Provided for non-commercial research and education use.
Not for reproduction, distribution or commercial use.

VOL. &0-61, JUNE/JULY 2013 I1SSN 0945-9978

ELSEVIER

ENGINEERING
SOFTWARE

\¢ N

- p

This article appeared in a journal published by Elsevier. The attached

copy is furnished to the author for internal non-commercial research

and education use, including for instruction at the authors institution
and sharing with colleagues.

Other uses, including reproduction and distribution, or selling or
licensing copies, or posting to personal, institutional or third party
websites are prohibited.

In most cases authors are permitted to post their version of the
article (e.g. in Word or Tex form) to their personal website or
institutional repository. Authors requiring further information

regarding Elsevier’s archiving and manuscript policies are
encouraged to visit:

http://www.elsevier.com/authorsrights

http://www.elsevier.com/authorsrights

Advances in Engineering Software 60-61 (2013) 122-135

Contents lists available at SciVerse ScienceDirect

ENGINEERING
SOFTWARE

Advances in Engineering Software et

journal homepage: www.elsevier.com/locate/advengsoft >

Design and implementation of a cloud computing service for finite element analysis

Ismail Ari*, Nitel Muhtaroglu

Computer Science Department, Ozyegin University, Istanbul, Turkey

ARTICLE INFO ABSTRACT

Article history:
Available online 8 November 2012

Keywords:

Cloud computing
Finite element analysis
Structural mechanics
Task scheduling
Multi-core

SPOOLES

This paper presents an end-to-end discussion on the technical issues related to the design and implemen-
tation of a new cloud computing service for finite element analysis (FEA). The focus is specifically on
performance characterization of linear and nonlinear mechanical structural analysis workloads over
multi-core and multi-node computing resources. We first analyze and observe that accurate job charac-
terization, tuning of multi-threading parameters and effective multi-core/node scheduling are critical for
service performance. We design a “smart” scheduler that can dynamically select some of the required
parameters, partition the load and schedule it in a resource-aware manner. We can achieve up to
7.53x performance improvement over an aggressive scheduler using mixed FEA loads. We also discuss
critical issues related to the data privacy, security, accounting, and portability of the cloud service.

© 2012 Civil-Comp Ltd and Elsevier Ltd. All rights reserved.

1. Introduction

According to the U.S. National Institute of Standards and Tech-
nology (NIST) [1]: “Cloud Computing is a model for enabling ubiq-
uitous, convenient, on-demand network access to a shared pool of
configurable computing resources ... that can be rapidly provi-
sioned and released with minimal management effort.” NIST fur-
ther differentiates cloud as having five essential characteristics,
three service models, and four deployment models. Cloud services
should essentially have on-demand network-based accessibility,
resource pooling and rapid elasticity characteristics, could be pro-
vided via software, platform or infrastructure as-a-service models
(as illustrated in Fig. 1), and be made available through private,
community, public or hybrid deployments. An infrastructure ser-
vice (or [aaS) virtualizes the capacities of physical computing hard-
ware such as the CPU, storage or networking equipment and
provides remote, shared access to these virtualized resources. Plat-
form services (or PaaS) are usually exposed via web services and
are shared among different desktop applications as well as online
software services. End-user software services (or SaaS) hide the
infrastructure or platform specific details from the clients and they
are usually accessed via web portals. Each layer can be provided on
top the other (e.g. a platform service can be deployed in virtual ma-
chines hosted by an laaS provider), but many SaaS or Paa$S provid-
ers still prefer to provide services on top of their own infrastructure
today. Different service providers operating at the same layer are
beginning to standardize their interfaces to enable ‘“horizontal
integration” (e.g. open virtual machine formats). However, “verti-

* Corresponding author.
E-mail address: ismail.ari@ozyegin.edu.tr (I. Ari).

cal integration” among different cloud service layers and providers
is still an ongoing research area. The results of these investigations
will affect large-scale governmental and business cloud deploy-
ment decisions.

Our experiences with the engineering and scientific communi-
ties revealed us the need for cloud computing services that can
be shared among different disciplines for solving common prob-
lems. The current practice for solving large-scale high performance
computing (HPC) problems is to acquire expensive hardware re-
sources and gain special Information Technology (IT) skills to man-
age those. While IT management is not the main goal of the
engineering community, ultimately significant time and effort is
spent on installing, maintaining, and tuning computing resources.
Furthermore, most hardware resources and associated software li-
censes remain underutilized after a few initial runs. People who do
not have the skills, time or finances to take on these IT challenges
are deterred from pursuing this path. Cloud computing models of-
fer tremendous cost savings and sharing opportunities to technical
communities, (especially those in developing countries) that deal
with similar engineering problems including FEA.

FEA is a generally-applicable numerical method to approxi-
mately solve partial differential equations and requires HPC setups.
Fig. 2 shows some of the application areas of FEA including
mechanical structural analysis, heat transfer, fluid dynamics,
acoustics, and electromagnetic modeling. Several other related
numerical methods have been developed in the past (FEM, FDM,
FVM, BEM shown in Fig. 2), each of which may be more suitable
for different application areas due to special characteristics of that
given problem space. In addition, numerous open-source and pro-
prietary software tools that perform numerical methods are avail-
able in the market as desktop or mainframe applications. Some of

0965-9978/$ - see front matter © 2012 Civil-Comp Ltd and Elsevier Ltd. All rights reserved.

http://dx.doi.org/10.1016/j.advengsoft.2012.10.003

I Ari, N. Muhtaroglu / Advances in Engineering Software 60-61 (2013) 122-135

Saa$S

Software as a Service (Portals)

Paa$S

Platform as a Service (Web Services)

laaS

Infra. as a Service (Virtual Machines)

Fig. 1. Different service models for cloud computing and the logical layering among
them.

the well-known proprietary packages include Nastran, Ansys, Aba-
qus, and open-sources include CalculiX, Code Aster, and various
others. However, the installation and large-scale maintenance of
these FEA tools over continuously evolving operating system
(0S), processor and cluster technologies can be costly and cumber-
some for the end users. Therefore, to lower the barrier of entry for
small-medium businesses (SMB) as well as technical individuals,
we decided to provide FEA as a cloud computing service. All that
the users will need is a personal computing device with a browser
and an Internet connection to enable them to access our HPC cloud
service for FEA.

Other components shown Fig. 2 are described in more detail la-
ter in Section 2.

To sustain high-performance in our FEA service, we first need to
accurately characterize our candidate workloads. As FEA is a broad
area of research, in this paper we only focus on mechanical struc-
tural analysis, which is used ubiquitously in automotive, aviation,
home appliance production, construction and defense industries
as well as academia. The lessons learned will be generally applica-
ble to other FEA and HPC subject areas, since the underlying math-
ematical principles are similar. In this paper, we test our structural

Current Focus

Application Areas

123

mechanics benchmarks using open source software tools over local
physical servers. In the future, we plan to extend our work into
other application areas, methods, solvers and hybrid processing
and deployment models [2] shown in Fig. 2. Our current contribu-
tions can be listed as follows:

e Design and implementation of a new online FEA cloud service
different from existing offerings. Our service provides shared
services at the software-level (SaaS, PaaS) whereas most exist-
ing services are based on hardware sharing (IaaS).

e Performance characterization of representative FEA workloads
(beams, rotors, etc.) and their mixes over shared memory
(multi-core) and distributed memory (multi-node) resources.

e A comprehensive evaluation of alternative task execution and
scheduling strategies and showing performance improvements
using smart scheduling.

e Discussions about the critical underlying Linux OS process and
memory management mechanisms that most other FEA works
stay oblivious to.

e A complementary discussion on cloud service privacy, security,
accounting, and portability issues, the lack of which can lead to
breaking or abandonment of this service by clients.

The rest of the paper is organized as follows. Section 2 describes
the design of our FEA service architecture. Section 3 characterizes
the benchmark workloads used and discusses the differences be-
tween linear and nonlinear analysis types. Section 4 describes
the experimental setup for performance analysis and gives detailed
results. Section 5 presents other important issues for the success of
cloud computing services. Section 6 summarizes related and future
work and Section 7 concludes the paper.

2. FEA service architectural design

A wide variety of sectors deal with mechanical structural analy-
sis problems. In these sectors a rigorous structural evaluation of

Future Extensions

Saa$ Structural Heat Fluid ; Electro-
2 Acoustics 5 ;

Mechanics Transfer Dynamics Magnetics :
Numerical Methods §

Finite Finite Finite Boundary Oifier :

Element Difference Volume Element sthods :

Method Method Method Method

Software Tools

Open } Source Proprietary

PaaS :
" Code ;

O—44 CalculiX Hnter Others | | Abaqus | Nastran | Ansys | Others |
SPOOLES [||JARPACK || BLAS || LAPACK || Others | Solvers
Hardware Interaction §

Multi- [o) Local Amazon Hybrid Models §

Thread MapReduce || MapReduce (MT,MPl,MapReduce) |:

laa$ Physical Local Virtual Amazon Hybrid Models
Machines Machines EC2, S3 (Phys-Virt., Local-Remote) |

Fig. 2. Logical layers and components of a modern FEA cloud service.

