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ABSTRACT

A limitation of standard Description Logics is its inability to reason with uncertain and vague knowledge. Although
probabilistic and fuzzy extensions of DLs exist, which provide an explicit representation of uncertainty, they do not provide
an explicit means for reasoning about second order uncertainty. Dempster-Shafer theory of evidence (DST) overcomes this
weakness and provides means to fuse and reason about uncertain information. In this paper, we combine DL-Lite with
DST to allow scalable reasoning over uncertain semantic knowledge bases. Furthermore, our formalism allows for the
detection of conflicts between the fused information and domain constraints. Finally, we propose methods to resolve such
conflicts through trust revision by exploiting evidence regarding the information sources. The effectiveness of the proposed
approaches is shown through simulations under various settings.
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1. INTRODUCTION

Effective and efficient decision making plays a crucial rolein success of any operation. Key to successful decision making
is the effective interpretation of the available data aboutthe given domain – i.e., Data-to-Decisions (D2D). This is especially
true for coalition operations where the operations are critical and data-centric. It is important to note that the data gathered
by sources may represent supporting or negating evidence about a particular phenomenon in the domain. For example,
an acoustic array may have recorded a series of engine signatures and have deduced that it is of amilitary truck – i.e., its
interpretation of the gathered evidence. Thus, the engine signatures can be taken as theevidencethat support a proposition
such asmilitary vehicle is in motion. This can be taken as theopinionof the sensor about a particular phenomena based on
its current observations. Assume that a seismic sensor has also picked-up a set of vibration signatures and deduced thatit
is of a heavy vehicle moving from north – i.e., its opinion about the environment based on its current observations. These
opinions may support a global proposition such asmilitary vehicle moving from north.

However, in data heavy environments such as coalition operations utilizing data to make informed decisions is not
straightforward. This is because data that has to be consumed in order to make decisions are from multiple parties with
different granularities and confidence levels. For example, a coalition partner may obfuscate data in order to hide a specific
information or may reduce the resolution of data if it has less trust on the sharing party. Therefore, these data will have
an inherent uncertainty that has to be considered while fusing to make decisions. There are many approaches studied
in literature to address this issue and evidential theory1 is probably the best known. However, it has been shown that
the approaches based on the evidential theory suffer from evidence compatibility issues when presented with conflicting
opinions. In environments – such as the ones this work is based on – such conflicts are common, thus, we need a new
approach to reason about uncertainty in the face of conflicting opinions.

The importance of the D2D problem is well understood in the military; D2D is recognized as one of the top seven
challenges to be addressed by the Department of Defense (DoD) Quadrennial Defense Review (QDR)∗. As an entity of
the DoD, the research division of the United States Army – i.e., US Army Research Laboratory (ARL) – has invested a lot
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of time and effort in realizing this challenge. ARL providesassistance in conducting basic and applied research in D2D
through a number of collaborative efforts and International Technology Alliance (ITA)† is one such transatlantic effort.
The ITA program is a research program to address issues related to mobile ad-hoc networks for military coalitions. The
research is aimed at fundamental advances in information and network sciences that will enhance decision making for
coalition operations.

Rest of the paper is structured as follows. In Section 2 we setout the preliminaries for our work. It discusses a formal
model for knowledge representation and highlights the needfor reasoning based on uncertainty. It also provides clues to
mechanisms that can assist in performing effective reasoning in uncertain environments. Section 3 introduces a scenario
which highlights the need to have a mechanism to make use of opinions belonging to multiple parties in order to make
informed decisions in the face of lack of trust. In Section 4 we introduce the syntax and semantics of our formalism to
represent uncertainty in knowledge and in Section 5 we show how that formalism can be used to perform trust revisions.
We evaluate our approach in Section 6 and conclude the document in Section 7 with a discussion of related work.

2. BACKGROUND

In order to intelligently reason in uncertain domains – suchas the ones discussed in Section 1 – we need a language
to capture the domain effectively and efficiently. In this work, we shall use Description Logics (DLs) for this purpose.
Providing a full overview of DLs is out-of-the scope of this paper. However, we refer the reader to Baaderet al.2 for an
overview of DLs.

2.1 DL-based Knowledge Representation

Even for the smallest propositionally closed DL,ALC (which only provides class constructors¬C,C ⊓D,C ⊔D, ∃R.C
and∀R.C), the complexity of logical entailment is EXPTIME – a class of decision problems that can be solved by a
deterministic Turing machine. Recently, Calvaneseet al.3 proposedDL-Lite, which can express most features in UML
class diagrams with a low reasoning overhead (with data complexity AC0). It is for this reason that we base our model
on DL-Litecore (referred to here asDL-Lite, although there are extensions4), and hence provide a brief formalisation to
ground the subsequent presentation of our model.

