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Abstract 

We categorize existing maximum coverage optimization models for locating 

ambulances based on whether uncertainty about (1) ambulance availability and 

(2) response times is incorporated.  We use data from Edmonton, Alberta, Canada 

to test five different models, using the approximate hypercube model to compare 

solution quality between models.  We find that the basic maximum covering 

model which ignores these two sources of uncertainty generates solutions that 

perform far worse than those generated by more sophisticated models.   The 

model that incorporates both sources of uncertainty generates a configuration that 

covers up to 26% more than the demand covered by the basic model with the 

same number of ambulances.     
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1. Introduction 

 

Emergency Medical Services (EMS) must balance cost and quality of service when planning 

their operations.  Quality of service has multiple attributes, including response times, the type of 

care that EMS staff are trained to provide, and the equipment to which they have access.  We 

will focus on response time—the time from contacting EMS until the patient is reached.  

Response time performance is typically measured as a cumulative fraction (referred to as the 

fractile method of reporting), for example the fraction of life-threatening calls reached in 8:59 

minutes or less.  Such performance measures are recommended by industry experts (Fitch, 2005) 

and in standards prepared by the National Fire Protection Association (2004, section 5.3.3.4.3).  

Regulations based on the EMS Act of 1973 in the US specified that 95% of calls should be 

reached in 10 minutes (Revelle, et al., 1977).  A 2004 survey of the 200 largest cities in the US 

indicated that over three quarters of EMS agencies that provide transport to hospital use a target 

of 8:59 minutes or less and report the fraction of calls reached within this time standard (as 

opposed to, say, the average response time).  The single most common standard for urban areas, 

at least in North America, appears to be to reach 90% of life-threatening calls in 8:59 minutes or 

less (Fitch, 2005). 

 

Given the nature of such performance standards, it is not surprising that location theorists have 

formulated optimization problems to locate a fixed number of ambulance stations and to allocate 

a fixed number of ambulances to stations so as to optimize either (1) the average response time 

or (2) the demand that can be reached within some time standard.  These two performance 

measures were discussed in an early survey paper by Chaiken and Larson (1972) and both 

measures have an associated stream of research in the operations research and location theory 

literature.   

 

Jarvis (1975) developed the best known approach to minimizing measure (1), the average 

response time—a locate-allocate heuristic that use the approximate hypercube model (Larson, 

1975) to evaluate solutions.  We focus primarily on measure (2) because it corresponds to the 

measurement standard that is predominant in current practice.  Research that focuses on measure 

(2) uses the concept of coverage, where a demand location is assumed to be covered by an 

ambulance station if the distance (or travel time) between the two is less than or equal to some 

threshold.   

 

The first paper on locating EMS units optimally introduced the set covering location model 

(Toregas et al., 1971).  This is a binary programming model which finds the minimum number of 

EMS units required to cover all demand locations in the service area. Unfortunately the optimal 

solution to this model requires an excessive number of EMS units since it requires complete 

coverage and disregards the cost of the system.  Church and ReVelle (1974) proposed a more 

practical alternative: the maximal covering location problem (MCLP).  The maximal covering 

location model fixes the number of EMS stations, and seeks to maximize the coverage of 

demand points in the service area.  The binary integer program can be solved relatively easily 

using commercial software as its LP relaxation usually produces all-integer solutions.  It has 

been used in practice for locating ambulance stations (Eaton et al., 1985), and it may be the most 

influential of all ambulance station location models. 
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Despite its appeal due to simplicity and solvability, MCLP is imperfect.  First, it assumes that 

response times are known and deterministic.  In reality, response times are highly uncertain 

because of factors such as variable pre-travel delays, traffic congestion, weather, local events, 

and hour of day.  Second, MCLP assumes that the nearest EMS unit to a demand location is 

always available.  A unit that is responding to a call is unavailable to respond to a subsequent 

call while it travels to the service site, provides aid on-site, transports the patient to the hospital, 

and completes paper work and maintenance (cleaning and stocking of materials) on the unit.  

Even though an EMS system is designed for low utilization, in most EMS systems the utilization 

rates are at least 25% and assuming near-zero utilization or a large number of units at each 

station is not realistic.  To see how these two imperfections result in miscalculations, we present 

two examples. 

Example 1: Consider an ambulance station with one vehicle and two demand locations A and B, 

with a response time threshold of 8 minutes.  Suppose that the response time from the station to 

A is N(7.5, 2.5) and the response time to B is N(8.5, 2.5), where N(µ, σ) denotes a normally 

distributed random variable with mean µ and standard deviation σ.  MCLP, using average travel 

times, considers A to be covered and B not to be covered.  However, A is covered with a 

probability of 0.58 and B is covered with a probability of 0.42, if there is a unit available at the 

station.  Assuming Pr{ambulance busy} = 0.3, we compute the probability of coverage for A and 

B as 0.405 and 0.295, a far cry from 1 and 0 as estimated by MCLP.  Such miscalculations can 

result in poor location selections, as illustrated in our second example. 

Example 2: Consider the one-dimensional problem with 4 demand locations in Figure 1.   

 

A B C D

Avg. time 5 5 10

Demand 30 1 6 3  

Figure 1: Example to demonstrate the differences between the models studied in this paper 

numerically.  The average travel times are given in minutes. 

Throughout this example we assume a response target of 8 minutes, additive response times (for 

example, the average response time from A to C is 5 + 5 = 10 minutes), and we consider locating 

two ambulances, limiting the candidate locations to demand nodes.  If we locate the two 

ambulances at nodes B and D and ignore uncertainty, we cover all demand points.  Hence, one 

optimal solution to MCLP is (B, D) with 100% coverage.   