124 I Ari, N. Muhtaroglu / Advances in Engineering Software 60-61 (2013) 122-135

components has to be carried out before they are produced. This
practice saves time and money in the design, prototyping and man-
ufacturing phases of a product’s lifecycle [3] and increases the reli-
ability of the produced parts reducing the possibility of recalls and
critical failures [4]. In addition, different parts of a complex system
(e.g. engine, tires, wings, and chassis of a plane) are usually
designed by different groups or subcontractors in different parts
of the world. Therefore, a FEA cloud service could facilitate both
independent and collaborative parts design and development
processes.

Fig. 3 shows the architectural design and some of the imple-
mentation details of our FEA service. It consists of the web portal,
pre-processor, job scheduler, solvers, and post-processor compo-
nents in their respective order of execution. We now give a brief
discussion about the Computer Aided Design (CAD) process and re-
late its steps to the components of our service:

In today’s practice engineers first use CAD tools for quick and
accurate parts’ design. Next, they save their designs in proprietary
file formats (e.g. catpart, prt, dwg) or export these files in portable
formats such as initial graphics exchange specification (IGES) or
standard for the exchange of product model data (STEP) [4]. We
currently import the “STL” format designed for rapid 3D STereo-
Lithographical prototyping to provide us surface geometry infor-
mation. To obtain a realistic Finite Element Model (FEM)' from
the CAD file, a pre-processor tool (such as NetGen [5]) can be used
to import the design, apply meshing to it, select materials for the
part, set boundary conditions, and define external forces. The ex-
tended model is then saved in a special file format (e.g. INP) that
can be processed by the FEA solvers.

2.1. Web portal

Web portals? such as Liferay, Drupal, and Joomla [6] serve as the
front-end for all user-to-cloud-service and user-to-user interactions.
These interactions include creating accounts, logins, uploading and
sharing files, pre-processing and post-processing FEM, communicat-
ing results to other users, short messaging, attending forums, blogs,
wikis, etc. Each user gets its own account and a private file storage
area via the portal. The files uploaded can be raw CAD files or pre-
processed mesh (e.g. INP) files. The interaction is similar to cloud
services such as an online email system, but FEA portal also allows
users to execute analysis of their jobs on top of the FEA engine.
We are currently using the Java-based Liferay portal because of its
ease of integration with other web technologies and the other com-
ponents of our FEA service.

2.2. Pre-processor and solver

We currently use CalculiX [7] as the solver for our online FEA
service, because of its open-source availability, wide-adoption in
the community and extensive support for solving different engi-
neering problems (see Appendix A for details). CalculiX package
has a separate pre-processing tool called CGX (CalculiX GraphiX)
[8] that can be used to read and transform the contents of various
portable CAD files into a FEM. In our service design, we will allow
the pre-and-post processing steps to be done either (1) offline with
desktop tools such as NetGen, FEMAP and CGX, or (2) offline inside
the web browser’s Javascript engine (such as Google Chrome V8)
for quick interactions or privacy, or (3) online through the use of
custom JavaScript integration code for WebGL backed by a server

! We use the abbreviation FEM to refer to both the finite element “model” and
“method” in this paper. Please refer to the context for the correct meaning.

2 Web portals are also known as Content Management Systems and they get
support from Web Application Frameworks for common activities in web
development.

Web Web
Clients Clients

Web Portal
(Liferay, Apache Tomcat &
Apache Web Server)

CAD Design or
Meshed Model
FRD ?

FEA Engine and Servers

Pre- . Job
Processor

INP»{ INP
[~
Scheduler NP g
FEM (INP). Characterize y

Filesy
FRD FRD
| Post (ISlress & ?irsﬂ) SOLVERS
[¢——placement info, (CalculiX CCX)
Processor (and SPOOLES)

Fig. 3. Our FEA cloud service architecture. A preprocessor tool will transform an
uploaded CAD file by adding mesh information, material properties, loading type
and other necessary computational information to it and turn it into an INP file that
is ready for FEA by CalculiX. FRD is a specially formatted file containing CalculiX
results.

side meshing engine (e.g. NetGen API running on the servers). Note
that in the last two cases no extra software installation will be re-
quired on the client side and in case (3) even large-scale meshing
jobs can be done quickly with high-end servers. “WebGL is a
cross-platform, royalty-free web standard for a low-level 3D
graphics API based on OpenGL ES 2.0, exposed through the HTML5
Canvas element as Document Object Model interfaces [9].” Fig. 4
shows a screenshot of the 3D viewing of a meshed structure inside
the portal of our web site. Canvas element together with the Web-
GL API can enable us to interact with (select, rotate, zoom, etc.) the
3D objects especially in the pre- and post-processing phases of the
design.

The FEM is consequently converted into a large sparse matrix by
CCX (CalculiX CrunchiX) [7] representing the system of linear
equations and solved by the underlying solvers such as SPOOLES
(Sparse Object-Oriented Linear Equation Solver) [10]. Results ob-
tained help us to accurately estimate the physical displacements,
stresses and strains on the structure under applied forces. Several
other open-source or proprietary linear equation solvers (PARDISO,
TAUCS) can also be used together with CalculiX [7]. We used SPO-
OLES direct solver in this paper; therefore we skip details for other
solvers for brevity. There are also tools for sub-structuring objects
before executing the FEA such as METIS and its parallel version
PARMETIS. METIS is used for partitioning graphs and finite element
meshes, and producing fill reducing orderings for sparse matrices.
We currently do not include a sub-structuring (aka domain decom-
position) tool in our design for two reasons: (1) research shows
that [11] parallel equation solver methods that work at a lower-le-
vel than the FEM can be much faster than parallel sub-structuring
methods, (2) Sub-structuring requires explicit knowledge about
the geometry of the object: As we will see in Section 5 customers
can be sensitive about the privacy of their design and the fact that
the cloud service provider knows about their intellectual property
can be a big concern.

Solving the equation in the matrix form [K] - {u} = {f}, is essen-
tial in both linear and nonlinear, static and dynamic FEA [11]. In
the context of structural mechanics, {u} is related to the displace-
ments of each finite element. SPOOLES has four major calculation
steps:

e Communicate: Read K and f matrices.
e Reorder: (PKP") - (P-u)="Pf.

I Ari, N. Muhtaroglu / Advances in Engineering Software 60-61 (2013) 122-135 125

FEMCloud @ Ozyegin University

Click to open drawings.

i - 2 e
(® FEMCloud @0zyegin Univ

€« 2 C O cloud.ozyeginedu.tr/fem, or=0,1,0,1

This demo requires WebGL support. (Tested Browsers: Chrome, Firefox ; Tested OS: Windows7, MacOS)

To interact with the object click and move your mouse...

RN

Fig. 4. A screenshot from the online pre-processing step for our FEA service. Meshed structures can be generated from CAD files and viewed online. Note: WebGL is currently
supported by Google Chrome, Mozilla Firefox and a few other web browsers, but its adoption is increasing. Certain OS and browser settings may be required. See http://

cloud.ozyegin.edu.tr/fem.

e Factorize: Apply lower-upper (LU) factorization.
e Solve: Forward and Backward substitutions.

SPOOLES can be executed in a serial (single-threaded), multi-
threaded (pthreads) or multi-node (MPI) fashion [10], therefore
all of the steps above can be parallelized. The results (displace-
ments and stresses) are saved in a specially-formatted file called
FRD in CalculiX.

2.3. Post-processor

Post-processing can also be done online or offline similar to pre-
processing. For example, the CGX tool can be used to read the FRD
file and visualize the results on the object under given forces as
shown in Fig. 5.

2.4. Job scheduler

FEA jobs with different CPU, memory and I/O needs need to be
first characterized and then scheduled accordingly for optimal pro-
cessing performance. In addition, multi-tenant cloud services such
as ours require a careful balance between job isolation for cus-
tomer quality of service (QoS) assurance and mixed execution for
high throughput and better resource utilization for service provid-
ers. This is a multi-variate optimization problem that can be mapped
into an NP-hard “bin packing” problem. The scheduler needs to make
automated, smart decisions on admission control, job throttling,
concurrent scheduling and even rescheduling. We present our
evaluations and results of different representative FEA loads on sin-
gle-core, multi-core and many-node (MPI) configurations on two
alternative systems (low-end PCs and high-end servers) and discuss
different scheduling techniques in the following sections.

3. Workload characterization

In this paper, we used the models shown in Fig. 5 and several
others to guide our performance tests and the FEA service design.

We chose these models because of the differences and some con-
trolled similarities in their processing complexities. The first is an
8 m x 1 m x 1 m concrete cantilever beam under a 9 MN bending
force applied at its free end (i.e. a civil engineering case). The sec-
ond is a steel jet engine Disk under a high-speed centrifugal force
(i.e. an aviation case). The third and fourth are cases from the auto-
motive industry; first being a car Hood that is getting loaded with a
concentrated force from above and second being a Brake rotor un-
der centrifugal forces. Both the pre-and-post processed versions of
these structures are shown in Fig. 5. Red tones represent the max-
imum stress areas in the body and show potential points of failure.
The product designers are expected to evaluate these results and
either alleviate the stress points via redesign or indicate conditions
for acceptable use of their products in their data sheets.

