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Giant pulsations: A nonlinear phenomenon

O. A. Pokhotelov,! Y. G. Khabazin,! I. R. Mann,? D. K. Milling,?
P. K. Shukla,?® and L. Stenflo*

Abstract. Previous treatments of the excitation of Alfvén waves by drift-bounce
resonance have been dominated by the linear approximation. We present a nonlinear
treatment of the excitation of giant pulsations (Pgs) by drift-bounce resonance and
show that nonlinear behavior becomes important well within the typical lifetimes
of Pg wave packets. In particular, we show that the nonlinear phase mixing of
the resonant particles trapped in the wave fields is of great importance for Pgs,
and hence these nonlinearities must be included in calculations of the growth rates
of Pgs. We believe that Pg behavior can be described by monochromatic modes
exhibiting strong nonlinear wave-particle interactions during injections of resonant
particles into the magnetosphere and that the observed growth and damping of Pg
wave packets may provide an indication of the temporal variations in the driving

resonant particle source population.

1. Introduction

Giant pulsations (Pgs) were first observed by Birke-
land [1901] at the dawn of the last century. Since that
time they have attracted research interest because of
their long lifetimes (wave trains can last for up to an
hour or more), their beautiful sinusoidal appearance,
and their often complex and intriguing behavior (see the
review by Brekke et al. [1987]). The term “giant” orig-
inates from the fact that Pg amplitudes can typically
be ~10 nT, occasionally even reaching ~50 nT at auro-
ral latitudes on the ground [e.g., Green, 1979]. Pgs are
most often observed during the night and early morning
hours. They are almost exlusively auroral zone phenom-
ena and are characterized by a latitudinal localization
and moderately large azimuthal wavenumber, m ~20-
40. Pgs are dominantly polarized in the D component
on the ground (geomagnetic east-west), have periods
between 60 and 200 s, and hence can be considered as a
special class of Pc4 pulsations (see, e.g., Chisham et al.
[1997], and references therein).

It is thought that Pgs may be driven in the Earth’s
magnetosphere through drift-bounce resonance with en-
ergetic ring current protons [Southwood et al., 1969;
Southwood, 1973, 1976], and many observational studies
have supported this hypothesis [e.g., Glassmeier, 1980;
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Poulter et al., 1983; Chisham et al., 1992]). Chisham
et al. [1992] showed that the azimuthal phase velocities
of Pgs matched well with the azimuthal drift velocities
of ~10-20 keV protons, which suggests that particles
of this energy may be responsible for the excitation of
Pgs by drift-bounce resonance. While satellites have
also observed Pgs in situ in the magnetosphere [e.g.,
Kokubun et al., 1989; Takahashi et al., 1992] and evi-
dence of resonant interactions between particles and Pgs
has been seen [Kokubun et al., 1989], convincing obser-
vational evidence for coincident unstable particle distri-
butions has yet to be found. Poloidally polarized waves
were seen in the afternoon sector by Hughes et al. [1978]
in association with a bump-on-tail distribution around
10 keV, although these waves were different from Pgs
in that they were observed to have m ~ 100 (much
larger than Pgs), were situated in the afternoon sector,
and had no ground-based magnetic signature because
of their screening from ground-based magnetometers by
the ionosphere [e.g., Hughes and Southwood, 1976].
One of the most striking features that distinguishes
Pgs from other types of geomagnetic variations is that
they are remarkably monochromatic. Their spectrum
is so narrow that any theoretical model of Pgs should
be constructed in the framework of a monochromatic
approximation. A linear treatment of the drift-bounce
resonance was considered by Southwood [1973] and was
then substantially developed by a number of authors
[Mikhailovskii and Pokhotelov, 1975; Karpman et al.,
1977]. However, the linear approximation is only valid
if the amplitude of the pulsations is so small that the
particle distribution function varies rather slowly under
the action of the wave. A general approach to the study
of nonlinear effects during drift-bounce interactions was
developed by Meyerson and Pokhotelov [1978] in the
framework of the random phase approximation. How-
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ever, such an approximation is only valid for broadband
wave packets. Pgs represent an entirely different case
which corresponds to the excitation of a single mode,
usually thought to be the second field-aligned harmonic,
the Pg spectrum being so narrow that the random phase
approximation is not applicable.