A DL-Lite knowledge baseK = (T ,A) consists of a TBoxT and an ABoxA. Axioms of the following forms compose
K:

1. class inclusion axioms:B ⊑ C ∈ T whereB is a basic classB := A | ∃R | ∃R− andC is a general class
C := B | ¬B | C1 ⊓C2 (whereA denotes an named class,R denotes a named property, andR− is the inverse ofR)
E.g., a car subsumes a vehicle (i.e., Car⊑ Vehicle)

2. individual axioms:B(a), R(a,b) ∈ A wherea andb are named individuals. E.g., a jeep is a type of a vehicle –
i.e.,Vehicle(Jeep)– and jeep can travel is rough terrain – i.e.,canTravel(Jeep , RoughTerrain).

Description Logics have a well-defined model-theoretic semantics, which are provided in terms of interpretations. An
interpretationI is a pair(∆I , ·I), where∆I is a non-empty set of objects and·I is aninterpretation function, which maps
each classC to a subsetCI ⊆ ∆I and each propertyR to a subsetRI ⊆ ∆I × ∆I . Using a trivial normalisation, it is
possible to convert class inclusion axioms of the formB1 ⊑ C1 ⊓ C2 into a set of simpler class inclusions of the form
B1 ⊑ Bi or B1 ⊑ ¬Bj , whereB1, Bi, andBj are basic concepts.3 For instance, during normalisation,B1 ⊑ B2 ⊓ ¬B3

is replaced withB1 ⊑ B2 andB1 ⊑ ¬B3.

Though the statements in knowledge bases created base on theabove formalism is supposed to contain facts, it is in-fact
important to note that those statements may be probabilistic in nature. For example, “detection of a moving vehicle” is
in fact can only be stated with a 90% accuracy. Thus, we need a mechanisms to reason about such uncertain statements.
Dempster-Shafer theory of evidence (DST) provides an explicit framework to reason about such knowledge bases and in
the next section we briefly discuss its variations.

†https://www.usukita.org/



2.2 Subjective Opinions

Dempster-Shafer Theory (DST) offers means to characterisean agent’s view of the state of world by assigningbasic
probability massesto subsets of truth assignments of propositions in the logic. Jøsang5 proposed Subjective Logic (SL),
which can be considered as an interpretation and extension of DST with logical operators ( e.g., conjunction, deduction,
abduction and so on). Jøsang5 coined the termsubjective opinionsto refer to uncertain statements. In SL, all the operators
are grounded on probability theory – as oppose to DST – thus, allowing one to consider the mathematical properties of the
fusion easily. In this work, we take Jøsang’s view of DST to represent and reason about uncertain statements.

A binomial opinionabout a propositionx is represented by a triplewx = (bx, dx, ux) which is derived from the
basic probability masses assigned to subsets of truth assignments of the language. In the opinionwx, bx, also denoted
by b(wx), is the belief aboutx — the summation of the probability masses that entailx; dx, also denoted byd(wx), is
the disbelief aboutx — the summation of the probability masses that entail¬x; andux, also denoted byu(wx), is the
uncertainty aboutx — the summation of the probability masses that neither entail x nor entail¬x. The constraints over the
probability mass assignment function require thatbx+ dx +ux = 1 andbx, dx, ux ∈ [0, 1]. When a more concise notation
is necessary, we use(bx, dx) instead of(bx, dx, ux), sinceux = 1− bx − dx. The negation over an opinionwx is defined
as¬(bx, dx, ux) = (dx, bx, ux) = (b¬x, d¬x, u¬x).5

DEFINITION 1. Letw1 = (b1, d1, u1) andw2 = (b2, d2, u2) be two opinions about the same proposition. We callw1 a
specialisationof w2 (w1 � w2) iff b2 ≤ b1 andd2 ≤ d1 (impliesu1 ≤ u2). Similarly, we callw1 a generalisationof w2

(w2 � w1) iff b1 ≤ b2 andd1 ≤ d2 (impliesu2 ≤ u1).

