

Relating Staged Computation to
the Record Calculus

Recommended Citation

Aktemur, B. Choi, W. (2010). Relating Staged Computation to the Record Calculus. Ozyegin
University Technical Report: OZU-COMP-2010-0001. Retreived from

http://eresearch.ozyegin.edu.tr/xmlui/handle/10679/52

This paper is brought to you by eResearch@Ozyegin. For more information, please contact eresearch-
help@ozyegin.edu.tr

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by eResearch@Ozyegin

https://core.ac.uk/display/67674079?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
http://eresearch.ozyegin.edu.tr/xmlui/handle/10679/52�
mailto:eresearch-help@ozyegin.edu.tr�
mailto:eresearch-help@ozyegin.edu.tr�

Özyeğin University Technical Report: OZU-COMP-2010-0001

Relating Staged Computation to the Record Calculus

Baris Aktemur

Özyeğin University
baris.aktemur@ozyegin.edu.tr

Wontae Choi
Seoul National University
wtchoi@ropas.snu.ac.kr

Abstract

It has been previously shown that there is a close relation between record calculus and
program generation (e.g. Lisp-like quasiquotations): A translation has been defined to convert
staged expressions to record calculus expressions, and it has been shown that the call-by-value
semantics of the staged and the record calculi are equivalent modulo the translation and admin
reductions. In this work, we investigate the relation further. The contributions are twofold:
(1) We fine-tune the previously shown relation between the two operational semantics, and
obtain more precise results. In particular, we show that only two kinds of admin reductions
suffice, and these reductions can be applied exhaustively. (2) We define a reverse translation
that converts record calculus expressions back to the staged calculus, allowing us to go back and
forth between the two calculi. We believe that these results provide an important step towards
reusing already-existing record calculus static analyses to reason about staged expressions.

1 Introduction

Program Generation (PG) is the technique of combining various code fragments to construct a
program. PG approaches can be classified into two: those that originate from the idea of partial
evaluation and have variable hygiene (e.g. [7, 10, 2]); those that originate from the idea of “code
as data” and have unhygienic variable capture (e.g. [6, 9, 11, 5]). In this paper we take the latter
approach as our context and use the terms “program generation” and “staged computation” to
refer to it, unless stated otherwise.

Recently, a translation that converts program generators to record calculus expressions has been
defined, and it has been shown that the operational semantics of program generation is equivalent to
the operational semantics of record calculus (i.e. lambda calculus with records) [1]. This semantic
relation has led to the result that a record type system can be used as a sound type system for
program generation. In fact, such a type system has been shown equal to λopenpoly [6]. Furthermore,
polymorphic subtyping in record calculus [8] can seamlessly be integrated into the type system,
giving us a type system for program generation that is more powerful than existing ones. These
results raise a question: Can we use already existing properties of the record calculus (e.g. data
flow analysis, control flow analysis, abstract interpretation) to analyze and reason about staged
programs?

In this paper, to pave the path to answering the question raised above, we elaborate on the
previously defined translation and the semantic relation. We provide more precise and stronger
results. In particular, there are two contributions:

• Informally, the semantic relation between the record and staged calculi stated in [1] is the
following: Let e be a staged program. If e reduces to e′ in one small step reduction (using the

1

staged semantics), the translation of e to the record calculus reduces to the translation of e′ in
one small step reduction (using the record semantics) followed by a number of so-called “safe
reductions” that may happen anywhere in the program regardless of the evaluation order. In
this paper we fine-tune the definition of “safe reductions”. We show that only two kinds of
administrative reductions are needed, and that these reductions can be applied exhaustively
without the danger of oversimplifying a term.

• In addition to the translation defined in [1] that converts staged expressions to record calculus
expressions, we define in this paper a reverse translation to convert record calculus expressions
back to staged calculus.

Combining the two results above has the following practical corollary: We can take a staged
expression e, translate it to a record expression, evaluate the translation using a record calculus
interpreter (and apply the admin reductions as well), translate the result back to the staged calculus
and we will have obtained the result of evaluating e in a staged calculus interpreter – without ever
implementing that interpreter! Based on the same idea, we think that it is feasible to analyze the
translation of e using an analysis defined for record calculus, then translate the analysis results
back to the staged calculus. This is a topic for future research.

The paper is organized as follows: In Section 2 we give the formal definition of the staged and
the record calculi as the background information. This includes the syntax and the operational
semantics, as well as the definition of the translation from staged expressions to record expressions.
Section 2 is provided to make this paper self-contained; it does not present new subject. However,
there are minor changes (mostly notational) made to the definitions. In Section 3 we state the
relation between the two operational semantics. In this relation, “admin” reductions are used. We
identify two such reductions. In Section 4 we define a “reverse translation” that converts record
expressions back to staged expressions. In Section 5 we take the now-classic exponentiation example
and illustrate how the regular and reverse translations work. Finally in Section 6 we conclude.

2 Background

To form a self-contained paper, we give the necessary definitions related to the staged and record
calculi. These definitions are not new; they are taken from [1]. (We shall note that the syntax
and semantics of the staged and the record calculi in [1] are not brand new. Several definitions in
various flavors appeared in previous publications; a survey is out of the scope of this paper. Please
see [1] for a sample list and discussion.) There are, however, some differences (mostly notational)
between the definitions presented in [1] and given here; the goal of these differences is to improve
the presentation and to make the reverse translation easier to define and prove. The theorems and
proofs stated in [1] are straightforwardly adapted to take the new changes into account.

2.1 Syntax

The syntax of the staged calculus λgenpoly is given in Figure 1; the syntax of the record calculus λrecpoly is
in Figure 2. In addition to plain lambda abstraction and let-binding, the record calculus contains
annotated lambda abstraction, fix-point operator, and let-binding. The annotated versions are
introduced for the purposes of reverse translation; the annotations are simply ignored in operational
semantics and the type system. (A non-annotated fix-point operator is not included in the syntax

2

x ∈ V ar
c ∈ Constant
` ∈ Location
e ∈ Exp ::= c | x | e e

| λx.e | fix f(x). e | letx = e in e
| 〈e〉 | 8(e) | run(e) | lift(e)
| ` | ref e | !e | e:=e

Figure 1: Syntax of λgenpoly.

x ∈ V ar a ∈ Label = V ar
ρ ∈ RV ar w, f ∈ Name = V ar∪RV ar
c ∈ Constant ` ∈ Location
e ∈ RExp ::= c | w | e e

| λw.e | letw = e in e
| λxx.e | fixf,x f(x). e | letx x = e in e
| {} | ewith {a = e} | e·a
| ` | ref e | !e | e:=e

Figure 2: Syntax of λrecpoly.

because the reverse translation does not produce a non-annotated fix-point operator. Therefore
having only the annotated version suffices.)

To reduce the need for extra notation, we do not include the λ∗ abstraction that exists in
λgenpoly[6]. λ∗ works as a gensym operator to avoid variable capture when filling in holes. Extending
the reverse translation to include λ∗ is not difficult, however, extra annotations would be needed
and the proofs would be longer.

In the record calculus syntax we distinguish record variables and non-record variables. This is
done for the purposes of type-checking, which we do not cover in this paper. However, we take
advantage of this separation to guide the reverse translation. A brief explanation for the reason
of this distinction is the following: The translation converts quoted expressions to functions. For
example, 〈42〉 becomes λρ.42. If the distinction of variables was not made, the function could be
given any type for its input in the record type system. This means that a quoted expression could
be treated like an ordinary function after it is translated. However, it should only be treated as a
function that takes in an environment (i.e. a record). The syntactic distinction makes it possible
to restrict the types given to record variables. Please see [1] for a more detailed discussion.