In this paper we consider a theoretical treatment of
the nonlinear excitation of Pgs by drift-bounce reso-
nance. In order for linear theory to be applicable,
the resonant particles must only interact once with the
waves for a wave packet of typical duration. For typi-
cal Pg amplitudes one finds that the nonlinear timescale
for particle trapping in the waves potential is quite fast,
being of the order of a few wave cycles. Since Pgs can
typically last for several hours, the particles will interact
nonlinearly with the waves. Consequently, the nonlin-
ear behavior of the particles in the wave fields must be
considered and a nonlinear theory for Pg excitation de-
veloped. Since we would expect this particle trapping
to saturate the drift-bounce resonance instability within
the same timescale of a few periods, then the instability
that is responsible for Pg excitation can only be fully
described with a nonlinear approach. ’

Several questions remain concerning how Pgs may be
excited. In particular, Pgs are believed to be excited
by westward drifting ions through drift-bounce reso-
nance, following their injection from the tail. While
poloidal Pc4 pulsations with azimuthal wavenumbers
m ~ 100 that are believed to be driven by drift-bounce
resonance are often observed in the afternoon sector
through which the ions drift first [e.g., Hughes et al.,
1978}, Pgs with m ~ 20-40 remain, in general, confined
to the morningside. Chisham [1996] suggests that if Pgs
are driven by protons with energies around 10-20 keV,
then a westward drifting population generated by a tail
injection will lie on drift trajectories that exit the day-
side magnetopause before reaching the morning sector
under typical geomagnetic conditions. Only under con-
ditions of extreme quiet, when the dawn-dusk electric
field is low, can the E x B drift effect be sufficiently re-
duced to allow this population to reach the morning sec-
tor and drive Pgs through drift-bounce resonance. Since
the same particles will have traversed the afternoonside
magnetosphere irrespective of geomagnetic activity, it
is not clear why Pgs are not excited in the afternoon lo-
cal time sector. Since we believe that nonlinear effects
become important well within the lifetime of Pg wave
packets, then if questions about Pg excitation are to be
answered, it is important to fully understand their non-
linear growth. Moreover, since nonlinear saturation is
expected to occur early in the Pg wave train, modula-
tion in Pg wave packets may provide information about
the temporal variations in the drifting resonant parti-
cle distributions which are believed to have excited the
waves. Information about these temporal source vari-
ations might provide some additional new insight into
these questions.
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In this paper we first present the observational fea-
tures of a typical Pg and then derive the theoretical
details of a nonlinear drift-bounce resonance excitation
mechanism. We then apply the theoretical results to
derive the saturation and wave packet modulation that
results from the nonlinear excitation of Pgs by a range
of injected particle drivers. Finally, we discuss the im-
plications of our work for Pgs in the magnetosphere and
suggest that their dynamics are affected by these non-
linear wave particle interactions in a nontrivial way.

2. Observational Features of Pgs

Pgs appear in ground magnetometer data as large-
amplitude, monochromatic waves of long duration, of-
ten displaying a distinctive packet structure with spatial
and temporal variations. They appear in the morning
sector within a narrow band stretching along the geo-
magnetic parallel near the equatorial boundary of the
auroral zone [e.g., Chisham and Orr, 1994]. A unique
feature of Pg time series is the exceptionally long du-
ration of their wave trains. It is this feature that sig-
nificantly distinguishes them from other Pc3-4 pulsa-
tions which are damped out on significantly shorter
timescales. The ground magnetic field signatures of Pgs
are also dominated by the D component, while other
Pc4 pulsations tend to be dominated by the H compo-
nent [e.g., Chisham et al., 1997]. Accounting for the 90°
polarization rotation expected for Alfvén waves propa-
gating through the ionosphere [e.g., Hughes and South-
wood, 1976}, Pgs are expected to be predominantly radi-
ally polarized in the magnetosphere, as is confirmed by
satellite observations [e.g., Kokubun et al., 1989]. Ac-
cording to Chisham and Orr[1991], Pgs are usually even
mode (second field-aligned harmonic), although there
is some evidence that they may also sometimes be rep-
resented by odd-mode waves [Takahashi et al., 1992;
Green, 1979, 1985; Hillebrand et al., 1982).

