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Güray Erkol1,* and Altug Ozpineci2,†

1Laboratory for Fundamental Research, Ozyegin University, Kusbakisi Caddesi No: 2 Altunizade,
Uskudar Istanbul 34662, Turkey

2Physics Department, Middle East Technical University, 06531 Ankara, Turkey
(Received 14 March 2011; published 9 June 2011)

We compute the diagonal isovector axial-vector as well as induced pseudoscalar form factors of

nucleon, �, and � baryons by employing the light-cone QCD sum rules to leading order in QCD and

including distribution amplitudes up to twist 6. Extrapolating our sum-rules results to low-momentum

transfers, we make a comparison with experimental and lattice-QCD results where we can achieve a nice

qualitative and quantitative agreement.

DOI: 10.1103/PhysRevD.83.114022 PACS numbers: 13.75.�n, 14.20.�c, 12.38.�t

I. INTRODUCTION

Form factors are important in hadron physics as they
provide information about the structure, in particular the
shape and the size, of the hadron. The baryon matrix
elements of the axial-vector current are parameterized in
terms of the axial (GA;B) and the induced pseudoscalar

(GP;B) form factors as follows:

hBðp0ÞjA�jBðpÞi ¼ �uBðp0Þ
�
���5GA;Bðq2Þ

þ q�

2mB

�5GP;Bðq2Þ
�
uBðpÞ; (1)

where A� ¼ 1
2 ð �u���5u� �d���5dÞ is the isovector axial-

vector current, q ¼ p0 � p is the momentum transfer and
mB is the baryon mass. Among all, the nucleon form
factors have received much attention. The nucleon axial
charge, which corresponds to the value of the form factor at
zero-momentum transfer (Q2 ¼ �q2 ¼ 0), can be pre-
cisely determined from nuclear �-decay (the modern value
is gA;N ¼ 1:2694ð28Þ [1]). TheQ2 dependence of the axial-

vector form factor of the nucleon has been studied up to
1 GeV2 from antineutrino scattering [2] and for Q2 <
0:2 GeV2 from pion electroproduction on the proton [3].
In the high-Q2 region (Q2 > 2 GeV2), we have a very
small amount of relatively old data [4]. Our information
about hyperon axial-vector form factors from experiment
is also limited. However, both the low-Q2 (Q2 < 2 GeV2)
and the high-Q2 (Q2 > 2 GeV2) regions will be accessible
by higher-energy experiments such as Miner�a at
Fermilab, which will give a complete understanding of
form factors in a wide range of Q2 [5]. In these experi-
ments, strangeness-production processes will be able to

probe the hyperon form factors with precision. On the
theoretical side, there exist some estimates for the axial
charges of the hyperons from chiral perturbation theory
(�PT) [6–8], largeNc limit [9] of QCD and QCD sum rules
(QCDSR) [10].
As for the induced pseudoscalar form factor, a recent

result from a muon-capture experiment predictsGP;Nðq2 ¼
�0:88m2

�Þ ¼ 7:3� 1:1 [11], where m� is the muon mass.

There exist theoretical results from heavy-baryon �PT as
gP;N ¼ 8:26� 0:16 [12] in consistency with the experi-

ment. The prediction from manifestly invariant �PT is
gP;N ¼ 8:29þ0:24

�0:13 � 0:50 [13], where the first and the sec-

ond errors are due to empirical quantities and truncation in
the chiral expansion, respectively.
Concurrently, the lattice calculations provide a first-

principles description of hadronic phenomena, which also
serve as a valuable tool to determine the hadron couplings
and form factors in a model-independent way. While sys-
tematic errors such as the finite lattice size and relatively
heavy quark masses still exist, the developing technology
of the lattice method shows promising advances in remov-
ing sources of these errors. Lattice-QCD calculations of the
axial charge and form factors of the nucleon have reached a
mature level [14–19]. While it is difficult to measure
hyperon properties experimentally due to their short life-
times, the method of lattice QCD makes it possible to
extract such information. Namely, there have been recent
attempts to extract the hyperon axial charges and meson
couplings using lattice QCD [20–23]. Simulations with
more realistic setups with smaller lattice spacing and larger
lattice size employing much lighter quarks and a dynami-
cal s-quark are under way, which will also provide valuable
information about hyperon form factors at high-
momentum transfers.
A complementary approach to lattice QCD is the