2.2 Auxiliary Definitions

Definition 2.1. An expression e is a stage-n expression iff the nesting level of antiquotations (i.e.
8(·)) that are not matched by quotations (i.e. 〈·〉) is less than or equal to n. Note this also means
that a stage-n expression is also a stage-(n + 1) expression. Examples: 〈 8(c) + 1〉 is a stage-0
expression; 〈 8(c 8(d)) + 1〉 is a stage-1 expression; 8(8(〈 8(c)〉)) is a stage-2 expression.

Definition 2.2 (Renaming environment). The translation uses a renaming environment, which is
a record extension expression that is used to associate variables. A renaming environment R is
defined as follows.

y ∈ V ar
x ∈ Label = V ar
ρ ∈ RV ar
R ∈ RenamingEnv ::= {} | ρ | Rwith {x = y}

3

A renaming environment is also interpreted as a function from variables to expressions, defined as
follows:

(Rwith {x = y})(x) = y

(Rwith {z = y})(x) = R(x) if x 6= z

ρ(x) = ρ·x
{}(x) = error

Throughout the paper we assume that the variables mapped to by a renaming environment (e.g. z
in ρwith {x = z}) are unique (i.e. they are fresh; they do not occur anywhere else). This property
is preserved by the translation.

Notation 2.3. We use the shorter notation {a1 = e1, a2 = e2, . . . , am = em} for the expres-
sion {}with {a1 = e1}with {a2 = e2} . . . with {am = em}, and similarly Rwith {a1 = e1, a2 =
e2, . . . , am = em} for Rwith {a1 = e1}with {a2 = e2} . . . with {am = em}.

Notation 2.4. A list of renaming environments R0, . . . , Rn is denoted as ~Rn.

Notation 2.5. The function that maps ai to bi for 0 ≤ i ≤ k is denoted as {a0 : b0, . . . , ak : bk},
or as {~ak : ~bk} for short when the value of k is not important.

Definition 2.6. The function update operator, <+, is defined as follows:

(f<+g)(x) =

{
g(x), if x ∈ dom(g)
f(x), otherwise

Definition 2.7 (Free variables). The set of free variables of a record expression e is denoted as
FV (e). Similarly, the set of stage-0 free variables of a stage-n expression e is denoted as FV (e)n.
In both cases, variables are bound by lambda abstractions, let-bindings and fix-point operators in
the usual sense.

Definition 2.8 (Substitution). Substituting the free occurrences of w in the record expression e
with the expression e′ is denoted as e{w\e′}. Similarly, substituting the free occurrences of the
stage-0 variable x in the stage-n expression e with the stage-0 expression e′ is denoted as e{x\e′}n.
In both cases, substitution avoids capturing free variables of the substitute.

2.3 Operational Semantics

The small-step call-by-value operational semantics of the staged calculus and the record calculus
are given in Figure 3 and Figure 4, respectively.

2.4 Translation

The translation that converts staged expressions to record expressions is given in Figure 6. The
difference with the definition given in [1] is that the translation of lambda abstractions and let-
bindings now involve annotations, and the run(·) operator is translated to a let-binding instead
of a function application. Both modifications are introduced to help the definition of the reverse
translation.

The key points of the translation are the following:

4

vn ∈ V aln
V al0 ::= c | λx.e | fix f(x). e | 〈v1〉 | `
V aln+1 ::= c | x | λx.vn+1 | fix f(x). vn+1 | vn+1vn+1

| ` | ref vn+1 | !vn+1 | vn+1:=vn+1

| 〈vn+2〉 | lift(vn+1) | run(vn+1) | letx = vn+1 in vn+1

| 8(vn) (if n > 0)
S ∈ Store = Location ⇀ V al0

ESABS S, e n+1−→ S ′, e′

S, λx.e n+1−→ S ′, λx.e′
ESFIX S, e n+1−→ S ′, e′

S, fix f(x). e n+1−→ S ′, fix f(x). e′

ESAPP
S, e1

n−→ S ′, e′1
S, e1e2

n−→ S ′, e′1e2
e1 ∈ V aln S, e2

n−→ S ′, e′2
S, e1e2

n−→ S ′, e1e′2
e2 ∈ V al0

S, (λx.e)e2
0−→ S, e{x\e2}0

e2 ∈ V al0

S, (fix f(x). e)e2
0−→ S, e{f\fix f(x). e}0{x\e2}0

ESLET
S, e1

n−→ S ′, e′1
S, letx = e1 in e2

n−→ S ′, letx = e′1 in e2

e1 ∈ V al0

S, letx = e1 in e2
0−→ S, e2{x\e1}0

e1 ∈ V aln+1 S, e2
n+1−→ S ′, e′2

S, letx = e1 in e2
n+1−→ S ′, letx = e1 in e′2

ESBOX S, e n+1−→ S ′, e′
S, 〈e〉 n−→ S ′, 〈e′〉

ESUBOX S, e n−→ S ′, e′

S, 8(e) n+1−→ S ′, 8(e′)
e ∈ V al1

S, 8(〈e〉) 1−→ S, e

ESRUN S, e n−→ S ′, e′
S, run(e) n−→ S ′, run(e′)

e ∈ V al1

S, run(〈e〉) 0−→ S, e

ESLIFT S, e n−→ S ′, e′
S, lift(e) n−→ S ′, lift(e′)

e ∈ V al0

S, lift(e) 0−→ S, 〈e〉

ESREF S, e n−→ S ′, e′
S, ref e

n−→ S ′, ref e′
e ∈ V al0 ` 6∈ dom(S)
S, ref e

0−→ S<+{` : e}, `

ESDEREF S, e n−→ S ′, e′
S, !e n−→ S ′, !e′

S(`) = v

S, !` 0−→ S, v

ESASGN
S, e1

n−→ S ′, e′1
S, e1:=e2

n−→ S ′, e′1:=e2
e1 ∈ V aln S, e2

n−→ S ′, e′2
S, e1:=e2

n−→ S ′, e1:=e′2
e2 ∈ V al0

S, `:=e2
0−→ S<+{` : e2}, e2

Figure 3: The operational semantics of λopenpoly .

5

v ∈ RV al ::= c | λx.e | fix f(x). e | {ai : vi}m1 | `
S ∈ RStore = Location ⇀ RV al

ERAPP
S, e1

R−→ S ′, e′1
S, e1e2

R−→ S ′, e′1e2
e1 ∈ RV al S, e2

R−→ S ′, e′2
S, e1e2

R−→ S ′, e1e′2
e2 ∈ RV al

S, (λw.e1)e2
R−→ S, e1{w\e2}

e2 ∈ RV al
S, (fix f(x). e1)e2

R−→ S, e1{f\fix f(x). e1}{x\e2}

ERLET
S, e1

R−→ S ′, e′1
S, letw = e1 in e2

R−→ S ′, letw = e′1 in e2

e1 ∈ RV al
S, letw = e1 in e2

R−→ S, e2{w\e1}

ERUPD
S, e1

R−→ S ′, e′1
S, e1 with {a = e2}

R−→ S ′, e′1 with {a = e2}
e1 ∈ RV al S, e2

R−→ S ′, e′2
S, e1 with {a = e2}

R−→ S ′, e1 with {a = e′2}
e2 ∈ RV al

S, {aj : vj}m1 with {a = e2}
R−→ S, {aj : vj}m1 <+{a : e2}

ERACC S, e R−→ S ′, e′

S, e·a R−→ S ′, e′ ·a
S, {aj : vj}m1 ·ai

R−→ S, vi

ERREF S, e R−→ S ′, e′

S, ref e
R−→ S ′, ref e′

e ∈ RV al ` 6∈ dom(S)
S, ref e

R−→ S<+{` : e}, `

ERDEREF S, e R−→ S ′, e′

S, !e R−→ S ′, !e′
S(`) = v

S, !` R−→ S, v

ERASGN
S, e1

R−→ S ′, e′1
S, e1:=e2

R−→ S ′, e′1:=e2

e1 ∈ RV al S, e2
R−→ S ′, e′2

S, e1:=e2
R−→ S ′, e1:=e′2

e2 ∈ RV al
S, `:=e2

R−→ S<+{` : e2}, e2

Figure 4: The operational semantics of record calculus with references.