Now suppose we incorporate ambulance availability, and assume that Pr{ambulance busy} = 0.3 

for each ambulance at each location, independent of the status of the other ambulance.  The 

expected coverage provided by (B, D), the optimal solution to MCLP, is (1 − 0.3) × 40 = 28.  

However, we get an expected coverage of 33.7 by locating both ambulances at B ((1 − 0.3) × 37 
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+ 0.3 × (1 − 0.3) × 37), and this is the maximal expected coverage.  This is because the majority 

of the demand is at nodes A, B, and C, and the secondary coverage of these nodes provides a 

higher incremental expected value than the primary coverage of node D. 

Suppose we do not incorporate ambulance availability, but we model response time uncertainty.  

Assume that all response times follow a lognormal probability distribution where the travel time 

given in Figure 1 is equal to the mean, and the standard deviation is equal to half of the mean. 

We use a lognormal instead of a normal distribution to avoid negative response times—see 

further discussion in Section 4.  In this case, the model protects the highest demand points by 

locating the two ambulances at A and C.  Finally, suppose we combine both sources of 

uncertainty.  The optimal solution is (A, B).  Table 1 provides a summary of the results along 

with the assessment of each solution under each objective. 

Table 1: A summary of the optimal solutions of the four models discussed and the evaluations of 

the optimal solutions under each objective. 

 

  Objective function 

Model Optimal ambulance  

locations 

(1) (2) (3) (4) 

(1) MCLP B D 100.0% 70.0% 79.8% 57.0% 

(2) Ambulances busy B B 92.5% 84.2% 72.8% 66.2% 

(3) Response times uncertain A C 92.5% 65.3% 93.7% 70.6% 

(4) Both A B 92.5% 81.0% 89.6% 76.1% 

Even in this simplistic example we get four different optimal solutions.  Furthermore, the optimal 

solution of one model does not necessarily perform well under the others.  MCLP spreads the 

resources for an illusion of complete coverage.  Yet the optimal solution to MCLP is the worst of 

the four solutions when measured using the objective of the most realistic model (4) because 

MCLP ignores both sources of uncertainty.  The MCLP solution is 19 percentage points below 

the best possible, which is a major degradation of performance for EMS system design.  The 

other two models that take into account only one source of variability perform better than MCLP, 

but they both fall far short of the optimum. 

We note that the MCLP was originally proposed as a tool for determining the “location of 

ambulance dispatch points” (Revelle et al., 1977) as opposed to the allocation of ambulances to 

such dispatch points.  Our focus is on the allocation of ambulances to dispatch points or stations.  

The MCLP can be used for that purpose, but it is subject to the limitations that we have just 

illustrated.  We will use the term “station” throughout the paper instead of “dispatch point,” with 

the understanding that in some cities, a “station” could simply be a convenient street corner 

location or a parking lot. 

In this paper, we will compare the four models that were illustrated in Example 2 (including two 

variations of the last model).  In the next section, we survey literature that is directly related to 

our study.  We refer the reader to Swersey (1994), Marianov and Revelle (1995), Brotcorne et al. 

(2003) for general overviews of the literature on ambulance location.   
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2. Related Literature  

We are not the first to realize the limitations of MCLP that were illustrated in Section 1.  Other 

researchers have developed models that take into account the two sources of uncertainty.  Daskin 

(1983) proposed the maximal expected covering location problem (MEXCLP—an extension of 

MCLP) to account for the probability that an EMS unit is busy.  Daskin assumed the probability 

p that a unit is busy is the same for every unit.  Assuming that the probabilities of individual 

units being busy are independent, if demand node i with call rate hi is covered by m units, the 

expected coverage for node i is hi × (1 − p
m
).  MEXCLP maximizes expected coverage over all 

demand nodes and finds the optimal location for a given number of units.  Unlike MCLP, 

MEXCLP can locate multiple units at the same station, limited by the capacity of the station.  

Given that ambulances are typically busy at least 30% of the time, MEXCLP is considerably 

more realistic than MCLP.  Saydam and McKnew (1985) studied the same problem and offered a 

separable programming formulation that they found could solve larger instances to optimality 

than Daskin’s formulation.  

Daskin (1987) also worked on the second shortcoming of MCLP—deterministic response times.  

In essence, MCLP is a “black-and-white” representation of reality, where all demand points 

within some threshold distance are considered covered and all other points are not covered.  The 

extension described in Daskin (1987) incorporates probabilistic coverage by explicitly modeling 

response time uncertainty.  Problem data includes the probability of responding from a station to 

a demand point within a given threshold time. 

While the two imperfections of MCLP were treated relatively early, their combined treatment 

took longer to arrive.  Goldberg and Paz (1991) were the first, to our knowledge, to formulate a 

mathematical program that addressed both sources of uncertainty.  They allowed ambulance 

busy probabilities to vary between stations and used pairwise exchange heuristics to optimize 

expected coverage, as evaluated by the approximate hypercube model.  Ingolfsson et al. (2006) 

made the same assumptions but used a different solution heuristic—one that iterates between 

solving a nonlinear integer program and the approximate hypercube model.  Table 2 summarizes 

the maximal covering models that we have discussed.   

The MCLP (top left quadrant) is a linear integer program and is the simplest to solve.  Moving to 

the right or down from the top left quadrant incorporates more reality into the model at the 

expense of solving a more complex optimization model. 