method of QCD sum rules, which is a powerful tool to
extract qualitative and quantitative information about had-
ron properties [24–27]. In this approach, one starts with a
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correlation function that is constructed in terms of the
interpolating fields, which are chosen with respect to
the quantum numbers of the hadron in question. In the
traditional method one proceeds with the calculation of the
correlation function using the operator product expansion
(OPE), which is formulated with Wilson coefficients and
local operators in terms of the nonperturbative structure of
the QCD vacuum, in the deep Euclidian region. This
correlation function is matched with an ansatz that is
introduced in terms of hadronic degrees of freedom on
the phenomenological side. The matching provides a de-
termination of hadronic parameters like baryon masses,
magnetic moments, coupling constants of hadrons, and
so on.

One alternative to the traditional method as far as the
hadron interactions at moderately large momentum trans-
fers are concerned is the light-cone sum rules (LCSR)
[28–30]. In this technique, the light-cone kinematics at
x2 ! 0 governs the asymptotic behavior of the correlation
function. The singularity of the Wilson coefficients is
determined by the twist of the corresponding operator.
Then using the moments of the baryon distribution ampli-
tudes (DAs), one can calculate the relevant hadron matrix
elements.

LCSR have proved to be rather successful in extracting
the values of the hadron form factors at high-momentum
transfers. In Ref. [31], the electromagnetic and the axial
form factors of the nucleon have been calculated to leading
order and with higher-twist corrections. It has been found
that a light-cone formulation of the nucleon DAs gives a
description of the experimental data rather well. This
calculation has been generalized to isoscalar and induced
pseudoscalar axial-vector form factors of the nucleon in
Refs. [32,33].

Our information about the DAs of the octet hyperons
were scarce and as a result not much effort has been spent
on these baryons. However, the DAs of octet hyperons have
recently become available and their electromagnetic form
factors have been calculated by Liu et al. [34,35].
Motivated by these advances in formulating the SU(3)
sector in LCSR and ongoing simulations in lattice QCD
to give a first-principles description of hadron interactions,
in this work we study the axial-vector form factors of
strange octet baryons using LCSR. Note that the axial-
vector current is anomalous in QCD. Although this anom-

aly cancels in the isovector channel, it might have a sig-
nificant contribution in the isoscalar channel. Since a study
of the isoscalar axial-vector form factor would be unreli-
able without the inclusion of the anomaly effects, in this
work we restrict our attention to the isovector form factors.
To this end, we compute the diagonal isovector as well as
the induced pseudoscalar form factors of nucleon,� and�
baryons by employing their recently extracted DAs. Our
paper is organized as follows: In the following section, we
give the formulation of the baryon form factors on the light
cone and derive our sum rules. In Sec. III, we present our
numerical results and in the last section, we conclude our
work with a discussion on our results.

II. FORMULATION OF BARYON AXIAL
FORM FACTORS

In the LCSR method, one starts with the following
two-point correlation function:

�B
�ðp; qÞ ¼ i

Z
d4xeiqxh0jT½�Bð0ÞA�ðxÞ�jBðpÞi; (2)

where �BðxÞ are the baryon interpolating fields for the N,
�, �. There are several local operators with the quantum
numbers of spin-1=2 baryons one can choose from. Here
we work with the general form of the interpolating fields
parameterized as follows for the N, � and �:

�N ¼ 2�abc
X2
‘¼1

ðuaTðxÞCJ‘1dbðxÞÞJ‘2ucðxÞ;

�� ¼ �Nðd ! sÞ;
�� ¼ �Nðu ! s; d ! uÞ;

(3)

with J11 ¼ I, J21 ¼ J12 ¼ �5, and J22 ¼ �, which is an arbi-
trary parameter that fixes the mixing of two local operators.
We would like to note that when the choice � ¼ �1 is
made the interpolating fields above give what are known as
Ioffe currents for baryons. Here uðxÞ, dðxÞ, and sðxÞ denote
the u-, d-, and s- quark fields, respectively, a, b, and c are
the color indices, and C denotes charge conjugation.
The short-distance physics corresponding to high mo-

menta p02 and q2 is calculated in terms of quark and gluon
degrees of freedom. Inserting the interpolating fields in
Eq. (3) into the correlation function in Eq. (2), we obtain

