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Abstract 

We describe an optimization model for ambulance location that maximizes the expected system 

wide coverage, given a total number of ambulances. The model measures expected coverage as 

the fraction of calls reached within a given time standard and considers response time to be 

composed of a random delay (prior to travel to the scene) plus a random travel time. Pre-travel 

delays at dispatch and activation stages can be significant, and models that do not account for 

such delays can severely overestimate the possible coverage for a given number of ambulances 

and underestimate the number of ambulances needed to provide a specified coverage level. By 

explicitly modeling the randomness in the delays and the travel time, we arrive at a more realistic 

model for ambulance location. In order to capture the dependence of ambulance busy fractions 

on the allocation of ambulances between stations, we iterate between solving the optimization 

model and using the approximate hypercube model to calculate busy fractions.  We illustrate the 

use of the model using actual data from Edmonton. 
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Introduction 

The design of emergency medical service (EMS) systems involves several interconnected 

strategic decisions, such as the number and locations of ambulance stations, the number and 

locations of the vehicles, and the dispatch system used.  In this paper we focus on the allocation 

of vehicles to a set of (existing or planned) ambulance stations with known locations.  The main 

concern in an EMS system is the response time to calls.  The most obvious and significant 

component of response time is the travel time between the ambulance station and the demand 

location.  Almost all of the existing operations research literature on ambulance location focuses 

on travel times, but this is not the only component of the response time, which is generally 

defined as the time from when a call for ambulance service arrives until paramedics reach the 

patient.  Therefore, the response time includes any delays prior to the trip.  Such delays can 

include time spent on the phone obtaining the address and establishing the seriousness of the call, 

time spent deciding which ambulance to dispatch, time to contact the paramedic crew of that 

ambulance, and time for the paramedic crew to reach its ambulance and start it.  Queueing delays 

(when no ambulances are available) can also occur, but they occur infrequently.  In the rare 

situations when all ambulances are busy, incoming calls are typically responded to using some 

type of backup system, such as supervisor’s vehicles or fire engines. 

An overriding issue when designing an EMS system is the “coverage” provided, and a common 

performance target is to respond to (or cover) a fraction α of all calls in δ minutes or less (for 

example 90% in under 9 minutes).  Our paper is motivated by the observation that the estimated 

coverage depends on the way delays and travel times are modeled.  Appendix A of the online 

supplement provides a simple numerical example that illustrates the relevant issues, including: 
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• Not accounting for variability in travel times can result in large errors.  For example, if all 

demand nodes are at an average travel time of 9.01 minutes away from the station, then a 

deterministic model estimates zero coverage while a probabilistic model estimates roughly 

50% coverage, assuming the response time distribution is close to being symmetric.  

Although negative and positive errors at individual demand locations may cancel each other 

to some extent when computing the total expected number of covered calls, the error in this 

system performance estimate can be considerable (around 40% in the example in the 

Appendix when the pre-trip delays are included).  A probabilistic model is a better 

representation of reality, and the use of deterministic travel times in ambulance location 

models introduces avoidable errors. 

• Ignoring pre-travel delays entirely results in large errors. 

• When one models randomness in travel times, ignoring randomness in the duration of delays 

causes smaller errors than ignoring delays altogether.  The direction of the change in 

probability of coverage when one incorporates randomness in delay durations is not always 

the same, as illustrated in the online supplement.   

We believe that these errors can influence decisions adversely when every percent counts in 

trying to reach a coverage target.  For instance, in a recent project we completed for the City of 

Edmonton, Alberta (Ingolfsson et al., 2003), current coverage was 87% and most individual 

system design changes had impacts on the order of one percentage point or less.  To be useful in 

such situations, prescriptive models must be able to discriminate correctly between system 

designs with coverage differences of one percentage point or so. 
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In this paper we introduce new methodology that incorporates randomness in both pre-travel 

delays and travel times and is therefore free of the errors demonstrated in the example in the 

online supplement. 

This paper is motivated by two real-world ambulance location projects that we completed 

recently – the Edmonton project mentioned above and another conducted in St. Albert, a town of 

50,000, near Edmonton.  We use data from the latter study in this section.  We have analyzed 

data from approximately 6,997 EMS calls serviced in over 4 years in St. Albert.  Figure 1 

displays the empirical distribution of pre-trip delays, which is well approximated by a lognormal 

distribution.  The delays ranged from 20 seconds to 20 minutes, with an average of 175 seconds 

and a standard deviation of 95 seconds.  Limiting the analysis to calls classified as “heart and 

respiratory” (i.e., high priority) yielded almost the same mean and standard deviation.  The 

average delay of almost 3 minutes is a very substantial fraction of the 9-minute response time 

standard, and the variation in the delay is too large to ignore (the standard deviation is more than 

50% of the mean).   

Green and Kolesar (1989) report delays similar to the ones that we are concerned with.  They 

found unexpected “dispatch delays” when validating a queueing model of police patrol in New 

York City.  They found that about 50% of calls experienced dispatch delays averaging about 4 

minutes.  Henderson and Mason (2004) had a similar experience.  They report that “for many of 

the calls, a large amount of time is spent before an ambulance is dispatched to a call” and discuss 

the impact that this has on the ability to meet the coverage goals as well as the potential to 

achieve a considerable improvement in performance with only small decreases in these pre-trip 

delays.  Anyone that has experience with real emergency service systems will be aware of the 

presence of such delays, and several past researchers have mentioned them (see, for example, 
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several of the chapters in Willemain and Larson, 1977, and Brandeau and Larson, 1986) 

suggesting, in some cases, that such delays are negligible, and in other cases that they can be 

incorporated in existing models by adding the average delay to the average travel time.  
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Figure 1: Empirical cumulative distribution function of pre-trip delays for 6,997 EMS calls 

serviced in St. Albert, and a fitted lognormal distribution. 

 

The St. Albert dataset contains multiple trips to several locations, which allows us to analyze 

distributions of travel times.  Figure 2 shows the empirical distribution of travel times for 352 

trips from a particular station to the same multiple-resident demand point.  The trip times range 

from 55 seconds to 370 seconds, with an average of 143 seconds and a standard deviation of 52 

seconds.  Of these 352 calls, 94 are classified as “heart and respiratory.”  For these high-priority 

calls the average travel time is 126 seconds, indicating faster travel for high-priority calls.  