There is another stream of related research on optimization models that attempts to maximize 

demand that is “covered with α-reliability,” for example, Revelle and Hogan (1989).  Borras and 

Pastor (2002) compare four such maximum availability models.  Their work is similar to ours in 

that they use the approximate hypercube model to evaluate solutions to idealized optimization 

models.  In a follow-on paper, Borras and Pastor (2003) present a maximum availability model 

that is solved by iterating between solving an optimization problem and evaluation with the 

approximate hypercube model—an approach that is similar to the one we use to solve maximum 

expected coverage models.  As discussed in Erkut et al. (2006), the objective function of 

maximum availability models does not correspond directly to the performance measures used in 
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EMS systems.  It is not clear how to choose the reliability level α in a way that is consistent with 

common EMS performance targets.  Most models in this category consider response times to be 

deterministic.  Marianov and Revelle (1996) is an exception, but their model contains an 

additional parameter β and it is not obvious how to choose a value for this parameter.  For all of 

these reasons, maximum availability models are difficult to apply in practice.  Therefore, we 

have not included them in our comparison. 

 

Table 2:  Classification of maximal covering location models with respect to inclusion/exclusion 

of vehicle availability and response time uncertainty.  (MCLP = Maximum Coverage Location 

Problem, MEXCLP = Maximum Expected Coverage Location Problem, PR = Probabilistic 

Response Times, SSBP = Station-Specific Busy Probabilities.) 

 

 

 
Units always available Uncertain unit availability  

Deterministic

response 

times  

MCLP 

(Church and Revelle, 

1974) 

MEXCLP 

(Daskin, 1983; 

Saydam and McKnew, 1985) 

Constant busy probability: 

MEXCLP + PR 

(Ingolfsson et al., 2003) Probabilitistic 

response 

times  

MCLP + PR  

(Daskin, 1987) 
Station-specific busy probabilities: 

MEXCLP + PR + SSBP 

(Goldberg and Paz, 1991; 

Ingolfsson et al., 2006) 

To compare the quality of solutions generated by the different covering models, we will use the 

approximate hypercube model first introduced by Larson (1975) and later extended by Jarvis 

(1985).  This descriptive model uses more realistic assumptions about the behavior of the system 

than any of the covering models.  In particular, demand from different demand nodes is assumed 

to follow independent Poisson processes, each call is responded to by the closest available 

ambulance (a fixed dispatch policy), and the average time that an ambulance is busy responding 

to a call (the “service time”) depends on both the call location and the station location.  Although 

the service time distribution is assumed to be negative exponential, as Jarvis (1985) argues, the 

model is relatively insensitive to the shape of the service time distribution beyond its mean.  We 

use a version of the approximate hypercube that allows multiple vehicles per station (Budge et 

al., 2005). 

In the remainder of the paper, we analyze the five different types of covering models listed in 

Table 2; in particular, we explore whether or not the incremental improvement in solution quality 
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justifies the added model complexity.  We compare the performance of the five model types 

using data from the EMS system of Edmonton, Canada. 

We present the formulations for the five model types in Section 3.  Section 4 describes how the 

busy and coverage probabilities for the EMS units can be computed.  Experimental results are 

provided in Section 5, and concluding remarks are given in Section 6. 

3. Models 

3.1 The Maximal Covering Location Problem 

 

Define m: the number of demand nodes, 

  n: the number of candidate locations, 

  q: the maximum number of stations, 

  di: the average service demand per time unit generated by node i, 

  tc: the coverage time standard, 

  tji: the travel time from candidate location j to demand node i, 

  td: the pre-travel delay, 

  




=
otherwise,0

selected islocation candidate if,1  j 
x j  , 

  




=
otherwise,0

covered is  node demand if,1 i
yi  , and 

  


 ≤+

=
otherwise,0

 i.e. ,location  candidateby  covered is  node demand ifif,1 cdji

ij

tttji
a . 

  

The formulation for the MCLP follows: 

 

 MCLP:  

 max ∑
=

m

i

ii yd
1

                    (1) 

 s.t. ∑
=

n

j

jij xa
1

≥ yi , i = 1, …, m                 (2) 

  ∑
=

n

j

jx
1

≤ q                     (3) 

  xj ∈ {0,1}, j = 1, …, n                  (4) 

  yi ∈ {0,1}, i = 1, …, m                 (5) 

 

The objective function (1) maximizes total demand covered.  Constraints (2) state that demand 

node i can only be covered if at least one candidate location that covers i is selected.  Constraint 

(3) limits the number of facilities to q.  In this model, each station houses at most one ambulance, 

as mentioned in Section 1.  Indeed, when there is no uncertainty regarding ambulance 

availability or response times, no benefit can be derived from collocating ambulances. 
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3.2 The Maximum Expected Covering Location Problem 

Daskin (1983) formulated the maximum expected covering location problem (MEXCLP) as an 

integer program, as follows.   

 

Let   q denote the maximum number of EMS units, 

   p denote the average fraction of time an EMS unit is busy,  

   cj be the maximum number of EMS units that can be stationed at candidate location j,   

   zj be the number of EMS units allocated to station j, and 

  




=
otherwise,0

units least at by  covered is  node demand if,1
ˆ

ki
yik . 