�B
�¼1

2

Z
d4xeiqx

X2
‘¼1

fc1ðCJ‘1Þ��½J‘2Sð�xÞ���5�	�4�abch0jqa1�ð0Þqb2�ðxÞqc3�ð0ÞjBi

þc2ðJ‘2Þ	�½ðCJ‘1ÞTSð�xÞ���5���4�abch0jqa1�ðxÞqb2�ð0Þqc3�ð0ÞjBi
þc3ðJ‘2Þ	�½CJ‘1Sð�xÞ���5���4�abch0jqa1�ð0Þqb2�ð0Þqc3�ðxÞjBig; (4)
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where q1;2;3 denote the quark fields and c1;2;3 are constants
which will be determined according to the baryon in ques-
tion. SðxÞ represents the light-quark propagator

SðxÞ ¼ ix

2
2x4
� hq �qi

12

�
1þm2

0x
2

16

�
: (5)

Here the first term gives the hard-quark propagator. The
second term represents the contributions from the non-
perturbative structure of the QCD vacuum, namely, the
quark and quark-gluon condensates. These contributions
are removed by Borel transformations as will be explained
below. We note that the hard-quark propagator receives
corrections in the background gluon field, which are ex-
pected to give negligible contributions as they are related
to four- and five-particle baryon distribution amplitudes
[36]. Following the common practice, in this work we shall
not take into account such contributions, which leaves us
with only the first term in Eq. (5) to consider.

The matrix elements of the local three-quark operator

4�abch0jqa1�ða1xÞqb2�ða2xÞqc3�ða3xÞjBi
(a1;2;3 are real numbers denoting the coordinates of the

valence quarks) can be expanded in terms of DAs using the
Lorentz covariance, the spin, and the parity of the baryon.
Based on a conformal expansion using the approximate
conformal invariance of the QCD Lagrangian up to 1-loop
order, the DAs are then decomposed into local nonpertur-
bative parameters, which can be estimated using QCD sum
rules or fitted so as to reproduce experimental data. We
refer the reader to Refs. [31,34,35] for a detailed analysis

on DAs of N, �, �, which we employ in our work to
extract the axial-vector form factors.
The long-distance side of the correlation function is

obtained using the analyticity of the correlation function,
which allows us to write the correlation function in terms
of a dispersion relation of the form

�B
�ðp; qÞ ¼ 1




Z 1

0

Im�B
�ðsÞ

ðs� p02Þ ds:

The ground-state hadron contribution is singled out by
utilizing the zero-width approximation

Im�B
� ¼ 
�ðs�m2

BÞh0j�BjBðp0ÞihBðp0ÞjA�jBðpÞi
þ 
	hðsÞ

and by expressing the correlation function as a sharp
resonance plus continuum which starts above the contin-
uum threshold, s0, i.e. 	

hðsÞ ¼ 0 for s < s0. The matrix
element of the interpolating current between the vacuum
and baryon state is defined as

h0j�BjBðp; sÞi ¼ �Bðp; sÞ
where �B is the baryon overlap amplitude and ðp; sÞ is the
baryon spinor.
The QCD sum rules are obtained by matching the short-

distance calculation of the correlation function with the
long-distance calculation. Using the most general decom-
position of the matrix element (see Eq. (2.3) in Ref. [37])
and taking the Fourier transformations, we obtain

� �B

m2
B � p02 GA;B ¼ 1

2

�
mB

Z 1

0

dt2
ðq� pt2Þ2

½ð1� �ÞF1ðt2Þ þ ð1þ �ÞF2ðt2Þ� þmB

Z 1

0

dt3
ðq� pt3Þ2

½ð1� �ÞF3ðt3Þ

þ ð1þ �ÞF4ðt3Þ� þm3
B

Z 1

0

dt2
ðq� pt2Þ4

½ð1� �ÞF5ðt2Þ þ ð1þ �ÞF6ðt2Þ�

þm3
B

Z 1

0

dt3
ðq� pt3Þ4

½ð1� �ÞF7ðt3Þ þ ð1þ �ÞF8ðt3Þ� þm3
B

Z 1

0

dt2
ðq� pt2Þ4

½ð1� �ÞF9ðt2Þ

þ ð1þ �ÞF10ðt2Þ� þm3
B

Z 1

0

dt3
ðq� pt3Þ4

½ð1� �ÞF11ðt3Þ þ ð1þ �ÞF12ðt3Þ�
�

(6)