An agenti’s opinion about a propositionx is denoted bywi
x = (bix, d

i
x, u

i
x). This opinionwi

x may not bedirectly used
by another agentj. Agentj could have a view of the reliability or competence ofi with respect tox. Shafer1 proposed a
discounting operator⊗ to normalise the belief and disbelief inwj

x based on the degree of trustj has ofi with respect to
x:tji . The discounted opinion,wj

x, is computed as(bix × tji , d
i
x × tji ). The trustworthiness of information sources can be

modelled using Beta probability density functions.6 A Beta distribution has two parameters(r + 1, s+ 1), wherer is the
amount of positive evidence ands is the amount of negative evidence for the trustworthiness agenti agent has for agentj.
The degree of trusttij is then computed as the expectation value of the Beta distribution: tij = (r + 1)/(r + s+ 2).

In the next section, we introduce a coalition-based scenario in which opinions generated from multiple heterogeneous
information sources are used to make informed decisions about critical situations by revising the trust associated with the
information.

3. MOTIVATIONAL SCENARIO

A coalition operating in a mountainous area has planned for ahigh-value-target (HVT) extraction. The coalition consists of
trusted partnersP1, P2 and the local partnersPloc. P1 is executing the HVT extraction and the command and control (C2)
receives information from alocal informant– i.e.,Pi – about suspicious activity on a road leading to the locationwhere
HVT resides. However, sensor resources belonging toP1 deployed in the area have not picked-up any recent activity.
An observation post owned byPloc in the north region also reports vehicle movement along the road; the observation is
obtained by interpreting the evidences gathered by using long-range observation devices. However, the trustC2 has on local
informants/militia are very limited due to their past experiences. Meanwhile, the trusted coalition partnerP2 is executing a
reconnaissance operation over the same area using a sensingresourceS owned byP1. P2, too, observes some activity on
the road based on the aerial images ofS. Note thatP2 has a good trust value onPi on events such as reconnaissance,thus,
P2 can vouch forPi in this context.C2 now 1) increases its trust on the local informants and revises the trust assessments
it has on similar tasks with the local informants 2) start making plans for the eventualities associated with the currenttask.

In Table 1, we provide a snapshot of the information sources C2 has access to with respect to their trustworthiness.
Assume thatPi reports the observation of the vehicular movement along theroad with an opinion of(0.9, 0, 0.1). C2
interprets this opinion based on the trust assessment it hasonPi given in Table 1. Thus, the discounted opinion of the local
informant is(0.412, 0, 0.588) which has a higher uncertainty as oppose to the original report. However,P2 has a better
trust value onPi in such scenarios; assume thatP2’s trust inPi is 95%. Thus, it can be shown thatP2’s opinion of whatPi

reported as(0.855, 0, 0.145). Since C2 trustP2 better, it can be shown that C2 indeed can interpret the opinion expressed
by Pi as(0.838, 0, 0.162) in this context, which has a greater confidence level than theoriginal discount based on C2’s
own experience aboutPi



Figure 1. Scenario: high value target extraction

Table 1. Information sources and their trustworthiness

Source Definition Evidence Degree of Trust

Pi Informant (10, 12) 0.458

Ploc Coalition’s Local partner (10, 3) 0.786

S1...3 Acoustic array ofP1 (1000, 0) 0.999

P2 Coalition partner ofP1 (50, 0) 0.981

An important property to note in the above scenario is the fact that howC2 can revise its trust on local informants when
evidence from trusted partners and resources come to light.This is because, though the prior trust of local informants is
limited toC2’s past experience, with the added information from trustedpartners, the less trustworthy source can indeed
increases its trust, at least in some contexts. Such properties can also be used to create trust matrices for future collabora-
tions. Having provided an overview of DLs, DST, and subjective opinions, in the nest section we provide a formalisation
of subjective DLs so that uncertain statements could be captured and reasoned in DL efficiently.

4. SDL-Lite

We proposeSubjectiveDL-Lite (or SDL-Lite for short), which extendsDL-Litecore with subjective opinion assertions of
the formB:w, wherew is an opinion andB is an ABox axiom (i.e., assertion). Each ABox axiom is associated with one
opinion. ABox axioms have the formB(a) orR(a,b), whereB is basic class,R is a property, anda andb are individuals.