 

MEXCLP: 

 max ∑∑
=

−

=

−
q

k

ik

k
m

i

i yppd
1

1

1

ˆ)1(                 (6) 

 s.t. ∑∑
==

≤
n

j
jij

q

k
ik zay

11

ˆ , i = 1,…, m                (7) 

  ∑
=

n

j

jz
1

≤ q                     (8) 

  ikŷ  ∈ {0,1}, i = 1,…,m, k = 1,…, q              (9) 

  zj ∈ {0,1,…,cj}, j = 1,…, n                (10) 

The inner summation of the objective function (6) calculates the probability that there will be an 

EMS unit available to service demand node i.  Therefore, the objective function maximizes the 

expected coverage of demand nodes.  Constraints (7) state that the actual total number of EMS 

units covering node i (LHS of constraint) cannot exceed the total number of EMS units that can 

cover node i (RHS). Constraint (8) enforces at most q EMS units to be allocated to all open 

candidate locations. 

3.3 The Maximal Covering Location Problem with Probabilistic Response 

 

Let  




=
otherwise,0

location candidateby  covered is  node demand if,1  ji
yij , and  

  Pij = the probability that station j covers demand node i. 

 

Daskin (1987) provides the following formulation for the Maximal Covering Location Problem 

with Probabilistic Response Times: 
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MCLP+PR:  

 max ∑∑
==

n

j

ijij

m

i

i yPd
11

                   (11) 

 s.t. ∑
=

m

i

ijy
1

≤ mxj , j = 1, …, n                 (12) 

  ∑
=

n

j

ijy
1

= 1, i = 1, …, m                 (13) 

  ∑
=

n

j

jx
1

≤  q                     (14) 

  xj ∈ {0,1}, j = 1, …, n                  (15) 

  ijy ∈ {0,1}, i = 1, …, m,  j = 1, …,n              (16) 

 

Objective function (11) maximizes the total expected demand covered, taking into account the 

coverage probabilities.  Constraints (12) and (13) ensure that a demand node is assigned to only 

one open EMS facility.  Constraint (14) requires that at most q candidate locations be chosen.  

As in MCLP, each candidate location houses at most one vehicle. 

3.4 The Maximum Expected Covering Location Problem with Probabilistic Response Time 

 

Let  i(j) denote the j
th

  preferred station for demand node i and 

  zj = the number of EMS units allocated to station j.  

 

Ingolfsson et al. (2003) formulated the Maximal Expected Covering Location Problem with 

Probabilistic Response Times as follows: 

 

MEXCLP+PR:  

 max ( ))(

1

1 )(

1
1

)(,

1

ji

j

u ui zz
n

j

jii

m

i

i ppPd −∑
−

=∑∑
==

              (17) 

 s.t.  ∑
=

n

j

jz
1

≤ q                    (18) 

   zj ∈ {0,1,…,cj}, j = 1,…,n,               (19) 

All variables and parameters in the model are as previously described.  Objective function (17) 

maximizes the total expected demand covered accounting for the coverage probabilities Pij and 

the busy fraction p.  Constraint (18) ensures that at most q EMS units are assigned to open 

candidate locations, with at most cj units in location j.  

 

While the model above is quite accurate, it is still hindered by the fact that the busy probability 

of ambulances located in different stations may differ considerably due to demand densities in 

the vicinity of the stations. Ingolfsson et al. (2006) overcomes this shortcoming.  Let jp  denote 
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the average fraction of time an EMS unit at station j is busy.  The formulation for the Maximal 

Expected Covering Location Problem with Probabilistic Response Time and Station Specific 

Busy Probabilities is as follows: 

 

MEXCLP+PR+SSBP:  

 max ( ))()(

)(

1

1

)(

1

)(,

1

1 jiui z

ji

j

u

z

ui

n

j

jii

m

i

i ppPd −∏∑∑
−

===

              (20) 

 s.t.  ∑
=

n

j

jz
1

≤ q                    (21) 

   zj ∈ {0, 1, …, cj},  j = 1, …, n              (22) 

 

Note that this model is the same as the model for MEXCLP+PR except for the busy probability 

values. 

3.5 Model size 

 

Table 3 provides the number of constraints and variables for each of the five models.  Although 

adding more complexity to the basic MCLP model makes it more realistic, the resulting models 

are either non-linear or contain more constraints and variables. 

 

Table 3: Model dimensions. 

 

Model Objective Constraints Variables 

MCLP Linear m + 1 linear m + n binary 

MEXCLP Linear m + 1 linear nm binary, n bounded integer 

MCLP+PR Linear 
n + m + 1 

linear 
n(m + 1)  binary  

MEXCLP+PR Nonlinear 1 linear n bounded integer 

MEXCLP+PR+SSBP Nonlinear 1 linear n bounded integer 

4. Determining Model Parameters 

 

The optimization models presented in the previous section that involve uncertainty require input 

values for the coverage probability parameter Pij, the system-wide busy fraction parameter p, and 

the station specific busy fraction parameter jp .  In this section, we discuss how to compute these 

values.  Note that the coverage probabilities Pij are true inputs, whereas the busy fractions are 

outputs that depend on the allocation of ambulances to stations.  We overcome this difficulty by 

iterating between solving an optimization model and estimating busy fractions. 
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4.1 Coverage Probabilities 

 

Both MCLP+PR and MEXCLP+PR require the coverage probabilities Pij as input.  Although 

there is no explicit station preference in MCLP+PR, we assume that the station preference for 

demand node i is based on the travel time between the demand node and the stations, with the 

most preferred station being the closest one.  

We denote the response time for a station-node pair as Rij, with mean µij, standard deviation σij, 

and coefficient of variation cij = σij /  µij.  The mean and standard deviation of the response time 

depend on the distribution of both the travel time and the pre-travel delay.  We assume that the 

response times are lognormally distributed.  See Ingolfsson et al. (2006) for further discussion 

and empirical evidence that support the lognormality assumption.  Other non-negative 

distributions, such as a log-logistic distribution or a gamma distribution could be used instead.  

