, one is only able to obtain
a measurement that is statistically related to this state. In other words, the SL
belief is updated based upon the likelihood that one of the attributes was ob-
served. The paper then illustrates properties of the partial observable updates
as a function of the state likelihood and illustrates the use of these likelihoods
for a trust estimation application. Finally, the utility of the partial observable
updates is demonstrated via various simulations including the trust estimation
case.

Keywords: subjective logic, partial observations, Dirichlet distributions,
uncertain information, trust management

1. Introduction

Decision support systems have demonstrated great utility in many different
applications in the commercial and military sectors [1, 2, 3].The performance
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(Murat Şensoy), supriyo@ucla.edu (Supriyo Chakraborty), grdemel@us.ibm.com (Geeth de
Mel)

Preprint submitted to Information Fusion January 26, 2015

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by eResearch@Ozyegin

https://core.ac.uk/display/67675676?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1


of such systems has been steadily improving over the years as they incorporate
big data [4] and collect data about users’ preferences [5]. However, in all of
these applications, such systems simply retrieve existing information. There is
a desire for decision support systems to augment human intelligence beyond
retrieving information by predicting the evolution of current events to help rec-
ommend potential actions. This ability is termed situational awareness [6] and
is currently a human cognitive function. There have been some efforts to achieve
situation awareness through multi-agent architectures [7, 8]. Furthermore, situ-
ation awareness concepts and principles can in turn enhance multiagent systems
in a wide-range of applications [9, 10]. The problem is that the world is uncer-
tain. Quantum issues aside, one might argue that complete knowledge of the
state of the world at any instance (including the cognitive state of all human
actors in this world) enables one to predict how the world state evolves over
time. However, the complete knowledge at the necessary precision is unattain-
able, and at the fidelity at which one can model the world in a computer (or in
ones head), it tends to be highly probabilistic. For instance, when one drives to
work in the morning, there is a probability that they will encounter traffic. Of
course, one can listen to the radio and nowadays they can also use the GPS in
their smartphones to determine if this probability is near one or zero. However,
there is always a chance that a very recent accident will cause one to get stuck
in unforseen traffic. The determination of this exact probability is obtained
by collecting evidence similar to rolling a weighted die. There is always uncer-
tainty associated to finite evidence, and the uncertainty is significant when the
evidence is limited. In short, decision support systems must be able to reason
and predict over such uncertainty.

Because of the prevalence of uncertainty, reasoning under uncertainty has
a very rich history [11]. Certainly, probability distributions provide a repre-
sentation of uncertainty, and Bayesian approaches provide sound methods to
manipulate these distributions. However, many argue that Bayes’ rule is unable
to properly handle conflicting evidence, and many alternatives to probability
theory such as belief theory [11, 12, 13] and fuzzy set theory [14] have emerged
to enable fusion of information under these conflicts. At this point, it is unclear
that the issue is with Bayesian reasoning per se, or with exploitation of a limited
version of Bayes (first order versus higher order [15]).

Recently, Subjective Logic (SL) has emerged as a probabilistic logic that
exploits second order Bayes to incorporate uncertainty by connecting the be-
lief mass assignment (BMA) to a Dirichlet distribution [16, 17]. It provides
a rigorous and computationally efficient method to represent and reason over
human generated or automated beliefs in face of uncertainty. Applications of
SL include trust management [18], Bayesian networks [19], and fusion [20, 17].
In short, SL provides effective tools to manage and combine beliefs over a set
of mutually exclusive attribute states from multiple human or software agents.
At a given point in time, an agent’s belief, known as a subjective opinion, is
the result of a prior belief and a set of observations. The uncertainty of the
belief represents the reliance on the prior, and the uncertainty decreases as the
agent incorporates more observations to form the beliefs over the set of attribute
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states.
SL includes many operations to fuse and infer over subjective opinions from

many different agents. These opinions are built through a set of observations.
Each observation is the occurrence of one of the mutually exclusive attribute
states as observed at a given time. The collection of observations forms the
evidence, which is the number of times each of the mutually exclusive attribute
states manifest in the past observations. This is akin to rolling a weighted
die multiple times and tabulating the results of the rolls. For instance, the
probability of encountering traffic is formed by counting the number of past
instances of encountering traffic or not over a stretch of roadway at a similar
time of day.

To make these notions even more concrete, let us consider another moti-
vating example where one wants to understand the criminal activity within a
city. Specifically, one wants to understand if a crime happens, what is the
probability that the crime occurs in any one of the city districts. Without any
initial data, one might look at socio-economic factors to develop an initial set
of probabilities. Over time, one can log where a crime occurs and start to use
these observations to update the probabilities. Clearly, as more observations
are logged, the certainty associated with the generated probabilities increases.
SL is well suited to infer the probabilities of a crime occurring in the districts
and the uncertainty associated to these probabilities.

Now, let us assume that one is interested in where criminals live. The ques-
tion is now when a crime occurs, what is the probability that the perpetrator
lives in a particular district. Like before, one can start with a prior set of prob-
abilities based upon the socio-economics factors. Furthermore, when a crime
occurs, the location of the crime is readily available in the police report. How-
ever, the identity of the perpetrator may or may never be discovered. Therefore,
it is generally not possible to log where the perpetrator lives. Sometimes, this
information can be determined with great certainty when the criminal is caught.
Most likely, one can only incorporate the occurrence of the crime as a partial
observation through statistical models that link the probability of where the
perpetrator lives conditioned on where a crime occurs. For instance, a criminal
may not operate in his/her immediate neighborhood where he/she can easily
be identified, and a criminal may not want to venture too far away either. This
contextual information can help answer the questions of the distribution of crim-
inals over the various districts within a city. This scenario is an example of a
geospatial abduction problem (GAP) [21]. SL is suited to tackle such appli-
cations, but the notions of how to incorporate statistical (and not just hard)
evidence of the appearance of an attribute (the home district of a perpetrator)
need to be developed within the SL framework.

Another example of statistical evidence occurs in reputation systems. SL
has been incorporated in reputation systems to form opinions about the trust-
worthiness of other agents to act honestly in a financial transaction [22]. It
assumes, however, that one can clearly label a prior transaction as being hon-
est or not. Many times, the trustor can only determine the likelihood that the
trustee actually had cut corners and provided a product inferior than advertised.
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This work extends the theory of SL to enable the update of the BMA under
such partial observations where one piece of evidence is not a result of the die
roll, but a measurement of the die roll indicating the likelihood of the result.
Our preliminary work considered sequential updating of opinions from single
partial observations [23] by approximating the updated posterior distribution
by a Dirichlet distribution through moment matching. This paper extends these
results in two respects. First, it considers an update that incorporates multiple
observations. Second, the preliminary work in [23] assumes that the likelihoods
are known precisely without demonstrating how they are obtained. This paper
shows an example of how to derive the likelihoods for a trust estimation applica-
tion where trustworthy behavior after each transaction is not directly observed.
Specifically, this paper demonstrates the likelihood update for trust estimation
where agents share opinions about various propositions. To this end, the like-
lihood that an agent’s opinion is an honest report given the trustees opinion
about the same proposition is formulated. The ability to rigorously update
the subjective opinions about agents from these partial observations provides a
novel and important contribution in the area of trust estimation.

The rest of this paper is organized as follows. We present the related work
in Section 2. Some basic concepts about Dirichlet distributions and the mathe-
matical notations used in this paper are given in Section 3. Section 4 reviews SL
and demonstrates belief updates in SL for fully visible observations. Then, Sec-
tion 5 expands SL to incorporate partial updates. Examples of the behavior of
partial updates are presented in Section 6, and Section 7 derives the information
consistency likelihood for trust estimation. Simulations to evaluate the perfor-
mance of partial observation updates in general and for the trust estimation
application are provided in Section 8. Finally, Section 9 provides concluding
remarks.

2. Related Work

We group prior work into two broad categories. The first category includes
work that focus on the development of SL as a logic technique. The second
category outlines the effort in the direction of trust management and reputation
based systems.

2.1. Development of SL

This work is most directly influenced by Jøsang’s efforts to develop SL [16,
17]. SL is a type of probabilistic logic that explicitly takes uncertainty and
belief ownership into account. A formal introduction to SL is presented in
Section 4. In general, SL is suitable for modeling and analyzing situations
involving uncertainty and incomplete knowledge. It builds upon the extensive
work of evidential reasoning under uncertainty with extensive influence from the
seminal theory of Dempster and Shafer [11]. Arguments in SL are subjective
opinions about propositions. The key aspect of SL is that it expresses an opinion
as a Dirichlet distribution and maps the parameters of this distribution to a basic
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belief assignment. The interpretation of an opinion as a Dirichlet distribution
leads to a rigorous calculus for many logical operations within SL [16, 17, 19,
20, 24, 25].

Within the construct of belief theory, much effort has been devoted to un-
derstand how conflicts during fusion of opinions should be spread over various
belief assignments [12, 13]. Unfortunately, the notion of the best fusion rule is
still a matter of debate because it ultimately is situation dependent. In essence,
the best fusion rule depends on how the beliefs were formed in the first place. By
relating opinions to Dirichlet distributions, SL provides a rigorous means to rea-
son over opinions about propositions whose attributes manifest probabilistically
over independent observations. For independent observers of the instantiations
of such propositions, cumulative fusion is optimal [25]. While much of the effort
in belief theory is devoted to fusion of beliefs, little effort has been made to
consider how these beliefs were formed in the first place.