4.1 SDL-Lite Semantics

In common withDL-Lite ontologies, the semantics of an ontology inSDL-Lite is defined in terms ofsubjective interpreta-
tions. LetW be the set of all possible subjective binary opinions. A subjective interpretation is a pairI = (∆I , ·I) where
the domain∆I is a non-empty set of objects and·I is a subjective interpretation function, which maps:



Syntax Semantics

⊤ ⊤I(o) = (1, 0, 0)

⊥ ⊥I(o) = (0, 1, 0)

∃R b((∃R)I(o1)) ≥ max ∪
∀o2

{b(RI(o1, o2))} and

d((∃R)I(o1)) ≤ min ∪
∀o2

{d(RI(o1, o2))}

¬B (¬B)I(o) = ¬BI(o)

R− (R−)I(o2, o1) = RI(o1, o2)

B1 ⊑ B2 ∀o ∈ ∆I , b(BI
1 (o)) ≤ b(BI

2 (o)) and

d(BI
2 (o)) ≤ d(BI

1 (o))

B1 ⊑ ¬B2 ∀o ∈ ∆I , b(BI
1 (o)) ≤ d(BI

2 (o)) and

b(BI
2 (o)) ≤ d(BI

1 (o))

B(a):w b(w) ≤ b(BI(aI)) andd(w) ≤ d(BI(aI))

R(a,b):w b(w) ≤ b(RI(aI ,bI)) andd(w) ≤ d(RI(aI ,bI))

Table 2. Semantics of Subjective DL-Lite

• an individuala to an element ofaI ∈ ∆I ,

• a named classA to a functionAI : ∆I → W ,

• a named propertyR to a functionRI : ∆I ×∆I → W .

To provide a semantics forSDL-Lite, we extend interpretations ofDL-Lite class and property descriptions, and of
axioms under unique name assumption. The semantics are presented in Table 2. The semantics of∃R is derived from
the ruleR(aI ,bI) → ∃R(aI), ∀bI ∈ ∆I . This rule constrains the minimum belief and the maximum disbelief that
∃R(aI) can have. For any individualsa andb, the belief ina having a propertyR (i.e.,∃R(a)), is not less than belief in
a having the propertyR with b (i.e.,R(a,b)), and disbelief in∃R(a) is not more than disbelief inR(a,b). An ontology
provides us with domain constraints in the form of TBox axioms. For instance, the axiomB1 ⊑ B2 means that every
instance of classB1 is also an instance of classB2. This trivially implies¬B2 ⊑ ¬B1, i.e., an individual that is not an
instance ofB2 cannot be an instance ofB1. Therefore, given an individuala, the axiomB1 ⊑ B2 implies that our belief
in B2(a) cannot be less than our belief inB1(a) and our disbelief inB2(a) cannot be more than our disbelief inB1(a).
That is,b(BI

1 (a
I)) ≤ b(BI

2 (a
I)) andd(BI

2 (a
I)) ≤ d(BI

1 (a
I)) must hold. Similar constraints also exist in Table 2 for

B1 ⊑ ¬B2.

DEFINITION 2. AnSDL-Lite knowledge baseK = (T ,A) is consistent if and only if it has a model. A model ofK is an
interpretation ofK that satisfies the constraints in Table 2.

If K is consistent, it can have many models, but one of them is the most general model with respect to the partial
ordering on opinions by Definition 1. Providing a detailed description on how to detect consistency, and how to compute
the most general model of a consistentSDL-Lite knowledge base is out-of-the-scope of this paper; we refer the reader
to Muratet al.7 for the details. In the rest of the paper, we assume that the opinion about a specific ABox assertions is
provided by a single source. When there is more than one source for an assertion, only one of them is chosen (e.g. based
on their trustworthiness). This will be relaxed in future. Having describedSDL-Lite we now examine a novel application
of the system, describing how evidence from multiple sources can be reasoned about based on the trust placed in these
sources.



5. TRUST-BASED EVIDENCE ANALYSIS

Here we get to the crux of the problem being addressed in this paper: how can we draw reliable conclusions regarding the
state of the world, given evidence acquired from disparate sources (agents), about whom we have variable trust? We referto
this process as trust-based evidence analysis. Our aim is not to offer a new mechanism for assessing the trustworthinessof
information sources; in fact, we exploit a widely-studied model6 for this purpose based on Beta distributions as described
in Section 2.2. The novelty of this work lies in the use of suchmodels to guide evidence analysis.