The initial file size of these models is relatively small (largest
Hood is <6 MB) and therefore they can be immediately mapped
to memory resolving any further disk 1/O issues. When meshed
at a very fine-granularity the file sizes can go up to a few GB
increasing the overall impact of I/O and requiring a more careful
consideration. Our future work includes handling parallel /O for
bigger FEM files with MPI-10 or using distributed task processing
systems such as MapReduce [12] for this purpose. We use MapRe-
duce in our other cloud projects to process 100s of GB of enterprise
log files and therefore think that we can apply it to parallelize FEA
I/O loads as well.

Other processing-related FEM parameters include number of
elements (cubes, tetrahedrons, etc.), integration points for each
element, and the number of nodes (or total points). We found that
most of these parameters do not have a major effect on the perfor-
mance, since the model is transformed into matrices before being
processed by the solvers and most of these matrices are extremely
sparse. Sparse direct linear equations solvers such as SPOOLES can
take advantage of this fact to obtain a compact, memory-efficient
representation of the FEM. We observe in our results (Section 4)
that both the computational complexity and the memory require-
ments for the mechanical structural analyses done in this paper are
positively correlated with the number of non-zero elements (NZE)
in the matrix (e.g. see Fig. 6), which was also indicated by prior

126 I. Ari, N. Muhtaroglu /Advances in Engineering Software 60-61 (2013) 122-135

BEAM

HOOD

BRAKE

Fig. 5. Screenshots from FEA of Beam, Disk, Hood, Brake objects under dynamic forces. (For interpretation of the references to color in this figure legend, the reader is referred

to the web version of this article.)

related work [13]. However, note that there can be counterexam-
ples to this rule for FEA of objects with drastically different geom-
etries, materials and analysis types. Section 4.6 discusses one such
scenario for the effect of geometry on performance.

The NZE count and sparsity (i.e. % NZE/Total Elements) of our
sample objects can be summarized as follows: Beam 38K NZE
(7.4%), Disk 2.96M NZE (0.2%) and Hood 26.2M NZE (0.013%). We
vary the NZE of the Brake component from 8 to 55 million via con-
trolled fine-granularity meshing and measure its effects on mem-
ory and CPU time in Section 4 (see Table 7).

The parallel portion of the analysis code also affects its process-
ing performance over multiple cores and nodes. Amdahl’s law dic-
tates that adding more cores beyond 8-16 to solve 50-75%
parallelizable jobs (these values are also very common in FEA) will
have a small incremental performance impact [14]. We processed
these FEA jobs on two different systems: high-end servers each
with 8-core CPUs and 12-24 GB memory and low-end PCs with
2-core CPU and 2 GB memory. We timed the code and measured
the parallel portion to span 60-70% of the overall execution time.
The results confirmed the validity of Amdahl's Law for these
CPU-intensive HPC loads (i.e. increasing the core count is benefi-
cial, but has diminishing returns) and therefore we skip details
for brevity. However, we also encountered cases where some large
NZE jobs triggered swapping (with kswapd in Linux) due to lack of
memory, especially on the PC system with less memory. In such
cases, the jobs will eventually complete, but it will be impossible
to predict when they will or what the overall system throughput
may be. Therefore, such cases should be avoided. Section 4 will
present detailed experimental results.

3.1. Linear vs. nonlinear analysis

The linear analysis theory is based on the assumption that the
displacements are small with respect to the geometry of the struc-
ture and the material is linear elastic (Hookean). Therefore, the
solution is found in one step. This assumption is no longer true
when the displacements are large and the applied forces also affect
the geometry, or the material behavior is nonlinear [27]. We will
only focus on the geometric nonlinearity in this paper (see Appen-
dix A for other types of analyses supported by CalculiX).

The nonlinear analysis divides the problem into smaller incre-
mental steps and the final solution is found by iteration and by
checking convergence conditions. The size of increments can be
defined by the user, but in CalculiX it is advisable to let the pro-
gram decide on this parameter at run-time for faster convergence.
The convergence criterion is that the residual forces (i.e. difference
between the internal and the external forces) of the structure are
small enough (e.g. <0.00001%). If they are small enough, the solu-
tion is found. Otherwise, the iteration will continue until either
convergence or a maximum iteration count is reached. If the max-
imum iteration is reached, the solution has not converged.

4. Experiments

In this section, we first describe our experimental setup for
cloud performance analysis (Section 4.1) and present a systematic
analysis of the described FEM loads. Since our FEA service will be a
multi-tenant, concurrent job processing system we need to under-
stand the CPU usage and memory impact of executing different
types of jobs (different FEMs and linear vs. nonlinear analysis) in
a multi-threaded fashion. Second, we test the limits of concurrent
processing by scheduling J identical jobs each using a single thread
(Section 4.2). Third, we increase the number of threads T for each
job to better utilize the C cores in each node (Section 4.3). Then,
we run jobs that cannot be sustained on a single node over multi-
ple nodes using MPI to benefit from additional distributed comput-
ing resources (CPU and memory) (Section 4.4). Next, we mix
different jobs and compare different scheduling techniques and
show advantages of smart scheduling that takes advantages of
adaptive parameter tuning (Section 4.5). Finally, we investigate
the effects of structure geometry on the analysis performance
(Section 4.6).

4.1. Experimental setup

We use two types of systems for our experiments. The first is a
PC cluster consisting of 8 x HP DC5850 personal computers (PCs)
with one 2.3 GHz AMD Athlon X2 Dual-Core Processor, 2 GB
Memory and 250 GB 7200 rpm disk. These nodes are connected
via a 100Mbps Cisco Catalyst 2950 Ethernet switch. The second

I Ari, N. Muhtaroglu / Advances in Engineering Software 60-61 (2013) 122-135 127

100000 . . . X . .
Beam —+— |
Drsk
Hood - M
10000 *
1000 i
¥
»
= * o *
g 100
=
10
| /
0.1
1 2 4 8 16 32 64
Number of Jobs
100
Beam —t—
Hood %
10
2 |
7d
3
o 1
£
5
a |
S o1 x
£ .
0.01 e W 4
x
0.001 L x
1 2 4 8 16 32
Number of Jobs

(a) IBM Server

100000 v . . i .
Beam —4— |
* Orsk
g Hood 4
10000) =
"
1000
2
g 100
; 1
10 4
‘ -/
0.1
1 2 4 8 16 32
Number of Jobs
10 v v v . .
: Beam ——4— !
: —3
) 1F
8 ;
7
P
o
£
3 01f
a 1
= 1
=4 i
3 ¥
£
= 001;
0.001 % * *
1 2 4 8 16 32
Number of Jobs
(b)HPPC

Fig. 6. Processing of Beam, Disk and Hood jobs with only 1 thread/job on (a) IBM server and (b) HP PC systems. The time increases and throughput drops sharply when the
total memory capacity and/or core count is exceeded. Otherwise if there is enough memory, the processing time will increase linearly with the job count/core count.

system is a high-performance IBM Blade system in our data center
with 4 x IBM H22 Blade Servers in HPC-H chassis providing 1Gbps
connectivity among the blades. Each IBM blade server has two
2.40 GHz Intel Xeon Quad-Core E5530 Processors, 12-24 GB Mem-
ory,’> and two 72 GB 15000 rpm disks each. To summarize, PCs have
2 cores and servers have 8 cores per node. We installed RedHat
Enterprise Linux 5 server OS, CalculiX, SPOOLES, and openMPI on
all of these systems. We use the four FEA workloads described in
the previous section for performance comparisons, namely Beam,
Disk, Hood and Brake and their mixes.

4.2. Single S/W thread and OS scheduler

In this section, we run a controlled experiment by running J
identical jobs of the three workloads (Beam, Disk, Hood) concur-
rently on a single server node and a single PC node. We set the soft-
ware multi-threading (MT) parameter as T=1.

Fig. 6 shows the execution time and throughput results in a
log10 — log2 scale of time and job count parameters, respectively
for the two different hardware settings. Results confirm that the
server (with 8 cores) and the PC (with 2 cores) can respectively
handle 8 and 2 concurrent Beam and Disk jobs without any
performance decay. We do not see any latency increase per

3 Some analyses were done when our servers had 12 GB RAM. Later they were
upgraded to 24 GB.

increasing job count until we reach the physical core count, C.
In the sustained performance (i.e. flat latency) regions we found
the time difference between the loads to be directly proportional
to the number of NZE (38K vs. 296 M vs. 26.2 M). Based on
these observations, we are able to better predict the expected
run time and memory needs of newly arriving jobs and mixes
of jobs by comparing their NZE with those of the already
characterized jobs and their observed performances. However,
one has to be careful about making exact decisions based on
NZE as we will see there may be other factors affecting the
performance.