In many applications in SL, beliefs within opinions emerge from direct obser-
vations. In these cases, SL has proven very powerful. For instance in multi-agent
systems, SL is used in a large range of research problems from trust model-
ing [26, 27, 24, 28] and argumentation [29] to knowledge representation [30] and
information fusion [31].

2.2. Trust Management Systems

The Internet has enabled people from all over the world to interact in social
and/or business contexts without necessarily any physical, e.g., face to face,
connection. This is all possible due to trust and reputation systems such as
online reviews that enable people to evaluate the reliability and veracity of po-
tential associates. Numerous trust and reputation systems have been proposed
in the literature, and we refer the reader to some excellent surveys for a more
comprehensive view of the technology [32, 33, 22]. Because this paper applies
the partial SL update to trust estimation, this subsection focuses on reviewing
related trust management systems that represent trust as a beta distribution.

Jøsang and Ismail proposed the Beta Reputation System (BRS) [34]. In the
BRS, modeling trustworthiness of an agent y is reduced to computing the sub-
jective opinion for the binary proposition “y is trustworthy”. The corresponding
opinion is represented as a beta distribution with parameters (r+1, s+1), where
r and s are the numbers of positive and negative outcomes of interactions with
the agent y, respectively. In BRS, trust opinions about the agent are collected
from a number of reputation providers and these opinions are fused. However,
some malicious agents may disseminate misleading opinions.

Whitby et al. extended BRS to filter out misleading opinions provided by the
malicious agents. This approach filters out those opinions that do not comply
with the significant majority by using an iterated filtering approach [26]. Hence,
this approach assumes that the majority of reputation providers honestly share
their opinions; liars are in the minority.

Teacy et al. proposed TRAVOS [27], a trust modeling approach similar
to BRS. The main difference between BRS and TRAVOS is the way they fil-
ter misleading opinions. While BRS uses the majority of ratings to filter out
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unfair ratings from information sources, TRAVOS uses the personal observa-
tions about these sources to derive some evidence about their trustworthiness.
That is, TRAVOS keeps a history of information sources and their opinions
about propositions. To measure the trustworthiness of a source, an informa-
tion consumer counts how many times their opinions agree and disagree for the
same propositions. The number of agreements and disagreements are taken as
amounts of positive and negative evidence and used to model trust in the source
using beta distributions. Hence, unlike BRS, TRAVOS does not assume that
the majority of the provided opinions are trustworthy; however, it requires an
opinion history of a source to estimate its trustworthiness.

Zhang and Cohen proposed the personalized approach to calculate trust
based on SL. This approach measures the trustworthiness of agents using two
metrics [35, 36]: 1) private reputation calculated by comparing the opinion of
the source with the personal observations and 2) public reputation estimated by
comparing the opinion of the source and the opinions from other sources about
the same propositions.

In BRS, TRAVOS, and the personalized approach, subjective opinions about
the trustworthiness of agents are calculated for a fixed base rate (i.e., 0.5). Bur-
nett et. al proposed to learn trustworthiness of agents using machine learning
methods based on their observable features. Then, the estimated trust values
are stereotypical and used as base rates in SL-based trust models [28]. That is,
the effect of the stereotypical trust values are reduced as more evidence about
the trustworthiness is observed. When there is no evidence observed about the
trustworthiness of agents, the stereotypical trust values determine their trust-
worthiness.

Jøsang et. al explored different types of trust propagation using SL [18, 37].
Trust propagation models how new trust relationships can be derived from pre-
existing trust relationship. Trust transitivity is a relatively well-studied type of
trust propagation. Fusion of derived trust values is an important element of trust
propagation. Jøsang et. al investigated a set of models that can be implemented
using SL operators. Later, Jøsang and Bhuiyan proposed a method for optimal
trust network analysis using SL [38]. Their approach is shown to be optimal
since it does not require simplifications over trust graphs (e.g., by removing
relationships).

Oren et. al proposed to use SL in an argumentation framework [29] to
support evidential reasoning. Sensors are used within the proposed framework
as sources of evidence. The collected evidence is used to form subjective opinions
over arguments and do evidential reasoning. They introduced a dialogue game
and a decision procedure allowing agents to decide which arguments to advance.
Oren et. al showed that an SL-based approach for argumentation can cope with
a number of problems that existing frameworks could not deal with.

Semantic Web is an important vision for the next generation of the Web.
Unfortunately, knowledge representation standards for the Semantic Web can-
not accomodate probabilistic and uncertain information. On the other hand, SL
is a powerful probabilistic logic that can represent and reason with uncertainty.
Ceolin et. al argued that SL and the Semantic Web can mutually benefit from
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each other. They proposed three different extensions to enhance Semantic Web
with SL to accommodate uncertainty and probabilistic reasoning [30].

SL has a set of fusion operators that are very useful to combine evidence (i.e.,
subjective opinions) from different sources. Trust approaches such as TRAVOS
and BRS are based on cumulative fusion operator of SL [25]. However, more
complicated fusion operators have also been developed. Sensoy et. al pro-
posed to detect and resolve conflicts between subjective opinions about the
same propositions before fusion [31]. They showed that the conflict resolution
before fusion may significantly improve the performance of fusion in multi-agent
settings.

In all the approaches described above, subjective opinions are calculated
based on the totally observable evidence. This is a significant limitation, since
the evidence may not be totally observable in many settings. In this paper,
we propose a technique that incorporates partially observable evidence while
calculating subjective opinions. Our approach has a potential to enhance a wide
range of existing applications of SL in multiagent systems and other domains.

3. Mathematical Notation and Properties of the Dirichlet Distribu-
tion

All vectors in this paper are column vectors and are represented in boldface
such as x where the k-th element is given by xk. The transpose of x is denoted
as xT .1 The elementary vector ej is a vector of all zeros except that the j-th
element is one, i.e., ej,k = δj,k where δj,k is the Kronecker delta that is zero for
k 6= j and one for k = j.

The Dirichlet distribution is a probability distribution function (pdf) for
possible values of the probability mass function (pmf) p that describes the
probability for the manifestation of the particular state from the K attribute
states. It is characterized by K parameters α and is given by

fβ(p|α) =

{
1

B(α)

∏K
i=1 p

αi−1
i for p ∈ SK ,

0 otherwise,
(1)

where SK is the K-dimensional unit simplex,

SK =
{
p|
∑K
i=1 pi = 1 and 0 ≤ p1, . . . , pK ≤ 1

}
,

and

B(α) =

∫
SK

(
K∏
i=1

pαi−1i

)
dp (2)

=

∏K
i=1 Γ(αi)

Γ
(∑K

i=1 αi

) (3)

1In this paper, the transpose operator is used only for vectors, and the use of T in xT for
a scalar x refers to the variable T .
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is the K-dimensional multinomial beta function [39]. The β in the subscript of
fβ(·) is used to signify that the pdf is Dirichlet. A general pdf is represented
without the subscript as f(·). When K = 2, the Dirichlet distribution simplifies
to the beta distribution.

The values for the αk’s relative to each other are equivalent to the expected
value for the Dirichlet distribution, i.e.,

mk =
αk
S
, (4)

and the second order (noncentral) moment is given by

vk =
αk(αk + 1)

S(S + 1)
, (5)

for k = 1, · · · ,K where S is the Dirichlet strength given by the sum of the α’s,
i.e.,

S =

K∑
i=1

αi. (6)

It is easy to see that the second order moment can be expressed by the mean
and Dirichlet strength as

vk = mk
mkS + 1

S + 1
, (7)

and the Dirichlet strength can be computed from the moments of any of the K
marginals as

S =
mk − vk
vk −m2

k

. (8)

Note that for a general distribution, the ratio given in (8) varies over k.
The Dirichlet distribution peaks near its mean value (4).2 The Dirichlet

strength given by (8) represents the “spread” or variance of the Dirichlet distri-
bution around its peak. Equivalently, it represents the strength in the confidence
of the mean to characterize the actual ground truth for p. As S increases, the
peak becomes higher and narrower. In the limit, as S → ∞, the Dirichlet
converges to a Dirac delta function.

The partial observation update formulation will exploit various properties
for the expectation of Dirichlet distributions. Let Eα[g(p)] represent the the
expected value of g(p) when the distribution of p is Dirichlet with parameter
α. When g(p) is a polynomial function of the elements of p, the order of the
expectation can be simplified via two properties. The first property alters the
Dirichlet parameters for the expectation.

Property 1

Eα[pkg(p)] =
αk
S
Eα+ek [g(p)]

2As the Dirichlet strength increases to infinity, the peak and mean become arbitrarily close
to each other.
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Proof See Appendices.

The second property preserves the Dirichlet parameters for the expectation
for reducing the order of a T -th order (noncentral) moment.

Property 2

Eα[pi1pi2 · · · piT ] =
αiT + δi1,iT + · · ·+ δiT−1,iT

S + T − 1
Eα[pi1pi2 · · · piT−1

]

Proof See Appendices.

4. Subjective Logic

SL is a probabilistic logic where propositions such as the location of a crime
in a city can take on one of K mutually exclusive attributes, e.g, city districts, at
any observation time [16, 17]. The subjective opinion characterizes the belief in
the probabilities that any of the K attributes will appear at a given observation
time. The subjective opinion also characterizes the uncertainty related to these
beliefs. Formally, SL considers a frame of K mutually exclusive singletons by
providing a belief mass bk for each singleton k = 1, . . . ,K and providing an
overall uncertainty mass of u. These K+1 mass values are all non-negative and
sum up to one, i.e.,

u+

K∑
k=1

bk = 1, (9)

where u ≥ 0 and bk ≥ 0 for k = 1, . . . ,K.