5.1 Handling Inconsistencies

SDL-Lite presented in the previous section provides a tractable means to capture and interpret evidence acquired from
other agents. The fact that we have evidence from multiple agents, however, means that there are likely to be inconsisten-
cies in the evidence received. Thus, given evidence (i.e., opinions) from various sources, our knowledge-base may not be
consistent. This is despite the use ofdiscountingthrough DST. Discounting provides us with a “best-guess” ofthe relia-
bility of agents based on an aggregation of our prior experiences with, and other knowledge of them as evidence sources.
As with any computational model of trust, the trust assessments that drive discounting are vulnerable to: lack of evidence
about other agents and the effects of whitewashing;8 a conflation of the probability of malicious behaviour and lack compe-
tence/expertise in the evidence-provider; strategic liars; and collusion among evidence-providers. In our running example,
for instance, local police and civilian sources have relatively low trustworthiness, not because of any perceived malicious
intent but due to a belief that they lack experience in providing precise information. With more evidence, trustworthiness
of information sources may be modelled more accurately, butour challenge is to support the analysis of evidence given the
status quo.

To illustrate this challenge, consider our example scenario in whichPi reports of a vehicular movement along the road.
Based on the trustworthiness values given in Table 1, C2’s discounted opinion ofPi’s observation is(0.412, 0, 0.588).
However, the discounted opinion C2 obtained from observations ofP1’s acoustic array (i.e.,S1...3) is (0.099, 0.799, 0.102).
This clearly represents a conflict since0.412 + 0.799 > 1 and would result in an inconsistent knowledge-base. Letw1 =
(0.412, 0, 0.588)andw2 = (0.099, 0.799, 0.102). Theconflicting portionsof w1 andw2 arec12 = 0.412 andc21 = 0.799.
Let us refer to the trustworthiness of the sources ofw1 andw2 ast1 andt2 respectively. In our example, from Table 1,
t1 = 0.458 andt2 = 0.999. In order for us to transform our inconsistent knowledge-base into aconsistentknowledge-base,
from which we can draw valid conclusions given our semantics, we need to determine additional discounting factorsx1

andx2 for opinionsw1 andw2 such that0 ≤ c12.x1 + c21.x2 ≤ 1.

In this paper, we specify this problem as that of findingadditionaldiscounting factors for the belief-mass distributions
of pieces of evidence to make our knowledge-base consistent. In general, our conflict resolution problem is a tuple〈C,X〉
whereC is the set of conflicting portions that appear in the extendedknowledge base, andX is a set of additional discount-
ing factors corresponding toC. We require that, in〈C,X〉, ∀cij ∈ C, ∃cji ∈ C and∃xi, xj ∈ X . Then, a solution to this
problem is an assignment of values to eachxi ∈ X such that

∀cij , cji ∈ C, ∀xi, xj ∈ X 0 ≤ cij .xi + cji.xj ≤ 1

There are many heuristic approaches to solving this problem, among them being to consider only consistent knowledge
to draw conclusions from the evidence received; i.e.∀xi ∈ X , xi = 0. This, however, could lead to a significant loss
of evidence. Here, we explore a nuber of increasingly refinedapproaches that guarantee the generation of a consisitent
knowledge-base:trust-based deleting, trust-based discountingandevidence-based discounting.

5.2 Trust-based deleting

If two opinionsw1 andw2 are in conflict, the opinion from the less trustworthy sourceis deleted, and if both sources are
equally trustworthy both opinions are deleted. Thus, if thetrust we have in the source of opinionw1 is greater than that of
the source ofw2 (t1 > t2) thenx2 = 0 andx1 = 1, and in the event thatt1 = t2 we assignx1 = x2 = 0.



5.3 Trust-based discounting

If two opinionsw1 andw2 are in conflict, they are discounted in proportion to the trustworthiness of their sources. That is,
the additional discounting factor forw1 andw2 is computed usingt1/(c12t1 + c21t2) andt2/(c12t1 + c21t2), respectively,
wheret1 andt2 are the trustworthiness of the sources of the opinions. In our example, an additional discount factor for
Pi’s opinion is0.386 and that ofS1...3 is 0.842, since the trustworthiness ofPi andS1...3 are0.458 and0.999, respectively.
Therefore, to resolve the conflict, the original opinion ofPi is discounted by0.458 × 0.386 = 0.177 and that ofS1...3 is
discounted by0.999× 0.842 = 0.841. However, this approach neglects the amount of evidence used to calculate trust in
sources.