However, the standard deviation is still a very substantial 57 seconds.  We analyzed a total of 

nine locations with multiple trips and found that the standard deviation was always considerable 

(on average 40% of the mean).  Reporting on a project for locating emergency vehicle bases in 

Tucson, Arizona, Goldberg et al. (1990a) also found substantial variation in empirical travel 
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times for given base-demand zone pairs.  This variation can be due to variability in the effective 

travel speed, or due to randomness in the location of the incident (demand aggregation). 
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Figure 2: Empirical cumulative distribution function for travel times between a particular station 

and demand point pair for a total of 352 trips, together with a fitted lognormal 

distribution. 

 

To summarize, when analyzing response time data, we noticed that delays can be significant and 

highly variable, and that travel times between a given pair of points are highly variable.  We 

conclude that a convolution of the delay and travel time distributions is needed to obtain an 

accurate response time distribution, assuming travel time and delay are statistically 

independent—an assumption that is supported by the data that we worked with.  Situations 

where the travel time and delay are dependent can be handled as well, as we will demonstrate. 

We believe that the explicit modeling of the uncertainty in travel times is an important feature of 

this paper.  In addition, our model is intended to overcome three limitations of existing models 

that ignore either delays or the randomness in delays.   
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• First, models that ignore delays or randomness in delays may severely overestimate the 

coverage achieved with a given number of ambulances and, conversely, underestimate the 

number of ambulances needed to meet a specified coverage objective (see Figures 4 and 5 in 

the Computational Experiments section). 

• Second, for a given number of ambulances, existing models may prescribe a suboptimal 

distribution of ambulances to stations.   

• Third, existing models do not enable prediction of the consequences of reducing delays.   

This last point is important because delays can be far easier and less costly to reduce than travel 

times.  It might be possible to reduce delays through simple process changes, such as dispatching 

an ambulance before the seriousness of the call has been established (thereby performing two 

activities in parallel rather than in series), or through the integration of 911 and EMS call centers 

(thus eliminating hand-off time from one call center to the other), whereas reducing travel times 

usually requires adding ambulances or stations.  Our model can help compare the costs and 

benefits of actions to reduce delays versus actions to reduce travel times.  This is valuable for 

decision-makers who are interested in the least-costly way of reaching service standards.  As far 

as the response time standard is concerned, 30 seconds saved are 30 seconds saved, regardless of 

which component of the response time these savings come from. 

There is an extensive literature on optimal location of ambulances.  Yet very few papers model 

the randomness in travel times, and we know of no papers that incorporate randomness in pre-

trip delays into an optimization model.  We consider both omissions serious impediments to 

applying optimization models to ambulance location, and we believe our model is a first step in 

overcoming these shortcomings. 
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In the remainder of the paper, we discuss the relevant literature, and then describe the problem 

data, our problem formulation, some useful properties of the formulation, the results of 

computational experiments, and further research that we intend to undertake to extend and 

experiment with the model.  

Literature 

There is an extensive literature on locating emergency service facilities.  Willemain and Larson 

(1977), Swersey (1994), and Marianov and ReVelle (1995) provide reviews of this area.  Berman 

and Krass (2001) review the literature on facility location with stochastic demands, much of it 

motivated by emergency service applications.  In this section we survey selected papers with an 

emphasis on those that are most relevant to our research.  Past models can be usefully 

characterized as prescriptive or descriptive.  This distinction is not perfect, because every 

mathematical model of EMS operations provides predictions of performance, as a function of 

decision variables such as the number of ambulances at each station, and every such 

mathematical model allows one to experiment with the decision variables to search for a better 

configuration.  All models make simplifying assumptions, for various reasons.  At one extreme 

are models that make strong simplifying assumptions in the interest of making it possible to find 

optimal or near-optimal configurations for large problem instances using general purpose 

mathematical programming solvers.  At the other extreme are models whose focus is on 

accurately predicting the performance for a particular configuration.  Even though some models 

fall in the middle between these two extremes, many models can be usefully classified as either 

prescriptive (where the focus is on making optimization possible) or descriptive (where the focus 

is on accurate prediction of performance measures).  Descriptive models are typically either 

analytical queueing models or simulation models. 
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Related to the discussion of prescriptive and descriptive models is problem size.  For ambulance 

location models, the number of “demand nodes” and the number of stations are the primary 

determinants of problem size.  Demand is typically aggregated into demand nodes, in part to 

provide a reasonable problem size.  The number of demand nodes is influenced by the size of the 

geographic region, the population, and the method used to divide the region into demand nodes, 

i.e., the demand aggregation method.  The number of stations is influenced by the size of the 

region, the size of the population, the level of funding, and by operating policies (for example, if 

ambulances can wait on street corners for the next call, then there would be more possible 

“stations”).  Both the number of demand nodes and the number of stations will influence the time 

to evaluate a single solution, but only the number of stations (and not the number of demand 

nodes) will influence the size of the solution space for a prescriptive model.  Moreover, the 

number of stations will impact the size of the problem for a prescriptive model in a combinatorial 

fashion.  Given that the number of demand nodes can be manipulated via preprocessing 

(aggregation) and that this number is expected to impact the evaluation time for a single solution 

approximately linearly, the determining factor for computational effort for a prescriptive model 

is the number of stations. 

Most of the prescriptive models use an all-or-none notion of coverage, where a demand point is 

considered “covered” if the closest ambulance station is within some specified maximum 

distance.  The objective of the set-covering location problem (SCLP), first formulated by 

Toregas et al. (1971), is to minimize the number of stations such that all demand points are 

covered.  Although this is a binary problem, the LP relaxation (or the addition of a simple cutting 

plane) usually generates all-integer solutions.  By changing the coverage distance, one can 

generate a number of solutions with varying number of facilities.   
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While SCLP has been used in several location studies, it has a number of shortcomings.  For 

example, the requirement of covering every demand point is rather stringent and usually results 

in the location of an unreasonably high number of facilities.  To address this problem, Church 

and ReVelle (1974) extended SCLP by proposing the maximal covering location problem 

(MCLP) where the goal is to maximize the proportion of the demand covered with a fixed 

number of facilities.  The LP relaxation of this binary problem is reported to result in all-integer 

solutions most of the time.  One can solve MCLP parametrically in the number of facilities and 

obtain a cost-coverage tradeoff curve. 