The Hood job sees significant performance degradation after
four jobs in server (with 12 GB RAM) and even with one job in
PC (with 2 GB RAM). The reason is simply the lack of enough
RAM to sustain the processing of multiple concurrent Hood jobs.
We did memory profiling using Valgrind Massif profiler [15] and
found the maximum memory requirements of Beam, Disk and
Hood to be 4.7 MB, 380 MB and 3.15 GB, respectively. These values
were all approximately 0.13 KB times the NZE of these model
matrices and since the object structures were quite different the
result is surprising. This magic value could be explained as the to-
tal size of global variables (structs, integers, etc.) that need to be
allocated in CalculiX and SPOOLES per NZE. We investigated the
subject with different multi-threading parameters, linear-vs.-non-
linear analysis and with objects that have larger NZE (e.g. Brake) in
Section 4.5.

128 I Ari, N. Muhtaroglu / Advances in Engineering Software 60-61 (2013) 122-135

Fig. 7 shows the dynamically-changing memory allocation of
CalculiX for the Hood job over time for linear and nonlinear anal-
ysis with 1 thread.* The linear analysis makes one cycle first allocat-
ing the memory for the matrix, factorizing and solving the problem
and finally de-allocating it when the calculations are finished. The
maximum memory allocation is 3.148 GB. We find that the nonlin-
ear analysis will go into a cycle of memory allocation and de-alloca-
tion for each iteration, but the maximum allocated memory will be
comparable to the linear analysis. For example, we find that the non-
linear analysis of the Hood job iterates 18 times before convergence
and the peak memory value is around 3.247 GB (within 3% of linear
analysis).

Next, we repeated the same experiments with different thread
counts (1-2-4-8 threads) on each model. We found that increasing
the number of threads slightly increases the maximum memory
used (see Table 1). The percentage of memory increase depends
on the job. The increase is mainly due to the replication of applica-
tion code (e.g. ccx program) in memory and not the matrix data as
this data is shared among the threads. We also know that Linux OS
will not replicate the shared libraries (such as libc.so and 1d.so) for
threads. An investigation of memory maps (cat /proc/<processid>/
maps file in Linux) reveals this fact. Note that if jobs are distributed
with MPI on multiple machines the benefit gained from data and
library sharing will be forfeited.

Referring back to Fig. 6, the throughput results show that for
short-running jobs (i.e. Beam) there can be a small incremental
benefit in pushing more jobs than the core count, C, of the system,
but with the long-running jobs the throughput can only be sus-
tained until] < C. We also observe a significant performance differ-
ence between the time and throughput results of the server (3-
10x) and the PC. We attribute this to the differences in CPUs,
bus speeds, and memory sizes. We conclude that cheap PC clusters
may not be feasible for provisioning a high-quality FEA cloud ser-
vice. The big performance difference between the two alternative
strategies (e.g. the 3-10x more jobs completed at the same time)
justifies the higher price of servers.

4.3. Multi S/W thread and OS scheduler

In this section, we increase the multi-threading (MT) parameter,
T, at the application level to see whether we can gain benefits by
adapting this parameter. MT creates a potential for running parts
of a job on different cores. Note that the OS will not be able to par-
allelize jobs that are not explicitly multi-threaded by the applica-
tion. However, one cannot easily specify on which core each
thread should execute explicitly in a single machine, since this is
dynamically decided by the OS scheduler (this matters less when
cores are symmetric). The motivation for automatically tuning T
parameter is two folds: (1) long running jobs will be parallelized
(2) mixes of jobs can be better interleaved. All results in this sec-
tion were obtained on the IBM systems.

Fig. 8 shows the total execution time and throughput results for
the Beam job for different T (1-8) values. As Beam is a very short-
running job, trying to divide it further into pieces has a diverse ef-
fect on the performance (execution time increases and throughput
drops). The best throughput is obtained at T=1 and /=16 on IBM
server (C = 8). Pushing more jobs beyond this point also degrades
the performance.

Fig. 9 shows the time and throughput results for Disk. Note that
the latency drops and throughput increases until T = 8 for J = 1. For
J =2 throughput increases until T=4 and then drops slightly. For
J =4, throughput increases until T = 2. By observing this trend, we

4 Memory profile of other objects look very similar and therefore they are not
shown for brevity.

deduce that we can extend the rule /< C from Section 4.2 as
J x T<C. The throughput of Disk workload is highest at J=16
and T=1 point (0.35 jobs/s). However, note that the total latency
is also high around 50 s as 16 x 1 > C = 8. Therefore, we again find
the best latency-throughput tradeoff at | x T=C point with
[J=8,T=1] and [J =4,T = 2] points. The former choice gives better
throughput and the latter has better latency. The choice can be
made based on how critical either performance metric is in a given
context. For example, the service providers would prefer higher
throughput, but the clients would prefer lower latency.

The results in Fig. 10 further confirm our findings using the
Hood job. The highest throughput/latency point is at [J=2,T=4].
To conclude, longer-running jobs will benefit significantly from in-
creased (but carefully-controlled) software threading, until the
core count value, C, is reached in a single node. However, for mixed
jobs the tuning and multi-node distribution will have to be done
automatically. In current state-of-the-art, programmers usually as-
sign jobs the maximum threading parameter that (they believe)
will fully-utilize the allocated resources. We call this the “aggres-
sive strategy” and compare it to our “smart scheduling” in
Section 4.5.

4.3.1. Multi-threaded nonlinear analysis

Since nonlinear analysis is iterative, we tested the effect of mul-
ti-threading on nonlinear FEA and compared it to linear FEA with
one of the jobs. The results in Table 2 were obtained on the IBM
server with 24 GB RAM and using the Hood job. Results show that
nonlinear jobs can gain more speedup from multi-threading as the
percentage (and importance) of the initial serial part of the code
diminishes as we have more iterations over the same code. Note
that each iteration in nonlinear analysis (which maps approxi-
mately to one linear FEA) will internally have a serial and a parallel
portion. That serial portion cannot benefit from parallelization and
therefore the speedup is not as high as expected. We attribute the
increased speedup values in nonlinear analysis to the reduction of
the importance of the global initialization phase. In this run the
analysis iterates 18 times before convergence and iteration count
depends on various factors including convergence criterion, object
geometry, and applied forces. If the maximum iteration count is set
to a relatively small value such that it is reached before the
highly-constraint convergence criteria (e.g. <0.0001%), then the
total non-linear analysis time can be approximately calculated as
linear_time x iteration_count x speedup_ratio between linear and
nonlinear analysis. Also note that this is a property of our direct
solver and iterative solvers may demonstrate different behavior.
Finally, the nonlinear analysis in Table 2 also consistently shows per-
formance drop after thread count (16) exceeds the core count (8).

We completed our nonlinear time analysis for the Hood and
Disk jobs with different concurrent job and thread counts and re-
ported findings in Appendix B. The results further confirm our
Jx T<Crule.

Note that some of these problems are open-ended with respect
to the overall FEA cloud service design as other factors including
accounting and quotas will also determine how long a certain user
can be allowed to run a job on the cloud system. In a certain
accounting model, jobs may be preempted and paused (or killed)
because the user has no remaining credit for analysis.

4.4. MT vs. MPI, single and multi-nodes

We know that MPI (distributed memory model) will communi-
cate via explicit message passing and in MT threads will share the
same process address space (shared memory model). We first
quantify the overhead associated with messaging irrespective of
any network equipment capabilities (i.e. in a single machine).
Table 3 shows the comparison results for software multi-threading

I Ari, N. Muhtaroglu / Advances in Engineering Software 60-61 (2013) 122-135 129

Command : ccx_2.1_MT -1 ./calulix

Massif arguments: (none)

ms_print arguments: --x=120 massif.out.18087
GB

3.148°
:
|
|
|
| 1@QE: :
| @
| t e
| : s e
| @ 1 :@ee: e
| @: d : @
| @: I H)
| @: r@ @
| @: r@ HC]
| Le e
| @: : @ @
|s @: t @ @
|: : @ : @ : @
I re B

Number of snapshots: 70

#
@@Q: : @Q: :CQ: : @@ @e#
@ :@:@: @ #
@ Te:@ #
@ = @@ #:
Q@ : @@ #:
@ : @@ #:
@ : T @@ #:
@ T @@ #:
@ :@:Q@:@ Hcl #:
@ :@:@:@:: Hcl #:
@ :@:@:@:: Hcl #:
@ :@:Q@:@:: Hd #:
@ :@:@:@:: Hcl #:
@ :@:@:@:: Hcl #:
@ :@:Q@:@:: Hcl #:
@ :@:Q@:@:: Hd #i:
@ :@:@:@:: i@ #::
@ :@:@:Q@ Hc) #:
@ @e:e

Detailed snapshots: [6, 11, 22, 37, 39, 41, 43, 53, 60, 62 (peak)]

Command:
Massif arguments:
ms_print arguments:

ccx_2.1 M -1
(none)
--x=120 massif.out.10786

/calulix-nlg

H
HE

: #

: #

t#

5 AT
#
D #
t#
t#
T #
#
D #
HE]
D #
T #
#
D #
D #

Number of snapshots: 70
Detailed snapshots: [3 (peak), 41, 55, 65]

@
o

@@@@a@@@@ea@@e@é@@@

Hd
Hd
@
H
i@
H
Hd
Hd
H
Hd
Hd
Hd
Hd
Hd
Hd
Ha
Hd
Hd
:Q .