5.4 Evidence-based discounting

Within the evidence analysis domain, the information that we have to work with relates to past experiences with a specific
agent (i.e., information source)̺k where information received has proven reliable or unreliable according to some criteria
(as would be captured in any trust assessment model). In other words, the amount of positive evidence we have for
agent̺k, namelyrk, and the amount of negative evidence for that agent, namelysk. From this evidence, we calculate
trustworthiness of̺ k, denoted astk described in Section 2.2. When we receive opinionwk

i from ̺k, we discount it bytk
and add the resulting opinionwi to our knowledge base. However, as explained before, additional discounting by factorxi

is required whenwi is in conflict with another opinion in the knowledge base. Discountingwi by xi implies discounting
the original opinionwk

i by tk.xi. This corresponds to revising the trustworthiness ofwk
i as tk.xi by speculating about

the trustworthiness of̺k regarding this single opinion. That is, even though the trustworthiness of̺ k is tk based on the
existing evidence(rk, sk), it becomestk.xi for this specific opinionwk

i ; so,tkxi effectively becomes the trust inwk
i . Here,

we create a metric to measure how much we speculate about the trustworthiness of̺ k regardingwk
i .

First, to decrease trust fromtk to tk.xi, we need additional negative evidence, which is calledspeculative evidence
and denoted asρi. Our intuition is that it is less likely for a trustworthy agent to present additional negativespeculative
evidencethan it is for an untrustworthy agent, and thus the receipt ofsuch evidence should be tempered by(t̄k)

κ. Here,
t̄k represents thedistrustwe have in agent̺k; i.e. the likelihood that we will receive additional negative evidence given
our experiences with the source. The calibration constantκ ≥ 0 enables us to vary the influence that prior experience has
on our prediction that an individual will present negative evidence in the future. Ifκ = 0, for example, we assume that all
sources are equally likely to provide negative evidence. Now, using the Beta distribution formula for trust, we obtain:

tk.xi =
rk + 1

rk + sk + 2
· xi =

rk + 1

sk + rk + 2 + ρi.(t̄k)κ

=
rk + 1

sk + rk + 2 + ρi.(
sk+1

rk+sk+2 )
κ

Rearranging this forρi yields:

ρi =
νi(1− xi)

xi

where νi =
(rk + sk + 2)κ+1

(sk + 1)κ
(1)

Given two conflicting subjective opinionswi andwj , there can be different additional discounting factors that can be
used to resolve the conflict. Let us assume thatxi andxj are additional discounting factors used to resolve the conflict.
The cost of this resolution in terms of the total amount of speculative evidence can be computed as

νi(1 − xi)

xi

+
νj(1 − xj)

xj

whereνi andνj are constants that are calculated as described in Equation 1. When we have multiple conflicts, they may
interact in such a way that resolving one may also affect the resolution of another. The overall amount ofspeculative
evidencenecessary to resolve all of these relevant conflicts can easily be formulated as a function of additional discount
factors. Once, we have this function, we can find the discounting factors to have a solution with the minimum total
speculative evidence.



Assume we have a set of conflicting opinions{〈wi, wj〉, . . . , 〈wm, wn〉} and, derived from trust evidence about agents,
coefficients{νi, νj , . . . , νm, νn}. To determine the optimum discounting factors{xi, xj , . . . , xm, xn} for these opinions,
we construct the following optimisation problem with a multivariate non-linear objective function and linear constraints.

argmin
−→x

f(−→x ) where

f(〈xi, xj , . . . , xm, xn〉) =
νi(1 − xi)

xi

+
νj(1 − xj)

xj

+ . . .

νm(1− xm)

xm

+
νn(1 − xn)

xn

such that 0 ≤ xi ≤ 1, 0 ≤ xj ≤ 1, . . .

and 0 ≤ cijxi + cjixj ≤ 1, . . . (2)

Existing constrained non-linear programming methods can be used to solve this problem in order to estimate the best
discounting factors. There are various techniques that maybe used includingInterior-Point andActive-Setalgorithms. In
this work, we useInterior-Point approximation. Details of these methods are out of the scopeof this paper and can be
found elsewhere.9

In this section we have formalised the problem of computing additional discounting factors foropinionsreceived about
the world from other agent so that we may formulate a consistent SDL-Lite knowledge-base from which we can draw
reliable conclusions. We have presented a number of approaches to the resolutions of inconsistencies between opinions
including an optimisation-based approach, evidence-based discounting. Next, we evaluate these approaches with respect
to their robustness in the face of liars.

6. EVALUATION

We have evaluated our approach through a set of simulations.In each simulation, we define the domain by randomly gen-
erating anSDL-Lite TBox that contains100 concepts and roles, as well as axioms over those, e.g.,B1 ⊑ B2 andB2 ⊑ ¬∃R3.
For each role or concept, there is one information source that provides opinions about its instances, e.g.,B1(a):(0.8, 0, 0.2)
andR3(a, b):(0.5, 0.1, 0.4). There are10 information sources in total, each is an expert on10 concepts and roles, and provides
its opinions about those.

