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We evaluate the �NN, ���, ���, K�N and K�N coupling constants and the corresponding

monopole masses in lattice QCD with two flavors of dynamical quarks. The parameters representing

the SU(3)-flavor symmetry are computed at the point where the three quark flavors are degenerate at the

physical s-quark mass. In particular, we obtain � � F=ðFþDÞ ¼ 0:395ð6Þ. The quark-mass depen-

dences of the coupling constants are obtained by changing the u- and the d-quark masses. We find that the

SU(3)-flavor parameters have weak quark-mass dependence and thus the SU(3)-flavor symmetry is broken

by only a few percent at each quark-mass point we consider.
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Meson-baryon coupling constants are important ingre-
dients for hadron physics as they provide a measure of
baryon-baryon interactions in terms of one boson exchange
(OBE) models, and production of mesons off the baryons.
In phenomenological potential models, the meson-baryon
coupling constants are determined so as to reproduce the
nucleon-nucleon, hyperon-nucleon, and the hyperon-
hyperon interactions in terms of, e.g., OBE models. On
the other hand, it is an important issue to determine the
coupling constants at the hadronic vertices directly from
QCD, the underlying theory of the strong interactions. The
only method we know that provides a first-principles cal-
culation of hadronic phenomena is lattice QCD, which
serves as a valuable tool to determine the hadron couplings
in a model-independent way.

Among other meson-baryon coupling constants, the
�NN coupling constant, g�NN , which enters as a funda-
mental quantity in low-energy dynamics of nucleon-
nucleon and pion-nucleon, has been a subject of intense
investigation. It is defined as the �NN form factor,
g�NNðq2Þ, at zero momentum transfer, q2 ¼ 0. The value
of the coupling constant at the pion pole is relatively well-
known from experiment: g2�NNðm2

�Þ=4� ’ 13:6 (see, e.g.,
Ref. [1,2] for a review). The value at zero-momentum
transfer can be extracted from the Goldberger-Treimann
relation (GTR), g�NN � gAmN=f� � 12:8, where f� is the
pion decay constant and mN and gA are the mass and the
axial-vector coupling constant of the nucleon, respectively.
An earlier determination of the �NN coupling constant
from a quenched-lattice QCD calculation, which reports
g�NN ¼ 12:7� 2:4 [3], is in agreement with the phenome-
nological value. In the SU(3)-flavor [SUð3ÞF] symmetric
limit, one can classify the pseudoscalar-meson–octet-
baryon coupling constants in terms of two parameters:
the �NN coupling constant and the � ¼ F=ðFþDÞ ratio
of the pseudoscalar octet [4]. This systematic classification
is expected to govern all the meson-baryon couplings,
however as we move from the symmetric case to the

realistic one, the SUð3ÞF breaking occurs as a result of
the s-quark mass and the physical masses of the baryons
and mesons. The broken symmetry no longer provides a
pattern for the meson-baryon coupling constants, and
therefore they should be individually calculated based on
the underlying theory, QCD.
In this work we extract the coupling constants g�NN,

g���, g���, gK�N , and gK�N (denoted by gMBB0 hereafter)
by employing lattice QCD with two flavors of dynamical
quarks. The evaluation of the coupling constants allows us
to check the following SUð3ÞF relations:

g�NN ¼ g; g��� ¼ 2g�; g��� ¼ 2ffiffiffi
3

p gð1� �Þ;

gK�N ¼ � 1ffiffiffi
3

p gð1þ 2�Þ; gK�N ¼ gð1� 2�Þ; (1)

which phenomenologically work rather well but are not
known a priori to hold.
The pseudoscalar current matrix element is written as

hBðpÞjPð0ÞjB0ðp0Þi ¼ gPðq2Þ �uðpÞi�5uðp0Þ; (2)

where gPðq2Þ is the pseudoscalar form factor, q� ¼ p0
� �

p� is the transferred four-momentum and PðxÞ ¼
�c ðxÞi�5

�3
2 c ðxÞ is the pseudoscalar current. We compute

this matrix element using the ratio [5,6]