Fig. 7. Memory profiling and comparison of linear and nonlinear FEA of Hood using Valgrind Massif tool. Nonlinear analysis of Hood did 18 iterations. Gi-Ti refer to Giga and
Tera instructions, respectively. Results for FEA of other objects looked similar and therefore they are omitted for brevity.

Table 1
Increasing the multi-threading count slightly increases the maximum memory used
while processing FEA jobs (Hood on IBM server).

Threads Max memory (GB) KB/NZE
1 3.148 0.126
2 3.154 0.126
4 3.198 0.128
8 3.315 0.132

(MT) and the Message Passing Interface (MPI) in a single machine
for one Hood and one Disk job (J = 1) on the IBM server (with 12 GB
RAM). Results confirm that as the core count increases, MPI perfor-
mance degrades over the MT version for both jobs and the slow-
down reaches ~0.82 level (i.e. 18% performance loss) even at 8
cores.

Recent publications suggest designing new processor architec-
tures called Message Passing Processors [16] which are distributed

memory multi-core processors that communicate using message-
passing among themselves. However, our finding suggests that
for tightly-coupled systems shared memory architectures or
“MT” should be preferred over “MPI”. MPI should only be preferred
as an option to “scale out” resources beyond a single node as there
are always limits to “scaling up” local resources. For example, we
have seen that the Hood job could not run properly on a single
HP PCs (N = 1) due to lack of memory. Table 4 shows the benefits
of employing MPI in such scenarios. If we take MT and MPI as
two alternative strategies for resource pooling (or virtualization),
the same total number of cores, e.g. TC = 2, can be configured either
as one node [N=1,C=2] (using MT) or two nodes [N=2,C=1]
(using MPI). While Table 3 showed some performance degrada-
tions due to messaging, Table 4 shows that there may still be large
savings with MPI due to the avoidance of memory swaps (e.g. first
case in Table 4, 1325.6/475.5 ~ 2.79x gain). Similar gains are ob-
served for the TC=4 [2x2 and 4x 1] and TC=8 [4 x 2 and
8 x 1] configurations over MT, but with diminishing returns as

130 I Ari, N. Muhtaroglu / Advances in Engineering Software 60-61 (2013) 122-135

50 v T T T ' v 50 T T T . v
1Job —+— 1Job —t—
2 Jobs ¥ D 2 Jobs >
4 Jobs e 4 Jobs e
8Jobs [8 Jobs £}
40 | 16 Jobs 1 o 16 Jobs 1
32 Jobs =—@— > 32 Jobs ===
Y
8
@ 301]]
z s
@ -
£ 2
F 20t 15 1
5
<
=
10} 1 1
& e
0@ g * - 5 5
1 2 3 4 5 6 7 8 6 7 8
Number of Threads Number of Threads
Fig. 8. Beam: execution time and throughput results for concurrent multi-core processing on IBM server.
300 T : T : P 0.05 T v v - T
2 Jobs -+ 2 Jobs Do
4 Jobs e 4 Jobs é
L] 8 Job:
250 004l obs]
0.03f * .

Time (s)

Throughput (jobs/sec)

1 2 3 4 5 6 7 8
Number of Threads

Fig. 9. Disk: execution time and throughput results for concurrent multi-core processing on IBM server.

0 : . : . . L
1 2 3 4 5 6 7 8
Number of Threads
' " ! " 1Job ——
200 S e]
8 Jobs
16 Jobs
150 1
)
[
E 100 |]
[
i)
: : : 4
5 6 7 8
Number of Threads

0.6 T T r T r

16 Jobs

04} 1

Throughput (jobs/sec)

1 2 3 4 5 6 7 8
Number of Threads

Fig. 10. Hood: execution time and throughput results for concurrent multi-core processing on IBM server (with 12 GB RAM).

Table 2
Comparison of the time and speedups for linear and nonlinear analysis of Hood on
IBM server.

Thread Linear Nonlinear
Time (s) Speedup Time (s) Speedup
1 160.24 1 2517.218 1
2 113.2 1.41 1833.705 1.37
4 94.82 1.69 1220.27 2.06
8 83.38 1.92 983.537 2.56
16 97.77 1.64 1057.107 2.38

the job does not benefit from the additional memory resources.
Note that our network bandwidth for this PC cluster was 100 Mbps
and this may be the cause of some of the bottlenecks. In the future,

we plan to repeat experiments with 1-10 Gbps switches for this PC
cluster.

4.5. Smart scheduling for mixed jobs

In previous sections, we evaluated each workload type (i.e. the
Beam, Disk and Hood) extensively, but separately, on different
number of cores and with varying threading (T) and concurrent
job count (J) parameters. In this section, we mix these three work-
loads to get one step closer to a real life batch processing scenario.
Given the processing limits of the systems in Fig. 6 and findings in
previous subsections, we created a job mix that would substan-
tially load the system and highlight the effects of different sched-
uling strategies. The mix consists of 4 Hood, 32 Disk, and 1024

I Ari, N. Muhtaroglu / Advances in Engineering Software 60-61 (2013) 122-135 131

Table 3
Time comparison of MT vs. MPI on IBM with Hood and Disk jobs.
Core HOOD Disk
MT MPI Slowdown MT MPI Slowdown
1 158.9 161.2 0.99 22.71 22.87 0.99
2 121.2 126.8 0.96 15.36 18.33 0.84
4 85.44 100.6 0.85 11.57 14.01 0.83
8 73.3 83.83 0.87 9.286 11.3 0.82
Table 4
Execution time comparison of MT vs. MPI for Hood on PC.
Total core Node x core Time (s)
2 1x2 1325.4 (Swap)
2 2x1 475.5
4 2x2 278.5
4 4 x1 268.2
8 4x2 318.0
8 8x1 271.0
Table 5

Comparison of scheduling strategies over the mixed many-task job on IBM server.

Smart (T = adaptive) SJF(T=1) Aggressive (T=8)
1 Server 240.7 (7.53) 256.4 (7.07) 1812.5 (1)
2 Servers 130.45 (6.79) 199.98 (4.43) 886.2 (1)

Beam jobs and the goal is to finish the batch as quickly as possible.
Three different scheduling strategies we compared are called the
Shortest-Job-First (SJF), Aggressive strategy and smart scheduling.
SJF strategy simply allocates 1 Thread per job (T=1) and lets the
0OS scheduler handle the effective job-to-core placements. The
Aggressive strategy wants to utilize all cores and splits all jobs into
threaded parts as many as the core count (T = C) of nodes before
handing over to the OS scheduler. The smart scheduler calculates
and sets a different threading parameter for different job types
based on a logarithmic function of the NZE, predicts the potential
memory use and tracks resource usage as well as available capac-
ities. All schedulers use Round-Robin (RR) algorithm for load bal-
ancing over multiple machines at this time.
The smart scheduler briefly works as follows:

(1) The jobs are characterized when they are uploaded to the
system. Optimum core counts and necessary memory needs
are determined (Characterization).

(2) When a job is submitted for processing it is placed into a pri-
ority queue with its priority value set to its amount of non-
zero elements (use benefits of SJF).

(3) If there’s enough memory in any of the nodes and enough
cores in them, then the maximum memory granting node
is selected. When there are multiple matching nodes,
round-robin technique is used (implicit load balancing).

(4) If there is no single node with sufficient memory or core
available for the job, MPI is used to distribute the job with
possible minimum MPI node count (avoids swapping).

(5) If there’s no resource available, then the new job waits for
the next job completion and checks once again (admission
control). If the job requires more memory and CPU cores
than the cluster can provide than policy-based admission
control will be applied (either all rejected, or some admitted
based on customer class type).

The new jobs arriving into the system would be characterized
and classified accordingly by the smart scheduler before execution.

For example, its sets the threading parameters as T=1 for Beam,
T =2 for Disk and T = 4 for Hood. As seen in Table 5, the Aggressive
multi-threading strategy creates additional thread handling bur-
den on the OS scheduler slowing down the total execution times
while attempting to utilize all the cores. On 1 server aggressive is
7.53 times slower than Smart and 7.07 times slower than SJF
schedulers. Smart scheduler provides 7% additional improvement
over the SJF strategy that still depends on a very efficient OS sched-
uler. For 2 servers, Smart provides a speedup of 6.79x over Aggres-
sive and 1.53x over SJF. We also obtained estimates of execution
times for this job mix by superposing the concurrent execution
times of each job type using Fig. 6 and found these linear estimates
to be highly accurate (within 1-10% range).

These results for smart scheduling are promising. Our future
work includes completing a comprehensive analysis with different
job mixes and comparisons with a wider variety of scheduling
algorithms.