In our simulations, we assume there is one information consumer that uses the information from sources to make
decisions. Each simulation is composed of10 iterations. At each iterationt, the consumer needs to gather information
about an individuala. We generate ground truth abouta, which is composed of one assertion abouta for each concept
and role with an associated opinion. Each information source knows the ground truth only about the concepts and roles of
their expertise. However, they may not provide the ground truth to the consumer when it is requested. Behaviours of the
information sources are determined by their behavioural type, which are summarised as follows.

• Honest: Most of the time, this type of sources provide the ground truth about the assertion of their expertise with
small Gaussian noiseN(0, 0.01). With probabilityPb, honest sources behave like malicious ones and provide bogus
information.

• Malicious: This type of sources aim at misleading the information consumer by providing bogus opinions. More
specifically, given(b, d, ) is the ground truth about an assertion, a malicious source provides the opinion(abs(ǫ1), 0.9+
ǫ2, ) if b ≈ d; otherwise it provides the opinion(d+ ǫ1, b+ ǫ2, ), whereǫ1, ǫ2 ∈ [−0.05, 0.05]. There are two types
of malicious sources, which are defined as follows:

i. Simple liars: they always provide bogus opinions.

ii. Strategic liars: they behave like honest sources to build trust and then provides bogus information exploiting
the built trust. After providing misleading information tothe consumer, they change their identity to avoid
negative evidence against them.



After collecting opinions about different assertions frominformation sources, the information consumer uses its trust in
these sources to discount these opinions and uses the proposed reasoning mechanisms forSDL-Lite to compute interpre-
tations. Ideally, these interpretations should be close tothe ground truth if all sources are accurate and their trustworthiness
is modelled correctly. If there are some malicious sources,there may be conflicts in the collected information. In the case
of conflicts, the consumer resolve the conflicts usingNaive Deleting(NDL), Trust-based Deleting(TDL), Trust-based Dis-
counting(TDC), orEvidence-based Discounting(EDC) withκ = 1. In NDL, all conflicting opinions are deleted from the
knowledge base to resolve the conflicts. The consumer computes the interpretations for concept and role assertions related
to a, after resolving the conflicts if any. Then, we measure the performance as themean absolute errorin the computed
interpretations. Let(b, d, u) be the ground truth and(b′, d′, u′) be the computed interpretation for assertionB(a), then the
absolute errorin the interpretation is computed aserrB(a) = abs(δb) + abs(δd), whereδb = b′ − b andδd = d′ − d. For
instance, if the ground truth aboutB(a) is (0.9, 0.05, 0.05), but the computed interpretation is(0.05, 0.9, 0.05), then the error
would be1.7.

At the end of each iteration, the consumer learns the ground truth and updates the trustworthiness of the information
sources with new evidence(rt, st) computed as in Equation 3, which is based on the intuition that the information is still
useful if it has a small amount of noise or is slightly discounted.

(rt, st) =











(0, 1), if δb > 0.1 or δd > 0.1

(1, 0), if −0.1 ≤ δb ≤ 0.01 and−0.1 ≤ δd ≤ 0.01

(0, 0), otherwise.

(3)

Each of our simulations are repeated10 times and our results are significant based ont-testwith a confidence interval of
0.95.

Without any evidence, the trustworthiness of sources is computed as0.5. Thus, there are is no conflict in the beginning
of our simulations. If all sources have deterministic behaviours, i.e., malicious sources are simple liars andPb = 0, then
trustworthiness of sources are easily modelled over time and the opinions from liars are significantly discounted. In such
settings, conflicts are totally avoided and information consumers using either of the four proposed methods have the same
level of success. Figure 2 shows an example of this setting where honest sources always provides the truth (Pb = 0) and
malicious sources are simple liars. Here, theratio of liars (Rliar) is 0.5, i.e., half of the sources are malicious.

1 2 3 4 5 6 7 8 9 10
0

0.2

0.4

0.6

0.8

M
e
a
n
 a

b
s
o
lu

te
 e

rr
o
r

Iteration

 

 

Figure 2. Simple liars (Rliar = 0.5 andPb = 0)

When honest sources provide bogus information occasionally, the conflicts may arise in the knowledge base of the
consumer, because the information from these sources are not significantly discounted. Figure 3 shows our results for
Rliar = 0.5 andPb = 0.1, where all malicious sources are simple liars. In this setting, NDL leads to significant errors in
the computed interpretations. While TDL does much better than NDL, it is outperformed by discounting based approaches
TDC and EDC. Both of these approaches have similarly good performance though TDC does slightly better.