• Converting a quoted expression to a lambda expression, where the input will be a record
representing the environment into which the quoted expression is plugged.

• Converting an antiquoted expression to a function application where the argument is a record
that represents the accumulated environment.

• Converting a variable to a lookup operation in the environment, if the binding of the variable
cannot be resolved.

• Making the evaluation order explicit by taking out the antiquoted expressions occurring inside
a quoted expression, and placing them outside the lambda abstraction to which the quoted
expression is translated. An illustration is given in Figure 5. The (translations of the)
antiquoted expressions are then passed as arguments to the lambda expression that represents
the quoted expression. This way, call-by-value semantics of the record calculus ensures that
the antiquoted expression will be evaluated before being plugged into a quoted expression.

A translation of staged expressions to record calculus was previously discussed by Kameyama,
Kiselyov and Shan [4]. However, a formal definition was not given. Instead, a translation to System
F with tuples is provided. A translation that makes the order of evaluation explicit by taking out

6

〈. . . 8(. . .) . . . 8(. . .) . . .〉︸ ︷︷ ︸
(λh1.(λh2.(λρ. . . . h1 . . . h2 . . .))(. . .))(. . .)

� �
?

� �
?

Figure 5: Illustration of the translation for a fragment with two holes.

antiquoted expressions from inside quoted expressions was previously given by Davies and Pfenning
[3]. The translation in Figure 6 follows the same principles of Davies and Pfenning’s translation;
in addition, it performs conversion to record expressions.

The translation replaces an antiquotation with a function application. The operator of the
application is a freshly generated variable, say h, that stands for the quoted expression that will
fill the hole; the operand is the accumulated environment. The translation converts the quotation
surrounding the antiquotation to a lambda abstraction, which receives the value for the freshly
generated variable h. For example, 〈1 + 8(〈2〉)〉 is translated to (λh.λρ.1 + h ρ)(λρ.2). If there are
two holes inside a quotation, the translation contains one more lambda abstraction. For example,
〈1 + 8(〈2〉) + 8(〈3〉)〉 is translated to (λh.(λh′.(λρ.1 + h ρ+ h′ ρ))(λρ.3))(λρ.2). Note that the order
of evaluation stays the same. To do this conversion, each hole during the translation corresponds
to a context in the form (λh.[])e, where h is the freshly generated variable that replaces the hole,
and e is the plug. Contexts can be nested in the case of multiple holes. For example, in the latter
example above, the context is (λh.(λh′.[])(λρ.3))(λρ.2). The formal definition of contexts is below.

Definition 2.9 (Context). A context is defined as follows:

K ∈ Context ::= (λh.[])e | (λh.K)e

K[e] denotes the expression where the hole inside the context K has been replaced with the ex-
pression e. A list of contexts Ki ::Ki+1 :: . . . ::Kj is denoted as κji . If the length of the list is not
relevant, we simply use κ. Note that κ may stand for nil, the empty context list, in which case
j < i. Throughout the paper we assume that the variable h abstracted by a context is unique.
Because the translation freshly generates h, this property is preserved.

The definition of the translation is in Figure 6. The result of translating an expression is a
tuple, whose first element is the transformed expression. The second is a list of contexts, where
each context corresponds to an antiquoted expression at a certain stage. The stages go “deeper” (i.e.
the stage number decreases) as we go from left to right in the context list. For example, assuming
the environment at stage 1 is represented by ρ1, stage 2 is represented by ρ2, and y is a bound
variable, the translation of 8(x)+ 8(8(y)) at stage 2 yields (h1 ρ2+h2 ρ2, (λh1.(λh2.[])(h3 ρ1))(ρ1·x) ::
(λh3.[])(y)).

The result of a translation at any level can be packed into a single record calculus expression
by filling in the contexts in order. This is done by the Close operation.

Definition 2.10. Close : (RExp×Context list)→ RExp is defined as below.

Close(e, nil) = e

Close(e, κji) = Kj [Kj−1[· · ·Ki+1[Ki[e]] · · ·]]

Note that the following statements hold.

7

J K : (Exp×RenamingEnv list) ⇀ (RExp×Context list)

JcK~Rn
= (c, nil) JxK~Rn

= (Rn(x), nil)

JeK(~Rn−1,Rn with {x=z}) = (e, κ) z ∈ V ar is fresh
Jλx.eK~Rn

= (λxz.e, κ)

JeK(~Rn−1,Rn with {f=g,x=z}) = (e, κ) g, z ∈ V ar are fresh
Jfix f(x). eK~Rn

= (fixf,x g(z). e, κ)

Je1K~Rn
= (e1, κ) Je2K~Rn

= (e2, κ
′)

Je1e2K~Rn
= (e1e2, zip(κ, κ

′))

Je1K~Rn
= (e1, κ) Je2K(~Rn−1,Rn with {x=z}) = (e2, κ

′) z ∈ V ar is fresh
Jletx = e1 in e2K~Rn

= (letx z = e1 in e2, zip(κ, κ
′))

JeK~Rn,ρ
= (e,K ::κ) ρ ∈ RV ar is fresh
J〈e〉K~Rn

= (K[λρ.e], κ)
JeK~Rn,ρ

= (e, nil) ρ ∈ RV ar is fresh
J〈e〉K~Rn

= (λρ.e, nil)

JeK~Rn
= (e, κ) h ∈ V ar is fresh

J 8(e)K~Rn,Rn+1
= (h(Rn+1), ((λh.[])e) ::κ)

JeK~Rn
= (e, κ) h ∈ V ar is fresh

Jrun(e)K~Rn
= (leth = e inh {}, κ)

JeK~Rn
= (e, κ) h ∈ V ar and ρ ∈ RV ar are fresh

Jlift(e)K~Rn
= (leth = e inλρ.h, κ)

J`K~Rn
= (`, nil)

JeK~Rn
= (e, κ)

Jref eK~Rn
= (ref e, κ)

JeK~Rn
= (e, κ)

J!eK~Rn
= (!e, κ)

Je1K~Rn
= (e1, κ) Je2K~Rn

= (e2, κ
′)

Je1:=e2K~Rn
= (e1:=e2, zip(κ, κ

′))

The zip function is defined below, where :: is the separator in a list:

zip(K ::κ,K ′ ::κ′) = K[K ′] ::zip(κ, κ′)
zip(nil, κ) = κ

zip(κ, nil) = κ

Figure 6: Transformation modified to handle expressions with side-effects. The order of evaluation
is preserved with this translation.

8

• Close(e,K ::κ) = Close(K[e], κ)

• Close(e, κ ::K) = K[Close(e, κ)]

Finally, the translation for stores is defined.

Definition 2.11 (Store translation). Let S = {~̀k : ~vk} be a λopenpoly store. Its translation to a
λrecpoly store is defined as follows:

J{~̀k : ~vk}K = {~̀k : ~uk} where (ui, nil) = JviK{} for all i s.t. 0 ≤ i ≤ k

Note that all the values in S are stage-0 values, and the second item of the result of translating a
stage-0 value is always nil.

3 Relation Between the Two Operational Semantics

In this section we state the relation between the two calculi. For this purpose, we first define
“admin” reductions in the record calculus. In [1], we had defined a collection of “safe” reductions
that are guaranteed not to modify the store (i.e. they are side-effect-free). That definition is
broader than needed; we fine-tune the reductions here.