The main consideration in choosing a distribution is to accurately model the tail probability 

Pr{Rij > tc}. 

If Rij is lognormally distributed, then ln(Rij) is normally distributed, with the following mean and 

variance:  

 

 E[ln(Rij)] = ln(µij) - ( )21ln5.0 ijc+ , and              (23) 

 var[ln(Rij)] = ( )21ln ijc+ ,                  (24) 

 

Therefore, we have  

 { }














+

++µ−
Φ=≤=≤=

)1ln(

)1ln(5.0)ln()ln(
)ln()ln(Pr}Pr{

2

2

ij

ijijc

cijcijij

c

ct
tRtRP    (25) 

 

where Φ  is the cumulative standard Normal distribution function and tc is the coverage time 

threshold. 

4.2 Calculating the System-Wide Busy Fraction Parameter, p 

 

For the models MEXCLP and MEXCLP+PR, we require the parameter p, which is the average 

fraction of time that an EMS unit is busy.  The average busy fraction p can be estimated as  

 

 p = λ (1 − Β(λτ(z), q)) τ(z) / q                 (26) 

 

where ∑ =
=

m

i id
1

λ  is the total arrival rate of calls to the system, τ(z) is the average time that a 

vehicle is tied up with a call as a function of the vehicle allocation vector z, q is the total number 

of vehicles, and 
0

( , ) / ! / !
ss i

i
B r s r s r i

=
= ∑  is the Erlang loss function, which measures the 

fraction of lost calls in an M/G/s/s queueing system.  The total arrival rate is fixed, and the total 
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number of vehicles is fixed as well since the constraint qz
m

j j ≤∑ =1
 will be tight.  However, the 

“average service time” τ will depend on how the q vehicles are distributed across the city 

because this will influence the average response time to a call.  The average service time τ(z) 

consists of the average response time, the average time spent at the call location, and the average 

time to travel to and remain at a hospital: 

 

 τ(z) = E[Tresponse] + E[Ton scene] + E[Thospital]             (27) 

 

This assumes that the ambulance is available to take calls when it is on its way from a hospital 

back to a station.  Only the first component (E[Tresponse]) is assumed to depend on how vehicles 

are allocated to stations.  This component can be calculated as 

 

 ∑∑
= =

=
m

i

n

j

jiiji

i Rzf
d

T
1 1

)(,)(response ][E)(
λ

][E               (28) 

 

where fi(j)(z) is the probability that the j
th

 preferred station is the one that responds to a call from 

demand node i.  To calculate fi(j)(z), let zi(j) be the number of vehicles at the j
th

 preferred station 

for demand node i, and we thus have 

 

 )1()( )(

1

1 )(

)(
ji

j

u ui zz

ji ppzf −∑=
−

= .                 (29) 

The algorithm for iterating on the busy fraction p is as follows: 

 

Step 0: Initialize p to pin, where pin can be determined by assuming that all calls are responded 

to by the most preferred station, i.e., setting fi(1)(z) = 1 for all i (and fi(j)(z) = 0 for all j ≥ 

2) and then using (26), (27), and (28).  Set cnt = 1 and choose a smoothing parameter γ 

∈ (0,1). 

Step 1: Solve the optimization model.  Denote the vector of zi variables in the solution by ∗
cntz .  

If a convergence criterion is satisfied, stop. 

Step 2: Estimate pout using the solution ∗
cntz  and equations (26) to (29).  Set pin = γpout +  

(1 - γ)pin and cnt = cnt + 1, and return to Step 1. 

There are two possible ways that the algorithm may converge: first, if both the solution and the 

busy fraction have converged, i.e., ∗
−1cntz  = ∗

cntz  and |pin - pout| < ε (we used ε = 10
-6).  Second, if 

the busy fraction has converged (i.e., |pin - pout| < ε) and the solution has converged to a repeating 

cycle of solutions.  In the experiments reported in the next section, the length of the cycle was at 

most two. 

4.3 Calculating the Station Specific Busy Fraction Parameter, jp  

 

In model MEXCLP+PR+SSBP, we use the approximate hypercube model to estimate station 

specific busy fractions.  Budge et al. (2005) describe the version of the approximate hypercube 
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model that we use and Ingolfsson et al. (2006) discuss the iteration between solving the 

mathematical program and estimating the busy fractions.   

 

We made one modification to the iteration procedure described in Ingolfsson et al. (2006): if a 

station was allocated no ambulances, then we set the busy probability for that station equal to the 

average busy fraction for the other stations.  In Ingolfsson et al. (2006), the busy probability for 

such stations was set to 100%, which meant that the optimal solution to the next mathematical 

program to be solved would allocate no ambulances to such stations.  We found that this 

modification led to higher quality solutions. 

 

5. Computational Results  

 

Our computational experiments were carried out on a data set provided by the EMS department 

of the City of Edmonton.  The data set contains expected travel times from 16 ambulance 

stations to 180 demand points, and the fraction of demand generated at each of the demand 

points.  We limit our analysis to the 16 current ambulance stations, and focus on the allocation of 

ambulances to those stations.  We scaled total demand to keep the ratio between the “offered 

load” (total demand per time unit multiplied by the average time per call) and the number of 

EMS units equal to 0.3. 