Rðt2; t1;p0;p; �;�Þ

¼ hGBPB0 ðt2; t1;p0;p; �Þi
hGB0 ðt2;p0; �4Þi

�
� hGBðt2 � t1;p; �4Þi
hGB0 ðt2 � t1;p

0; �4Þi

� hGB0 ðt1;p0; �4ÞihGB0 ðt2;p0; �4Þi
hGBðt1;p; �4ÞihGBðt2;p; �4Þi

�
1=2

; (3)

where the baryonic two- and three-point correlation func-
tions are, respectively, defined as
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hGBðt;p; �4Þi ¼
X

x

e�ip�x���0
4 hvacjT½��

BðxÞ ���0
B0 ð0Þ�jvaci;

(4)

hGBPB0 ðt2; t1;p0;p; �Þi
¼ �i

X

x2;x1

e�ip�x2eiq�x1���0 hvacjT½��
Bðx2ÞPðx1Þ ���0

B0 ð0Þ�

� jvaci; (5)

with � � �3�5�4 and �4 � ð1þ �4Þ=2. The baryon inter-
polating fields are given as

�NðxÞ ¼ �abc½uTaðxÞC�5d
bðxÞ�ucðxÞ;

��ðxÞ ¼ �abc½sTaðxÞC�5u
bðxÞ�ucðxÞ;

��ðxÞ ¼ 1ffiffiffi
6

p �abcf½uTaðxÞC�5s
bðxÞ�dcðxÞ

� ½dTaðxÞC�5s
bðxÞ�ucðxÞ

þ 2½uTaðxÞC�5d
bðxÞ�scðxÞg;

(6)

where C ¼ �4�2 and a, b, c are the color indices. t1 is the
time when the meson interacts with a quark and t2 is the
time when the final baryon state is annihilated. The ratio in
Eq. (3) reduces to the desired pseudoscalar form factor
when t2 � t1 and t1 � a, viz.

Rðt2; t1; 0;p; �;�Þ !t1�a

t2�t1�a

gLPðq2Þ
½2EðEþmÞ�1=2 q3; (7)

where m and E are the mass and the energy of the initial
baryon, respectively, and gLPðq2Þ is the lattice pseudoscalar
form factor. Since the ratio in (7) is proportional to the
transferred momentum q3, it cannot be used directly to
obtain gLPðq2Þ at q2 ¼ 0. We apply a procedure (similarly
to the one in Ref. [3]) of seeking plateau regions as a
function of t1 in the ratio (7) and calculating gLPðq2Þ at
the momentum transfers q2a2 ¼ nð2�=LÞ2 (for the lowest
nine n points), where L is the spatial extent of the lattice.
We then obtain the meson-baryon form factor via the
relation

gLPðq2Þ ¼
GMgMBB0 ðq2Þ
m2

M � q2
; (8)

assuming that the pseudoscalar form factors are dominated

TABLE I. The fitted values of m�, mK, mN , m�, and m� in
lattice units.

�u;d
val m� mK mN m� m�

0.1375 0.899(1) 0.834(1) 1.707(06) 1.658(06) 1.648(06)

0.1390 0.737(1) 0.725(1) 1.475(05) 1.466(06) 1.464(06)

0.1393 0.713(1) 0.713(1) 1.455(06) 1.455(06) 1.455(06)

0.1400 0.603(1) 0.635(1) 1.289(05) 1.312(04) 1.318(05)

0.1410 0.440(1) 0.533(1) 1.051(08) 1.114(06) 1.134(07)

FIG. 1. The q2 dependence of the form factors, gMBB0 for
�u;d
val ¼ 0:1393. The diamonds show the lattice data, and the

solid curves denote the fitted form factors.
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by the pseudoscalar-meson poles. Here GM �
hvacjPð0ÞjMi is extracted from the two-point mesonic
correlator hPðxÞPð0Þi. Finally we extract the meson-baryon
coupling constants gMBB0 ¼ gMBB0 ð0Þ by means of a mono-
pole form factor:

gMBB0 ðq2Þ ¼ gMBB0
�2

MBB0

�2
MBB0 � q2

: (9)

We employ a 163 � 32 lattice with two flavors of dy-
namical quarks and use the gauge configurations generated
by the CP-PACS collaboration [7] with the renormalization
group improved gauge action and the mean-field improved
clover quark action. We use the gauge configurations at
	 ¼ 1:95 with the clover coefficient cSW ¼ 1:530, which
give a lattice spacing of a ¼ 0:1555ð17Þ fm (a�1 ¼
1:267 GeV), which is determined from the 
-meson
mass. The simulations are carried out with four different
hopping parameters for the sea and the u,d valence quarks,