Definition 3.1 (Admin reductions). An admin reduction from expression e to the expression e′,
denoted e

A−→ e′, is the congruence closure of the rules below.

(λρ.e)R A−→ e{ρ\R} where R ∈ RenamingEnv

R·y A−→ R(y)

The Kleene closure of admin reductions is denoted as A∗−→. Note that the expression an admin
reduction simplifies (i.e. a renaming environment) does not have side effects. Therefore it is safe
to perform admin reductions in the presence of side effects.

Notation 3.2. An admin reduction is straightforwardly extended to include stores. That is,
e
A−→ e′ iff S, e A−→ S, e′ for any store S.

We define the following notation to express translations and reductions using a uniform “arrow”
notation.

Notation 3.3. We use the notation S, e
J·K~Rn−−−→ S, e iff Close(JeK~Rn

) = e and JSK = S.

Notation 3.4. The semicolon notation is used to denote the composition of reductions. We write
e

A;B−−→ e′ iff there is an e′′ such that e A−→ e′′ and e′′
B−→ e′. Note that the semicolon operator is

associative.

The following is a key theorem that gives the semantic relation between the two calculi.

9

Theorem 3.5. Let e1 be a stage-n λopenpoly expression with no free variables, such that Je1K~Rn
is

defined. Also let the values in the store S1 have no free variables. If S1, e1
n−→ S2, e2, then

S1, e1
J·K~Rn

;R ;A∗
−−−−−−−−→ JS2K, Close(Je2K~Rn

). This is illustrated by the diagram below.

S1, e1
n //

J·K~Rn
��

S2, e2

J·K~Rn
��

JS1K, e1
R ;A∗ // JS2K, e2

Proof. Given in the Appendix.

Finally, the following lemma states that there are no opportunities for admin reductions in the
result of a translation. This means that the admin reductions performed in Theorem 3.5 above are
exhaustive. In other words, by applying admin reductions exhaustively, we will reach Close(Je2K~Rn

)
without worrying about over-simplification.

Lemma 3.6. Let e be a λopenpoly expression such that JeK~Rn
is defined. There does not exist an e′

such that Close(JeK~Rn
) A−→ e′.

Proof. By a straightforward structural induction.

This completes the operational relation between the staged and the record calculi. Next, we
discuss how to convert record calculus expressions to staged expressions.

4 Reverse Translation

In this section we define a reverse translation that transforms record expressions back to the staged
calculus. The definition is given in Figure 7.

For the reverse translation, we interpret contexts as functions:

Definition 4.1. Let κ be a list of contexts. κ denotes a function from variables to expressions
defined as follows.

nil = ∅
(λh.[])e ::κ′ = {h : e} ∪ κ′

(λh.K)e ::κ′ = {h : e} ∪K ::κ′

Theorem 4.2 states a key result of this paper: we can perform reverse translation on the trans-
lation of an expression to obtain the original expression.

Theorem 4.2. Let the result of JeK~Rn
be (e, κ). Then Je,HK−1

~Rn
= e for any H ⊇ κ.

Proof. By induction on the structure of e. We show representative cases below. Other cases either
follow straightforward from the induction hypothesis or are very similar to a given case.

• Case e = x.
There are three subcases as investigated below. In these subcases, recall that nil = ∅ and
any H ⊇ ∅.

10

H ∈ V ar ⇀ RExp

J , K−1
: (RExp×(V ar ⇀ RExp)×RenamingEnv list) ⇀ Exp

Jc,HK−1

~Rn
= c

Jx,HK−1

~Rn
= R−1

n (x)

Jρ·x,HK−1

~Rn
= x

Jλxz.e,HK−1

~Rn
= λx.Je,HK−1

(~Rn−1,Rn with {x=z})

Jfixf,xg(z). e,HK−1

~Rn
= fix f(x). Je,HK−1

(~Rn−1,Rn with {f=g,x=z})

Je1e2,HK−1

~Rn
= Je1,HK−1

~Rn
Je2,HK−1

~Rn

where @e′ such that e1 = λh.e′, and e2 /∈ RenamingEnv.

Jletx z = e1 in e2,HK−1

~Rn
= letx = Je1,HK−1

~Rn
in Je2,HK−1

(~Rn−1,Rn with {x=z})

J(λh.e)e′,HK−1

~Rn
= Je, (H ∪ {h : e′})K−1

~Rn

J(λρ.e),HK−1

~Rn
= 〈Je,HK−1

(~Rn,ρ)
〉

Jh R,HK−1

(~Rn,Rn+1)
= 8(JH(h),HK−1

~Rn
)

Jleth = e inh {},HK−1

~Rn
= run(Je,HK−1

~Rn
)

Jleth = e inλρ.h,HK−1

~Rn
= lift(Je,HK−1

~Rn
)

J`,HK−1

~Rn
= `

Jref e,HK−1

~Rn
= ref Je,HK−1

~Rn

J!e,HK−1

~Rn
= !Je,HK−1

~Rn

Je1:=e2,HK−1

~Rn
= Je1,HK−1

~Rn
:=Je2,HK−1

~Rn

Figure 7: Transformation of record expressions to the staged calculus.

11

1. Rn(x) is undefined (error case): Not possible. Otherwise JeK~Rn
would not be defined.

2. Rn(x) = z: This means R−1
n (z) = x. Then, JeK~Rn

= (z, nil), and by definition
Jz,HK−1

~Rn
= R−1

n (z) = x for any H.

3. Rn(x) = ρ·x: Then, JeK~Rn
= (ρ·x, nil), and by definition Jρ·x,HK−1

~Rn
= x for any H.

• Case e = e1e2.
We have

Je1K~Rn
= (e1, κ) Je2K~Rn

= (e2, κ
′)

Je1e2K~Rn
= (e1e2, zip(κ, κ

′))

Using the inductive hypothesis and the fact that zip(κ, κ′) ⊇ κ and zip(κ, κ′) ⊇ κ′, we have

Je1,HK
−1

~Rn
= e1

Je2,HK
−1

~Rn
= e2

for any H ⊇ zip(κ, κ′). Finally, by the definition of reverse translation

Je1e2,HK
−1

~Rn
= Je1,HK

−1

~Rn
Je2,HK

−1

~Rn
= e1e2

• Case e = 〈e′〉.
We have,

Je′K~Rn,ρ
= (e,K ::κ) ρ ∈ RV ar is fresh

J〈e′〉K~Rn
= (K[λρ.e], κ)

Let H be any function such that H ⊇ κ. Note that we have K ∪ H ⊇ K ∪ κ = K ::κ. Let
K = (λh1. · · · (λhj .[])ej · · ·)e1 for some j. Then,

JK[λρ.e],HK
−1

~Rn
= J(λh1. · · · (λhj .λρ.e)ej · · ·)e1, HK

−1

~Rn

= J(λh2. · · · (λhj .λρ.e)ej · · ·)e2, {h1 : e1} ∪ HK
−1

~Rn

...
= Jλρ.e, {h1 : e1, . . . , hj : ej}︸ ︷︷ ︸

K

∪HK
−1

~Rn

= 〈Je, K ∪HK
−1

(~Rn,ρ)
〉

= 〈e′〉 by I.H.

• Case e = 8(e0).
We have

Je0K~Rn
= (e, κ) h ∈ V ar is fresh

J 8(e0)K~Rn,Rn+1
= (h Rn+1, (λh.[])e ::κ)

12

Let H be any function such that H ⊇ {h : e}∪κ. Also note that we trivially have H ⊇ κ. So,

Jh Rn+1,HK
−1

~Rn,Rn+1
= 8(JH(h),HK

−1

~Rn
)

= 8(Je,HK
−1

~Rn
)

= 8(e0) by I.H.