SL also includes a base rate probability ak for each singleton and a non-informative
prior weight W . The collection of all the parameters for agent s about proposi-
tion x forms agent a’s subjective multinomial opinion ωxs = [ (bxs )T uxs (ax)T W ]T ,
where the superscripts and subscripts indexes the proposition and agent, respec-
tively. In most cases in this paper, when the proposition and agent are implicit,
the superscripts and subscripts are not used. The base rate values represent
initial (or prior) information about the probability of a singleton emerging for
any given observation. The inclusion of the belief and uncertainty values along
with the base rates and non-informative prior weight represent the accrued ev-
idence regarding the probability of any singleton appearing in an observation.
Specifically, these values map to a Dirichlet distribution for the possible pmf
that is controlling how singletons appear in observations. The parameters of
the Dirichlet distribution are related to the multinomial opinion values via

αk =
Wbk
u

+Wak. (10)

Likewise, using (9), solving for bk and u in (10) for k = 1, . . . ,K, leads to the
mapping of α to the multinomial opinions

u =
W

S
, (11a)

bk =
u

W
(αk −Wak). (11b)
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The uncertainty is inversely proportional to the Dirichlet strength S. Note that
the disbelief for any particular attribute is the sum of the other beliefs, i.e.,

dk =
∑
i6=k

bi (12)

When the size of the frame is K = 2, the opinion simplifies to the special case
of a binary opinion for a binary logic.

The expectation probabilities p̂k of a subjective opinion is defined as the
mean of its corresponding Dirichlet distribution representation. Given (4) and
(10), it is clear that

p̂k = bk + uak. (13)

When the Dirichlet distribution represents the posterior after incorporation of
a number of observations, p̂ represents the minimum mean square error (mmse)
estimate of the ground truth appearance probabilities given these observations.

The cumulative fusion of two subjective opinions consists of mapping opin-
ions into the Dirichlet parameters, summing up the parameters while taking into
account not to double-count the baseline rates, and then mapping back into the
multinomial opinion space [20]. This method for fusing implies that subjective
opinions are formed by observations that increment the Dirichlet parameters so
that fused opinions account for the aggregate of these increments. Given that
the current multinomial opinion corresponds to Dirichlet parameters α, then the
prior distribution for p is fβ(p|α). The updating of the opinion is accomplished
by tabulating which attributes manifest for each observations. These manifes-
tations are controlled by the ground truth probabilities p, and the probability
of the observations given p is given by the multinomial distribution. Since the
Dirichlet is the conjugate prior of the multinomial distribution, the posterior
is Dirichlet where the Dirichlet parameters are updated by incrementing the
parameter corresponding to which attribute appears. Specifically, for a given
observation, the probability of observing the attribute as the i-th singleton, i.e.,
z = i, given the pmf is p is simply prob(z = i|p) = pi. Therefore, it is easy to
show that the posterior for p given the observation z is

f(p|z = i) =
pifβ(p|α)∫
P pifβ(p|α)dp

, (14)

= fβ (p|α+ ei) . (15)

In short, when a single observation reports the occurrence of the i-th singleton,
the updated Dirichlet parameters are simply

α+
k = αk + δk,i (16)

for k = 1, . . . ,K. The updated belief values and uncertainties are:

b+k =
Wbk + uδk,i
W + u

, (17)

u+ =
Wu

W + u
.
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This updated multinomial opinion represents the expected pmf for the singletons
via (13), and the uncertainty is related to the variance of the underlying assumed
Dirichlet distribution of the singleton pmf. Overall, a multinomial opinion is
formed by simply counting the occurrences of singletons to update the Dirichlet
parameters, and equivalently, the multinomial opinion values. Typically, the
prior weight W = 2. It represents the strength of the prior in influencing
updated beliefs relative to the observation as seen in (17).

When removing the prior from the Dirichlet parameters, the resulting val-
ues represent the equivalent number of times a particular attribute is observed
when rolling the dice. It is well known that for N dice rolls with ground truth
probabilities p, the Cramer-Rao lower bound (CRLB) for each marginal is

CRLBk =
pk(1− pk)

N
. (18)

Given that the estimate p̂ as a maximum a posterior estimate is asymptoti-
cally Gaussian, unbiased and efficient, we can approximate the variance of the
estimate via

VARk ≈
p̂k(1− p̂k)u

W
, (19)

where the Dirichlet strength W/u is the equivalent number of dice rolls when
including the prior as reflected in the expectation probability p̂k. Furthermore,
one can define bounds

Up = p̂k + erfinv(γ)
√

2 ·VARk, (20)

Lp = p̂k − erfinv(γ)
√

2 ·VARk,

such the ground truth should be bounded by Lp ≤ pk ≤ Up with probability γ.
Note that erfinv(·) is the inverse of the standard error function.

The fully observable SL update is completely amenable to the Dirichlet dis-
tribution because the posterior is Dirichlet. This is not true for partial observ-
able updates as shown in the next section. In fact, many operations that exist
in SL for multinomial or just for binary opinions are not completely amenable
to a mapping to the Dirichlet distribution in the sense of fusion and updates
from observations. One example is the “and” or multiplication operation for
binary opinions [40]. SL is a tractable framework, but it approximates belief
propagation via parameters of a Dirichlet distribution. For any operation in SL,
the operands are assumed to follow the Dirichlet distribution. A Dirichlet dis-
tribution is fitted to the output of the operation in a manner that preserves the
mean. However, to maintain the properties of SL, the variance is approximated.
Usually, the uncertainly is maximized under logical constraints. We assert that
the accuracy of the uncertainty is how close γ is to the fraction of times the
ground truth is actually bounded by (20), and we believe that the quality of
any SL operator should also be evaluated based upon this uncertainty criterion.
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p z x 

N 
z: full but hidden observation 
x: partial observation of z 

Figure 1: Plate notation describing N full and partial observations of the hidden attribute
states used to estimate the state probabilities p. Traditional subjective logic presumes that
x is the full state observation z.

5. Measurement Updates for Subjective Logic

Usually, it is not possible to update beliefs in attributes by directly observing
the attribute at a given sampling time. Rather, a measurement is made that
is statistically related to the occurrence of the attribute. The measurement
x can be viewed as a partial observation, i.e., a random vector drawn from a
distribution that depends on the full (but hidden) observation z of the attribute
state (see Figure 1). The likelihood of each of the attribute states is given by
the probability of the measurement conditioned on the singletons, i.e.,

l
(t)
k = f(x|z = k). (21)

The superscript t simply indexes the observation, which happened to lead to
the measurement x. The superscript is only used in cases where multiple obser-
vations are used to update the subjective opinion at once.

This paper refers to (21) as the partial observation analogous to a partial
observation in partial observable Markov decision processes [41]. In essence, the
true observations are hidden similar to states in a hidden Markov model [42].
The likelihood function is very natural in state estimation/track filtering [43]
and in pattern classification [44]. It represents abductive reasoning where the
partial observation that is measured x is the consequent, the full observation
z is the antecedent, and z is inferred through the likelihoods f(x|z = i) that
serve as the conditionals. This abduction process is employed when deductive
reasoning [19, 45] is not possible because the number of possible states for x is
too large to learn the necessary probabilities of z conditioned on all manifesta-
tions of x. On the other hand, the machine learning literature provides many
tools to discover the likelihood functions through neural networks, kernel meth-
ods, etc. [46, 47]. Nevertheless, learning the likelihood functions is in general
still a difficult and not completely solved task as it requires a large number of
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ground truthed data samples, and the likelihoods can be sensitive to operat-
ing/environmental conditions of how the data is collected. In many cases, the
likelihood function emerges naturally from a physical or generative model, and
Section 7 provides such an example for trust estimation. This section expands
SL so that it can update beliefs given these partial observations by assuming
the likelihood functions are known perfectly. Future work will investigate the
implications of incorporating uncertainty about the likelihood values that can
arise when a machine learning technique is employed to estimate them.

5.1. Näıve Belief Update

The näıve approach for the partial observation update is to spread the mass
of the Dirichlet update in (16) via the normalized likelihood

α+
k = αk +

lk∑K
i=1 li

. (22)

For the case of a visible update where the value of z is known, i.e., lk = δi,k,
then (22) simplifies to (16). While this näıve approach can be viewed as a
generalization of the visible observation update, it does not yield a posterior
Dirichlet distribution that is a good fit to the actual posterior distribution of
the observation probabilities p, i.e., the pmf describing the occurrence of the
attribute states. For multiple observation l(t) for t = 1, . . . , T , then (22) can be
applied in sequence. It is easy to see that the final parameter values α+ do not
depend on the ordering of how the observations are updated.