�sea, �
u;d
val ¼ 0:1375, 0.1390, 0.1400, and 0.1410, which

correspond to quark masses of �150, 100, 65, and
35 MeV, and we use 490, 680, 680, and 490 such gauge
configurations, respectively. The hopping parameter for the
s valence quark is fixed to �s

val ¼ 0:1393 so that the Kaon

mass is reproduced [7], which corresponds to a quark mass
of �90 MeV. We employ smeared source and smeared
sink, which are separated by 8 lattice units in the temporal
direction. Source and sink operators are smeared in a
gauge-invariant manner with the root mean square radius
of 0.6 fm. All the statistical errors are estimated via the
jackknife analysis.

In Table I, we give the fitted values of the meson and
baryon masses as obtained from the two-point correlation
function in Eq. (4). We extract the meson-baryon coupling
constants, gMBB0 , and the corresponding monopole masses,

�MBB0 , for each �u;d
val . In Fig. 1, the q2 dependence of the

form factors, gMBB0 , for �u;d
val ¼ 0:1393 is given. Our com-

plete results are presented in Table II: We give the fitted
value of the �NN coupling constant and the corresponding
monopole mass in lattice unit, as well as the fitted values of
the ���, ���, K�N and K�N coupling constants and
the corresponding monopole masses normalized with g�NN

and ��NN , respectively. In Table II, gRMBB0 and �R
MBB0

denote gMBB0=g�NN and �MBB0=��NN , respectively. We

expect that the systematic errors cancel out to some degree
in the ratios of the coupling constants and those of the
monopole masses. We give a graphical representation of
our results in Figs. 2–4. In Fig. 2 we plot g�NN and��NN as
a function of the pion-mass squared. The ratios of the
���, ���, K�N, and K�N coupling constants to the
�NN coupling constant, and the corresponding monopole
masses normalized with��NN are shown in Fig. 3. g�NN is
consistent with the experimental value at � 	 0:1393 and
��NN decreases towards the chiral limit. Note that, in
addition to the monopole form, we have tried fitting the
form factors to dipole and exponential forms, which have
produced coupling-constant ratios consistent with those
given in Table II.
Having discussed the results for g�NN, we proceed with

the octet-meson–baryon coupling constants. We first con-

centrate on the SU(3)-flavor symmetric case, where �u;d
val �

�s
val ¼ 0:1393 and the SUð3ÞF relations in Eq. (1) are exact.

(Here we take �u;d
sea ¼ 0:1390 and neglect the difference in

the sea-quark effects.) As expected, all the coupling ratios,
gR���, g

R
���, g

R
K�N , and gRK�N are well reproduced with

� ¼ 0:395ð6Þ, which is obtained by a global fit. The ratios
of the monopole masses, �R

���, �
R
���, �

R
K�N , and �R

K�N,

are consistent with unity. The obtained value of � is
consistent with that in the SU(6) spin-flavor symmetry
(� ¼ 2=5) [8], which is the symmetry based on the non-
relativistic quark model. We have also tried fixing all the

quark masses at �u;d;s
val ¼ 0:1390. g�NN and the ratios of the

coupling constants obtained in this case are as follows:
g�NN ¼ 12:769ð495Þ, gR��� ¼ 0:785ð10Þ, gR��� ¼
0:704ð6Þ, gRK�N ¼ �1:003ð6Þ, and gRK�N ¼ 0:211ð10Þ. We

have found that the coupling constants again satisfy
SUð3ÞF and the resulting � ¼ 0:387ð5Þ is consistent with
that obtained at �u;d;s

val ¼ 0:1393. In Fig. 5 we plot the ratio

in Eq. (3) for g�NN as a function of current-insertion point,
in order to show the plateau regions. We present the data at

�u;d;s
val ¼ 0:1393 for the first three momentum-transfer

values.
We next discuss the SUð3ÞF broken case. The quark-

mass dependences we find for gRMBB0 and �R
MBB0 are not

large. The ratios of the coupling constants, gRMBB0 , are

similar in value to those in the SUð3ÞF symmetric limit,
and the monopole-mass ratios, �R

MBB0 , are almost unity

TABLE II. The fitted value of the �NN coupling constant and the corresponding monopole mass (given in lattice units), together
with the fitted values of the ���, ���, K�N and K�N coupling constants and the corresponding monopole masses normalized with
g�NN and ��NN , respectively. Here, we define gRMBB0 ¼ gMBB0=g�NN and �R

MBB0 ¼ �MBB0=��NN .