The following is a direct corollary of Theorem 4.2.

Corollary 4.3. Let e be a λgenpoly expression and JeK~Rn
= (e′, κ). The following hold:

• Je′, κK−1

~Rn
= e

• JClose(JeK~Rn
),∅K−1

~Rn
= e

Finally, we state that, instead of evaluating a staged expression using the staged semantics,
we can first translate it to the record calculus, then evaluate using record semantics and simplify
via exhaustive admin reductions, and finally translate back to staged calculus to obtain the same
result. For this purpose, we define reverse translation for stores, and also an arrow notation for the
reverse translation for better illustration of the process. The statement is given in Corollary 4.6.

Definition 4.4 (Reverse store translation). Let S = {~̀k : ~vk} be a λrecpoly store. Its translation to a
λopenpoly store is defined as follows:

J{~̀k : ~vk}K
−1

= {~̀k : ~uk} where ui = Jvi,∅K
−1

{} for all i s.t. 0 ≤ i ≤ k.

Notation 4.5. We use the notation S, e
J·K−1

~Rn−−−→ S, e iff Je,∅K−1

~Rn
= e and JSK−1

= S.

Corollary 4.6. Let e1 be a stage-n λopenpoly expression with no free variables, such that Je1K~Rn
is

defined and Also let the values in the store S1 have no free variables. S1, e1
n−→ S2, e2. Then,

S1, e1
J·K~Rn

;R ;A∗ ; J·K−1

~Rn−−−−−−−−−−−−→ S2, e2, where the admin reductions are performed exhaustively. The relation
is illustrated by the following diagram.

S1, e1
n //

J·K~Rn
��

S2, e2

JS1K, e1
R ;A∗ // JS2K, e2

J·K−1

~Rn

OO

5 Exponentiation Example

Let us now see the translation in action. Below is the program that generates an exponentiation
function specialized for a fixed power value. This is a now-classic example that can be found in
many papers related to staged computation. In this example, the evaluation returns the function
λx.x × x × x × 1. We assume that our languages have been extended with if-expressions and
arithmetic operations.

13

Jlet pow = fix gen(n). if n = 0 then 〈1〉
else 〈x× 8(gen(n− 1))〉

in run〈λx. 8(pow 3)〉 K{}

The result of the translation to the record calculus is below. To allow easier comparison, we do not
rename variables and we use annotations only for λx.

let pow = fix gen(n). if n = 0 then λρ.1
else (λh.(λρ. ρ·x× h ρ))(gen(n− 1))

in leth′ = (λh.λρ.λxx.h (ρwith {x = x}))(pow 3) inh′ {}

Let us call the staged version G and its translation G. There are many small steps of reduction
in the evaluation of both. We take a look at two interesting sections (we ignore the store since
there are no side effects):

• Take the step when pow 3 in G reduces to 〈x× 8(〈x× 8(〈x× 8(〈1〉)〉)〉)〉. In three more steps
of reduction (ESUBOX), we reach 〈x× x× x× 1〉:

〈x× 8(〈x× 8(〈x× 8(〈1〉)〉)〉)〉 0−−−→ 〈x× 8(〈x× 8(〈x× 1〉)〉)〉
0−−−→ 〈x× 8(〈x× x× 1〉)〉
0−−−→ 〈x× x× x× 1〉

In G, the same subexpression, pow 3 will have reduced to

(λh.λρ.ρ·x× h ρ)((λh.λρ.ρ·x× h ρ)((λh.λρ.ρ·x× h ρ)(λρ.1)))

Note that this expression and 〈x × 8(〈x × 8(〈x × 8(〈1〉)〉)〉)〉 translate to each other. Now,
taking small step reductions and admin reductions in the record calculus:

(λh.λρ.ρ·x× h ρ)((λh.λρ.ρ·x× h ρ)((λh.λρ.ρ·x× h ρ)(λρ.1)))
R−−−→ (λh.λρ.ρ·x× h ρ)((λh.λρ.ρ·x× h ρ)(λρ.ρ·x× (λρ.1) ρ))
A−−−→ (λh.λρ.ρ·x× h ρ)((λh.λρ.ρ·x× h ρ)(λρ.ρ·x× 1))
R−−−→ (λh.λρ.ρ·x× h ρ)(λρ.ρ·x× (λρ.ρ·x× 1) ρ)
A−−−→ (λh.λρ.ρ·x× h ρ)(λρ.ρ·x× ρ·x× 1)
R−−−→ (λρ.ρ·x× (λρ.ρ·x× ρ·x× 1) ρ)
A−−−→ (λρ.ρ·x× ρ·x× ρ·x× 1)

Note that the result of each admin reduction is translatable to the corresponding term in the
staged reduction (and vice-versa):

(λh.λρ.ρ·x× h ρ)((λh.λρ.ρ·x× h ρ)(λρ.ρ·x× 1))
J·K−1

{}−−−−−→ 〈x× 8(〈x× 8(〈x× 1〉)〉)〉

(λh.λρ.ρ·x× h ρ)(λρ.ρ·x× ρ·x× 1)
J·K−1

{}−−−−−→ 〈x× 8(〈x× x× 1〉)〉

(λρ.ρ·x× ρ·x× ρ·x× 1)
J·K−1

{}−−−−−→ 〈x× x× x× 1〉

14

• As the second case, let us continue with the evaluation of run in G:

run(λx. 8(〈x× x× x× 1〉)) 0−−−→ run(λx.x× x× x× 1)
0−−−→ λx.x× x× x× 1

The corresponding steps of the translation are

leth′ = (λh.λρ.λxx. h (ρwith {x = x}))(λρ.ρ·x× ρ·x× ρ·x× 1) inh′ {}
R−−−→ leth′ = (λρ.λxx. (λρ.ρ·x× ρ·x× ρ·x× 1) (ρwith {x = x})) inh′ {}
A−−−→ leth′ = (λρ.λxx. (ρwith {x = x})·x× (ρwith {x = x})·x× (ρwith {x = x})·x× 1) inh′ {}
A∗−−−−→ leth′ = (λρ.λxx. x× x× x× 1) inh′ {}
R−−−→ (λρ.λxx. x× x× x× 1){}
A−−−→ (λxx. x× x× x× 1)

Note once more that the corresponding terms are translatable to each other.

6 Conclusion

We have identified two kinds of admin reductions to simplify a record expression. We have shown
that record semantics, together with the admin reductions, is equivalent to staged semantics when
we translate staged expressions to record expressions. We have also shown that the admin re-
ductions can be applied exhaustively without worrying about over-simplification. Finally, we have
given a reverse translation to convert record expressions back to staged expressions.

References

[1] Baris Aktemur. Improving Efficiency and Safety of Program Generation. PhD thesis, Univer-
sity of Illinois at Urbana-Champaign, 2009.

[2] Chiyan Chen and Hongwei Xi. Meta-programming through typeful code representation. In
ICFP ’03: Proceedings of the eighth ACM SIGPLAN international conference on Functional
programming, pages 275–286, New York, NY, USA, 2003. ACM.

[3] Rowan Davies and Frank Pfenning. A modal analysis of staged computation. J. ACM,
48(3):555–604, 2001.

[4] Yukiyoshi Kameyama, Oleg Kiselyov, and Chung chieh Shan. Closing the stage: from staged
code to typed closures. In PEPM ’08: Proceedings of the 2008 ACM SIGPLAN symposium
on Partial evaluation and semantics-based program manipulation, pages 147–157, New York,
NY, USA, 2008. ACM.

[5] Sam Kamin, Lars Clausen, and Ava Jarvis. Jumbo: run-time code generation for java and
its applications. In CGO ’03: Proceedings of the international symposium on Code generation
and optimization, pages 48–56. IEEE Computer Society, 2003.