Unlike SCLP, MCLP differentiates between demand points based on relative demand and it is 

able to trade off system coverage and resources.  Hence, it is better suited for emergency service 

facility location than SCLP, and there are several reported applications.  However, the 

classification of a demand point that is within a specified distance of a station as covered makes 

the implicit assumption that there is always a vehicle at the station to respond to a call.  While 

most emergency response systems are designed for low utilization levels, in many cities 

ambulances are busy a significant portion of the time (for example, 30%).   

To account for the potential unavailability of ambulances, Daskin (1983) extended MCLP by 

formulating the maximum expected covering location problem (MEXCLP), which maximizes 

the expected value of population coverage for a fixed number of servers.  MEXCLP uses a 

single, system-wide busy probability, and computes the probability of a subset of busy vehicles 

from a given station using the binomial distribution.  While the model is an integer program with 

a nonlinear objective function, it can be linearized, and instances of realistic size can be solved 

with general-purpose integer programming solvers. 
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Revelle and Hogan (1989) also attempted to account for ambulance unavailability by extending 

MCLP in a different direction, through their maximum availability location problem (MALP), 

which maximizes the population that is “covered with α reliability.”  Unfortunately, this 

objective function is inconsistent with the expected coverage performance measure that drives 

most EMS systems in practice.  See Erkut et al. (2006) for a critique of MALP and related 

models. 

Although there are many prescriptive ambulance location models in the literature, the four 

models discussed above can be considered the most influential ones on subsequent research, 

since most other models are extensions of these four.  While many of these prescriptive models 

can be solved to global optimality with reasonable effort, they suffer from simplifying 

assumptions.  On the other hand, descriptive models provide more realism.   

The main descriptive model that is relevant for our purposes is the hypercube model developed 

by Larson (1974) and subsequent approximate versions of that model (Larson, 1975 and Jarvis, 

1985).  This model allows busy fractions to vary between ambulances and can accommodate 

ambulances responding to calls outside their assigned districts.  Larson (1979), and Brandeau 

and Larson (1986) describe applications and extensions of the hypercube model.  We use an 

extension of the approximate hypercube model that allows multiple servers at a station (Budge et 

al., 2005).  Discrete event simulation can be used when even greater realism is needed (e.g., 

Henderson and Mason, 2000 and 2004, and Ingolfsson et al., 2003). 

Finally, some authors have combined descriptive models with optimization heuristics.  Both 

Batta et al. (1989) and Saydam and Aytug (2003) combine the approximate hypercube model 

with heuristics, the former using a single node substitution heuristic and the latter using a genetic 

algorithm. 
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We extend the prescriptive modeling paradigm by incorporating randomness in response times, 

without sacrificing the ability to use general-purpose solvers to find optimal solutions.  All of the 

prescriptive covering models that we discussed above use deterministic (average) travel times.  

While delays are usually not explicitly mentioned in papers dealing with prescriptive coverage 

models, it is easy to incorporate a constant (average) delay into all coverage models by simply 

subtracting the delay from the specified maximum response time.  (For example, Eaton et al. 

(1985) uses MCLP with a 5-minute travel time, which may have been part of an 8-minute 

response time with an average delay of 3 minutes.)     

The assumption made by early covering models is that if (and only if) an ambulance is available 

within a specified maximum distance of a demand point, then the demand point is covered.  EMS 

systems typically measure performance based on the fraction of calls responded to within a 

specified time standard.  However, for a given ambulance location and a demand point, it is not 

possible to know with certainty whether the call will be responded to within the time standard – 

it depends on the pre-trip delay and the travel time as well as the availability of the ambulance, 

none of which can be predicted with certainty.  Our model does not rely solely on average travel 

times, and hence, it is not limited by the resulting strict classification of demand points as 

covered or not covered.  It allows incorporation of randomness in pre-trip delays and travel 

times, and computes an expected coverage for each demand point, given the ambulance 

locations.  Hence, we increase model realism by replacing the 0-1 consequences implied by 

solutions of traditional covering models for demand points by real numbers, which are better 

estimates of the fraction of calls emanating from different demand points that can be reached 

within the specified time standard. 
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In the remainder of this section, we focus on ambulance location models that incorporate 

response time variability.  As we mentioned above, a constant pre-trip delay can be incorporated 

into all covering models.  However, we know of no papers in the literature that incorporate 

random delays into a prescriptive model.   

We are aware of three instances where travel time variability was included in covering models.  

Marianov and ReVelle (1996) assume travel time from station i to node j is normally distributed 

with known mean and variance.  Then they define a node j to be covered by station i if the 

average travel time plus K standard deviations is less than a specified constant.  While they 

acknowledge the variability in travel times, they do not use the distributions directly in the 

model.  This model is more conservative (for K > 0) than a coverage model that uses the average 

travel times only.  However, it is still a traditional covering model in the sense that a demand 

point is either covered or not. 

Perhaps the paper that is most relevant to ours is Goldberg and Paz (1991), which is inspired by a 

case study reported in Goldberg et al. (1990a) and Goldberg et al. (1990b).  They formulate an 

emergency facility location model that includes the probability Pij that an ambulance at station i 

can travel to a call from demand node j within a response time standard.  This quantity is used to 

calculate expected coverage in the objective function of their optimization problem.  Daskin 

(1987) models random travel times similarly, but the focus of his model is the integration of 

location and routing, taking into account that some calls may require two vehicles to respond.  

Daskin’s model does not account for ambulance unavailability and is quite large, even for small 

networks.  Goldberg and his co-workers used an approximation related to the hypercube model 

to estimate the busy probabilities of the vehicles, and included an upper bound on the number of 

stations.  They use regression to estimate average travel times as a function of distance along 
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roads of various types, and compute the Pij values using this mean and the standard deviation of 

the residuals, assuming normal distribution of path travel times.  While the way we model 

expected coverage is similar to that of Goldberg and Paz (1991), there are several differences 

between their work and ours.  Perhaps the most significant modeling difference is the inclusion 

of pre-trip delays in our model.  Also, we treat the calculation of the busy probabilities for the 

vehicles, and the computation of coverage probabilities for demand points in different ways.  We 

consider dispatch policies as given, rather than including them as decision variables.  For all of 

these reasons, our model is more compact and tractable and we are able to solve problems of 

realistic size optimally using off-the-shelf solvers, while Goldberg and Paz (1991) propose 

pairwise interchange heuristics for their model. 