for the axial-vector form factors at structureq���5 and

� �B

m2
B � p02 GP;B ¼ 1

2

�
m2

B

Z 1

0

dt2
ðq� pt2Þ4

½ð1� �ÞF13ðt2Þ þ ð1þ �ÞF14ðt2Þ�

þm2
B

Z 1

0

dt3
ðq� pt3Þ4

½ð1� �ÞF15ðt3Þ þ ð1þ �ÞF16ðt3Þ�
�

(7)

for the induced pseudoscalar form factor at the structure q�q�5. The explicit form of the functions that appear in the above
sum rules are given in terms of DAs as follows:
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F1¼
Z 1�t2

0
dt1½c1ð�A2�A3þV2�V3Þþc2ðA1þV1Þ�ðt1;t2;1� t1� t2Þ;

F2¼
Z 1�t2

0
dt1½c1ðP1þS1þ2T2þT3�T7Þþc2ðP1þS1þT3�T7Þ�ðt1; t2;1� t1� t2Þ;

F3¼
Z 1�t3

0
dt1½c3ðA1�V1Þ�ðt1;1� t1� t3;t3Þ;

F4¼
Z 1�t3

0
dt1½c3ðP1þS1�T3þT7Þ�ðt1;1� t1� t3; t3Þ;

F5¼
Z 1�t2

0
dt1½c1ðVM

1 �AM
1 Þþc2ðVM

1 þAM
1 Þ�ðt1;t2;1� t1� t2Þ;

F6¼
Z 1�t2

0
dt1½c1ð3TM

1 Þþc2ðTM
1 Þ�ðt1;t2;1� t1� t2Þ;

F7¼
Z 1�t3

0
dt1½c3ðAM

1 �VM
1 Þ�ðt1;1� t1� t3; t3Þ;

F8¼
Z 1�t3

0
dt1½�c3T

M
1 �ðt1;1� t1� t3; t3Þ;

F9¼
Z t2

1
d�

Z �

1
d	

Z 1�	

0
dt1½ðc1þc2ÞðA1�A2þA3þA4�A5þA6Þ

þðc2�c1ÞðV1�V2�V3�V4�V5þV6Þ�ðt1;	;1� t1�	Þ;
F10¼

Z t2

1
d�

Z �

1
d	

Z 1�	

0
dt1½c1ð�3T1þT2þ2T3þT4þT5�3T6þ4T7þ4T8Þ

þc2ð�T1�T2þ2T3þ2T4�T5�T6Þ�ðt1;	;1� t1�	Þ;
F11¼

Z t3

1
d�

Z �

1
d	

Z 1�	

0
dt1½c3ðA1�A2þA3þA4�A5þA6�V1þV2þV3þV4þV5�V6Þ�ðt1;1� t1�	;	Þ;

F12¼
Z t3

1
d�

Z �

1
d	

Z 1�	

0
dt1½c3ðT1þT2�2T3�2T4þT5þT6Þ�ðt1;1� t1�	;	Þ;

F13¼
Z t2

1
d	

Z 1�	

0
dt1½c1ðA2þA3�A4�A5�V2þV3�V4þV5Þþc2ðA1þA3�A5þV1�V3�V5Þ�ðt1;	;1� t1�	Þ;

F14¼
Z t2

1
d	

Z 1�	

0
dt1½c1ð�P1þP2�S1þS2�2T2�T3þT4þ2T5þT7�T8Þ

þ2c2ð�T3þT5þT7Þ�ðt1;	;1� t1�	Þ;
F15¼

Z t3

1
d	

Z 1�	

0
dt1½c3ðA1�A2þA4�V1þV2þV4Þ�ðt1;1� t1�	;	Þ;

F16¼
Z t3

1
d	

Z 1�	

0
dt1½c3ð�P1þP2�S1þS2�2T2þT3þT4�T7�T8Þ�ðt1;1� t1�	;	Þ:

We make the following replacements in order to obtain the sum rule for each baryon we consider:

GN: fc1 ¼ c2 ¼ 1; c3 ¼ �1; q1 ! u; q2 ! u; q3 ! dg;
G�: fc1 ¼ c2 ¼ 1; c3 ¼ 0; q1 ! u; q2 ! u; q3 ! sg;
G�: fc1 ¼ c2 ¼ 0; c3 ¼ 1; q1 ! s; q2 ! s; q3 ! dg:

Note that in the final sum-rules expression, the quarks do not appear explicitly but only implicitly through the DAs, masses,
and the residues of the corresponding baryons. Thus these replacements simply instruct to use the DAs, mass, and residue
of the corresponding baryon. They apply to both axial-vector and induced pseudoscalar form factors.

The Borel transformation is performed to eliminate the subtraction terms in the spectral representation of the correlation
function. As a result of Borel transformation, contributions from excited and continuum states are also exponentially
suppressed. The contributions of the higher states and the continuum are modeled using the quark-hadron duality and
subtracted. Both of the Borel transformation and the subtraction of the higher states are carried out using the following
substitution rules (see e.g. [31]):
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Z
dx

	ðxÞ
ðq�xpÞ2!�

Z 1

x0

dx

x
	ðxÞe�sðxÞ=M2

;
Z
dx

	ðxÞ
ðq�xpÞ4!

1

M2

Z 1

x0

dx

x2
	ðxÞe�sðxÞ=M2 þ 	ðxÞ

Q2þx20m
2
B

e�s0=M
2
; (8)

where

sðxÞ ¼ ð1� xÞm2
B þ 1� x

x
Q2;

M is the Borel mass, and x0 is the solution of the quadratic equation for s ¼ s0:

x0 ¼
� ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ðQ2 þ s0 �m2
BÞ2 þ 4m2

BðQ2Þ
q

� ðQ2 þ s0 �m2
BÞ
��

ð2m2
BÞ;

where s0 is the continuum threshold.
Finally, we obtain the following sum rules for the axial-vector and induced pseudoscalar form factors, respectively:

GA ¼ � 1

2�B

em
2
B=M

2

�
�mB

Z 1

x0

dt2
t2

e�sðt2Þ=M2½ð1� �ÞF1ðt2Þ þ ð1þ �ÞF2ðt2Þ� �mB

Z 1

x0

dt3
t3

e�sðt2Þ=M2½ð1� �ÞF3ðt3Þ

þ ð1þ �ÞF4ðt3Þ� þ m3
B

M2

Z 1

x0

dt2
t22

e�sðt2Þ=M2½ð1� �ÞF5ðt2Þ þ ð1þ �ÞF6ðt2Þ� þ m3
B

q2 þ x20m
2
B

e�s0=M
2½ð1� �ÞF5ðx0Þ

þ ð1þ �ÞF6ðx0Þ� þ m3
B

M2

Z 1

x0

dt3
t23

e�sðt3Þ=M2½ð1� �ÞF7ðt3Þ þ ð1þ �ÞF8ðt3Þ� þ m3
B

q2 þ x20m
2
B

e�s0=M
2½ð1� �ÞF7ðx0Þ

þ ð1þ �ÞF8ðx0Þ� þ m3
B

M2

Z 1

x0

dt2
t22

e�sðt2Þ=M2½ð1� �ÞF9ðt2Þ þ ð1þ �ÞF10ðt2Þ� þ m3
B

q2 þ x20m
2
B

e�s0=M
2½ð1� �ÞF9ðx0Þ

þ ð1þ �ÞF10ðx0Þ� þ m3
B

M2

Z 1

x0

dt3
t23

e�sðt3Þ=M2½ð1� �ÞF11ðt3Þ þ ð1þ �ÞF12ðt3Þ�

þ m3
B

q2 þ x20m
2
B

e�s0=M
2½ð1� �ÞF11ðx0Þ þ ð1þ �ÞF12ðx0Þ�

�
; (9)