�u;d
val g�NN ��NN gR��� gR��� gRK�N gRK�N �R

��� �R
��� �R

K�N �R
K�N

0.1375 13.953(412) 1.053(123) 0.759(11) 0.698(11) �1:038ð07Þ 0.231(14) 1.074(065) 0.908(039) 1.011(27) 0.714(118)

0.1390 13.257(448) 1.228(189) 0.785(12) 0.697(07) �1:034ð07Þ 0.209(12) 1.020(066) 0.988(042) 1.006(28) 0.978(223)

0.1393 13.236(478) 1.223(202) 0.789(13) 0.699(08) �1:033ð08Þ 0.209(13) 1.020(068) 0.989(044) 1.009(30) 0.970(236)

0.1400 13.098(393) 1.013(111) 0.781(13) 0.723(08) �1:017ð07Þ 0.242(15) 1.034(053) 0.970(033) 1.026(24) 0.802(124)

0.1410 12.834(1.092) 0.719(123) 0.781(38) 0.756(28) �1:007ð30Þ 0.260(30) 1.083(106) 0.985(074) 1.032(58) 0.958(191)
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independently of the quark masses. This suggests that the
SUð3ÞF breaking is small at the quark masses we consider.
Our data do not allow a direct determination of SUð3ÞF
breaking in the chiral limit, as we have flavor-symmetric

data only at �u;d
val � �s

val ¼ 0:1393. On the other hand, the

value of g�NN at the chiral point is well-known, which may
serve as a reference point for us to obtain a measure of
SUð3ÞF breaking. For this purpose, we construct the fol-
lowing three sets of relations:

A1 � 1

2
ð ffiffiffi

3
p

gR��� þ gR���Þ; A2 � gRK�N þ gR���;

A3 � 1

2
ðgRK�N � ffiffiffi

3
p

gRK�NÞ; A4 � �gR��� � ffiffiffi
3

p
gRK�N;

A5 � 1ffiffiffi
3

p ðgR��� � gRK�NÞ; A6 �
ffiffiffi
3

p
gR��� � gRK�N;

(10)

B1 � 1

4
ð ffiffiffi

3
p

gR
���

þ 3gR
���

þ 2gR
K�N

Þ;

B2 � 1

4
ð2gR��� þ 3gRK�N � ffiffiffi

3
p

gRK�NÞ;

B3 � 1ffiffiffiffiffiffi
12

p ðgR��� � 4gRK�N � ffiffiffi
3

p
gR���Þ;

B4 � 1ffiffiffiffiffiffi
12

p ð4gR��� � ffiffiffi
3

p
gRK�N � gRK�NÞ;

(11)

and

C1 � 1

2
ð ffiffiffi

3
p

gR��� � ffiffiffi
3

p
gRK�N � gR��� � gRK�NÞ; (12)

which can be readily obtained from those in Eq. (1). In the
SUð3ÞF symmetric limit, the above equations satisfy A1 �

. . . � A6 � B1 � . . . � B4 � C1 ¼ 1, which can be veri-

fied by inserting the coupling constants at �u;d
val ¼ 0:1393 in

Table II. At other quark masses, the deviations from unity
represent the amount of SUð3ÞF breaking. Inserting the
values of the coupling constants corresponding to the low-
est quark mass we consider in Table II into (10)–(12), we
find A1 ¼ 1:045ð29Þ, A2 ¼ 1:040ð30Þ, A3 ¼ 1:002ð25Þ,
A4 ¼ 0:963ð42Þ, A5 ¼ 1:017ð22Þ, A6 ¼ 1:049ð40Þ, B1 ¼
1:043ð28Þ, B2 ¼ 1:021ð24Þ, B3 ¼ 0:990ð28Þ, B4 ¼
1:033ð28Þ, and C1 ¼ 1:006ð27Þ, which indicate a breaking
in SUð3ÞF by less than 10%. Moreover, we define the
average SUð3ÞF breaking as follows:

�SUð3Þ ¼ 1

11

X

n;X¼A;B;C

j1� Xnj; (13)

which amounts to �SUð3Þ ¼ 0:014ð03Þ, 0.003(02), 0.012

(02), and 0.028(17) for the quark masses at �150, 100,
65, and 35 MeV, respectively. This suggests for the

FIG. 3 (color online). The ���, ���, K�N and K�N
coupling constants normalized with g�NN as a function of m2

�.
The empty circle denotes the SUð3ÞF limit.