5.2. Actual Posterior after Measurement Update

The likelihood update determines the posterior observation probabilities p
given the current subjective opinion and measurement. Then one fits a Dirichlet
density to the posterior in order to approximate the updated subjective opinion.
This derivation starts with the joint pdf of the measurement, the hidden obser-
vation, and the observation probabilities conditioned on the current multinomial
opinion, which is

f(x, z = i,p|α) = f(x|z = i)prob(z = i|p)fβ(p|α),

= lipifβ(p|α). (23)

Then marginalization to remove the hidden variable z leads to

f(x,p|α) =

(
K∑
i=1

lipi

)
fβ(p|α), (24)

so that the posterior for the observation probabilities after the measurement
update is

f(p|α,x) =
1

C

(
K∑
i=1

lipi

)
fβ(p|α) (25)
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where C is the normalizing constant so that the posterior integrates to one.
Note that (25) is invariant to the scaling of the likelihood. When the likelihood
is zero for all classes except one, then (25) simplifies to (14), which means that
the observation of the target class is completely observale. On the other hand,
when all classes have equal likelihoods, (25) simplifies to fβ(p|α), which means
the updated beliefs are equivalent to the previous belief. In other words, the
measurement is vacuous for the case of equal likelihoods. Clearly, the näıve
approach given by (22) is not properly updating beliefs for the vacuous case.

In [23], the method of moments is used to approximate (25) by a Dirichlet to
determine the updated α+. This updating process can be applied in sequence
for multiple observations. However, unlike the näıve method, the ordering of
the observations does lead to different results. Instead, it is possible to update
the belief after collecting the likelihoods for T partial observations. This does
provide a more accurate subjective opinion because the Dirichlet approximation
is evoked less often. This section provides various methods to perform an update
from multiple partial observations at various tradeoffs of complexity. All of the
methods start with the posterior that is the result of applying (25) in sequence
so that after T observations

f(p|α,X T ) =
1

C

T∏
t=1

(
K∑
i=1

l
(t)
i pi

)
fβ(p|α), (26)

where X T = {l(1), . . . , l(T )} is the set of T partial observations. The Dirichlet
approximation needs to compute the moments of the posterior. Algorithm 1
provides the basic method of moments calculation based upon the primitive
calculation

calcint(α;T, l(1), . . . , l(T )) =

∫
SK

T∏
t=1

(
K∑
i=1

l
(t)
i pi

)
fβ(p|α)dp. (27)

It is easy to see that (27) is the normalizing constant C in (26). The Dirichlet
distribution is characterized by K parameters. The first K − 1 degrees of free-
dom are used to exactly match the means of the marginal of (26) so that the
relative values of α+ are obtained within a scaling factor. The final degree of
freedom adjusts the Dirichlet strength to minimize the squared error between
the marginal variances of (26) and that of the Dirichlet approximation, i.e.,

S+ = arg min
S∗

K∑
k=1

(
vk −mk

mkS
∗ + 1

S∗ + 1

)2

. (28)

Note that only the noncentral moments need to be considered since the means
match exactly. Solving for the point where the derivative with respect to S∗

goes to zero leads to line 10 of Algorithm 1. It is easy to show that for K = 2,
the variance fit is also exact. For K > 2, the number of Dirichlet parameters
does not offer enough degrees of freedom to fit both the means and variances of
the K marginals. As will be shown later, it is possible for some of the Dirichlet
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Algorithm 1 Partial Observable Update

Input: Subjective opinion ω = (b, u) and T partial observations l(1), . . . , l(T )

Implicit: Base rate probability a and the non-informative prior weight W
Output: Updated subjective opinion ω+ = (b+, u+)

1: α = Wb
u +Wa

2: S =
∑K
i=1 αi

3: d = 0
4: for i = 1, . . . ,K do
5: mi = calcint(α+ ei;T, l

(1), . . . , l(T ))αiS
6: vi = calcint(α+ 2ei;T, l

(1), . . . , l(T ))αiS
αi+1
S+1

7: d = d+mi

8: end for
9: m = m

d ,v = v
d

10:

S+ =

∑K
i=1(mi − vi)mi(1−mi)∑K
i=1(vi −m2

i )mi(1−mi)
(29)

11: S+ = max
{
S+, Wa1

m1
, . . . , WaK

mK

}
12: α+ = mS+

13: b+ = 1
S+ (α+ −Wa) , u+ = W

S+

parameters to decrease in value. The max operation in line 11 of Algorithm 1
ensures that the subjective beliefs never become zero.

The three methods for updating T partial observations simply differ in how
calcint is actually computed. The first method recurses over the attributes.
Specifically, calcint can be written as a sum of expected values

calcint(α;T, l(1), . . . , l(T )) =

K∑
i1,··· ,iT=1

(
T∏
t=1

l
(t)
it

)
Eα

[
T∏
t=1

pit

]
. (30)

Then, by Property 1,

calcint(α;T, l(1), . . . , l(T )) =

K∑
i1,··· ,iT=1

(
T∏
t=1

l
(t)
it

)
αiT
S
Eα+eiT

[
T−1∏
t=1

pit

]
,

=

K∑
iT=1

l
(T )
iT

αiT
S
Eα+eiT

 K∑
i1,··· ,iT−1=1

T−1∏
t=1

l
(t)
it
pit

 ,
=

K∑
iT=1

l
(T )
iT

αiT
S

calcint(α+ eiT ;T − 1, l(1), . . . , l(T−1)).

Algorithm 2 uses this attribute-based recursion to compute calcint.
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Algorithm 2 Attribute-based Recursion

calcint (α;T, l(1), . . . , l(T ))

1: S =
∑K
i=1 αi

2: if T = 1 then
3: y = 1

S

∑K
i=1 l

(1)
i αi

4: else
5: y = 0
6: for i = 1, . . . ,K do

7: y = y +
l
(T )
i αi
S calcint(α+ ei;T − 1, l(1), . . . , l(T−1))

8: end for
9: end if

10: return y

The second method recurses over the partial observations. Using Property 2,
(30) can be rewritten as

calcint(α;T, l(1), . . . , l(T )) =

K∑
i1,··· ,iT=1

(
T∏
t=1

l
(t)
it

)
αiT + δi1,iT + · · ·+ δiT−1,iT

T − 1 +
∑K
i=1 αi

Eα

[
T−1∏
i=1

pit

]
,

=

∑K
iT=1 l

(T )
iT
αiT

S + T − 1
Eα

 K∑
i1,··· ,iT−1=1

T−1∏
t=1

l
(t)
it
pit


+

1

S + T − 1

T−1∑
t′=1

Eα

 K∑
i1,··· ,iT−1=1

l̃
(t,t′,T )
it

pit

 ,

=

∑K
iT=1 l

(T )
iT
αiT

S + T − 1
cacint(α;T − 1, l(1), . . . , l(T−1))

+
1

S + T − 1

(
T−1∑
t′=1

calcint(α, T − 1, l̃(1,t
′,T ), . . . , l̃(T−1,t

′,T ))

)
,

where
l̃(t,t

′,T ) = δt,t′
(
l(t) ◦ l(T )

)
+ (1− δt,t′)l(t

′) (31)

and ’◦ ’is the Hadamard (elementwise) product. Algorithm 3 uses this observation-
based recursion to compute calcint.

The final method uses numerical integration (the rectangular method) to
calculate calcint. Specifically, the argument of the integral is calculated over
∆ points for each of the K dimensions for a total of ∆K points. This grid based
integration becomes more accurate as the number of points ∆ increases.

Overall, the partial observable update method can be calculated by one of
three methods. The computational complexity for these updates methods is
summarized in Table 1. The attributed-based recursion branches out by a fac-
tor of K (the number of attributes) at each recursion through T levels with a
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Algorithm 3 Observation-based Recursion

calcint (α;T, l(1), . . . , l(T ))

1: S =
∑K
i=1 αi

2: y =
∑K
i=1 l

(T )
i αi

S+T−1
3: if T > 1 then
4: y = ycalcint(α;T − 1, l(1), . . . , l(T−1))
5: for t = 1, . . . , T − 1 do
6: for t′ = 1, . . . , T − 1 do

7: l̃(t
′) = δt′,t

(
l(t
′) ◦ l(T )

)
+ (1− δt′,t)l(t

′)

8: end for
9: y = y + 1

S+T−1calcint(α;T − 1, l̃(1), . . . , l̃(T−1))
10: end for
11: end if
12: return y

Method Complexity Analytically Exact Approximation Frequecy

Attribute-based O(KT+1) Yes Every T observations
Observation-based O(K2T !) Yes Every T observations

Grid-based Integration O(TK2∆K) No Every T observations
Sequential T = 1 O(TK2) Yes Every observation

Table 1: Computational complexity of partial observation updates for T observations over K
attributes via different methods.

leaf complexity of K. Given the 2K calls to calcint in Algorithm 1, the over-
all complexity is O(KT+1). Likewise, the observation-based recursion branches
out by a factor of t (the number of remaining observations) at each recursion
through T (the total number of observations) levels. The computational com-
plexity at the leaf is O(K). Overall, the complexity of the partial observable
update via observation-based recursion is O(K2T !). Both the attribute-based
and observation-based recursions provide exact solutions within numerical pre-
cision. Finally, grid-based integration requires the calculation and summation of
∆K likelihood values where each likelihood value requires O(TK) to calculate.
Thus, the total complexity of partial observable updates by grid based inte-
gration is O(TK2∆K). Clearly the accuracy of grid based integration increase
proportionally with ∆ at the cost of increased complexity.