4.6. Effect of the geometry on performance (with same NZE)

This section shows some of the open research questions in per-
formance characterization of FEA loads. Hsieh et al. [11] found that
the geometrical properties of the structure, especially appendages
and/or holes, can have significant effect on both the processing
time and memory footprint of the analysis. This brought up a very
interesting point that triggered further investigation. For compari-
son, we generated two new models in this section called circle and
hollow-circle as shown in Fig. 11, where the latter is exactly the
same as the former object except that it has a hole in the middle.
Since the structure with a hole would have fewer elements
(assuming the same element type) and thus fewer NZE we in-
creased the granularity of the meshing for the hollow-circle object
until their NZE were approximately the same. Table 6 lists some of
the properties and analyses results for these two objects. While the
NZE counts are very similar for the two objects (within 2%) the pro-
cessing times are reduced drastically for the hollow object
(112s — 52s, 54% savings) for 8 threads and (396s — 110s, 72%
savings) for 1 thread. Memory footprint is reduced by 32% for 8
threads and by 45% for 1 thread. The finite element type (C3D4 -
tetrahedral with four nodes) used for the two models are also
the same. This analysis shows that even the same amount of force
applied to two similar objects can have different performance out-
comes. All other parameters being about the same, one recognizes
a positive correlation between memory usage and the execution
time, i.e. the job that uses more memory will also take longer to
execute. Note that memory allocation functions such as malloc()
also have associated time costs and large FEA loads with huge
memory footprints will test the limits of OS memory management.
While the Linux slab allocator uses free lists of already allocated
data structures (i.e. caches per object type) finding pre-allocated
objects may not be possible when the memory limits are forced.
Matrices from finite element problems are often banded, since they
describe the coupling between elements and elements are usually
not coupled with other elements over arbitrarily large distances in
real-life scenarios. We leave it as future work, to use bandedness® of
different matrices as a means for performance characterization and
comparison among different workloads.

We continue our geometric analysis with the Brake component,
shown in Fig. 4, which is also circular and has holes on it. By
increasing the meshing granularity of the Brake component we ob-
tained several models called B1-B6 listed in Table 7. The NZE count
was increased from 8.7 million to 47.1 million. We analyzed the
time and memory usage of FEA for B1-B6. The last model caused

5 http://en.wikipedia.org/wiki/Band_matrix.

132 L. Ari, N. Muhtaroglu/Advances in Engineering Software 60-61 (2013) 122-135

Fig. 11. Two control objects, circle and hollow-circle, are used to measure the effect
of geometry and force on FEA processing time and memory.

Table 6
Effect of geometry on the FEA CPU time and memory usage.

Object Circle Hollow circle

Mesh options Very fine, 1, 0.1 Very fine, 1.5, 0.1

NZE 5576731 5469133

Exec. time (8 threads) 11233 s 52.43 s

Exec. time (1 thread) 396.50 s 110.93 s

Memory (% GB 24 GB, T=8) 122 8.3

Memory (% GB24GB, T=1) 10.8 6.0

Nodes 86,344 86,937

Element 461,234 (C3D4) 439,169 (C3D4)
Table 7

CPU time and memory usage variations for different meshing (thus NZE) configura-
tions of the Brake component.

Model Max. Non-zero Memory Max. Per NZE Exec time

code mesh elts (%) (for memory mem (KB/ (s) (8
size (million) 24 GB) (GB) NZE) threads)
(mm)

B1 2 8.7 9.8 2.549 0.307 83.312

B2 1.5 15.1 17.9 4.554 0316 -

B3 1.35 19.3 274 6.895 0374 270.254

B4 13 25.2 46.6 10.78 0.447 353.162

B5 1.2 373 77.2 19.43 0.52 757.04

B6 1.1 471 >100 - (>24GB) SWAP SWAP

memory swaps even on the 24 GB servers, therefore we did not in-
crease the granularity of meshing any further. The memory usage
varies from 0.3 to 0.5 KB/NZE. In terms of NZE model B4 is compa-
rable to the previously analyzed Hood job. However, B4 allocates
about (10.78 GB/3.15 GB) 3.42x more memory than Hood. The
execution time B4 also takes (396.55/83.4s) 4.75x more time than
Hood. Together with the analysis for circle objects above we con-
clude that memory allocation efficiency (time for malloc() and
the underlying memory management strategies) can be a signifi-
cant performance bottleneck in the processing time. This problem
is also called the “memory wall” in the OS and Computer Architec-
ture literature. Cloud service designers should also be aware of the
architectural compatibilities of all the tools and attached shared li-
braries (32-bit vs. 64-bit) that their systems are dependent on.

5. Discussions on other cloud service related issues

This section provides a detailed discussion on the remaining is-
sues related to the success of a FEA cloud computing service.

5.1. Multiple dimensions of smartness

A smart scheduler for the FEA cloud service can utilize various
dimensions related to the analysis in addition to the perfor-

mance-related ones mentioned above. Additional dimensions that
can be used to make optimal and dynamic scheduling decisions in-
clude: class-awareness (jobs from paying vs. free customers),
deadline-awareness (using the critical-ratio parameter to decide
next job to schedule from a batch), FEA-job-awareness (linear vs.
nonlinear analysis, material nonlinearity), file-size awareness (I/O
intensive), power-awareness (co-locating jobs on a few nodes to
shut-down or spin-down other servers), Amdahl-awareness (esti-
mating parallelizable portion of the code to adjust T parameter),
memory-awareness (prioritizing memory needs over CPU in
RAM-scarce systems), network-awareness (MT vs. MPI tradeoffs),
and last but not least accuracy-awareness (trading-off speed vs.
accuracy, e.g. to quickly generate approximate results). We cur-
rently make use of only performance related dimensions in this pa-
per and our future work includes integrating other dimensions into
the decision process.

5.2. Security and privacy issues

Increased sensitivity of end users to product security and pri-
vacy will determine their choice of the aforementioned cloud
deployment models: public, private or community. The most sen-
sitive users with top-secret products to analyze will deploy private
clouds behind firewalls. No information should leak outside unless
their security policies are breached from outside or inside. How-
ever, these users will potentially trade-off cost savings and com-
promise high utilizations.

FEA presents a special case in privacy such that most matrix
operations require only additive and multiplicative algebra. Fortu-
nately, for a limited set of algebraic operations including addition
and multiplication there are homomorphic encryption schemes that
allow operators to carry out the necessary calculations over the en-
crypted data (rather than unencrypted or clear text data) while pre-
serving the correctness of computation as well as the privacy of the
original data. This way even a potential malicious attacker inside the
service provider would not be able to reconstruct the design details
of the original customer product. Basically, after these transforma-
tions one cannot differentiate whether the matrix belongs to the
chassis of a stealth plane or a toilet pump. Briefly, let R and S be
two sets and the encryption function be E: R — S. Additively homo-
morphic means: E(a+b)=PLUS(E(a),E(b)) and multiplicatively
homomorphic means: E(a * b) = MULT(E(a),E(b)) where E is given
by the function y = E(x) = amodn, where a =x +r - p and the decryp-
tion is given by x = D(y) = ymodp. We tested homomorphic encryp-
tion with basic matrices and found that vector operations (additions
and multiplications) can be successfully completed over encrypted
data, which is the basis for FEA. However, we did not integrate this
strategy into CalculiX and SPOOLES tools, yet. Homomorphic
encryption has also been used in the database field for running pri-
vacy-preserving queries over data stored at cloud service providers
and in wireless sensor networks for privacy-preserving data aggre-
gation. Therefore, we believe the same techniques could be applied
for privacy-preserving FEA in the cloud as well. This topic requires
further investigation and constitutes our future work.

Publicly deployed cloud services are potentially prone to both
insider (i.e. service provider) and outsider (i.e. man-in-the-middle)
attacks. Using the well-known public and private key encryption
methods (e.g. SSL used in HTTPS) as well as applying Message
Authentication Codes (MAC) over the exchanged FEM models can
alleviate some of these problems, namely the data security and
integrity can be protected. However, these security precautions
should not hinder sharing of data among cloud users. One way to
allow controlled sharing is to use Authorization-Based Access Con-
trol (ABAC) methods [21] instead of Role-Based Access Control
(RBAC), where the former allows finer-granularity control over
the resources. In ABAC, users can assign certain usage rules or

I Ari, N. Muhtaroglu / Advances in Engineering Software 60-61 (2013) 122-135 133

quotas (e.g. using SAML certificates) over server, storage, and net-
work resources or over data stored in file systems and delegate
these privileges to other users. A privilege works for only a given
resource and provides limited access. RBAC (e.g. username/pass-
word and group) allows unlimited access to all resources owned
by a user/group. Therefore, even a small inadvertent mistake done
at the user level or at a higher privilege level (e.g. root or admin)
can result in the exposition of significant amount of personal or
organizational data. We are currently considering the use of ABAC
in our cloud service.

Another related but orthogonal issue to security of cloud ser-
vices is the reliability and availability of these services. Since these
are well-matured research areas we do not get into details here,
but refer users back to publications on data redundancy and sys-
tem fault-tolerance. Denial of Service (DoS) attacks are yet another
concern for cloud service availability, but again there are well-
known network filtering and throttling techniques to eliminate
(or alleviate the adverse effects of) these types of attacks.