A typical magnetogram of a Pg pulsation (D com-
ponent, filtered with a high pass filter cutoff at 300 s)
recorded on November 11, 1995, by the International
Monitor for Auroral Geomagnetic Effects (IMAGE; 10
s resolution) and the U.K. Sub-Auroral Magnetometer
Network (SAMNET; 1 s resolution) fluxgate magne-
tometers is shown in Figure 1. The station codes and
coordinates are listed in Table 1. The Pg event starts
at about 0015 UT and lasts until nearly 0300 UT. The
power spectrum of the signal from SAMNET’s Oulu sta-
tion (geographic coordinates, ¢ = 65.1°N, A = 25.8°E;
geomagnetic coordinates, ® = 61.5°, A = 105.9°) is
given in Figure 2. One can see that the main part
of the signal represents a narrow frequency band with
dw/w < 0.1. The central frequency is quasi-stable but
undergoes a gradual decrease over the course of the
event. Unlike pearl pulsations [Bud’ko et al., 1972], the
Pg’s spectra do not exhibit frequency splitting, that is,
they do not show the appearance of sidebands. This fact
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Figure 1. Magnetogram (D component, high-pass filtered at 300 s) of the giant pulsation (Pg)
recorded on November 11, 1995, by the International Monitor for Auroral Geomagnetic Effects
(IMAGE) and the U.K. Sub-Auroral Magnetometer Network (SAMNET) fluxgate magnetome-

ters. See Table 1 for abbreviation definitions.

can be understood if we recall that the normal mode fre-
quencies in the magnetosphere are quantized by bounce
frequencies which significantly exceed the sideband fre-
quency shift dw, ~ w(b/Bo)'/? & wp. This fact pre-
vents the system from being unstable against a sideband
instability. The absence of sidebands in the Pg spec-
trum allows us to interpret the amplitude modulations
as a variation in the monochromatic signal amplitude.
We shall now proceed to develop the nonlinear theory
for the evolution of Pgs and show how the wave growth
depends on the form of the resonant particle injection.

3. Excitation and Nonlinear Evolution
of Pgs

In this section we derive the details of the excita-
tion of Pgs by drift-bounce resonant particles. Guided
by the observed narrowband Pg frequency spectrum,
we adopt a quasi-monochromatic approach. In section
3.1 we use a Hamiltonian approach to derive the de-
tails of charged particle motion in a background dipole
magnetic field supporting poloidal Alfvén wave pertur-

bations. Then in section 3.2 we derive nonlinear drift-
bounce resonance growth rates by integrating over the
particle distribution functions.

3.1. Hamiltonian Description of Particle
Motion

The general form of the Hamiltonian [e.g., Goldstein,
1965; Meirovich, 1970] is

1 . 2
H = 557 (P—eA)”, 1)
where P is the generalized momentum, e is the charge
of the particle, M is a particle mass, and A is the vec-
tor potential of the magnetic field. However, the cor-
responding canonical equations can be solved in gen-
eral form only for the simplest magnetic configurations,
and most magnetospheres do not belong to this class
of configurations. In the case of the Earth’s magneto-
sphere, many approaches have been developed; below
we shall use the so-called adiabatic theory [Northrop,
1963], where the Hamiltonian equations are obtained
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Table 1. IMAGE and SAMNET Site Codes and Coordinates

Geographic Geomagnetic

Coordinates Coordinates
Site Name  Array Code Latitude, °N  Longitude, °E . Latitude, °N  Longitude, °E
Kevo IMAGE KEV 69.76 27.01 66.21 109.73
Masi IMAGE MAS 69.56 23.70 66.07 106.92
Kilpisjarvi IMAGE KIL 69.02 20.79 65.78 104.31
Muonio IMAGE MUO 68.02 23.53 64.62 105.70
Pello IMAGE PEL 66.90 24.08 63.46 105.38
Oulu SAMNET OUL 65.10 25.85 61.52 105.94
Nordli SAMNET NOR 64.37 13.36 61.43 95.49
Hankasalmi IMAGE HAN 62.30 26.65 58.62 104.99