As a means to control computational complexity, one can sequentially run
the partially observable update one observation at a time. The sequential update
was initially proposed in [23]. Using either the attribute or observation-based
recursion for T = 1, it is easy to see that in Algorithm 1, the means and
noncentral second order moments are given by

mk =
αk +

l
(1)
k αk∑K
i=1 l

(1)
i αi

S + 1
, (32)
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vk =

(αk + 1)

(
αk + 2

l
(1)
k αk∑K
i=1 l

(1)
i αi

)
(S + 1)(S + 2)

. (33)

The equations match those given in [23]. The only difference is that the Dirichlet
strength in [23] was erroneously set so that the the Dirichlet parameters never
decrease. While this ensured that the subjective beliefs never become negative,
it also forced the uncertainty lower than it should be, which in turn lowered the
influence of later observations. As a result, the performances presented in [23]
are worse than what Algorithm 1 would exhibit.

For a single observation, the complexity is O(K2) so that the overall com-
plexity for sequentially updating T observations is O(TK2). Sequential up-
dating is attractive as its complexity is linear with respect to the number of
observations T , which is significantly less than the exponential complexity of
the attribute and observation-based recursions. However, the sequential update
makes more Dirichlet approximations. The grid-based integration is also linear
with respect to T , but it requires significantly more computations than sequen-
tial updating to achieve good accuracy due to the ∆K term. One could also
sequentially update the measurements in steps of T > 1. Section 8 investigates
both the execution time and the accuracy of these various update methods.

6. Partial Observation Update Properties and Examples

For T fully observable updates, the Dirichlet parameters can only increase,
and the overall Dirichlet strength increases from S to S + T . For partially
observable observations, the behavior of the updated parameters is more inter-
esting. For instance, it is possible for partial observations to cause a decrease
in some of the Dirichlet parameters. Therefore, Algorithm 1 has to include the
maximum operator to possibly adjust the Dirichlet strength so that the beliefs
never become negative. This section provides some theory and examples to
demonstrate how partial observations update the Dirichlet parameters, and in
turn, the subjective opinion.

First, it is shown that T partially observable updates can never increase the
Dirichlet strength from S to over S + T .

Property 3 Given a subjective opinion with an uncertainty of u, the updated
uncertainty u+ after incorporation of T partial observations is lower bounded
such that u+ ≥ W

W
u +T

. Furthermore, the lower bound is achieved if and only if

all observations are fully visible.

Proof See Appendices.

Property 3 demonstrates that partial observations can never decrease the
uncertainty lower than what visible (full) observations can accomplish. Con-
versely, as discussed in Section 5.2, vacuous observations do not change the
opinion and do not decrease uncertainty. While an ordinary partial observa-
tions is somewhere between vacuous and fully visible, the vacuous case does not
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represent an upper bound for the updated uncertainty. Usually, an observation
will decrease the uncertainty. However, this is not always the case as will be
illustrated below. To understand better how partial observations alter opinions,
we consider a single partial observation T = 1 of a binary opinion with a uni-
form prior, i.e., ak = 0.5 for k = 1, 2 and W = 2. The certainty, which is the
complement of the uncertainty, (or equivalently the Dirichlet strength), depends
on either how decisive the measurement is in terms of rejecting an attribute, i.e.,
the minimum likelihood is near zero, or how the observation likelihood corre-
lates with the opinion (or equivalently the Dirichlet parameters). The updated
opinions are invariant to the the overall scaling of the likelihood values as the
scaling is absorbed in the constant C in the prior as seen in (26). Thus for bino-
mial opinions, the likelihood can be parameterized by a scalar likelihood ratio
Λ = l1/l2 so that l = [ Λ 1 ]T . When Λ = ∞ or Λ = 0, the observation is
fully visible where attribute k = 1 or k = 2 is observed, respectively. Likewise,
when Λ = 1, the likelihoods for the binary attributes are equal, and the ob-
servations is vacuous. Note that the relevance between the partial observation
x and the corresponding full observation z in the sense of [51] can be derived
from Λ. When Lamda approaches zero or one, the full and partial observations
become completely relevant, but when Λ is equal to one, they are irrelevant.

For the first set of examples, the initial uncertainty is set to u = 0.1. Figure 2
plots the updated Dirichlet and opinion scores as a function of Λ. In these plots
Λ ≥ 1, because the Λ < 1 case is equivalently explained by transposing the
Dirichlet parameters α1 and α2, or equivalently b1 and b2. Figure 2(a) shows
that the incremental update in α1, i.e., ∆α1 = α+

1 −α1, is bounded by zero and
one, but α2 is never positive as shown in Figure 2(b). In fact, as shown later
in this section, the increment update of at least one Dirichlet parameter will
always be non-positive after a T = 1 update. When Λ = 1, the measurement is
vacuous, and the incremental update is always zero. This means that updated
SL opinion scores are equivalent to the initial scores. As Λ→∞, the observation
becomes visible and the incremental update is one for α1 and zero for α2. For
a given value of Λ, the incremental update becomes larger as the initial value
of α1 grows. Note that α1 + α2 = 20 since u = 0.1 and W = 2 (see (11a)).
In other words, the measurement strength increases as the Dirichlet parameters
demonstrate more bias towards the singleton being espoused by the observation
likelihood.

Figures 2(c)-(e) show the updated opinion scores as a function of Λ for
the first set of examples. Note that the curves in these plots correspond to
the curves in Figure 2(a) as the opinion scores and Dirichlet parameters are
related via the bijective transformations given in (10) and (11). For the vacuous
observations, the uncertainty remains at u = 0.1. When the initial opinion
favors the second attribute, i.e., α2 > α1, the uncertainty initially grows as
Λ increases. In these cases, the initial opinion conflicts with the indecisive
partial observations, which means these observations move the attribute beliefs
closer together in the updated opinion. Since the observations are indecisive,
the updated uncertainty increases so that future observations can repair errors
if these observations are incorrect. As the partial observations become more
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Figure 2: Updated parameters for various skew in Dirichlet parameters when the likelihood of
the observation is l = [Λ 1]T , u = 0.1, a = [0.5 0.5]T , and W = 2: (a) Incremental update
on α1, (b) incremental update on α2, (c) updated u, (d) updated b1, and (e) updated b2.
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decisive, i.e., as Λ→∞, the observation is taken to be correct and the updated
uncertainty decreases to the lower limit as stipulated in Property 3. Given
that u = 0.1 initially and W = 2, then by (17), the uncertainty decreases to a
value of u ≈ .0952. Eventually, all updated opinions reach this same lower limit
whether or not the observation conflicts with the initial opinion. The conflicting
observations simply converge to this limit slower.

Figures 2(d) and (e) demonstrate that when the observation likelihood is in
agreement with beliefs, the beliefs do not change very much, as the decrease in
the uncertainty can only change the beliefs by at most a value of 0.048. On
the other hand, when the observation likelihood is in disagreement with the
initial beliefs, mass is transferred between the two beliefs, and the transferring
of the mass becomes more pronounced as either the observation becomes more
confident, i.e., Λ increases, or as the initial opinion scores provides more mass
for b2 than b1.

The next set of examples demonstrate how Dirichlet and opinion scores
change for various values of uncertainty. In these examples, the belief masses are
equal, i.e., b1 = b2 = (1 − u)/2. Again, these plots demonstrate the transition
from a vacuous observation, i.e., Λ = 1, to a completely visible observation, i.e.,
Λ = ∞. Figure 3(a) demonstrates that for a fixed Λ, the incremental update
on α1 becomes larger as uncertainty decreases except when u = 1. Figure 3(b)
shows that this trend reverses for the incremental update on α2. This increment
update is never positive. Furthermore, it is zero for u = 1, which is an artifact
of the maximum operator in Algorithm 1 that regulates beliefs from becoming
negative. The use of this regulation is also why the u = 1 case demonstrates
the largest (instead of the smallest) increment in α1. As the initial uncertainty
goes to zero, the increase in the incremental α1 saturates. Figures 3(c)-(e) show
that the observations have greater impact when the initial uncertainty is higher.
This is simply a fact that the differences between the initial and updated values
for visible observations are larger (see (17)).

In all these examples, the observation likelihood is positively correlated to
the current opinion when α2 > α1 or b2 > b1, and it is negatively correlated
when α2 < α1 or b2 < b1. As can be seen from these examples, the decrease
in uncertainty is highly dependent on the how the observation likelihood corre-
lates to the current opinion. For instance, positive correlation leads to a larger
decrease. For stronger opinions, i.e., larger spread between α1 and α2, or for
stronger observations, i.e., larger Λ, the decrease in uncertainty is more pro-
nounced. Furthermore, the degree of the decrease in uncertainty also depends
on the value of uncertainty for the current belief. For multiple measurement
updates using sequential updating, the ordering of the observation likelihoods
in updating the beliefs matters, as some observation likelihoods better correlate
with the current opinion than others. However, as well be demonstrated in the
next section, sequential updating can achieve almost as good performance as in-
corporating all T observations at once. Therefore, the ordering of the sequential
updates should have limited impact on performance.

The negative increments for α2 in Figs. 2(b) and 3(b) is a usual consequence
for the T = 1 update.
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Figure 3: Updated parameters for various levels of uncertainty when the likelihood of the
observation is l = [Λ 1]T , b1 = b2, a = [0.5 0.5]T , and W = 2: (a) Incremental update on
α1, (b) incremental update on α2, (c) updated u, (d) updated b1, and (e) updated b2.
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Property 4 The Dirichlet parameter for the attribute associated to the smallest
likelihood value will never increase in value after a single T = 1 partial observ-
able update. The only cases when this Dirichlet parameter does not decrease in
value is when the observation is vacuous, fully observable, or the belief for the
attribute is zero.

Proof See Appendices.