Problem Data 

We assume that the following data are available: 

• A set S of m station locations, indexed by i, and a set N of n demand nodes, indexed by j. 

• A positive arrival rate j
λ  for each demand node j.  We assume that the node arrival 

processes are independent Poisson processes.  We denote the system wide arrival rate 

with 
jj N∈

λ ≡ λ∑  and the fraction of the total demand coming from demand node j 

by /
j j

h ≡ λ λ . 

• A dispatch order for each demand node j, i.e., a list of the m stations in order of 

preference for dispatching to a call originating from node j.     

• Parameters δ and α which specify the coverage objective that calls should be responded 

to in at most δ time units with probability of at least α. 
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• The probability 
ij

w  that the response time 
ij

R  for a call that is responded to from the ith 

station (in node j’s dispatch order) to node j is less than or equal to δ time units. 

• The average on-scene time, and average time spent traveling to and remaining at a 

hospital, denoted on sceneE[ ]T , and hospitalE[ ]T , respectively. 

• The “busy fraction” 
i

ρ  for ambulances at station i, i.e., the probability that an ambulance 

at station i is not available to respond to calls, and correction factors 
ij

Q  for each station-

node pair, to approximately account for the dependence in the busy fractions between 

servers. We assume that (0,1)
i

ρ ∈  and 0
ij

Q > . 

The last assumption, that the busy fractions and correction factors are exogenous input to the 

model, is obviously a limiting one.  We discuss how to overcome this assumption later.   

The best way to calculate the probabilities 
ij

w  depends on the availability of data and the 

context.  We now outline three possible methods.  First, if detailed data for a sample of 

individual calls is available, then one could estimate 
ij

w as the ratio /ij ijk k
δ , where ijk  is the total 

number of calls in the sample where an ambulance from station i responded to a call from node j 

and ijk
δ  is the number of such calls that had a response time less than or equal to δ. 

Second, suppose that the distribution function ( )
ij

H t  of the travel time 
ij

T  from the i
th

 station (in 

node j’s dispatch order) to node j as well as the distribution function ( )F t  for the delay are 

available, and that it is reasonable to assume that the travel time and the delay are independent 

random variables.  Then one can use convolution to calculate the probabilities, i.e.,  

 

δ

0

(δ ) ( )
ij ij

x

w H x dF x
=

= −∫  (1) 
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Third, suppose that both travel times and pre-travel delays depend on call priority, but that for a 

given priority level, these two random variables are independent.  Adding a superscript p, for 

priority level, to the notation defined in the preceding paragraph, and using p

jv  to denote the 

probability that a call from node j is of priority p, then the calculation in (1) would be adjusted as 

follows: 

 

δ

0

(δ ) ( )p p p

ij j ij

p x

w v H x dF x
=

= −∑ ∫  

The first method is the most general in that it requires no independence assumptions, but it has 

two limitations: (1) the sample size ijk  might be small or even zero for some station-node pairs, 

even if the overall sample is large, and (2) the method is silent about how one could predict the 

consequences of changes to the pre-travel delay distribution.  The second and third methods 

require the independence assumption, but they do not suffer from the two limitations just 

mentioned. 

Note that the 
ij

w  are conditional probabilities – they assume that the call comes from demand 

node j and is responded to by the i-th preferred station.  Higher system congestion makes it more 

likely that less preferred stations respond to calls, and this can induce dependence between pre-

travel delays and travel times.  Our model captures such dependence by combining the 

conditional probability, 
ij

w , with the probability ( )
ij

f x that the i-th preferred station responds to 

a call from node j, as shown below. 

We emphasize that the calculation of ijw  is done for all station-node pairs, before solving the 

optimization problem that we pose in the next section.  The optimization model requires no 
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information about the probability distributions of travel times or delays other than the 

probabilities 
ij

w . 

We will assume that the dispatch order for each node j is such that: 

  1 2j j mj
w w w≥ ≥ ≥K  (2) 

That is, the stations are arranged in descending order of the likelihood of responding to a call 

from node j in less than δ time units.  Although dispatching the closest available unit is not 

always optimal (see, for example, Larson, 1979), studies such as that by Jarvis (1981) indicate 

that this policy is generally near-optimal.  Our experience with real EMS systems indicates that 

deviating from closest-available-unit dispatching would be difficult in practice.  The formulation 

that we present in the next section is valid without this assumption, but the concavity property 

that we discuss later requires it. 

Problem Formulation and Properties 

Let 
i

x  be the number of ambulances located at station i, and let 
ij

x  be the number of ambulances 

at the i
th

 preferred station for demand node j.  The vector 1 2( , , , )
j j mj

x x xK  is a permutation of 

1 2( , , , )
m

x x xK , for each j.  Similarly, let 
ij

ρ  be the busy probability for the i
th

 most preferred 

station for demand node j.  The optimization problem is: 

(P1) maximize ( ) ( )
j j

j N

s x h s x
∈

≡∑   

 subject to ( )
i

i S

z x x b
∈

≡ =∑  (3) 

  0,
i

x ≥  integer, for all i S∈  (4) 
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where 

 ( ) ( )
j ij ij

i S

s x f x w
∈

=∑ , for all j N∈  (5) 

and 

 ( )
1

1

( ) 1 ij uj

i
x x

ij ij ij uj

u

f x Q
−

=

= − ρ ρ∏ , for all ,i S j N∈ ∈  (6) 