IMAGE is the International Monitor for Auroral Geomagnetic Effects and SAMNET is the U.K. Sub-

Auroral Magnetometer Network.

only for the averaged particle motion. The ambient ge-
omagnetic field of the magnetosphere is assumed to be
dipolar. The magnetic 0B and electric JE fields of the
Pg pulsations will be considered as perturbations. Thus
we have

0H = — ev-0A, (2)
where v is the particle velocity and §A is the pertur-
bation of the vector potential. In order to use properly
the results of the adiabatic theory [Northrop, 1963], we
should average (2).

According to Northrop [1963], for the description of
particle motion in a magnetic field it is convenient to
introduce coordinates (e, 3, s) connected with the mag-
netic field lines. Here a(r).and §(r) are two parameters
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Figure 2. Power spectral estimates of the Pg ob-

served at SAMNET’s Oulu station on November 11,
1995, showing enhancements slightly above 10 mHz. No
harmonics are observed. Close single peaks reflect the
pulsation’s modulation,

denoting the field line on which they are constant and
s(r) is the distance along the field line measured from
the equator. The parameters a and 8 can be chosen
so that the vector potential A of the external geomag-
netic field will be equal to (aV)3 and the magnetic
field equal to Va x V. For an axisymmetrical dipolar
magnetic field it is convenient to identify a with the
radial coordinate and to choose 8 to be equal to the
azimuth ¢. Then A = (aV)¢, where @ = BgRLL™'
and LRg = R/sin?¥. Here R and ¥ are the spherical
polar radius and latitude, L is the Mcllwain parame-
ter, Bg is the equatorial magnetic field strength at the
Earth surface, and Rg is the Earth radius. The vector
potential A has only one nonzero component, namely,
A¢ = BER2EL_1(V¢)¢.

Since the frequencies of the Pg pulsations (f ~ 10
mHz) are considerably less than the particle gyrofre-
quency (~1.5 Hz for a proton in a 100 nT field), we make
use of the drift approximation. According to Northrop
[1963], the particle motion in the dipolar magnetic field
can be divided into three parts. First, the particles are
rotating around the field line with the gyrofrequency
we; in addition, the particles are oscillating along the
field lines with the bounce frequency wp, and, finally,
they are also d}ffting in the azimuthal direction around
the Earth with the drift frequency wg. The three adia-
batic invariants p, J, and ® correspond to these periodic
particle motions in the three different directions. They
are constant for the motion in the ambient geomagnetic
field and are defined as

U2
H= AgBl’ ®)
J= (27r)_1va”ds, 4)
o= (2m)7! f eA-dl, (5)

where v, and v)| are the velocity components perpendic-
ular and parallel to the magnetic field, respectively. The
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first integral is taken over the bounce orbit. The second
is taken over the drift trajectory around the dipole; ow-
ing to axial symmetry of the dipolar field, it is reduced
to multiplication and yields ® = eBgR%L™!. The adi-
abatic invariants p, J, and ® in (3-5) are expressed
in terms of spatial coordinates and momenta, where J
and @ differ from those of Northrop [1963] by factors in-
troduced here for notational convenience. Actually, in
our case, J measures the amplitude of the bounce os-
cillation and ® shows the radial distance of the particle
trajectory from the dipole.