We solved the linear models using CPLEX 9.1 and the nonlinear models using the student 

version of GAMS 22.0. Solving the linear models took no more than a CPU second.  The 

computation times and the number of iterations between solving an optimization problem and 

estimating busy probabilities for the nonlinear models are shown in Table 4.  The computation 

times include the time to run the approximate hypercube model, which was less than one second 

in all cases.  The total CPU time to solve an instance varied between 4 and 659 seconds and was 

highest for intermediate values of q.  The number of iterations varied from 2 to 10 and was 

consistently higher for the MEXCLP + PR model.  The CPU time per iteration, for a given q, 

was similar for the two nonlinear models. 

For the system-wide busy fraction heuristic, we chose the smoothing parameter as γ = 0.8.  

Notably, different values of γ did not affect the final solution. Our choices for parameters were 

guided by analysis of real data.  We assumed that the total average time spent at the call location, 

and the average time to travel to and remain at a hospital, E[Ton scene] + E[Thospital], is 2691 

seconds (about 45 minutes).  When calculating the coverage probability parameter Pij, we 

assumed cij = 0.3.  The initial system-wide busy probability p was set to 0.3.  In MCLP, we set aij 

to 1 if the expected response time was less than the threshold time tc. 
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Table 4: Total CPU time (including evaluation with the approximate hypercube model) in 

seconds and number of iterations for the MEXCLP+PR and MEXLPC+PR+SSBP models. 

 

q MEXCLP+PR MEXCLP+PR+SSBP MEXCLP+PR MEXCLP+PR+SSBP

1 12 4 4 2

2 52 26 4 2

3 133 49 5 2

4 347 126 6 3

5 294 126 6 2

6 373 98 7 2

7 477 138 7 2

8 659 163 8 2

9 555 207 8 3

10 545 214 8 3

11 563 219 8 4

12 625 237 8 3

13 445 189 8 3

14 248 110 8 3

15 183 53 8 2

16 241 214 8 5

17 165 89 8 3

18 182 79 8 3

19 181 71 8 3

20 152 71 8 4

21 127 43 8 2

22 95 57 8 4

23 99 28 8 2

24 59 36 8 4

25 39 17 8 2

Total CPU time in seconds Number of iterations

 

 

We evaluated the outcome of each model by computing the dispatch probabilities fi(j)(z) for the 

ambulance configuration at hand using the approximate hypercube model, and using them, 

together with the coverage probabilities Pij, to compute the expected coverage. The results are 

summarized in Table 5 and Figure 2.  In the last row of Table 5, we show the average percent 

deviation from the best solution value.  Note that the maximum expected coverage that can be 

achieved for the example problem on hand is 94.8%.  One would need to add new station 

locations to achieve greater expected coverage. 
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Figure 2: Expected coverage for the different models, evaluated using the approximate 

hypercube model. 

 

The performance of MCLP stalls at q = 10, at which point the coverage reaches its peak and the 

model locates no more stations. Interestingly, the MCLP solution for q = 8 is slightly better than 

the one for q ≥ 10.  MCLP and MCLP+PR share the same limitation of being able to locate no 

more than a single ambulance at every location, and hence MCLP+PR shows no improvement 

after q = 16. In many EMS systems, the number of ambulances is larger than the number of 

stations, because of fixed and operating costs of stations.  MCLP and MCLP+PR are inadequate 

for real world ambulance allocation in such EMS systems.  

 

The worst performance is that of MCLP, with an average deviation of 19.1% from the best found 

solution. This is not surprising, considering that MCLP ignores both sources of uncertainty. 

MCLP+PR performs much better with an average deviation of 4.9%, and MEXCLP performs 

better still, with an average deviation of 2.5%.  It seems that the incorporation of ambulance 

availability improves the solution quality more than the incorporation of response time 

uncertainty, if one were to incorporate only one source of uncertainty.   

 

The models that account for both sources of uncertainty (MEXCLP+PR and 

MEXCLP+PR+SSBP) find the best solution for all values of q.  These two models find the same 

solution in 11 of the 25 instances. MEXCLP+PR outperforms MEXCLP+PR+SSBP in 5 

instances and the opposite is true in 9 instances. However, the instances in which 

MEXCLP+PR+SSBP yields a better solution are those with q ≥ 16, which are more realistic. 

Considering that approximating the station specific busy probabilities takes a negligible amount 

of time, we conclude that MEXCLP+PR+SSBP outperforms the other four models. 
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Table 5: Expected coverage for the different models, evaluated using the approximate hypercube 

model.  Coverage value for best known solution is shown in boldface font, for each value of q. 

 