GP ¼ � 1

�B

em
2
B=M

2

�
m2

B

M2

Z 1

x0

dt2
t22

e�sðt2Þ=M2½ð1� �ÞF13ðt2Þ þ ð1þ �ÞF14ðt2Þ� þ m2
B

Q2 þ x20m
2
B

e�s0=M
2½ð1� �ÞF13ðx0Þ

þ ð1þ �ÞF14ðx0Þ� þ m2
B

M2

Z 1

x0

dt3
t23

e�sðt2Þ=M2½ð1� �ÞF15ðt3Þ þ ð1þ �ÞF16ðt3Þ�

þ m2
B

Q2 þ x20m
2
B

e�s0=M
2½ð1� �ÞF15ðx0Þ þ ð1þ �ÞF16ðx0Þ�

�
: (10)

To obtain a numerical prediction for the form factors, the residues, �B are also required. The residues can be obtained
from the mass sum rules, and the residue of the � is given by [38]:

�2
�e

�m2

�0
=M2 ¼ M6

1024
2
ð5þ 2�þ 5�2ÞE2ðxÞ � m2

0

96M2
ð�1þ �Þ2h �qqi2 � m2

0

8M2
ð�1þ �2Þh�ssih �qqi

þ 3m2
0

64
2
ð1� �2Þ lnM

2

�2
½msh �qqi þmqh�ssi� þ 3

64
2
ð1þ �Þ2M2mqh �qqiE0ðxÞ � 3M2

32
2
ð�1þ �2Þ½msh �qqi

þmqh �ssi�E0ðxÞ þ M2

128
2
ð5þ 2�þ 5�2Þmsh�ssiE0ðxÞ þ 1

24
½6ð�1þ �2Þh�ssih �qqi

þ ð�1þ �2Þh �qqi2� þ m2
0

128
2
ð�1þ �Þ2mqh �qqi þ m2

0

128
2
ð�1þ �2Þ½13msh �qqi þ 11mqh�ssi�

� m2
0

96
2
ð1þ �þ �2Þðmqh �qqi �msh �ssiÞ; (11)

where x ¼ s0=M
2, and

EnðxÞ ¼ 1� e�x
Xn
i¼0

xi

i!
:
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The residues for the nucleon and � can be obtained from
Eq. (11). �2

Ne
�m2

N=M
2
can be obtained by setting ms ! mq

and h�ssi ! h �qqi, and �2
�
e�m2

�
=M2

by the exchanges mq $
ms and h �ssi $ h �qqi. We use the following parameter val-
ues: h �qqi ¼ 0:8h �ssi ¼ �ð0:243Þ3 GeV3, ms ¼ 0:14 GeV,
mq ¼ 0,m2

0 ¼ 0:8 GeV2,� ¼ 0:2 GeV,mN ¼ 0:94 GeV,
m� ¼ 1:2 GeV and m� ¼ 1:3 GeV.

III. NUMERICAL RESULTS AND DISCUSSION

In this section, we give our numerical results for the
axial-vector form factors of N, � and �. For this purpose
we need the numerical values of the baryon DAs. The DAs
of the nucleon are given in Ref. [31] as expressed in terms
of some nonperturbative parameters which are calculated
using QCDSR or phenomenological models (see also
Ref. [39] for a comparison of nucleon DAs as determined
on the lattice [40] and with other approaches). In this work,
we give our results using the parameter set known as
Chernyak-Zhitnitsky-like model of the DAs (see
Ref. [31] for details). As for the DAs of � and � we use
the parameter values as calculated recently by Liu et al.
[34,35]. In Table I we list the values of the input parameters
entering the DAs of each baryon.

The sum rules include several parameters that need to be
determined. The continuum threshold value for the nucleon
is pretty much fixed at s0 � 2:25 GeV2 in the literature
also from a mass analysis. We choose the values s0 � 2:5
and 2:7 GeV2, respectively, for� and�. In order to see the
dependence of the form factors on the continuum thresh-
old, we vary the values of s0 within a 10% region, which
leads to a change of less than 10% in the final results.

The form factors should be independent of the Borel
parameter M2. We consider the regions 1 GeV2 � M2 �
2 GeV2 for the nucleon and 2 GeV2 � M2 � 4 GeV2 for
� and �. We observe that the sum rules are almost inde-
pendent ofM2 in this region; a variation in this region leads
to change of the order of 1% in the final results. Hence we
give our numerical results at M2 ¼ 2 GeV2 for nucleon
and at M2 ¼ 3 GeV2 for � and �.