Below, these invariants will be used as independent
variables. In the case of Pg pulsations, y will be con-
stant even in the presence of the disturbances, and thus
it will appear only as a parameter in the subsequent
expressions. In order to use the Hamiltonian method
in the calculations [Nayfeh, 1973], we shall introduce
variables that are canonically conjugated to J and ®.
For J, such a variable is ¥ = w;, [ ds/v, i.e., the bounce
phase, and for ® it is ¢, i.e., the azimuth. The equations
of particle motion expressed in terms of the adiabatic
invariants have the Hamiltonian form [Nayfeh, 1973]

d _ _0H v _oH o
dt ~  ov’ dt — 0J’
de __oH ds_oH o
dt — 8¢’ dt ~ 8%’

The general explicit expression for the averaged Hamil-
tonian H is not known; however, for our purposes it is
not needed. All that we need in the following are the
bounce-averaged equations. For the unperturbed parti-
cle motion in an axisymmetrical dipolar magnetic field
the Hamiltonian equations take the form [Northrop,
1963]

. . OH

J = O, U= Tf Wh, (8)
: : O0H
® =0, <¢ = 5 - Wi 9)

where the dot stands for d/dt and the bar denotes the
average over the bounce motion. Thus (8-9) state that
an unperturbed energetic particle is oscillating along
the field line with a frequency wp and is drifting in the
azimuthal direction with average angular frequency @g4
without displacement across the field line in the radial
direction. As a consequence the azimuthal component
of the electric field in the Alfvén wave perturbation is
the dominant one (as the component along the main
magnetic field is zero). The fields thus have the form

0Ey = Eg (®, s) cos (wt — mg), (10)

0Ay = — }-E sin(wt — mg), (11)
é o ¢

where m is an integer. The additional term in the
Hamiltonian due to the Alfvén wave perturbation is

0H = — ev0A = 57‘&sz¢ sin (wt — ma) . (12)
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As was mentioned above, the expression for the per-
turbed Hamiltonian must be averaged over the bounce

phase. For this purpose we make use of the Fourier
transform
@ a
d o~ 0
erUqu =2 (7+ ZaNcosN\Il) , (13)
N=1
where

™
ay = £ / d¥rw4E4cos NV,
27w

assuming for simplicity that the electric field is an even
function with respect to the equator.

The drift-bounce resonance between a particle and a
wave occurs when

w = Nwp + mivg, (14)

where N is an integer, and takes the values 0, +1, £2, ...

Using the standard averaging method [Nayfeh, 1973], in -
the vicinity of the resonance we derive the reduced mo-

tion equations for the resonant particles, i.e., particles

with |dw| € wp (dw = Nwp + mwg — w). Thus

& = may cos(Ny + myp + dwt), (15)

- 851(11:; sin(Ny + me + dwt), (16)
J = Nap cos(NY + mep + dwt), (17)
b=— a;’j Sn(N +me +dwt),  (18)

where ¢ and v denote the so-called slow variables: ¢ =
¢ — gt and P = U — wpt.
To the same approximation we have

0H = — ansin(Ny + mp + dwt),

06H
ot

(19)
@i _

= ) = way cos(Ny + mep + dwt).
dt ‘I’) ¢

(20)

From equations (15)-(20) the next integrals of motion
are

(21)
(22)

K:H.—I-JH—Z(I):const,
m
X =N® — mJ = const.

The first integral K is a consequence of the time-
azimuthal dependence of the wave wt — m¢ and valid
for all particles, while the second integral X refers only
to the resonant particles. It means that the variations
of ® and J due to resonant interactions with the wave
are proportional to each other.

Introducing a new variable, A = Nv + myp + dwt,
and its canonically conjugated momentum Y, given by
Y = (1/2)(®/m + J/N), we can rewrite (15-18) in the
Hamiltonian form

Y =ancosA=— (81() ) (23)
X, Y

£
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A =dw(p,J,®) — (%%—,IY-)X sin A = (?)_I;) ,
X, A

(24)

where K is now expressed in terms of new variables Y
and J; that is,
K =H —-uwY —ansinA. (25)
From the conservation of the new Hamiltonian K we
can obtain the dependence Y (¢) in quadrature or

Y® —1/2
t=/ dY [oX(Y) — (K — H + wY)?] .
Y(0)

(26)

As follows from (26), the particle motion is periodic
with time and takes place in the region of variation of Y’
where the expression in the square root is positive. For
a more complete investigation we expand the Hamilto-
nian near the mean value of Y = Y,; that is,

K = Hy — wY, — an(Y,)sin A + (3—H) Y -Y,)
3y, )
1 (6*H 2

—-w(Y—Y,-)-l—i (—@)X(Y—Yr) .