5.3. Pricing and accounting

Cloud service providers and telecommunication companies
have adopted several models for pricing and charging. These in-
clude monthly fixed charging (for infinite or quota-based use) or
pay-per-use (the “use” can be per analysis, a batch of analyses,
or per CPU/h). In both cases the user pays at the end. This way
the users are saved from making large risky investments up front,
also known as the Capital Expense or CapEx. Customers only incur
the costs of what they use, or the Operational Expense or OpEx, and
they may decide to change their business model or IT scaling dur-
ing this trial period reducing the IT risk involved with the CapEx.
However, there are certain scenarios where bulk purchasing be-
comes a better option and service providers should also consider
this alternative in their pricing strategies: e.g. Some organizations
have quarterly or annual budgets and if they cannot spend the
budget allocated for their unit, then they lose the option to use it
even in the future budget cycles. In those cases, an option such
as buying “10,000 FEA” or ‘““10,000 CPU/h worth of processing
power for FEA” becomes an alternative.

To be able to charge the users based on different accounting
models we need to monitor the server CPU and memory usage or
analysis counts accurately. We are currently testing the Hyperic
HQ tool shown in Fig. 12 and Hyperic Sigar API for online per-pro-
cess resource (CPU, memory, network) monitoring. We also have
additional counters attached to the scheduler, which tracks the
jobs completed per client.

5.4. Standardization and portability

Strong progress on horizontal integration of cloud services has
been accomplished and there is ongoing work on vertical integra-
tion. Standards such as Open Virtualization Format (OVF) allow
[aasS providers to export and import Virtual Machines, which could
be created at other provider sites. This way the customers can
move their data and tasks freely based on cost, performance, or
usability criteria without worrying about vendor lock-ins. OVF is
currently supported by many Hypervisors underlying the IaaS.
Other standardization bodies such as Open Grid Forum’s Open
Cloud Computing Interface (OCCI) [17] also focused their initial ef-
forts of laaS interoperability, but over time evolved to include PaaS
and SaaS layer integration issues. Our FEA service can currently im-
port several of the standard input FEM formats and exports results
in the FRD file format that can be visualized using CGX. In the future,
we will expand our list of supported input, output file formats so
that users can take away their analysis results easily; there are var-
ious open-source conversion tools that can be used for this purpose.

Due to the government compliance and security privacy issues
people in different countries may be banned from using international
FEA services (e.g. consider top-secret military designs). Therefore, we
believe replicating and provisioning cloud FEA services in different
parts of the world may still be a valuable proposition.

6. Related and future work

During the last few years, there have been attempts to establish
HPC cloud services or HPC as a service. In February 2010, SGI an-
nounced Cyclone-HPC Cloud [18]. Cyclone hosts both commercial
and open-source software solutions for several disciplines includ-
ing computational biology and chemistry, fluid dynamics, FEA,
and electromagnetic. The licensing issues for the commercial soft-
ware are left to the clients. Cyclone provides an laaS model that
lets clients install and run their software on SGI's hardware either
on dedicated or multi-tenant servers.

Penguin Computing also provides an HPC service called Penguin
Computing on Demand (POD). POD also serves at the [aaS level and
makes CPU, GPU, and storage resources available through the
Internet for technical computing. In 2007, Sun Microsystems
(now Oracle) claimed to have made some of the open-source Com-
puter Aided Engineering (CAE) packages including CalculiX avail-
able through the Sun Grid [19]. VM images with preinstalled
CalculiX solvers would be used to solve the problem on Sun’s infra-
structure service at 1$/CPU-h rate. The service is currently not
available. Recent research also suggests that laaS-based HPC cloud

#5 HQ View Auto-Group Monitor

& C' | ® 10.10.40.200:7080/resource/autogroup/monitor/

Recent Alerts: (There have been no alerts in the last 2 hours.)

Dashboard

Welcome, HQ Sig

Analyze | Administration

2394Mhz Intel X
(hz Intel Xeon) & Cpu Usage
[ibm-bl01.0zun.int Linux CPU 10 (CPU)

(2394Mhz Intel Xeon)

[ibm-bl01.0zun.int Linux CPU 11 ®
(2394Mhz Intel Xeon)

r1.ibm-bl01.0zun.int Linux CPU 12 @ 2
M Hact Platfarm Avrail

Metric Display Range: 4 Last|8 v\ Hours v||(@) Advanced Settings

[RESOURCES [CTIESCIOIAN - METRIC DATA N

= ~
[Group Members Avail Indicator Charts | Show Last8 Hours Viev
0 ibm-bl01.0zun.int Linux CPU 1 ® T 10

LOW. 0.0% AVG. 43%

u“MMJ wﬂr&;ﬂ””gﬂﬂaﬂ &&

Fig. 12. Overall (or per process) CPU, memory network and other resource usages can be tracked with Hyperic for cloud service accounting.

134 I Ari, N. Muhtaroglu /Advances in Engineering Software 60-61 (2013) 122-135

Table B1
Processing time of Hood nonlinear FEA with different concurrency and threading
parameters.

Threads CPU processing time (s) - job counts
1 2 4 8
1 2517.218 2530.511 2747.778 2612.259
2 1833.705 1793.619 1731.564 5116.435
4 1220.27 1252.984 1823.222 5613.863
8 983.537 1333.309 2316.989 9250.214
16 1057.107 1802.272 3427.119 7880.564
Table B2

Processing time of Disk nonlinear FEA with different concurrency and threading
parameters.

Threads CPU processing time (s) — job counts
1 2 4 8
1 43.801 44134 44.576 47.599
2 28.541 28.779 29.25 51.309
4 21.129 21.79 33.481 63.363
8 16.884 23.305 51.142 198.644
16 19.433 98.624 221.27 467.365

services [31,32] can suffer in performance especially due to VM re-
source competition and lack of low-latency interconnection
needed by specialized parallel engineering simulations.

FIDESYS Online (http://online.cae-fidesys.com/) is another FEA
cloud service at the alpha stage (as of 2012) that evolved from a
packaged program. Similar to our Cloud FEA service, it allows appli-
cation of meshing, boundaries and forces to uploaded CAD files fol-
lowed by the calculations and analysis in the cloud. They do not
focus on job characterization for effective multi-core or multi-node
scheduling as we do in this paper. FEMHub, hp-FEM Group, Univer-
sity of Nevada, Reno (http://femhub.org/) is another FEA cloud ser-
vice project in progress, which provides software-layer sharing
similar to ours. Users can write Python code through the web inter-
face and access FEMHub’s FEA engine called Hermes. This service
also does not focus on job characterization and scheduling issues.

There are hundreds of supercomputers in the world [20] and
some of these are providing FEA computation services along with
other HPC services to their communities. This service model could
be considered a community-based cloud service model, which is
not open to the use of general public. We wish to reach broader
communities, SMBs and individuals with our public service model.

Scheduling, especially production scheduling, is also a major re-
search field inside Industrial Engineering. Chiang et al. [22] address
the Flexible Manufacturing Scheduling (FMS) problem with Critical
Ratio-Based heuristics and genetic algorithm. Other algorithms
called dispatching rules [25] include FIFO, Shortest Processing
Time (SPT) [30], Critical Ratio (CR), EDD (Earliest Due Date), and
Shortest Remaining Processing Time (SRPT). Park et al. [30] pro-
posed a multi-class SVM-based task scheduler for heterogeneous
grids that maps queued tasks to machines based on their sizes
and machines’ loads as well as their machine computing powers
to minimize the total completion time (makespan) of all tasks.
Their results suggest that SVM scheduler can closely follow the
performance of the best performing heuristics (Early First, Light
Least) and soundly outperform Round Robin scheduler. Our work
differs from [30] and other prior scheduling work such that we
can split the FEA tasks further and choose among MP vs. MPI par-
allelization models before scheduling tasks onto machines. There-
fore, we are neither bound to nor depend on the performance of
other heuristics. In fact, we show in Table 5 that we outperform
both SJF and Aggressive schedulers. Doulamis et al. [26] study task
allocation in Grids and suggest an earliest completion time sched-
uling algorithm based on estimated task completion times. How-

ever, estimating completion times for nonlinear tasks is a
challenging research problem. Belytschko and Mish [24] examine
the computability of nonlinear problems in solid and structural
mechanics problems. A measure of the level of difficulty (L:
1 — 10) is proposed and examples of typical engineering simula-
tions are classified by this measure. In the future, we will compare
our smart scheduler with deadline-based algorithms from different
research fields.

For FEA of assembled complex structures finding and tracking
the dependencies among tasks and their execution ordering is also
an interesting future work. Amoura et al. [23] discuss the issue of
task preemption for independent tasks over multi-processor to ob-
tain minimum makespan. Calculating the number of different
scheduling alternatives given a batch of independent tasks and
computing resources is a known “counting problem” whose solu-
tion is given by the Stirling number of the second kind S(n, j),
where n denotes the number of tasks and j the number of cores.
The research model for hierarchical multiprocessor tasks (M-tasks)
[29] also creates a data and control dependency graph among par-
allel tasks and schedules tasks to multi-core resources by layers
(root-to-leaves) to assure overall progress. We did not focus on
analysis of assembled (multi-part) systems and computational
dependencies among them in this paper.

To summarize, our future work consists of extending the service
into areas shown in Fig. 2 as “future extensions”, handling parallel
I/O for bigger FEM files with MPI-IO or MapReduce, more perfor-
mance analyses using different job mixes, geometries, materials,
scheduling algorithms and fully-implementing system features
such as privacy-awareness and automated accounting into our
FEA service.