FIG. 2 (color online). g�NN and ��NN as a function of m2
�.

The empty circle denotes the SUð3ÞF limit and the diamond
marks the experimental result.
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pseudoscalar-meson couplings of the octet baryons that
SUð3ÞF is a good symmetry in the quark-mass range we
consider, which is broken by only a few percent. We have
also tried a quadratic fit of �SUð3Þ and extracted �SUð3Þ ¼
0:072ð16Þ in the chiral limit. Figure 6 shows the value of
�SUð3Þ as a function of m2

� and the chiral extrapolations

with errors. In Fig. 7, we plot the value of � as obtained
from a global fit of the SUð3ÞF relations at each quark mass
we consider. � slightly decreases toward the chiral limit.
The deviation of � in the present quark-mass range is at
most 10%, whereas that of �SUð3Þ is less than 5%. We infer

from this that the deviation in � should be small in the
chiral limit, as we find that the ratios of the coupling
constants have weak quark-mass dependence. The
SUð3ÞF breaking effect seems to appear in � rather than
in SUð3ÞF relations (�SUð3Þ). We have also repeated our

analysis with local source and local sink for consistency
check. In Fig. 7, we show the values of � as obtained from
such a setup as well, where both analysis lead to consistent
results with each other.
In summary, we have evaluated the pseudoscalar-

meson–octet-baryon coupling constants, g�NN , g���,
g���, gK�N and gK�N , in two-flavor lattice QCD with

the hopping parameters �sea, �u;d
val ¼ 0:1375, 0.1390,

0.1400 and 0.1410, which correspond to quark masses of

FIG. 4 (color online). Same as Fig. 3 but for monopole masses
����, ����, �K�N and �K�N normalized with ��NN .

FIG. 5 (color online). The ratio in Eq. (3) for g�NN as a
function of current-insertion point, t1, at �u;d;s

val ¼ 0:1393 for

the first three momentum-transfer values. The bands represent
the adopted plateau regions.

FIG. 6 (color online). The value of �SUð3Þ as a function of m2
�.

The curve and the shaded region denote linear chiral extrapola-
tions with errors.

FIG. 7 (color online). The value of � as obtained from a global
fit of the SUð3ÞF relations at each quark mass we consider (in
black filled circles). We also show our results as obtained with
local source and local sink (in red triangles). The empty circle
and the triangle denote the SUð3ÞF limit. The line at � ¼ 0:4 is
shown for reference only.
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�150, 100, 65, and 35 MeV. The parameters representing
the SUð3ÞF symmetry have been computed at the point
where the three flavors are degenerate at the physical
strange-quark mass. In particular, we have obtained � �
F=ðFþDÞ ¼ 0:395ð6Þ, which is consistent with the pre-
diction from SU(6) spin-flavor symmetry (� ¼ 2=5). The
monopole mass we find leads to a �NN form factor which
is softer than those typically used in the phenomenological
OBE potential models. The ratios of the coupling con-
stants, which are supposed to be less prone to systematic
errors, show very weak quark-mass dependence. We have
discussed to what extent the SUð3ÞF symmetry is broken as
we approach the physical masses of the u- and the
d-quarks. Our results indicate for the pseudoscalar-meson
couplings of the octet baryons that SUð3ÞF is a good

symmetry, which is broken by only a few percent (at least)
in the 35 MeV to 150 MeV range of the light quark masses.

All the numerical calculations were performed on NEC
SX-8R at CMC, Osaka university, on SX-8 at YITP, Kyoto
University, BlueGene at KEK, and on TSUBAME at
TITech. The unquenched gauge configurations employed
in our analysis were all generated by CP-PACS collabora-
tion [7]. This work was supported in part by the 21st
Century COE ‘‘Center for Diversity and University in
Physics’’, Kyoto University and Yukawa International
Program for Quark-Hadron Sciences (YIPQS), by the
Japanese Society for the Promotion of Science under con-
tract number P-06327 and by KAKENHI (17070002 and
19540275).
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