Note that in Figures 2(b) and 3(b), α2 corresponds to the attribute with the
smallest likelihood, and its increment only achieves zero when Λ = 1, Λ → ∞,
or when u = 0 so that b2 = 0.

7. Consistency Likelihood and Trust Estimation

This section derives the likelihood for a trust estimation application where
a trustor agent is receiving subjective opinions from various sources, i.e., other
agents) about various binary propositions. For instance, the binary proposition
refers to the probability that the agent will be satisfied by a particular vendor
based up previous transactions. The trustor agent is collecting these opinions
about various vendors from various agents. At the same time, the trustor is
able to form its own subjective opinions about the vendors based upon its own
transactional history. The trustor wants to form an opinion about each agent
to determine the probability that an agent does not manipulate its subjective
opinion before reporting it. Then, the trustor can understand how to discount
and fuse all the agent reports to form more certain opinions about the various
vendors.

At a given instance, the trustor asks all the source agents to return their
binary opinions about a particular proposition (e.g., a vendor). Given that agent
i reports a binary opinion ωi such that the opinion corresponds to Dirichlet
parameters αi, then it means that the agent has collected ri = αi,1 − 1 and
si = αi,2 − 1 positive and negative evidences (e.g., transactional experiences
with a vendor).3 If the opinion reported by agent i is truthful (i.e., zi = 1), the
distribution for the pmf p of the proposition (about a vendor) due to this report
is given by the beta distribution4 with parameters [ ri + 1 si + 1 ]T , i.e.,

f(p1|zi = 1,ωi) =
pri1 (1− p1)si

B
(
[ ri + 1 si + 1 ]T

) . (34)

for 0 ≤ p1 ≤ 1.
On the other hand, when source i is not truthful (i.e., zi = 2), there may or

may not be any relationship between the reported opinion (about the vendor)
and the evidence that source i actually collected. For now, we assume that an
untruthful agent reports a random opinion that does not favor any value for p.

3Here it assumed that W = 2 and the prior is a = [ 0.5 0.5 ]T .
4The beta distribution is equivalent to the Dirichlet distribution when K = 2.
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In other words, the distribution for p given that the source’s report is untruthful
is uniform, i.e.,

f(p1|zi = 2,ωi) = 1. (35)

If the ground truth values are known to be p for the current proposition
(about a vendor), the probability that the trustor agent (source 0) collected
evidence associated to Dirichlet parameters α0 = [ ro + 1 s0 + 1 ] about the
same proposition is given by the binomial distribution

f(ω0|p1) =
(r0 + s0)!

r0!s0!
pr01 (1− p1)s0 . (36)

This binomial distribution assumes that the collected evidences r0, s0 are inte-
gers. To be more general, we extend the probability for any subjective opinion by
replacing the factorials with gamma functions using the fact that Γ(r + 1) = r!
for non-negative integer r. Then, the probability that the trustor has direct
opinion ω0 is given by

f(ω0|p1) =
1

(r0 + s0 + 1)B
(
[ r0 + 1 s0 + 1 ]T

)pr01 (1− p1)s0 . (37)

The likelihood that source i is truthful is the probability that the trustor
formed an opinion ω0 conditioned on a truthful source i reporting ωi, i.e.,

l1 = p(ω0|zi = 1,ωi). (38)

This likelihood is easily calculated using the conditional probability of the ob-
served opinion and the distribution of p given the reported evidence

l1 =

∫ 1

0

f(ω0|p1)f(p1|zi = 1,ωi)dp1. (39)

Using (34) and (37), this likelihood simplifies to

l1 =
1

r0 + s0 + 1

B([r0 + ri + 1 s0 + si + 1]T )

B([r0 + 1 s0 + 1]T )B([ri + 1 si + 1]T )
. (40)

Similarly, the likelihood that the source i is untruthful is computed using (35)
and (37) in a similar manner to be

l2 =
1

r0 + s0 + 1
. (41)

The trustor can compute trust for source i over multiple rounds by com-
paring its observed opinion to the opinion reported by the source. Each round
can consist of opinions for a different proposition as long as the observed and
reported opinions are about the same proposition. The above models provide a
rigorous method to compute either the likelihood that source i is truthful or the
likelihood that it is not reporting the actual observed opinions to the trustor
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agent. These likelihoods can be used to update a beta reputation system for
source i since the reported and collected opinions form a partial observation
about the veracity of source i with the likelihoods of trustworthy and non-
trustworthy behavior given by (40) and (41), respectively. For this case, the
likelihood ratio

Λi =
l1
l2

=
B([r0 + ri + 1 s0 + si + 1]T )

B([r0 + 1 s0 + 1]T )B([ri + 1 si + 1]T )
(42)

uniquely determines whether or not the current evidence points towards a truth-
ful source i or not. When Λ1 � 1 or Λi � 1, the observation about agent i
becomes fully visible, and the corresponding Dirichlet parameter is incremented
by one. When Λi = 1, there is no evidence favoring either hypothesis. In other
words, the evidence is vacuous, and the Dirichlet parameters are not updated.

8. Simulations

This section incorporates simulations to evaluate the utility of the various
extensions of SL for partial observable measurements. The first simulated ex-
ample considers a toy problem where a proposition can manifest into one of
K = 3 attributes where the appearance probabilities are p =

[
8
13

4
13

1
13

]
.

For each observation, the measurement conditioned on the appearance of the
j-th attribute is a 3D vector x = ej + n, where n is Gaussian measurement
noise of mean zero and a covariance matrix of Σ = σ2I, i.e.,

f(x|z = j) =
1

(
√

2πσ2)K
exp

{
− 1

2σ2
‖x− ej‖2

}
. (43)

Note that in the data space, the distances between the clusters representing
the K attributes, e.g., distance between attribute centroids, are all equal. The
spread σ2 controls the confidence of the resulting likelihoods. Here σ2 = 1,
which represents fairly poor class separation. Using this measurement model,
we simulated 300 partial observations of the attributes of the proposition. The
process was repeated over 1000 Monte Carlo simulations. Given the cluster
separation when σ2 = 1, the largest likelihood in l actually corresponds to the
currently appearing attribute about 63% of the time.

Figure 4 compares sequentially updating T = 1 or T = 5 partial observations
using exact calculations against updating all available observations at once via
the grid-based approximation with ∆ = 0.001. All updates are consistent in
that as more observations are incorporated, the expectation probabilities are
converging to the ground truth. Tables 2 and 3 summarize the plots by providing
the average bias and root mean squared (rms) error for each of the appearance
probabilities. The figure and tables do show that increasing T or using all
available observations does improve the bias, but only very slightly. The rms
error seems to be insensitive to the choice of how many partial observations to
incorporate at once. In short, performing a sequence of single partial updates
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Figure 4: Expectation probability of subjective opinion versus the number of accumulated
partial observations: (a) Proposed likelihood updates, (b) näıve updates, and (c) monotonic
likelihood updates from [23].
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Estimate T = 1 T = 2 T = 3 T = 4 T = 5 All T
p1 0.0184 0.0174 0.0165 0.0158 0.0152 0.0127
p2 0.0072 0.0074 0.0076 0.0076 0.0076 0.0029
p3 0.0256 0.0248 0.0240 0.0234 0.0228 0.0141
All 0.0171 0.0165 0.0160 0.0156 0.0152 0.0099

Table 2: The absolute bias for the three estimates of p averaged over the partial observable
measurements.

Estimate T = 1 T = 2 T = 3 T = 4 T = 5 All T
p1 0.0749 0.0750 0.0750 0.0751 0.0752 0.0746
p2 0.0682 0.0685 0.0689 0.0691 0.0694 0.0693
p3 0.0531 0.0528 0.0524 0.0521 0.0518 0.0507
All 0.0660 0.0661 0.0661 0.0662 0.0662 0.0656

Table 3: The rmse for the three estimates of p averaged over the partial observable measure-
ments.

is just about as accurate as incorporating all T observations at once despite
evoking the Dirichlet approximation many more times.

Figure 4(b) shows the performance of the näıve update. The näıve update
is clearly biased. It actually converges to the expected likelihood vector for the
given measurement and appearance models, which usually does not correspond
to the ground truth appearance probability. As the class separation become
infinitely good, i.e., σ2 → 0, the expected likelihood vector does correspond to
the appearance probability. On the other hand, as the class separation becomes
infinitely poor, i.e., σ2 →∞, the expected likelihood become uniformly 1/3. In
that case, the partial SL updates are vacuous, and the expectation probability
is also uniformly 1/3. The SL update correctly returns a completely uncertain
u = 1 opinion, but the uncertainty from the näıve update erroneously goes to
zero.

Figure 4(d) shows the performance of the partial observation update that we
initially proposed in [23]. In that method, the Dirichlet strength was erroneously
increased so that the Dirichlet parameters α never decrease after each update.
Therefore, we refer to this update as the monotonic method. The resulting
expectation probabilities are still unbiased, but the faster decrease in uncertainty
causes the convergence to slow down tremendously as compared to Figure 4(a).

Finally, Figure 5 demonstrates the accuracy of the uncertainty in the up-
dated opinions to actually represent the spread of the expectation probability.
For each update method, there are 300,000 estimates of p and we tabulated the
fraction of times the corresponding ground truth fall within the bounds given by
(20) for a desired probability. All the proper partial observation update meth-
ods demonstrate a fraction that equals the desired probability. The näıve and
monotonic methods do not straddle the slope one line. This could be attributed
to the bias. However, the bias is virtually zero for the monotonic method cal-
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Method t2/t1 t3/t2 t4/t3 t5/t4
Attribute 1.9778 3.1771 3.2863 2.9742

Observation 2.0382 2.8867 3.7419 4.9128

Table 4: Ratio of average execution times.

culating p2. Even in that case, the unnecessarily larger Dirichlet strength (or
smaller uncertainty) leads to tighter bounds so that a smaller fraction of ground
truth values fall within the bounds.