7. Conclusions

In this paper, we described the design and implementation of
our Finite Element Analysis cloud service with a focus on mechan-
ical structural analysis, performance characterization and job
scheduling issues. We characterized the CPU and memory require-
ments of representative structural mechanics workloads and ad-
dressed some of the performance challenges related to
concurrent job processing. We did an extensive performance
benchmarking of linear and nonlinear jobs over multi-core and
multi-node computing resources. We showed that effective job
characterization and smart scheduling via automated parameter
tuning for effective utilization of CPU and memory resources can
result in significant time and throughput improvements.

We hope our service will simplify the design and wide-scale use
of FEA and other scientific and engineering applications including
heat transfer, fluid dynamics, acoustics, and electromagnetic mod-
eling in the future.

Acknowledgements

This work has been sponsored in part by the European Union
FP7 Marie Curie program under BI4MASSES project and IBM Shared
University Research (SUR) program. Dr. [smail Ari is also supported
by the TUBITAK (Turkish National Science Foundation) Career
Award 109E194 and Nitel Muhtaroglu is supported by the IBM
PhD Fellowship award. We would like to thank all our sponsors
and other members of the Cloud Computing Research Group at
Ozyegin University.

Appendix A. Details in CalculiX

Several critical features of our system depend on the open-
source FEM tool called CalculiX (http://www.calculix.de) and the

I Ari, N. Muhtaroglu / Advances in Engineering Software 60-61 (2013) 122-135 135

SPOOLES linear equation solver. We described some of the relevant
features and configuration parameters throughout the paper. Other
capabilities of CalculiX can be summarized as follows.

A.1. Types of analyses supported

Static analysis, frequency analysis, buckling analysis, modal dy-
namic analysis, steady state dynamics, direct integration dynamic
analysis, heat transfer, acoustics, shallow water motion, hydrody-
namic lubrication, irrotational incompressible inviscid flow, elec-
trostatics, stationary groundwater flow, diffusion mass transfer in
a stationary medium, aerodynamic networks, hydraulic networks,
turbulent flow in open channels, 3D Navier-Stokes calculations.

A.2. Types of materials supported

CalculiX also supports analysis with nonlinear materials includ-
ing elastic materials, hyperelastic and hyperfoam materials, defor-
mation plasticity, incremental viscoplasticity, and user defined
materials. Ricks discusses the application of Newton’s method to
the problem of elastic stability [28].

Appendix B. Additional nonlinear analysis results

The nonlinear analysis of Hood and Disk jobs on IBM server (8
core, 24 GB RAM) with different threading parameters are given
in Tables B1 and B2, respectively. The italicized results show the
minimum CPU processing time for each job-thread configuration.
We see that the | x T < C rule holds for nonlinear analysis as well
(ie.8x 1,4 x 2,2 x4, 1 x 8 being the shortest time runs).

References

[1] Mell P, Grance T. The NIST definition of cloud computing draft, 800-145,
January 2011. <http://www.nist.gov/itl/cloud/index.cfm> [last accessed
07.06.12].

[2] Amazon web services. <http://aws.amazon.com>.

[3] Dassault systemes product lifecycle management (PLM) solutions and CATIA
design. <http://www.3ds.com/>.

[4] Bremberg D, Dhondt G. Automatic crack-insertion for arbitrary crack growth.
Eng Fract Mech 2008;7(3-4):404-16.

[5] Schoberl J. NETGEN: an advancing front 2D/3D-mesh generator based on
abstract rules. Comput Visual Sci 1997;1(1):41-52.

[6] Web App framework. <http://en.wikipedia.org/wiki/List_of_web_application_
frameworks>.

[7] Dhondt G. CalculiX CrunchiX User’s manual v2.0. <http://www.calculix.de>
and <http://www.bconverged.com>.

[8] Wittig K. CalculiX user’s manual-CalculiX GraphiX, V2.0. <http://www.
bconverged.com/calculix/doc/cgx/>.

[9] WebGL by the Kronos Group. <http://www.khronos.org/webgl/>.

[10] Ashcraft C, Pierce D, Wah DK, Wu J. The reference manual for SPOOLES, release
2.2: an 00 software library for solving sparse linear systems of equations.
<http://www.netlib.org/linalg/spooles/>.

[11] Hsieh SH, Yang YS, Hsu PY. Integration of general sparse matrix and parallel
computing technologies for large-scale structural analysis. Comput Aid Civil
Infrastruct Eng, USA 2002;17(6):423-38.

[12] Dean J, Ghemawat S. MapReduce. Simplified data processing on large clusters,
Usenix, OSDI 2004. p. 137-50.

[13] MATLAB sparse matrix operations. <http://www.mathworks.com/help/
techdoc/math/>.

[14] Amdahl’s law speedup chart. <http://en.wikipedia.org/wiki/Amdahl’s_law>.

[15] Seward], Nethercote N, Weidendorfer J. Valgrind 3.3-advanced debugging
and profiling for GNU/Linux applications, 2008. ISBN: 0954612051
9780954612054.

[16] Howard], et al. A 48-Core IA-32 message-passing processor with DVFS in
45nm CMOS. In: Proceedings of ISSCC 2010 (IEEE international solid-state
circuits conference), February 2010.

[17] Open cloud computing interface standard by open grid forum OCCI working
group. <http://occi-wg.org/>.

[18] Joseph EC, Conway S, Wu J. A new approach to HPC public clouds: the SGI
cyclone HPC cloud. <http://www.sgi.com/pdfs/4215.pdf>.

[19] Sun Grid. <http://www.sun.com/service/sungrid/>.

[20] TOP500 Super-computers list. <http://www.top500.0rg>.

[21] Li], Ari [, Jain], Karp AH, Dekhil M. Mobile in-store personalized services. In:
7th IEEE international conference on web services (ICWS), 2009.

[22] Chiang Tsung-Che, Fu Li-Chen. Solving the FMS scheduling problem by critical
ratio-based heuristics and the genetic algorithm. In: IEEE international
conference on robotics and automation (ICRA), vol. 3, April-May 2004. p.
3131-6.

[23] Amoura, Bampis, Kenyon, Manoussakis. Scheduling independent multiprocessor
tasks. Algorithmica 2002;32(2):247-61.

[24] Belytschko T, Mish K. Computability in nonlinear solid mechanics. Int] Numer
Methods Eng 2001;52:3-21.

[25] Chik, M.A., Ahmad, 1., Jamaluddin, M.Y. A simulation approach for dispatching
techniques comparison in 200mm wafer foundry. In: IEEE international
conference on semiconductor electronics (ICSE), 2004. p. 645-9.

[26] Doulamis N, Doulamis A, Litke A, Panagakis A, Varvarigou T, Varvarigos E.
Adjusted fair scheduling and nonlinear workload prediction for QoS guarantees
in grid computing. Comput Commun 2007;30(3):499-515 [special issue:
Emerging middleware for next generation networks].

[27] Tsap LV, Goldgof DB, Sarkar S, Huang W-C. Efficient nonlinear finite element
modeling of nonrigid objects via optimization of mesh models. Comput Vis
Image Understand 1998;69(3):330-50.

[28] Ricks E. The application of Newton’s method to the problem of elastic stability.
] Appl Mech 1972;39(4):1060-5.

[29] Jorg Diimmler, Thomas Rauber, Gudula Riinger. Scalable computing with
parallel tasks. In: ACM Proceedings of the 2nd workshop on many-task
computing on grids and supercomputers (MTAGS), 2009.

[30] Park Y, Casey K. A novel adaptive support vector machine based task
scheduling, parallel and distributed computing, 2010.

[31] Vallee G, Naughton T, Engelmann C, Hong Ong, Scott SL. System-level
virtualization for high performance computing. In: 16th Euromicro
conference on parallel, distributed and network-based processing, February
2008. p. 636-43.

[32] Xiaoyong B. High performance computing for finite element in the cloud. In:
IEEE international conference on future computer sciences and application,
2011.

Dr. Ismail Ari received his PhD degree in 2004 from Computer Science Department
of University of California, Santa Cruz. Between 2004-2009 he worked as a
researcher in Hewlett Packard Labs in Silicon Valley, USA. His research interests
include cloud computing, service-oriented architectures, data mining, and net-
worked storage systems. He has international publications and US patents related
to these topics. After joining Ozyegin University in 2009 he has received several
awards and research grants including IBM Top Faculty Contributor Award, EU Marie
Curie International Reintegration Grant, and TUBITAK (Turkish NSF) National Young
Researcher Career Award. Dr. Ari is a member of IEEE and ACM.

Nitel Muhtaroglu is a Ph.D. student at Ozyegin University studying under super-
vision of Dr. Ari. He received his M.Sc. degree in Computational Engineering from
Ruhr-University Bochum in 2005 and B.Sc. degree in Mechanical Engineering from
Istanbul University in 2001. His research interests mainly focus on Computational
Mechanics, Engineering Informatics, High Performance Computing and Applied
Mathematics.