15

[6] Ik-Soon Kim, Kwangkeun Yi, and Cristiano Calcagno. A polymorphic modal type system for
lisp-like multi-staged languages. In POPL ’06: Conference record of the 33rd ACM SIGPLAN-
SIGACT symposium on Principles of programming languages, pages 257–268. ACM Press,
2006.

[7] Eugenio Moggi, Walid Taha, Zine-El-Abidine Benaissa, and Tim Sheard. An idealized metaml:
Simpler, and more expressive. In ESOP ’99: Proceedings of the 8th European Symposium on
Programming Languages and Systems, pages 193–207, London, UK, 1999. Springer-Verlag.

[8] François Pottier. A versatile constraint-based type inference system. Nordic J. of Computing,
7(4):312–347, 2000.

[9] Morten Rhiger. First-class open and closed code fragments. In Proceedings of the Sixth Sym-
posium on Trends in Functional Programming, pages 127–144, Tallinn, Estonia, 2005.

[10] Walid Taha and Michael Florentin Nielsen. Environment classifiers. In POPL ’03: Proceedings
of the 30th ACM SIGPLAN-SIGACT symposium on Principles of programming languages,
pages 26–37, New York, NY, USA, 2003. ACM.

[11] David Zook, Shan Shan Huang, and Yannis Smaragdakis. Generating aspectj programs with
meta-aspectj. In G. Karsai and E. Visser, editors, Proc. of the Third Intl. Conf. on Generative
Programming and Component Engineering (GPCE 2004), volume 3286 of Lecture Notes in
Computer Science, pages 1–18, Vancouver, Canada, October 2004. Springer.

16

A Proofs

Definition A.1 (Admin reduction of contexts).

e
A−→ e′ ⇐⇒ (λh.[])e A−→ (λh.[])e′

e
A−→ e′ ⇐⇒ (λh.K[])e A−→ (λh.K[])e′

K
A−→ K ′ ⇐⇒ (λh.K[])e A−→ (λh.K ′[])e

Definition A.2 (Admin reduction of context lists).

nil
A−→ nil

K ::κ A−→ K ′ ::κ ⇐⇒ K
A−→ K ′

K ::κ A−→ K ::κ′ ⇐⇒ κ
A−→ κ′

Notation A.3 (Substitution in contexts).

((λh.[])e){h′\e′} = (λh.[])(e{h′\e′})
((λh.K[])e){h′\e′} = (λh.K{h′\e′}[])(e{h′\e′}) if h 6= h′

Proof of Theorem 3.5. By a case analysis. Let Je1K~Rn
= (e1, κ) and Je2K~Rn

= (e2, κ′).

• Case 1. n = 0:

By Theorem A.4, κ = κ′ = nil and JS1K, e1
R;A∗−−−→ JS2K, e2. Note that Close(Je1KR0) = e1

and Close(Je2KR0) = e2. Hence, JS1K, Close(Je1KR0)
R;A∗−−−→ JS2K, Close(Je1KR0).

• Case 2. n > 0:
Let κ = K1 :: . . . ::Kn. We now have four subcases.

– For some h,K and e3, we have Kn = (λh.K[])e3 such that e3 ∈ RV al:

1. e1{h\e3}
A∗−→ e2 by Theorem A.4

2. S1 = S2 by Theorem A.4

3. (K1 :: . . . ::Kn−1 ::K){h\e3}
A∗−→ κ′ by Theorem A.4

4. Let κ′ = K ′1 :: . . . ::K ′n.
5. Close(e1, κ) = (λh.K[Kn−1[· · ·K1[e1] · · ·]])e3
6. Close(e2, κ′) = (K ′n[K ′n−1[· · ·K ′1[e2] · · ·]])e3
7. JS1K, (λh.K[Kn−1[· · ·K1[e1] · · ·]])e3

R−→ JS1K, (K[Kn−1[· · ·K1[e1] · · ·]]){h\e3}
by ERAPP, because e3 ∈ RV al

8. (K[Kn−1[· · ·K1[e1] · · ·]]){h\e3}
A∗−→ (K ′n[K ′n−1[· · ·K ′1[e2] · · ·]])e3

by (1), (2) and because h is distinct

9. JS1K, Close(e1, κ)
R;A∗−−−→ JS2K, Close(e2, κ′) by (5), (7), (8), (6), (2)

– For some h and e3, we have Kn = (λh.[])e3 such that e3 ∈ RV al:
Similar to the case above.

17

– For some h,K and e3, we have Kn = (λh.K[])e3 such that e3 6∈ RV al:

1. ∃e4 such that JS1K, e3
R;A∗−−−→ JS2K, e4 by Theorem A.4

2. κ′ = K1 :: . . . ::Kn−1 :: (λh.K[])e4 by Theorem A.4
3. e1 = e2 by Theorem A.4
4. Close(e1, κ) = (λh.K[Kn−1[· · ·K1[e1] · · ·]])e3
5. Close(e2, κ′) = (λh.K[Kn−1[· · ·K1[e2] · · ·]])e4
6. JS1K, (λh.K[Kn−1[· · ·K1[e1] · · ·]])e3

R;A∗−−−→ JS2K, (λh.K[Kn−1[· · ·K1[e1] · · ·]])e4
by (1)

7. JS1K, Close(e1, κ)
R;A∗−−−→ JS2K, Close(e2, κ′) by (4), (6), (3), (5)

– For some h and e3, we have Kn = (λh.[])e3 such that e3 6∈ RV al:
Similar to the case above.

Theorem A.4. Let e1 be a stage-n λopenpoly expression with no free variables, the values in the store

S1 have no free variables, and S1, e1
n−→ S2, e2. Let Je1K~Rn

= (e1, κ) and Je2K~Rn
= (e2, κ′). Then

• The length of κ is n.

• If n = 0 then JS1K, e1
R ;A∗−−−−→ JS2K, e2 and κ′ = nil.

• If n > 0 then ∃κ′′,K ′′ such that κ = κ′′ ::K ′′ and

– if K ′′ = (λh.K[])e3 for some h,K and e3 such that e3 ∈ RV al, then

• e1{h\e3}
A∗−→ e2 and

• (κ′′ ::K){h\e3}
A∗−→ κ′ and

• S1 = S2.

– if K ′′ = (λh.[])e3 for some h and e3 such that e3 ∈ RV al, then

• e1{h\e3}
A∗−→ e2 and

• (κ′′){h\e3}
A∗−→ κ′ and

• S1 = S2.

– if K ′′ = (λh.K[])e3 for some h,K and e3 such that e3 6∈ RV al, then ∃e4 such that

• JS1K, e3
R ;A∗−−−−→ JS2K, e4 and

• κ′ = κ′′ :: (λh.K[])e4 and
• e1 = e2.

– if K ′′ = (λh.[])e3 for some h and e3 such that e3 6∈ RV al, then ∃e4 such that

• JS1K, e3
R ;A∗−−−−→ JS2K, e4 and

• κ′ = κ′′ :: (λh.[])e4 and
• e1 = e2.

Proof. By induction on the structure of e1, based on the last applied reduction. We only show
interesting cases; other cases are either straightforward or very similar to a given case.

18

• Case ESAPP(1): We have

S, e1
n−→ S ′, e′1

S, e1e2
n−→ S ′, e′1e2

and
Je1K~Rn

= (e1, κ) Je2K~Rn
= (e2, κ

′)

Je1e2K~Rn
= (e1e2, zip(κ, κ

′))

This case follows from the I.H. The following facts are used:

– If κ A∗−→ κ1 and κ′
A∗−→ κ2, then zip(κ, κ′) A

∗
−→ zip(κ1, κ2).