Problem (P1) maximizes the expected coverage s(x), subject to a constraint on the total number 

of ambulances z(x) being equal to b.  For the moment, we assume b to be given, but in the 

algorithm in the next section, b will become a decision variable.  The system-wide coverage s(x) 

is a weighted combination of the coverages for individual demand nodes, and the coverage ( )
j

s x  

for demand node j is calculated in (5) by conditioning on which station sends an ambulance to 

respond to a call from node j.  The calculation of the node j coverage requires the “dispatch 

probability” ( )
ij

f x , the probability that a call from node j is responded to by an ambulance from 

its i
th

 preferred station. This probability is calculated, as shown in (6), as the product of the 

probabilities that all ambulances at the i – 1 more preferred stations are busy, at least one 

ambulance at the i
th

 preferred station is free, and a correction factor Qij, to approximately account 

for the dependence between servers.  Setting the correction factors to 1 is equivalent to assuming 

that the probability of an ambulance being busy is statistically independent of the status of all 

other ambulances in the system. 
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Concavity Result 

Proposition 1:  If 1 2j j mj
w w w≥ ≥ ≥K   for all j N∈ , and 

ij
Q  and 

j
ρ are invariant with x (recall 

that these are assumed to be exogenous input to the model) for all ,i S j N∈ ∈ , then the system-

wide coverage is a concave function of x. 

Proof:  Recall that the system–wide coverage ( ) ( )
j jj N

s x h s x
∈

=∑  is a convex combination of 

the coverages ( )
j

s x  for each demand node j.  To prove that s(x) is concave, it suffices to prove 

that the coverage ( )
j

s x  for a particular node j is concave, since the weights 
j

h  are positive.  

Therefore, we assume without loss of generality that there is only one demand node and we drop 

the demand node subscript j in the proof to simplify notation. 

By assumption we have 1 0
i i i

w w w+∆ = − ≤  for all i.  We can express the probability ( )
i

f x  as: 

 ( )
1 1

1

1 1 1

( ) 1 ( ) ( )i u u u

i i i
x x x x

i i i u i u u i i

u u u

f x Q Q g x g x
− −

−
= = =

 
= − ρ ρ = ρ − ρ = − 

 
∏ ∏ ∏  

where 
1

( ) u
i x

i i uu
g x Q

=
= ρ∏  and 0 ( ) 1g x = .  Consequently, 

 

1

1 1

1 1

0 1 1

( ) ( ) ( ) ( )

( ) ( ) ( )

m m

i i i i i i

i S i i

m m m

i i i i i i

i i i

s x f x w g x w g x w

g x w g x w w g x w

−
∈ = =

+
= = =

= = −

= − = + ∆

∑ ∑ ∑

∑ ∑ ∑
 

with the understanding that 1 0
m

w + = . 

The gradient of s(x) with respect to x has the following entries: 

 (ln ) ( )
m

k i i

i kk

s
g x w

x =

∂
= ρ ∆

∂
∑  
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The entries in the Hessian matrix H are (assuming k l≤ ): 

 
2

(ln )(ln ) ( )
m

kl k l i i

i lk l

s
h g x w

x x =

∂
= = ρ ρ ∆

∂ ∂
∑  

Recalling that 0
i

Q > , (0,1)
i

ρ ∈  and 0
i

w∆ ≤ , we see that /
k

s x∂ ∂  is non-negative for all k, and 

2 /
k l

s x x∂ ∂ ∂  is non-positive for all k and l. 

Consider the quadratic form Ty Hy  where y is an arbitrary column vector with m elements.  This 

quadratic form can be expressed as: 

 2

1 1 1 1 1

2
m m m m m

T

k l kl l ll k l kl

k l l k l k

y Hy y y h y h y y h
= = = = = +

= = +∑∑ ∑ ∑ ∑  

Substituting the expression for 
kl

h  we get: 

 2 2

1 1 1

(ln ) ( ) 2 (ln )(ln ) ( )
m m m m m

T

l l i i k l k l i i

l i l k l k i l

y Hy y g x w y y g x w
= = = = + =

= ρ ∆ + ρ ρ ∆∑ ∑ ∑ ∑ ∑  (7) 

By changing the order of summation, the double sum in (7) can be expressed as: 

 2 2 2 2

1 1 1

(ln ) ( ) ( ) (ln )
m m m i

l l i i i i l l

l i l i l

y g x w g x w y
= = = =

ρ ∆ = ∆ ρ∑ ∑ ∑ ∑  

Similarly, the triple sum in (7) can be expressed as: 

 
1 1 1 1 1

1

2 1 1

(ln )(ln ) ( ) ( ) (ln )(ln )

( ) (ln )(ln )

m m m m m i

k l k l i i i i k l k l

k l k i l k i k l k

m i i

i i k l k l

i k l k

y y g x w g x w y y

g x w y y

= = + = = = + = +

−

= = = +

ρ ρ ∆ = ∆ ρ ρ

= ∆ ρ ρ

∑ ∑ ∑ ∑ ∑ ∑

∑ ∑ ∑
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Substitution in (7) results in: 

 

1
2 2

1 1 1 1

2

1 1

( ) (ln ) 2 (ln )(ln )

( ) (ln )

m i i i
T

i i l l k l k l

i l k l k

m i

i i l l

i l

y Hy g x w y y y

g x w y

−

= = = = +

= =

 
= ∆ ρ + ρ ρ 

 

 
= ∆ ρ 

 

∑ ∑ ∑ ∑

∑ ∑
 

We see that each term in the outer summation is non-positive (because ( ) 0
i

g x ≥ , 0
i

w∆ ≤ , and 

the squared summation is non-negative) and therefore 0Ty Hy ≤  for all y.  Consequently, H is 

negative semi-definite and s(x) is concave.   

Q.E.D. 

The objective function in (P1) is concave and the constraints are linear.  Consequently, the 

continuous relaxation of (P1) is a convex programming problem, and a local optimum is also 

global. 

Note that as a result of this proposition, the coverage ( )
j

s x  for each demand node j has the 

following properties: 

• An increase in the number of ambulances at any station increases the coverage for each 

demand node. 

• When the number of ambulances at a particular station is increased, the marginal increase 

in coverage decreases. 

Busy Fractions and Correction Factors 

The assumption that the busy fractions 
i

ρ  and correction factors for dependence 
ij

Q  are 

exogenous input is not realistic, as they will depend on the number and distribution of 
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ambulances between stations.  To overcome this limitation, we propose iterating between solving 

(P1) and estimating the busy fractions and correction factors. 