q MCLP MCLP+PR MEXCLP

MEXCLP

+PR

MEXCLP+

PR+SSBP

1 37.3% 37.3% 37.3% 37.3% 37.3%

2 41.3% 47.3% 46.2% 48.9% 48.9%

3 51.0% 52.8% 53.9% 56.2% 56.2%

4 53.6% 59.4% 61.8% 63.3% 62.6%

5 60.8% 61.4% 66.9% 68.4% 68.4%

6 62.3% 67.4% 70.5% 73.1% 73.1%

7 67.8% 69.1% 74.4% 76.8% 76.4%

8 70.3% 76.6% 77.2% 78.9% 78.6%

9 69.9% 78.8% 81.2% 82.4% 82.5%

10 70.2% 80.6% 82.4% 83.9% 84.5%

11 70.2% 81.2% 83.5% 85.5% 86.0%

12 70.2% 85.0% 85.2% 86.3% 87.0%

13 70.2% 86.1% 86.5% 88.8% 88.8%

14 70.2% 87.6% 88.4% 90.2% 89.8%

15 70.2% 88.4% 88.4% 90.8% 90.8%

16 70.2% 89.2% 89.2% 91.4% 91.9%

17 70.2% 89.2% 90.5% 91.8% 92.3%

18 70.2% 89.2% 90.5% 92.5% 93.1%

19 70.2% 89.2% 91.6% 92.7% 93.6%

20 70.2% 89.2% 92.2% 93.2% 93.9%

21 70.2% 89.2% 92.1% 94.4% 94.4%

22 70.2% 89.2% 92.0% 94.8% 94.8%

23 70.2% 89.2% 92.0% 94.7% 94.7%

24 70.2% 89.2% 93.7% 94.7% 94.7%

25 70.2% 89.2% 92.7% 94.8% 94.8%

Maximum 26.0% 10.2% 5.6% 1.5% 1.0%

Average 19.1% 4.9% 2.5% 0.3% 0.1%

Percent coverage of high priority demand

Percent deviation from best known solution

 
 

 

The approximate hypercube model allows us to estimate various other performance measures, 

including the fraction of calls that are “lost” (shown in Table 6) and the average response time to 

calls that are not lost (shown in Table 7).  In practice, lost calls are typically responded to by a 

backup system, such as supervisor vehicles.  The models we compare do not account explicitly 

for lost calls.  However, all of them attempt to maximize the fraction of calls that are covered.  

Calls that are not covered either take longer than tc time units to respond to or they are lost.  
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Therefore, one would expect that the models will tend to minimize the fraction of lost calls.  

Table 6 shows that, as expected, the loss probability decreases with q, for all models.  The loss 

probability drops below 1% for all models for q > 9.  MEXCLP+PR and MEXCLP+PR+SSBP 

consistently provide the lowest loss probability. 

 

As Table 7 shows, the average response almost always decreases with q.  Comparing the models 

using average response time as the yardstick, we see that MCLP typically results in the lowest 

average response time for q ≤ 10 but is dominated by the other models thereafter.  MCLP+PR 

performs best for 11 ≤ q ≤ 16.  MEXCLP, MEXCLP+PR, and MEXCLP+PR+SSBP are best for 

q > 16.  We have not compared coverage models to models that attempt to minimize average 

response time. 

 

Table 6: Loss probabilities, evaluated using the approximate hypercube model.  The lowest loss 

probability is shown in bold font, for each value of q. 

 

q MCLP MCLP + PR MEXCLP

MEXCLP 

+ PR

MEXCLP + 

PR + SSBP

1 0.28      0.28             0.28        0.28        0.28               

2 0.15      0.15             0.15        0.14        0.14               

3 0.088   0.088           0.086      0.084     0.084             

4 0.056   0.055           0.052      0.051     0.051             

5 0.036   0.036           0.034      0.033     0.033             

6 0.024   0.023           0.021      0.021     0.021             

7 0.016   0.015           0.014      0.013     0.014             

8 0.011   0.0094         0.0095    0.0088   0.0091          

9 0.0075 0.0063         0.0058    0.0058   0.0057          

10 0.0051 0.0042         0.0040    0.0038   0.0037          

11 0.0051 0.0029         0.0027    0.0025   0.0025          

12 0.0051 0.0018         0.0018    0.0017   0.0017          

13 0.0051 0.0013         0.0012    0.0011   0.0011          

14 0.0051 0.0008         0.0008    0.0007   0.0007          

15 0.0051 0.0006         0.0006    0.0005   0.0005          

16 0.0051 0.0004         0.0004    0.0003   0.0003          

17 N/A N/A 0.0002    0.0002   0.0002          

18 N/A N/A 0.0002    0.0002   0.0001          

19 N/A N/A 0.0001    0.0001   0.0001          

20 N/A N/A 0.0001    0.0001   0.0001          

21 N/A N/A 0.0001    0.0000   0.0000          

22 N/A N/A 0.0000    0.0000   0.0000          

23 N/A N/A 0.0000    0.0000   0.0000          

24 N/A N/A 0.0000    0.0000   0.0000          

25 N/A N/A 0.0000    0.0000   0.0000          

Loss probability
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Table 7: Average response time for the different models, evaluated using the approximate 

hypercube model.  The lowest average response time is shown in boldface font, for each value of 

q. 

 

q MCLP MCLP + PR MEXCLP

MEXCLP 

+ PR

MEXCLP + 

PR + SSBP

1 9.0      9.0               9.0          9.0          9.0                 

2 10.4   10.4             10.2        10.5        10.5               

3 9.6      9.9               9.8          10.2        10.2               

4 9.5      9.4               9.5          9.5          9.4                 

5 9.0      9.0               9.0          9.1          9.1                 

6 8.5      8.5               8.8          8.7          8.7                 

7 8.1      8.2               8.3          8.5          8.4                 

8 7.8      7.9               7.8          8.1          8.0                 

9 7.4      7.6               7.6          7.6          7.6                 

10 7.2      7.3               7.3          7.4          7.3                 

11 7.2      6.9               7.1          7.2          7.2                 

12 7.2      6.7               6.8          6.8          7.0                 

13 7.2      6.4               6.7          6.7          6.7                 

14 7.2      6.2               6.4          6.5          6.5                 

15 7.2      6.1               6.1          6.3          6.3                 

16 7.2      6.0               6.0          6.2          6.3                 

17 7.2      6.0               5.9          5.9          6.0                 

18 7.2      6.0               5.9          5.8          5.9                 

19 7.2      6.0               5.8          5.8          5.8                 

20 7.2      6.0               5.8          5.8          5.8                 

21 7.2      6.0               5.8          5.7          5.7                 

22 7.2      6.0               5.7          5.7          5.7                 

23 7.2      6.0               5.7          5.7          5.7                 

24 7.2      6.0               5.7          5.7          5.7                 

25 7.2      6.0               5.7          5.7          5.7                 

Average response time in minutes

 
 

 

We analyzed the nature of the optimal solutions for various values of q, to obtain greater insight 

into how the more sophisticated models achieve their superior performance.  Figures 3 and 4 

illustrate the ambulance allocation prescribed by the five models for q = 11 and 19, respectively.  