– The outermost context of the rightmost context in κ is also the outermost context of the
rightmost context in zip(κ, κ′).

– Note that length(κ) = depth(e1) and length(κ′) = depth(e2). Also, depth(e1e2) =
max(depth(e1), depth(e2)) by definition, and length(zip(κ, κ′)) = max(length(κ), length(κ′)).
Hence, length(zip(κ, κ′)) = depth(e1e2).

• Case ESAPP(3): We have

e2 ∈ V al0

S, (λx.e1)e2
0−→ S, e1{x\e2}0

and

Je1KR0 with {x=z} = (e1, nil) z is fresh
Jλx.e1KR0 = (λxz.e1, nil)

Je2KR0 = (e2, nil)

J(λx.e1)e2KR0 = ((λxz.e1)e2, nil)

Also, let Je1{x\e2}0KR0 = (e′, nil). Because e2 ∈ V al0, we have e2 ∈ RV al by Lemma A.11.
Then, at the record semantics side

JSK, (λxz.e1)e2
R−→ JSK, e1{z\e2}

Note that Close(Je1KR0 with {x=z}) = e1 and Close(Je2KR0) = e2. So,

e1{z\e2} = Close(Je1KR0 with {x=z}){z\Close(Je2KR0)}
= Close(Je1KR0 with {x=z}){z\Close(Je2K{})} by Lemma A.7

= Close(Je1{x\e2}0KR0 with {x=z}) by Lemma A.6

= Close(Je1{x\e2}0KR0) by Lemma A.7
= e′

Hence, JSK, (λxz.e1)e2
R;A∗−−−→ JSK, e′.

• Case ESBOX: We have S1, e1
n+1−→ S2, e2

S1, 〈e1〉
n−→ S2, 〈e2〉

. Because e1 takes a reduction, its depth is n+ 1;

otherwise it would be a value and no reduction could be taken. So, for the translation we
have

Je1K~Rn,ρ
= (e1,K0 ::κ) ρ is fresh

J〈e1〉K~Rn
= (K0[λρ.e1], κ)

Also let Je2K = (e2, κ′).

First, note that, by I.H., length(K0 ::κ) = n+ 1. Therefore, length(κ) = n.

Case 1. n = 0:
In this case κ = nil.

19

• Case 1.1: K0 = (λh.K[])e3 and e3 ∈ RV al.

1. e1{h\e3}
A∗−→ e2 by I.H.

2. K{h\e3}
A∗−→ κ′ by I.H.

3. S1 = S2 by I.H.
4. Let κ′ = K ′.
5. J〈e2〉KR0 = (K ′[λρ.e2], nil) by (4)
6. K0[λρ.e1] = (λh.K[λρ.e1])e3
7. JS1K, (λh.K[λρ.e1])e3

R−→ JS1K, (K[λρ.e1]){h\e3} because e3 ∈ RV al
8. (K[λρ.e1]){h\e3} = K{h\e3}[λρ.e1{h\e3}] because h is distinct

9. K{h\e3}[λρ.e1{h\e3}]
A∗−→ K ′[λρ.e2] by (1), (2), (4)

10. JS1K,K0[λρ.e1]
R;A∗−−−→ JS1K,K ′[λρ.e2] by (6), (7), (8), (9)

11. JS1K,K0[λρ.e1]
R;A∗−−−→ JS2K,K ′[λρ.e2] by (3) and (10)

• Case 1.2: K0 = (λh.[])e3 and e3 ∈ RV al.

1. e1{h\e3}
A∗−→ e2 by I.H.

2. nil
A∗−→ κ′, hence κ′ = nil by I.H.

3. S1 = S2 by I.H.
4. J〈e2〉KR0 = (λρ.e2, nil) by (2)
5. K0[λρ.e1] = (λh.λρ.e1)e3
6. JS1K, (λh.λρ.e1)e3

R−→ JS1K, (λρ.e1){h\e3} because e3 ∈ RV al
7. (λρ.e1){h\e3} = λρ.e1{h\e3} because h is distinct

8. λρ.e1{h\e3}
A∗−→ λρ.e2 by (1)

9. JS1K,K0[λρ.e1]
R;A∗−−−→ JS1K, λρ.e2 by (5), (6), (7), (8)

10. JS1K,K0[λρ.e1]
R;A∗−−−→ JS2K, λρ.e2 by (3) and (9)

• Case 1.3: K0 = (λh.K[])e3 and e3 6∈ RV al.
Straightforward from the I.H.

• Case 1.4: K0 = (λh.[])e3 and e3 6∈ RV al.
Straightforward from the I.H.

Case 2. n > 0:
Let κ = K1 :: . . . ::Kn.

• Case 2.1: Kn = (λh.K[])e3 and e3 ∈ RV al.

1. e1{h\e3}
A∗−→ e2 by I.H.

2. (K0 ::K1 :: . . . ::Kn−1 ::K){h\e3}
A∗−→ κ′ by I.H.

3. S1 = S2 by I.H.
4. Let κ′ = (K ′0 ::K ′1 :: . . . ::K ′n−1 ::K ′n).
5. Note that J〈e1〉K~Rn

= (K0[λρ.e1],K1 :: . . . ::Kn)
6. and J〈e2〉K~Rn

= (K ′0[λρ.e2],K ′1 :: . . . ::K ′n)

20

7. We want to show that
i. (K0[λρ.e1]){h\e3}

A∗−→ K ′0[λρ.e2] and

ii. (K1 :: . . . ::Kn−1 ::K){h\e3}
A∗−→ (K ′1 :: . . . ::K ′n) and

iii. S1 = S2

8. Item (i) is straightforward from (1), (2) and the fact that h is distinct. Item (ii) is
straightforward from (2). Item (iii) is trivial from (3).

• Case 2.2: Kn = (λh.[])e3 and e3 ∈ RV al.

1. e1{h\e3}
A∗−→ e2 by I.H.

2. (K0 ::K1 :: . . . ::Kn−1){h\e3}
A∗−→ κ′ by I.H.

3. S1 = S2 by I.H.
4. Let κ′ = (K ′0 ::K ′1 :: . . . ::K ′n−1).
5. Note that J〈e1〉K~Rn

= (K0[λρ.e1],K1 :: . . . ::Kn)
6. and J〈e2〉K~Rn

= (K ′0[λρ.e2],K ′1 :: . . . ::K ′n−1)
7. We want to show that

i. (K0[λρ.e1]){h\e3}
A∗−→ K ′0[λρ.e2] and

ii. (K1 :: . . . ::Kn−1){h\e3}
A∗−→ (K ′1 :: . . . ::K ′n−1) and

iii. S1 = S2

8. Item (i) is straightforward from (1), (2) and the fact that h is distinct. Item (ii) is
straightforward from (2). Item (iii) is trivial from (3).

• Case 2.3: Kn = (λh.K[])e3 and e3 6∈ RV al.
Straightforward from the I.H.

• Case 2.4: Kn = (λh.[])e3 and e3 6∈ RV al.
Straightforward from the I.H.

• Case ESUBOX(1): We have S1, e1
n−→ S2, e2

S1,
8(e1) n+1−→ S2,

8(e2)
and

Je1K~Rn
= (e1, κ) h is fresh

J 8(e1)K~Rn,Rn+1
= (hRn+1, (λh.[])e1 ::κ)

Let Je2K~Rn
= (e2, κ′). Then, J 8(e2)K~Rn,Rn+1

= (hRn+1, (λh.[])e2 ::κ′).

First, note that by I.H. length(κ) = n. Therefore length((λh.[])e1 ::κ) = n+ 1.

Case 1. n = 0:
In this case κ = κ′ = nil.