If all ambulances are assumed to have the same busy fraction, then a relatively simple estimation 

procedure can be used (refer to Appendix 1 for details).  If all ambulances are not assumed to 

have the same busy fraction, then a more complicated estimation procedure is necessary.  We use 

a generalization of the approximate hypercube model, detailed in Budge et al. (2005), that allows 

for multiple vehicles at a station. This procedure evaluates the busy fractions 
i

ρ , the correction 

factors 
ij

Q , and the expected coverage.  We will use ( )AHs x  to denote the expected coverage 

evaluated with the approximate hypercube model, to distinguish it from the expected coverage 

s(x) as computed in formulation (P1).  

In the original hypercube model (Larson, 1974), service times (the time an ambulance is tied up 

with a call) are assumed exponentially distributed.  The pre-travel delay and the travel time are 

part of the service time and if these components are lognormally distributed then the service 

times will be far from exponentially distributed.  Fortunately, one can expect the loss-version of 

the approximate hypercube model (which we use) to be relatively insensitive to the shape of the 

service time distribution, as argued by Jarvis (1981).  The related insensitivity property of the 

M/M/s/s loss system is discussed, for example, by Gross and Harris (1998). 

We propose the following iterative algorithm to overcome the assumption of the busy fractions 

and correction factors being exogenous input. 

Step 1: Choose an initial value for the total number of ambulances, b. 

Step 2: Attempt to maximize coverage with b ambulances, as follows: 
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Step 2a: Set the busy fractions in

i
ρ to an initial estimate of the busy fraction, set all 

correction factors in

ijQ  equal to 1, and set 0,* 0x = .  Set 1n ←  and choose a 

smoothing parameter (0,1)γ ∈ . 

Step 2b: Solve (P1), using busy fractions in

i
ρ  and correction factors in

ijQ .  Find the 

solution ,*n
x  that maximizes s(x) subject to, 1,* 1,n

i i
x x i S

−≥ − ∈ , (3), and (4).  If the 

convergence criterion is satisfied, go to Step 3. 

Step 2c: Estimate the busy fractions out

i
ρ  and correction factors out

ijQ  that result from the 

solution ,*n
x .  Set in out in(1 )

i i i
ρ ← γρ + − γ ρ  for all stations i and 

in out in(1 )ij ij ijQ Q Q← γ + − γ  for all station-node pairs and 1n n← + .  Go back to step 

2b. 

Step 3: Evaluate the expected coverage ( )AHs x  for the final solution(s), using the approximate 

hypercube model.  Adjust the total number of ambulances b based on whether the highest 

coverage among the final solutions is less than or greater than the target of α .  When it 

has been determined that the current total number of ambulances is the smallest one that 

will achieve the target coverage, then stop.  Otherwise, return to step 2. 

The algorithm includes an outer loop, which is a one-dimensional search (such as bisection 

search) for the smallest total number of ambulances needed to provide the required coverage, and 

an inner loop, which iterates between solving (P1) and estimating the busy fractions and 

correction factors.  The expected coverage for each solution that is returned by the algorithm is 

evaluated using the approximate hypercube model, thus avoiding the simplifying assumptions 
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made in formulation (P1), namely, that the busy fractions and correction factors are exogenous 

inputs. 

The constraints 1,* 1n

i i
x x

−≥ −  are added in Step 2b to prevent the allocation of ambulances to 

stations from changing too much from one iteration to the next, recognizing that the busy 

fractions and correction factors depend on the allocation of ambulances to stations. 

The convergence criterion for the inner loop could be expressed in terms of the sequence of 

solutions ,*{ }nx , the estimated busy fractions out ,*{ ( )}n

i
xρ , or both.  The inner loop algorithm is 

not guaranteed to converge to a unique solution.  Indeed, we have sometimes observed 

convergence to a cycle of two or more similar solutions.  In such cases, planners could be 

presented with multiple good solutions, which could be compared in terms of the values that they 

give for the coverage (as estimated by the busy fraction estimation procedure) or for other 

performance measures.   

Goldberg et al. (1991) use a different approach, where they include the busy fractions as decision 

variables and include a constraint in the problem formulation that is similar to equation (12) in 

Appendix 1.  An advantage of our approach is that the continuous relaxation of (P1) is a convex 

optimization problem, under certain assumptions, as we have shown.  Goldberg et al. (1991) do 

not solve their formulation as a mathematical program, but use specialized heuristics. 

Computational Experiments 

In the instances of (P1) that we solved, based on data from Edmonton EMS, we used 

deterministic travel times in order to isolate the effect of randomness in delays.  The dispatch 

orders satisfied assumption (2).  These instances have 10 stations and 180 demand nodes.  We 

were able to solve these instances to optimality in at most a few minutes per instance with a 
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standard branch-and-bound algorithm that calls a nonlinear programming algorithm to solve the 

continuous relaxations.  To overcome the assumption of the busy fractions and correction factors 

being given exogenously, we used the algorithm described in the last section.  Figure 3 shows an 

example of how in

i
ρ  and out

i
ρ  evolved over 3 iterations for one problem instance based on 

Edmonton data, with the total number of ambulances equal to 16.  In this instance, γ was set to 

0.9, and in

i
ρ  and out

i
ρ converged in about 3 iterations with an average after convergence of about 

33%. 
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Figure 3: An example of iterating on the busy fractions 
i

ρ , where the initial input busy fraction 

was set to 0.3 for each station, and a smoothing constant of 0.9 was used. 

 

We used the model to empirically explore the impact of varying the parameters of the delay 

distribution.  Figure 4 shows how the minimum total number of ambulances needed to provide 

the specified coverage (90% reached in 9 minutes) changes when the mean and standard 

deviation of the delay distribution vary.  We tried values that were 0%, 50%, 100%, 125%, and 

150% of the current value for the mean (2.6 minutes) and for the standard deviation (1.3 

minutes), except for combinations of parameters that made it impossible to meet the coverage 

Station 10 

Stations 2 

and 3 

Stations 1, 

and 4-9 
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goal.  We will refer to the combination where both the mean and the standard deviation equal 

their current values as the base case. 