Figure 6 plots the average execution time to implement each update. Table 4
provides the ratio of times for incorporating T + 1 observations over the time
to incorporate T observations. These execution times are consistent with the
algorithm complexity as attributed-based recursion increases with T as KT and
observation-based recursion increases as T !. Figure 6(b) does show that the grid
based approximation increases linearly with respect to T , but it is more than
three orders of magnitude slower than a sequential T = 1 updates. It should
be noted that by T = 8, both exact recursion methods should exceed the grid
based approximation in execution time due to their exponential increase with
respect to T .

The next simulation involves evaluation of one agent’s opinions about the
ability of other agents to provide accurate opinions for various propositions. Ten
agents are simulated where the each agent is able to formulate an opinion about
a particular binary proposition by collecting between zero to ten fully visible
observations. The ground truth appearance probability for the proposition and
the number of collected observations are randomly drawn from the uniform
distribution. Nine of the agents reports their opinions to the trustor agent. Each
of the reporting agents manipulates their opinion about the proposition with a
given probability. If the opinion is manipulated, the agent reports a uniformly
distributed random opinion. Otherwise, the agent reports its true opinion. The
trustor agent uses its own opinion about the proposition to formulate an updated
opinion of the nine agents via the T = 1 partial observable update using the
consistency calculation from Section 7 for the likelihoods. The trustor opinions
about the other nine source agents are formed sequentially over 500 propositions.

Usually trust reputation systems treat trust updates as fully observable. As
in [48], the positive evidence is incremented by one when the absolute differ-
ence between the expectation probabilities of the trustor and reporting agent
is smaller than a threshold. Likewise, negative evidence is incremented by one
when this difference is larger than another larger threshold. This threshold
techniques is used as one baseline method in the simulations. TRAVOS is
a reputation system that estimates the trustworthiness of inaccurate sources
through a bining method that measures the probability of accuracy of a source
[27]. Specifically, it tabulates the trustor agent’s opinion whenever a reporting
agent’s opinion fall under a particular bin, and then it computes the probability
that the trustor agent’s opinion cover this bin. This estimated probability of

28



0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

Desired Bound

F
r
a

c
ti

o
n

 w
it

h
in

 B
o

u
n

d

 

 

Grid

T=1

T=5

Mono

Naive

(a)

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

Desired Bound

F
r
a

c
ti

o
n

 w
it

h
in

 B
o

u
n

d

 

 

Grid

T=1

T=5

Mono

Naive

(b)

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

Desired Bound

F
r
a

c
ti

o
n

 w
it

h
in

 B
o

u
n

d

 

 

Grid

T=1

T=5

Mono

Naive

(c)

Figure 5: Comparison of fraction of estimates that fall within uncertainty bounds versus the
desired probability γ for the various update methods: (a) p1, (b) p2, and (c) p3.
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Figure 6: Average executions time to update T partial observations: (a) Exact updates and
(b) grid based approximation with ∆ = 0.001.
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accuracy by TRAVOS serves as the second baseline method. Unfortunately,
TRAVOS does not report an uncertainty associated with this estimate so that
the estimate cannot be converted into a subjective opinion. 5

Figure 7 plots the expectation probabilities for the trustor agent’s opinion
about the other agents as it collects reported propositions as partial observa-
tions. The dotted lines in Figures 7 represent the ground truth probabilities
that a particular agent manipulates its reported opinion. Clearly, the likelihood
update provides a consistent estimate that converges to the ground truth. The
thresholding and binning methods are not converging to the ground truth, but
they are consistent in that they preserve the ordering of the ground truth. The
binning method of TRAVOS appears to exhibit much less bias than threshold-
ing. However, TRAVOS appears to converge slower than the other two methods.
Figure 7(d) demonstrates the accuracy of the uncertainty obtained from the like-
lihood updates. The plot does not show the TRAVOS result as the confidence
in the probability of accuracy is not provided as part of the TRAVOS computa-
tions. Overall, this simulation demonstrates the a well formulated likelihood can
be determined from modeling for updating SL opinions from partially observable
measurements.

TRAVOS then uses the probability of source accuracy to discount the sources
opinion for a proposition followed by consensus fusion of the discounted opinions.
Specifically, the distribution of p for the proposition is modeled as a mixture
of a beta distribution representative of the reported opinion and a uniform
distribution where the weights ore given by the probability of source accuracy.
TRAVOS then approximates this mixture distribution as a beta distribution
to formulate a discounted opinion by the method of moments methods similar
to its use in this paper. Finally, the discounted methods are fused via the SL
consensus operator. We implemented this discounting and fusion method to
compare the quality of the resulting opinions when using the source accuracy
opinions as shown in Figure 7. We also simulated the whitewashing attacks
in Peer-to-Peer systems, where malicious agents leave the society when their
reputation decrease and join back with new identities to whitewash their bad
reputation and abuse the system. To this end, after each round of sharing
propositional opinions, each reporting agent has a probability of Pl to leave,
and it is replaced by a new reporting agent with equivalent trustworthiness.
The trustor agent resets its trust opinion whenever an agent leaves. The trust
estimates presented in Figure 7 represent the case when Pl = 0.

Figure 8 reports the rms error of the expectation probabilities for the fused
opinions over the 500 propositions for different values of Pl. Clearly, discounting
demonstrates significantly better accuracy than simple consensus fusion. The
simple consensus fusion does not incorporate the trust estimates of the report-
ing agents; thus, its performance does not depend of Pl. All three discounting
methods exhibit larger error as Pl increases. The thresholding method exhibits

5Many trust and reputation systems do provide reliability measures for the reported
trust/reputation values as discussed in [33].
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Figure 7: Quality of trust estimates for the unreliable sources: (a) Expectation versus obser-
vations accumulated using consistency likelihood, (b) expectation versus observations accu-
mulated by thresholding, (c) expectation versus observations accumulated for TRAVOS, and
(d) comparison of fraction of estimates that fall within uncertainty bounds versus the desired
probability γ.
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Figure 8: The rmse for expectation probability of the fused reported proposition from unre-
liable sources versus the probability of agents leaving Pl after each round of sharing proposi-
tional opinions.

the largest error, but it is less sensitive to Pl. The likelihood trust estimates
lead to the best fused results. TRAVOS is much more sensitive to Pl due to
the slower convergence of the trust estimates for the source agents. TRAVOS
outperforms thresholding but as Pl goes to 0.1, the performance of both appear
to be converging. As Pl gets large, all discounting methods are basically dis-
counting all reported opinions for a given proposition by the prior trust estimate
and fusing these opinions with the non-discounted directly observed opinion of
the trustor agent.

When the propositions in this simulation represent opinions about other
agents such as sellers, this simulation represents a classical trust reputation
system where the trustor agent fuses direct evidence of the seller along with
discounted indirect evidence from the referral agents. The discounting of the
referral agents’ opinions then represents transitivity of trust whether it is done
as in TRAVOS [27] or as in SL [37]. These discounting methods can be justified
when manipulated opinions are completely random. However, as shown in [49],
the posterior opinion of the trustor’s opinion about any seller given his direct
evidence and the aggregate of the opinions from all referral agents about all
sellers is a sum of Dirichlet distributions. The modular process of discounting
opinions followed by consensus fusion in SL only approximates the discounted
opinions and subsequently the fused consensus opinions using pure Dirichlet
distributions. While the work in [49] provides the form for the (fused) posterior
distribution for the trustworthiness of each seller, it does not provide a practical
algorithm to compute it as the number of Dirichlet modes in the distribution
grows exponentially with the number of opinions. Future work needs to investi-
gate when and when not it is reasonable to use the Dirichlet approximation to
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compute an estimate of the seller trustworthiness posteriors.

9. Conclusions

SL presumes that direct evidence exists to develop subjective opinions. Most
reputations systems uses ad-hoc techniques to determine which type of behavior
(good, bad or indeterminant) is being observed so that the proper beta (or
Dirichlet) parameters are incremented. Despite the fact that direct evidence
is usually not available, it is usually possible to calculate the likelihood that
the observation is indicative of a particular attribute. In some applications, a
physical model can be employed to determine the likelihood. In other cases,
machine learning methods exist to discover the likelihood function, but learning
the likelihood can be challenging due to limited availability of training data
and variability in how the data can be collected. This paper expands SL to
enable such partial observable updates to opinions from these likelihood values.
Furthermore, a first order model is used to derive the likelihood functions for
a trust estimation application based upon consistency between reported and
observed subjective opinions about various propositions.

The evidential strength of the partial observable is upper bounded by that of
the fully visible observation. Interestingly, the partial observable updates do not
simply increment Dirichlet parameters. In general, some parameters decrement
slightly while other increase. A partially confident observation that conflicts
with the current belief can actually increase uncertainty, which never occurs for
fully visible (or confident) observations.