1. JS1K, e1
R;A∗−−−−→ JS2K, e2 by I.H.

2. Because e1 takes a step of evaluation, e1 6∈ V al0. Hence, e1 6∈ RV al. by Lemma A.11

3. What we need to show is ∃e4 such that

(a) JS1K, e1
R;A∗−−−−→ JS2K, e4

(b) (λh.[])e2 = (λh.[])e4
(c) hRn+1 = hRn+1

4. Take e4 = e2. Then, item (i) is satisfied by (1); item (ii) and (iii) are satisfied trivially.

21

Case 2. n > 0:
This case follows straightforward from the I.H.

• Case ESUBOX(2): We have e ∈ V al1

S, 8(〈e〉) 1−→ S, e
. Because e is a value, for fresh ρ and h, the

translation is
JeKR0,ρ = (e, nil)

J〈e〉KR0 = (λρ.e, nil)
J 8(〈e〉)KR0,R1 = (hR1, (λh.[])(λρ.e))

First, note that length((λh.[])(λρ.e)) = 1.

Let JeKR0,R1 = (e′, nil). Because λρ.e ∈ RV al, what we need to show are

i. (hR1){h\(λρ.e)} A
∗
−→ e′

ii. nil
A∗−→ nil

iii. S = S

Items (ii) and (iii) are trivial. Now we show that item (i) holds:

(hR1){h\(λρ.e)} = (λρ.e)R1

A−→ e{ρ\R1}

Using the fact that Close(JeKR0,ρ) = e, we obtain (λρ.e)R1
A−→ Close(JeKR0,ρ){ρ\R1}. By

Lemma A.8, Close(JeKR0,ρ){ρ\R1}
A∗−→ Close(JeKR0,R1). Note that Close(JeKR0,R1) = e′.

Therefore, (hR1){h\(λρ.e)} A
∗
−→ e′.

• Case ESRUN(2): We have e ∈ V al1

S, run(〈e〉) 0−→ S, e
. Because e is a value, for fresh ρ and h, the

translation is
JeKR0,ρ = (e, nil)

J〈e〉KR0 = (λρ.e, nil)
Jrun(〈e〉)KR0 = (leth = (λρ.e) inh {}, nil)

First, note that length(nil) = 0.

Let JeKR0 = (e′, nil). What we need to show is

JSK, leth = (λρ.e) inh {} R;A∗−−−→ JSK, e′

By ERLET and an admin reduction we get

JSK, leth = (λρ.e) inh {} R−→ JSK, (λρ.e){} A−→ JSK, e{ρ\{}}

22

Using the fact that Close(JeKR0,ρ) = e,

e{ρ\{}} = Close(JeKR0,ρ){ρ\{}}
A∗−→ Close(JeKR0,{}) by Lemma A.8
= Close(JeK{},{}) by Lemma A.7
= Close(JeK{}) by Lemma A.10
= Close(JeKR0) by Lemma A.7
= e′

• Case ESLIFT(2): We have e ∈ V al0

S, lift(e) 0−→ S, 〈e〉
. Because e is a value, for fresh ρ and h, the

translation is
JeKR0 = (e, nil)

Jlift(e)KR0 = (leth = e inλρ.h, nil)

First, note that length(nil) = 0.

Also note that

JeKR0,ρ = JeK{},ρ by Lemma A.7
= JeKρ by Lemma A.10
= JeKR0 by Lemma A.7
= (e, nil)

Thus, as the translation of 〈e〉, we have

JeKR0,ρ = (e, nil)
J〈e〉KR0 = (λρ.e, nil)

What we need to show is

JSK, leth = e inλρ.h
R;A∗−−−→ JSK, λρ.e

which is immediate by ERLET.

Lemma A.5. Let e1 be a stage-n λgenpoly expression and e2 a stage-0 λgenpoly expression with no free
variables. Let Je1K~Rn

= (e1,K1 :: . . . :: Kp) and Je2K{} = (e2, nil). Note that p ≤ n. Assume
R0(x) = z. Then

• If n = 0 then Je1{x\e2}0KR0 = (e1{z\e2}, nil).

• If n > 0 and p < n then Je1{x\e2}nK~Rn
= (e1, K1 :: . . . ::Kp) and z 6∈ FV (e1).

• If n > 0 and p = n then Je1{x\e2}nK~Rn
= (e1, K1 :: . . . :: Kp−1 :: K ′p) such that K ′p =

(Kp[·]){z\e2} and z 6∈ FV (e1).

Proof. By induction on the structure of e1. We only show the interesting variable case below.
Other cases follow easily from the I.H.

23

• Case e1 = x, n = 0: Note that JxKR0 = (R0(x), nil) = (z, nil). Then,

Jx{x\e2}0KR0 = Je2KR0

= Je2K{} by Lemma A.7
= (e2, nil)
= (z{z\e2}, nil)

Lemma A.6. Let e1 be a stage-n and e2 a stage-0 λgenpoly expression with no free variables. If
R0(x) = z, then

Close(Je1K~Rn
){z\Close(Je2K{})} = Close(Je1{x\e2}nK~Rn

)

Proof. Follows from Lemma A.5.

Lemma A.7. Let e be a stage-n λgenpoly expression with FV (e) = {x1, . . . , xm}. Then,

JeKR0,R1,...,Rn = JeKR′0,R1,...,Rn

if R0(xi) = R′0(xi) for any i ∈ {1..m}.

Proof. By a straightforward structural induction on e.

Lemma A.8. Let e be a stage-n λgenpoly expression, JeKR0,...,Rn = (e1, κ) and JeKR0{ρm\Rm},...,Rn{ρm\Rm} =
(e′1, κ

′). Then

Close(JeKR0,...,Rn){ρm\Rm}
A∗−→ Close(JeKR0{ρm\Rm},...,Rn{ρm\Rm})

and
e1{ρm\Rm}

A∗−→ e′1

Proof. By structural induction on e. In the VAR case we use Lemma A.9. In the BOX case we use
the fact that the newly introduced environment variable ρn+1 is fresh. Other cases easily follow
from the I.H.

Lemma A.9. (R(x)){ρ\R′} A
∗
−→ (R{ρ\R′})(x) for any renaming environments R,R′.

Proof. By structural induction on R.

• Case R = {}: We have {}(x){ρ\R′} = error and ({}{ρ\R′})(x) = error by definition.

• Case R = ρ′: If ρ = ρ′, then (ρ(x)){ρ\R′} = R′ ·x and (ρ{ρ\R′})(x) = R′(x). By the
definition of admin reductions, R′ ·x A−→ R′(x). If ρ 6= ρ′, then (ρ′(x)){ρ\R′} = ρ′ ·x and
(ρ′{ρ\R′})(x) = ρ′ ·x.

• CaseR = R1 with {y = z}: If x = y, then ((R1 with {x = z})(x)){ρ\R′} = z and ((R1 with {x =
z}){ρ\R′})(x) = z.

If x 6= y, then ((R1 with {y = z})(x)){ρ\R′} = (R1(x)){ρ\R′} and ((R1 with {y = z}){ρ\R′})(x) =
(R1{ρ\R′})(x). By I.H. we have (R1(x)){ρ\R′} A

∗
−→ (R1{ρ\R′})(x).

24

Lemma A.10. Let e be a λgenpoly expression such that e ∈ V aln+1. Then

JeK{},R1,...,Rn+1
= JeKR1,...,Rn+1

Proof. By a straightforward induction on the structure of e.

Lemma A.11. Let JeKR0 = (e, κ). Then, e ∈ V al0 ⇐⇒ e ∈ RV al, and e 6∈ V al0 ⇐⇒ e 6∈ RV al.

Proof. By a straightforward case analysis.

25

	Relating Staged Computation to the Record Calculus.pdf
	Relating Staged Computation to the Record Calculus