The next task is to determine the optimal mixing pa-
rameter �. In the ideal case, the sum rules and hadron
properties are independent of this parameter. In order to see
if we can achieve such an independence, in Fig. 1 we plot
the form factors as a function of cos�, where we make a
reparameterization using� ¼ tan�. We explicitly mark the
point for Ioffe current, which corresponds to a choice
� ¼ �1. It is observed that a stability region with respect
to a change in the mixing parameter can be found around
cos�� 0. In further analysis, we concentrate on this stable
region and compare the results with those obtained using
Ioffe current.
In Fig. 2, we plot the GA;BðQ2Þ of N, �, and � as a

function of Q2 in the region Q2 � 1 GeV2,1 for the Ioffe
current (� ¼ �1) and for the stable region of mixing
parameter ( cos�� 0). The qualitative behavior of the
form factors agree with our expectations: The values of
the axial-vector couplings fall off quickly as we increase
the momentum transfer. While there is a considerable
discrepancy between the Ioffe and the stable regions for
nucleon form factors at low-momentum transfers, the re-
sults for the form factors are very close to each other in the
case of � and �. Particularly for � form factor the two
regions produce practically the same results.
For comparison, we also give the lattice-QCD results for

GA;Bð0Þ, namely, axial charges of the N, �, and � [23]. It

was found in Ref. [23] that the axial charges have rather
weak quark-mass dependence and the breaking in SU(3)-
flavor symmetry is small. Furthermore, the QCDSR results
are not yet precise enough to resolve the small variation of
axial charges as a function of quark mass in available
lattice-QCD data. Therefore we show the values from
SU(3)-flavor symmetric point only. We also note that
regarding the signs of the form factors we adopt the con-
vention used in Ref. [23].
GA is usually parameterized in terms of a dipole form

GA;BðQ2Þ ¼ gA;B=ð1þQ2=�2
BÞ2: (12)

A global average of the nucleon axial mass as determined
from neutrino scattering by Budd et al. [41], �N ¼
1:001� 0:020 GeV, is in good agreement with the theo-
retically corrected value from pion electroproduction as
�N ¼ 1:014� 0:016 GeV [12]. A different prediction is
made by the K2K Collaboration from quasielastic ��n !
��p scattering as �N ¼ 1:20� 0:12 GeV [42]. To ex-
trapolate the sum-rules results to low-momentum-transfer
region, we have first tried a two-parameter fit to the dipole
form. However this procedure fails to give a good descrip-
tion of data. Instead we fix gA;N to the experimental value

and make one parameter fit from 2 GeV2 region. Inserting
the experimental value gA;N ¼ 1:2694ð28Þ for nucleon and
fitting to the dipole form in Eq. (12), our sum rules in the

TABLE I. The values of the parameters entering the DAs of N,
� and �. The upper panel shows the dimensionful parameters
for each baryon. In the lower panel we list the values of the five
parameters that determine the shape of the DAs, which have
been extracted for nucleon only. For � and � these parameters
are taken as zero.

Parameter N � �

fB (GeV2) 0.005 0.0094 0.0099

�1 (GeV2) �0:027 �0:025 �0:028
�2 (GeV2) 0.054 0.044 0.052

Vd
1 Au

1 fd1 fd2 fu1

0.23 0.38 0.40 0.22 0.07

1The predictions of LCSR are not reliable at Q2 ’ 0, but are
reliable for Q2 larger than a few GeV2.
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stable region of � produce �N ¼ 1:41 GeV, a value larger
than the experimental result. We make a similar analysis
for � and � axial-vector form factors using the lattice-
QCD values for gA;� and gA;� in the dipole form and find

�� ¼ 1:49 GeV and �� ¼ 1:56 GeV. Our results show
that axial masses of� and� are slightly larger than that of
nucleon. Note that, in the VMDmodel, the pole of the form
factors is given by the mass of the (axial) vector meson that
couples to the current. The lightest axial-vector meson has
a mass of mA ¼ 1:23 GeV [1]; hence our results also are
larger from the predictions of the VMD model.
We have also tried to fit to an exponential form, viz.,

GA;BðQ2Þ ¼ gA;B exp½�Q2=m2
A;B�; (13)

FIG. 1 (color online). The form factors as a function of cos�. The diamonds mark the points for Ioffe current.