As Figure 4 shows, the total number of ambulances needed changes considerably when the 

parameters of the delay distribution are varied.  The dramatic impact of ignoring the delay is 

illustrated by comparing the case when the delay is assumed to be zero to the base case.  In the 

former case, only 11 ambulances are needed, while in the base case, 16 are needed. 
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Figure 4: Sensitivity of the minimum total number of ambulances needed to provide the 

coverage goal to the mean and standard deviation of the delay distribution. 

 

Comparison of the case where the delay is assumed deterministic and equal to the current mean 

and the base case results in a less dramatic difference, of course: the number of ambulances 

needed increases from 15 to 16.  However, the impact of ignoring the variability in delays would 

be far greater if the mean delay were higher.  For example, if the mean delay were to increase by 

Base case 
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25% (from 2.6 minutes to 3.25 minutes), while the standard deviation stayed the same, then 21 

ambulances would be needed to reach the coverage goal.  In this case, if the delay variability 

were ignored (i.e., the standard deviation is assumed to be zero), then the model predicts that 

only 18 ambulances would be needed to reach the coverage goal.  Hence, a model that 

incorporates delays but treats them as deterministic would underestimate the number of 

ambulances needed to provide the target coverage by (21-18)/21 = 14%. 

Figure 5 gives the complementary perspective and provides additional insight into the impact of 

the delay standard deviation.  It demonstrates how the system wide coverage varies when the 

parameters of the delay distribution are varied in the same way as for the results in Figure 4, with 

the total number of ambulances fixed at 16.  From Figure 5, we see that if the variability in the 

delay is not considered, the estimated coverage is about 92%, compared to just over 90% if the 

variability in the delay is incorporated.  When the standard deviation is increased 25% from the 

base case, the coverage drops to about 89%.  The results are magnified as the average level of the 

delay increases.  These results illustrate the importance of accounting for delays, and specifically 

the randomness in the delays, in order to obtain accurate estimates of the coverage and of the 

resources required to attain a specified coverage.  They also illustrate the importance of 

controlling the call-taking and dispatching processes to ensure that delays do not increase (but 

preferably, decrease). 
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Figure 5: Sensitivity of the system wide service to the mean and standard deviation of the delay 

distribution, when the total number of ambulances is fixed at 16. 

 

Discussion 

This section outlines several possible avenues for further research involving exploration of the 

optimization model (P1), its properties, solution approaches, and insights from its application.  

First we discuss three extensions of the model that are fairly straightforward, and then we discuss 

some avenues for further research. 

Model Extensions 

One can add a constraint to (P1) to ensure that the probability that at least one ambulance is 

available is above some threshold β, as follows (assuming independence between ambulances): 

 1 ix

i

i S∈

− ρ ≥ β∏  (8) 

Base case 
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The constraint can be linearized by isolating the product of the busy fractions on one side of the 

inequality and taking logarithms of both sides, resulting in: 

 ( ln( )) ln(1 )
i i

i S

x
∈

− ρ ≥ − − β∑  (9) 

Note that the coefficients ln( )
i

− ρ  and ln(1 )− − β  will be positive.  Preliminary experiments 

using data from Edmonton indicated that the expected coverage target of reaching 90% of all 

calls in 9 minutes or less was tighter than constraint (9) for 0.99β ≤ . 

In addition to maximizing the system-wide coverage, one could add constraints on the coverage 

for each demand node, of the form 

 ( )
j j

s x ≥ α , for all j N∈  (10) 

where 
j

α  is the target coverage for demand node j.  This constraint set could, for example, be 

used to impose a common minimum coverage for all demand nodes or some subset of the 

demand nodes. 

One can also add variables and constraints to decide which stations to open and to limit the 

number of ambulances at each station.  Specifically, let 
i

y  be a binary indicator variable for 

whether station i is opened; let 
i

c  be the fixed cost of opening station i; let 
i

d  be the variable 

cost of locating one ambulance at station i; and let 
i

b  be the maximum number of ambulances at 

station i, if it is opened (if there are no such limits, then one can set 
i

b B=  for some sufficiently 

large number B).  Upon replacing constraint (3) on the total number of ambulances with a budget 

constraint, the extended problem formulation becomes: 
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(P2) maximize ( ) ( )
j j

j N

s x h s x
∈

≡∑   

 subject to ( ) budget
i i i i

i S

c y d x
∈

+ ≤∑    

  (9), (4)  

  
i i i

x b y≤ , for all i S∈   

  {0,1}
i

y ∈ , for all i S∈  (11) 

The continuous relaxation of (P2) is a convex programming problem, by Proposition 1, but (P2) 

is more difficult to solve than (P1) because it has more integer variables. 

Future Research 

Incorporation of random delays and travel times may influence not only the total number of 

ambulances needed to provide a given level of service, but also how ambulances are distributed 

through the system.  We plan to perform experiments to generate insight into whether this 

happens and how.  In order to do further computational testing of the model, data from a city of 

similar size to Edmonton, but which is aggregated into many more (smaller) zones and has up to 

40 potential locations for ambulances will be used.  We also hope to use the model to estimate 

the impact of various changes to the operation of an ambulance system.  For example, it may be 

possible to reduce delays by performing activities in parallel rather than in series, but such a 

change may increase ambulance workload, if it results in more false alarms.  Therefore, we 

would like to explore the trade-off between reducing delays and increasing busy fractions. 

Estimation of the travel time distribution functions ( )
ij

H t  is likely to be challenging.  We are 

working on developing procedures to estimate these functions, and have obtained detailed travel 
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time data from a number of cities that we will use to validate such procedures.  Preliminary 

results are reported in Budge (2004). 

Although we can solve instances of our formulation involving Edmonton data to optimality in 

reasonable time, it is conceivable that problem instances for cities with more stations and 

ambulances will require the development of heuristics to generate near-optimal solutions. 