SL approximates the collected evidence in an opinion so that it corresponds
to a Dirichlet distribution. In the partial observation update, a Dirichlet dis-
tribution is fitted to the actual posterior by using the method of moments.
It is possible to incorporate multiple observations at once before evoking the
Dirichlet approximation. However, the multiple observation update exhibits
significantly more computational complexity, and the simulations demonstrate
negligible performance gains in terms of the expectation probability of the result-
ing SL opinions reflecting the ground truth. The simulations also demonstrate
that the uncertainty of the updated opinion does reflect the known confidence
that the resulting expectation probability reflects the ground truth.

When the likelihood functions are discovered via machine learning tech-
niques, there is naturally some uncertainty associated to the likelihoods. We do
have some preliminary work that investigates such uncertainty in this likelihood
[50]. Uncertain likelihoods is actually a form of SL abduction, where the partial
observation x is the consequent, the hidden observation z is the antecedent, and
the likelihoods f(x|z = i) serve as the conditionals. This form of abduction is
different than subjective logic abduction [17, 19, 51] where the antecedent is not
a discrete observation, but rather a proposition characterized by the appearance
probabilities for its possible mutually exclusive attributes. The abduction in this
paper updates the opinion about the appearance probabilities of a proposition
by abducing the update from the partial observation x. The work presented
in this paper is actually a special case of such abduction when the likelihood
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(or conditional) uncertainty is zero, and future work will expand this abduction
framework to consider the collection of observations to form subjective opinions
about the likelihood.

Finally, the uncertainty resulting from many SL operators does not necessar-
ily lead to performance bounds that reflect the proper proximity to the ground
truth. This happens either because the uncertainty is not derived to match the
variance of the actual resulting distribution for the appearance probabilities,
or because the resulting distribution is not well approximated by a Dirichlet
distribution. For example, the uncertainty related to the fused propositional
opinions in the trust example from Section 8 are not consistent with the ground
truth. As shown in [49], the derived opinions about propositions may not be
well represented by Dirichlet distribution. Actually, trust and propositional
opinions need not be summarized in a discounted opinion. Rather, it can be
better to fuse trust and propositional opinions of all agents jointly. Overall,
SL is attractive because of its computational simplicity. However, future work
needs to investigate under what conditions when SL can accurately evoke the
Dirichlet approximation, and when SL should not compress the representation.
Such work needs to consider various applications evoking different SL operators.
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Appendix A. Proof of Property 1

Proof

Eα[pkg(p)] =

∫
SK

pkg(p)

∏K
i=1 p

αi−1
i

B(α)
dp (A.1)

=
B(α+ ek)

B(α)

∫
SK

g(p)

∏K
i=1 p

αi−1+δi,k
i

B(α+ ek)
dp (A.2)

=
αk
S
Eα+ek [g(p)] (A.3)

The jump from (A.2) to (A.3) is the result of expressing the beta function via
(3) and exploiting the well known recursion property for Gamma functions, i.e.,
Γ(n+ 1) = nΓ(n) [52].

39



Appendix B. Proof of Property 2

Proof

Eα[pi1pi2 · · · piT ] =

∫
SK

(pi1pi2 · · · piT )

∏K
i=1 p

αi−1
i

B(α)
dp (B.1)

=
B(α+ ei1 + · · ·+ eiT )

B(α)
(B.2)

Likewise,

Eα[pi1pi2 · · · piT−1
] =

B(α+ ei1 + · · ·+ eiT−1
)

B(α)
, (B.3)

and the ratio of the two terms is

Eα[pi1pi2 · · · piT ]

Eα[pi1pi2 · · · piT−1
]

=
B(α+ ei1 + · · ·+ eiT )

B(α+ ei1 + · · ·+ eiT−1
)
, (B.4)

=
Γ(αiT + δi1,iT + · · ·+ δiT−1,iT + 1)

Γ(αiT + δi1,iT + · · ·+ δiT−1,iT )

Γ (S + T − 1)

Γ (S + T )
,(B.5)

=
αiT + δi1,iT + · · ·+ δiT−1,iT

S + T − 1
. (B.6)

The jump from (B.4) to (B.5) is due to (3), and (B.6) is the recursion property
of the Gamma function, i.e., Γ(n+ 1) = nΓ(n− 1).

Appendix C. Proof of Property 3

Proof First, we show that S+ is upper bounded by S + T . To this end, define
S′k as the Dirichlet strength that matches the k-th marginal of the posterior
distribution, which is

S′k =
mk − vk
vk −m2

k

, (C.1)

so that the noncentral second order moment relates to the mean as

vk = mk
mkS

′
k + 1

S′k + 1
. (C.2)

Substitution of (C.2) into (29) yields

S+ =

∑K
k=1

S′k
S′k+1m

2
k(1−mk)2∑K

k=1
1

S′k+1m
2
k(1−mk)2

. (C.3)

Because the functions S/(S+1) and 1/(S+1) are monotonically increasing and
decreasing, respectively, it is easy to see that S+ is bounded by

min
k
S′k ≤ S+ ≤ max

k
S′k. (C.4)
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Now, we show that S′k ≤ S + T for k = 1, . . . ,K. The posterior (26) is actually
a weighted sum of Dirichlets where the Dirichlet strength of each term is S+T ,
i.e.,

f(p|α,X T ) =

N∑
j=1

wjfβ(p|α∗j ), (C.5)

where the nonnegative weights sum to one and
∑
k α
∗
j,k = S + T . Note that the

weights are nonnegative because all likelihood values are nonnegative, and the
number of terms N = KT . Then,

mk =

N∑
j=1

wjmj,k, (C.6)

vk =

N∑
j=1

wjmj,k
mj,k(S + T ) + 1

S + T + 1
, (C.7)

where mj,k is the k − th marginal mean of the j-th Dirichlet term. Now,

S′k =

∑N
j=1 wjmj,k

(
1− mj,k(S+T )+1

S+T+1

)
∑N
j=1 wjmj,k

mj,k(S+T )+1
S+T+1 −

(∑N
j=1 wjmj,k

)2 . (C.8)

Because  N∑
j=1

wjmj,k

2

≤
N∑
j=1

wjm
2
j,k, (C.9)

then

S′k ≤
S+T
S+T+1

∑N
j=1 wjmj,k(1−mj,k)∑N

j=1 wjmj,k

(
mj,k(S+T )+1

S+T+1 −mj,k

) , (C.10)

which simplifies to
S′k ≤ S + T. (C.11)

Since this bound holds for all k and S+ is bounded by (C.4), then S+ ≤ S + T ,
and this proves the corresponding bound for u+. Clearly, the upper bound in
(C.11) is achieved if all the observations are fully visible. We now show that if
the observations are not all fully visible, the bound is not achievable. The upper
bound is achieved by S′k only if the bound in (C.9) becomes an equality. This
occurs only when mj,k is a constant with respect to j. Then, each Dirichlet term
in (C.5) share the same means and Dirichlet strength, which means they are the
same Dirichlet, and the posterior is a Dirichlet with a strength of S + T . Now
lets say that the T -th observation is not fully visible so that at least two elements
m and n of l(T ) are nonzero where m 6= n. Then one of the Dirichlet terms in
(C.5) will have a parameter α∗j1 = α + ei1 + . . . + eiT−1

+ em due to the m-th

nonzero element in l(T ). In this case, another Dirichlet term must exist with
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parameter α∗j2 = α+ ei1 + . . .+ eiT−1
+ en due to the n-th nonzero element in

l(T ). Clearly, the two Dirichlet terms do not represent the same distribution as
α∗j1 6= α∗j2 . This violates the equality condition in (C.9) and the upper bound in
(C.11) is loose.

Appendix D. Proof of Property 4

Proof Let k∗ = arg mink lk. First, we show that the updated unregulated Dirich-
let strength S+ is upper bounded by the Dirichlet strength required for α+

k∗ = αk∗ .
To this end, inserting the first and second order moments after a single update
given by (32) and (33) into (29) leads to (see [23] for a detailed derivation):

S′k =
S + 1

1 + (S+2)(∑K
i=1 αil

(1)
i

)(
1+ᾱk
lk

+
1+αk
l̄k

) , (D.1)

where

ᾱk =
∑
i 6=k

αi, (D.2a)

l̄k =
1

ᾱk

∑
i6=k

αili, (D.2b)

represent the Dirichlet parameter and average likelihood, respectively, associated
to the complement (or disbelief) of the k-th attribute. Since lk, l̄k ≥ lk∗ ,

S′k ≤
S + 1

1 + (lk∗ )∑K
i=1 αili

, (D.3)

for any 1 ≤ k ≤ K. Therefore, by (C.4), the right hand side of (D.3) is also an
upper bound for S+. The bound in (D.3) is the desired bound for the Dirichlet
parameter to keep α+

k∗ = αk∗ . To see this, the updated Dirichlet parameter is
obtained by multiplying S+ by (32) to obtain

α+
k∗ ≤ αk∗ . (D.4)

This upper bound is achieved only when all S′k achieve the upper bound in (D.3).
Inspection of (D.1) lead to the fact that this happens only when all likelihood
values are equal (lk = lk∗), i.e., a vacuous observation, or when only one element

of l̂(1) is nonzero (a fully visible observation) so that either lk or l̄k is zero. The
only other possible case for α+

k∗ not to decrease is if the the maximum operator
in Algorithm 1 increases the Dirichlet strength so that the bk∗ does not become
negative. In other words, the Dirichlet strength is set so that α+

k∗ = Wak∗ .
Unless αk∗ = Wak∗ the Dirichlet parameter is reduced. In other words, bk∗

must equal to zero for the parameter value not to decrease.
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