FIG. 2 (color online). GA;BðQ2Þ of N, � and � as a function of
Q2 for the Ioffe current (dashed line) and for the stable region of
mixing parameter (solid line). The diamonds mark the lattice-
QCD results for GA;Bð0Þ, namely, axial charges of the N, � and

�. The dot-dashed curves show the fit function to an exponential
form from three regions: Q2 > 1 GeV2 (upper), Q2 > 1:5 GeV2

(middle), and Q2 > 2 GeV2 (lower).

TABLE II. The values of exponential fit parameters, namely
gA;B and mA;B, of axial form factors. We give the results of fits

from three regions. gA;B values are to be compared with the

experimental value gA;N ¼ 1:2694ð28Þ [1] for nucleon and the

lattice-QCD results gA;� ¼ 0:998ð14Þ and gA;� ¼ 0:282ð6Þ [23]
in the case of � and � respectively.

Baryon Fit Region (GeV2) gA;B mA;B (GeV)

N [1.0–10] 1.68 1.20

[1.5–10] 1.24 1.33

[2.0–10] 0.97 1.42

� [1.0–10] 1.11 1.32

[1.5–10] 0.92 1.40

[2.0–10] 0.77 1.48

� [1.0–10] 0.46 1.25

[1.5–10] 0.41 1.29

[2.0–10] 0.35 1.35
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which allows a plausible description of data with a two-
parameter fit. In this case we have tried three fit regions,
namely, Q2 > 1 GeV2, Q2 > 1:5 GeV2, and Q2 >
2 GeV2. Our results are shown in Fig. 2 and summarized
in Table II. The fits from around Q2 > 1:5 GeV2 region
produce the empirical values of gA;B quite successfully in

the case of N and �, while we obtain somewhat higher
values of gA;� than that from lattice QCD for all fit regions.

We also observe that the axial masses are very close to each
other, which indicates a possibly small SU(3)-flavor sym-
metry breaking in consistency with lattice-QCD findings
[23]. It will be interesting to compare our sum-rules results
to those from lattice QCD with more realistic setups when
available in the near future.

In Fig. 3, we give similar plots for GP;BðQ2Þ of N and �
as a function of Q2. The value of GP;� is negligibly small

as compared to other form factors (consistent with zero as
can also be seen in Fig. 1), therefore its figure is not shown.
The results from Ioffe and the stable regions are very close
to each other in the case of GP;�, while we observe some

discrepancy for GP;� form factors. GP;B has a stronger Q2

dependence as compared toGA;B. Actually,GP;B has a pole

around the pion mass and this can explain the difference in
the behaviors of two form factors. We have, unfortunately,

not been able to obtain a good fit ofGP;B to either dipole or

exponential functions. This is probably due to rapid in-
crease of GP;B belowQ2 ¼ 1 GeV2, where we do not have

reliable sum-rules data.

IV. CONCLUSIONS AND OUTLOOK

We have extracted the isovector axial-vector and in-
duced pseudoscalar form factors of octet baryons by em-
ploying the LCSR method. These form factors provide
information about the shape and the size of the baryons.
The values of the hyperon DAs were not known precisely
and this prevented the studies on hyperon structure and
form factors from QCD for a long time. However, the DAs
have been recently calculated up to twist 6 [34,35], which
allows us to give a description of form factors at high-
momentum transfers. Unfortunately, there is no sufficient
experimental data yet to compare our results with in this
region. However, the new generation higher-energy neu-
trino experiments, such as Miner�a [5] will span a wide
region of momentum transfers and will probe baryon axial
form factors with high precision in the near future.
In the low-energy region, we have compared our results

with those from experiment and two-flavor lattice-QCD
simulations [23]. We have observed that there is a nice
qualitative and quantitative agreement, which can be suit-
ably reproduced by an exponential form. With the avail-
ability of the lattice-QCD data in the low-Q2, as well as in
the high-Q2 region, we will be able to give a more accurate
comparison of these two complementary approaches.
Work along this direction is still in progress, where it is
aimed to extract baryon form factors in a wide range of
momentum transfers with larger 2þ 1-flavor lattices of
smaller lattice spacing and quark masses. We also aim to
extract isoscalar form factors and extend our study to
nondiagonal baryon transitions as well. Our work along
this direction is also in progress.
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