In all cases, the magnitude of demand is shown using grey circles with areas proportional to 

demand and the locations of ambulances are shown using black circles of constant size. 
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Figure 3: Ambulance allocation for q = 11. 
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With 11 ambulances to be allocated to 16 stations (Figure 3), MCLP uses only 10 stations, 

because this achieves the maximum possible coverage, under the assumptions of that model.  

The MCLP+PR is qualitatively similar in that it spreads the ambulances throughout the city 

relatively evenly.  The difference is that this model uses all 11 available ambulances.  The 

MEXCLP and MEXCLP+PR solutions locate two ambulances in close proximity to each other 

near the city center, where most of the demand is concentrated.  MEXCLP+PR+SSBP 

concentrates the ambulances even more strongly near the city centre, with two ambulances at one 

central station and one at the other. 

With 19 available ambulances (Figure 4), the MCLP solution remains the same—using only 10 

ambulances.  MCLP+PR uses all 16 stations, but realizes no benefit from “doubling up” at any 

of the stations, because it ignores ambulance availability.  MEXCLP doubles up at three stations, 

but none of those stations are in the city center.  MEXCLP+PR also doubles up at three stations, 

one of them in the city centre.  MEXCLP+PR+SSBP allocates three ambulances to the most 

central station and two ambulances to another station close to the city center.  Discussions with 

EMS practitioners in Edmonton suggest that they would always double up at the most centrally 

located stations before doubling up at outlying stations.  Thus, the solutions to MEXCLP+PR 

and MEXCLP+PR+SSBP are likely to be more acceptable to them than the solution to 

MEXCLP. 

Next, we designated three of the 16 stations (shown with black circles in Figure 5) as central and 

the other thirteen as outlying (grey circles), and we computed the fraction of the ambulance fleet 

that was allocated to central stations for each model.  The results are shown in Figure 6.  MCLP 

settles down at around 10%, MCLP+PR and MEXCLP at around 20%, and MEXCLP+PR and 

MEXLCP+PR+SSBP at around 30%.  The last figure corresponds roughly to the fraction of the 

total demand that occurs near the city center.  We see from this that the improved expected 

coverage of the MEXCLP+PR and MEXCLP+PR+SSBP models is achieved through 

concentration of resources in areas where demand is highest so as to serve this demand with high 

probability. 
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Figure 4: Ambulance allocation for q = 19. 
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Centrally located stations

 

Figure 5: Central stations (black circles) and outlying stations (grey circles).  The areas of the 

white circles are proportional to demand. 
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Figure 6: Fraction of ambulances allocated to central stations. 
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6. Concluding Remarks 

 

In this study, we categorize and compare existing maximum coverage ambulance location 

models. Our categorization is based on the factors of uncertainty incorporated into the model. 

The comparison uses real world data from Edmonton, Canada. We observe that the models that 

incorporate uncertain factors yield considerably better performance.  Given that the more 

realistic models are sufficiently tractable to be solved in at most a few minutes for the realistic 

problem instances that we used, the added model complexity appears to be warranted. 

 

None of the models we compare is guaranteed to globally optimize expected coverage, as 

evaluated with the approximate hypercube model.  It might be possible to achieve greater 

expected coverage by use of a heuristic approach, such as the Goldberg and Paz (1991) pairwise 

exchange heuristic.  The performance of such heuristics might be improved by using a starting 

solution generated by, say, the MEXCLP+PR+SSPB model. 

 

The Edmonton data we used aggregated demand to 180 points, based on a division of the city 

into “quadrants” that Edmonton EMS uses to collect data.  A finer aggregation with more 

demand points would increase the effort required to solve the optimization models.  However, 

we expect that all of the models would remain easily solvable for the Edmonton data even if the 

number of demand aggregation points were to increase considerably.  However, as the number of 

station locations increases, the models become considerably more difficult to solve, particularly 

MEXCLP+PR and MEXCLP+PR+SSBP using standard nonlinear programming solvers.  

Specialized methods for solving MEXCLP+PR and MEXCLP+PR+SSBP may therefore be 

required.  See Francis et al (2006) for a recent survey on aggregation errors in location models 

and Current and Schilling (1990) and Daskin et al (1989) for analysis of aggregation errors in 

deterministic maximal covering models. 

 

One issue that we believe could be illuminated by additional research is how aggregation 

interacts with level of model detail.  Specifically, it might be that the models which classify each 

demand point as either covered or not, are more susceptible to aggregation errors than the more 

sophisticated models which assign a coverage value that can be anywhere between 0 and 1 to 

each demand point.  Thus, one could improve the analysis either through finer aggregation or 

through incorporating additional model features.  More research is needed to understand the pros 

and cons of these two approaches. 

 

System-wide coverage is a widely used performance measure in EMS systems.  However, one 

could argue that the real performance measure ought to be the number of lives saved by the 

system.  In a related paper (Erdogan et al., 2006), we demonstrate that models that incorporate 

uncertainty about ambulance availability and response times not only result in better coverage 

estimates, but also cause coverage to be a better proxy for lives saved. 
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