Simple liars may not be enough to model malicious sources in real life. That is why we change the type of malicious
sources to strategic liars and repeat our simulations. Figure 4 shows our results forRliar = 0.5 andPb = 0.1. In this
settings, trust evaluations become misleading, since strategic liars build trust, make their impact and then change their
identity to avoid any negative evidence. As a result, as shown in the figure, TDC fails significantly more than EDC after a



[ht]
1 2 3 4 5 6 7 8 9 10

0.2

0.3

0.4

0.5

0.6

0.7

M
ea

n 
ab

so
lu

te
 e

rr
or

Iteration

 

 

Naive Deleting

Trust based deleting

Trust based discounting

Evidence based discounting

Figure 3. Simple liars (Rliar = 0.5 andPb = 0.1)
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Figure 4. Strategic liars (Rliar = 0.5 andPb = 0.1)

few iterations. We repeat the simulations with strategic liars for differentRliar values; our results are shown in Figure 5.
Our results indicate that evidence-based discounting is much more robust in the presence of realistic malicious behaviour
than trust-based discounting or deletion.
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Figure 5. Strategic liars with varyingRliar (Pb = 0.1)

7. DISCUSSION

DL-Lite is a tractable subset of DLs with a large number of application areas.10 Its scalability makes it very useful espe-
cially for the settings where large amount of data should be queried. However, in a network of heterogeneous sources, any
information provided by the sources could be uncertain, incomplete, and even conflicting.DL-Lite cannot accommodate
such information. Pan et al.11 proposed a framework of tractable query answering algorithms for a family of fuzzy query



languages over large fuzzy DL-Lite12 ontologies. On the other hand, DST and its extensions such asSubjective Logic
explicitly takes into accountuncertaintyandbelief ownership.5

Gobeck and Halaschek13 present a belief revision algorithm for OWL-DL, which is based on trust degrees to remove
conflicting statements from a knowledge base. However, as the authors point out, the proposed algorithm is not guaranteed
to be optimal. In our work, we embed statement retraction implicitly into the opinion revision procedure with a global
optimal criteria which is grounded on a Beta distribution formalisation of trust.

Fact-finding algorithms aim to identify thetruth given conflicting claims. Pasternack and Roth14 propose to translate
these claims to a linear program, which is solved to obtain belief scores over claims. For example, with TruthFinder,15

the belief scores obtained can be interpreted as the result of simultaneously minimising the frustration coming from the
sources against the claims. These approaches do not consider semantics while reasoning about belief and trustworthiness
as we do here.

There are several models for computing trust and reputationin multiagent systems. In these models, direct evidence
is combined with indirect evidence to model trust in agents.Direct evidence is based on personal observations, while
indirect evidence is received from other agents that serve as information sources. Jøsang and Ismail proposed the beta
reputation system (BRS).6 It estimates the likelihood of proposition “Agenti is trustworthy” – i.e., trustworthiness of the
agenti – using beta probability density functions. For this purpose, aggregation of direct evidence and indirect evidence
(i.e., ratings) from information sources are used as the parameters of beta distributions. Evidence shared by sources are
equivalent to binary opinions in Subjective Logic.5 Whitby et al. extended BRS to handle misleading opinions from
malicious sources using a majority-based algorithm.16 Teacyet al. proposed TRAVOS,17 which is similar to BRS, but it
uses personal observations about information sources to estimate their trustworthiness as we do in this paper.

In this paper, we describe conflicts between binomial opinions and propose an approach to resolve conflicts before
performing fusion. Conflicts in knowledge lead to inconsistencies that hamper the reasoning over the knowledge. There-
fore, before using such knowledge bases, their conflicts should be resolved. Gobeck and Halaschek13 present a belief
revision algorithm for ontologies, which is based on trust degrees of information sources to remove conflicting statements
from a knowledge base. However, as the authors point out, theproposed algorithm is not guaranteed to be optimal. Dong
et al.18 propose to resolve conflicts in information from multiple sources by a voting mechanism. Double counting in
votes is avoided by considering the information dependencies among sources. The dependences are derived from Bayesian
analysis.
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