Conclusions 

We have presented an optimization model for allocating a specified number of ambulances to 

stations so as to maximize system-wide expected coverage.  The model differs from previous 

related work in that the variation in pre-travel delay is considered (in addition to the variation in 

travel time) when calculating the coverage.  Data from recent projects with the town of St. Albert 

and the City of Edmonton indicate that pre-travel delays are important and highly variable (with 

a standard deviation of about 40% of the mean).  Our computational experiments demonstrate 

that the inclusion of the variability of such delays has a substantial impact on the solution that the 

model prescribes.  Our formulation is sufficiently tractable that it can be solved to global 

optimality for problems with 180 demand nodes and 10 ambulance stations with general-purpose 

solvers.   
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Appendix A: Introductory Example 

The following simple numerical example illustrates how the estimated coverage depends on the 

way delays and travel times are modeled.  A small town has a single ambulance station, a 

response time standard of 9 minutes, and three demand locations D1, D2, and D3, that are 

expected to generate 100 calls each in a given future time period.  Travel times between the 

station and the three demand locations have means of 5.5, 7.5, and 9.5 minutes, and standard 

deviations equal to 40% of the means.  The pre-trip delay is independent of the travel time and 

has a mean of 2.5 minutes and a standard deviation of 1 minute.  Assume that the total response 

time (composed of the pre-travel delay and the travel time) follows a lognormal distribution.  For 

simplicity, assume that an ambulance is always available when a call arrives.  Table 1 lists six 

different ways to model pre-trip delays and travel times and shows the probability of coverage 

for a call from each demand location, as well as the total expected number of covered calls.  

If we ignore the pre-trip delay and use average travel times to determine coverage (Model A), 

then we would characterize the first two demand locations as “covered,” the third one as “not 

covered,” and credit 200 calls to the coverage offered by the station when computing the 

performance measure.  However, depending on whether and how each of the components is 

modeled, the expected number of covered calls for each demand node and for the system as a 

whole varies widely. 
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Table 1: Six ways to model pre-trip delays and travel times, with summary of probabilities of 

responding to calls from the three demand locations for each model used, and the 

resulting expected number of covered calls. 

   Probability of responding 

to a call at a demand 

location within 9 minutes 

Model Travel time Delay time D1 D2 D3 

Exp. no. 

of 

covered 

calls  

A Deterministic Not modeled 1 1 0 200.0 

B Stochastic Not modeled 0.929 0.747 0.521 219.7 

C Deterministic Deterministic 1 0 0 100.0 

D Stochastic Deterministic 0.734 0.429 0.214 137.8 

E Deterministic Stochastic 0.857 0.129 0 98.5 

F Stochastic Stochastic 0.708 0.426 0.229 136.3 

 

Table 1 illustrates several differences between the six models: 

• Comparison of models A and B (or C and D, or E and F) demonstrates that using constant as 

opposed to probabilistic travel times can result in large errors at specific demand locations.    

For example, if all demand nodes are at an average travel time of 9.01 minutes away from the 

station, then a deterministic model estimates zero coverage while a probabilistic model 

estimates roughly 50% coverage, if the response time distribution is approximately 

symmetric.  Although negative and positive errors at individual demand locations may cancel 

each other to some extent when computing the total expected number of covered calls, the 

error in this system performance estimate can be quite significant (around 40% in this 

example when the pre-trip delays are included).  We believe that a probabilistic model is a 

better representation of reality, and the use of deterministic travel times in ambulance 

location models introduces avoidable errors. 
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• As one would expect, ignoring delays entirely results in large errors.  For example, Model D 

has 30% lower coverage than Model B, because Model D includes (constant) delays whereas 

Model B does not include delays.  

• When one models randomness in travel times, ignoring randomness in the duration of delays 

causes smaller errors than ignoring delays altogether.  The direction of the change in 

probability of coverage when one incorporates randomness in delay durations is not always 

the same, as one can see by comparing Models D and F: the constant delay model (Model D) 

overestimates the probability for D1 by 0.026 and underestimates the probability for D3 by 

0.015.  To further illustrate this, Figure 1 displays the absolute error in the estimation of the 

coverage probability (Model D probability minus Model F probability) as a function of mean 

travel time (in minutes) between the station and a demand point.  Although these errors may 

appear small in magnitude, the relative errors can be quite significant.  For example, when 

the average travel time is 10 minutes, the absolute difference between the two probabilities is 

only 0.009, but this amounts to a 4.8% relative error.   

We believe that these errors can influence decisions adversely when every percent counts in 

trying to reach the 90% coverage target.  For instance, in a recent project we completed for the 

City of Edmonton, Alberta (Ingolfsson et al., 2003), current coverage was 87% and most 

individual system design changes had impacts on the order of one percentage point or less.  To 

be useful in such situations, prescriptive models must be able to discriminate correctly between 

system designs with coverage differences of one percentage point or so. 
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Figure 1: Error in the calculation of coverage probability induced by using constant rather than 

probabilistic delay times as a function of expected travel time (in minutes). 

 

Appendix B: Estimating the Average Busy Fraction 

The average fraction of time that an ambulance is busy (not available to respond to calls) is 

/ zλτ , i.e., the average server utilization for a z-server queueing system, assuming that the 

number of calls “lost” due to queueing is negligible. The average “service time”, τ,  (during 

which an ambulance is tied up with a call) can be broken down into the following components: 

average travel time to the call, average on-scene time, and average time spent traveling to and 

remaining at a hospital, denoted to callE[ ]T , on sceneE[ ]T , and hospitalE[ ]T , respectively. Consequently, 

the average busy fraction can be expressed as to call on scene hospital(E[ ] E[ ] E[ ]) /T T T zλ + + .  The arrival 

rate λ as well as two of the three components of the average service time,  the average on-scene 

time and the average time spent traveling to and being at a hospital, are exogenous input. The 

average travel time to a call can be expressed as to callE[ ] ( ) E[ ]
j ij ijj N i S

T h f x T
∈ ∈

=∑ ∑ . This leads 

to the following formula for approximating ρ as a function of x: 



 38 

 on scene hospital( ) ( )E[ ] E[ ] E[ ]
( )

j ij ij

j N i S

x h f x T T T
z x ∈ ∈

 λ
ρ = + + 

 
∑ ∑  (12) 

The derivation of this formula required some approximations. In particular, we excluded the time 

spent traveling back to a station from the hospital from the average service time since the 

ambulance is available to respond to incoming calls during this time. On the other hand, our 

expression for to callE[ ]T  assumes that all calls are responded to from an ambulance at a station. 

 