(27)

Using the resonant condition (14), (0H/8Y,)x = Nwp+
m@g = w, and omitting the constant terms, we obtain

K= -;-n' (Y —¥;)% + an(Y,)(1 — sin V),

(28)
where @ = (0H/0Y;)y = Nwp, + m@g, and Q' =
(002/0Y;) x. The resonant region width AY, as can
be seen from (28), is

AY = [day (Y;) /2. (29)
Introducing a new variable, £ = w/4 — \/2, we rewrite
(23) and (24) as

Y = aysin2e, £=- -;-n'(y ~Y),  (30)
which can be reduced to the standard nonlinear pendu-
lum equation

1262 4+ sin & = k72, (31)
where 752 = anQ' is the inverse square of the charac-
teristic nonlinear time, and k? = 2an /K.

The phase portrait in the (Y, &) plane of the Hamil-
tonian system (30) is shown in Figure 3. The sepa-
ratrix separates two types of particles. Particles with
0 < k2 < 1 are untrapped and those with k2 > 1 are
trapped, similar to the case of Langmuir waves [O’Neil,
1965]. However, in our case the particles are trapped
in phase space. Thus they can be considered as phase-
trapped and phase-untrapped particles. The solution
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§
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Figure 3. Trajectories of the imaging points in the
phase (Y, €) plane.

of (31) for 0 < k2 < 1 can be expressed in terms of
elliptical functions as

F(€,5) = F(€,K) + (t = t') /&Tw, (32)
¢=am[F(,5) + (1/smo)(t—t),8],  (33)
€ =(1/rmp)dn[F(€ k) + (1/kmu)(t =t ),],  (34)

where F(¢, k) = f(f dp/(1 — k?sin’ p)1/2 is the ellipti-
cal integral of the first kind and am(F, k) and dn(F, k)
are Jacobian amplitude and delta, respectively, of am-
plitude functions [Abramowitz and Stegun, 1964]. For
particles with k2 > 1 it is convenient to transform to
the parameter 1/ according to the formula

dn [F({I,n) + (1/ k1) (t — tl),n]
= en [5F(E ) + (1/ra)(t—t),1/x], (35)

where cn(F, k) is the Jacobian cosine function of the
amplitude. Expressions (33) and (34) determine the
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coordinate ¢ and the velocity £ of the particle at the
moment ¢, given &' and ¢ at the moment #'. The cor-
responding expression for Y can be obtained with the
help of (30). Returning to the initial variables ® and
J, we can express their dependence on time ¢ through
time ¢'.

3.2. Nonlinear Pg Growfh Rates

Using the explicit expressions (33) and (34) for the
particle trajectories, we can calculate the distribution
function of the resonant particles starting from the
Vlasov equation for the distribution function of the res-
onant particles

afres

+ {H+6H fres} Q(M,J ®,t), (36)

where Q (u, J, ®) is the source of the resonant particles,
normalized by the condition

dN
dt’

where dI' = dudJd®dydp = dudXdY dipdy is the cell
of the phase space and dN/dt is the change in the to-
tal number of resonant particles in the volume corre-
sponding to the entire region of the wave localization.
Equation (36) can be solved by standard methods of
integration along the trajectories. Supposing that the
resonant particles are absent at ¢ = 0, we can write for
t>0

/Q@u@@@df= (37)

’ t
fres = / QuJ(t),&(t),t)d.  (38)
0

Since we are only interested in the particle motion in
the narrow resonant region around AY =Y - Y, ~

11/2
an(Y;:)/Q ] < Y;, we expand the source function
in (36) in powers of AY’; that is,

0
Quy J,8,8) = Qo Jry By ) + (3—8) %),

(39)

Thus the expression for the distribution function of the
resonant particles (38) is

t
fres = dtl
[
fomstoae [ v
X Q(Ny J.,-,(I>,.,t’) + oY (Y _Y'r) .
u, X

(40)

The time-dependent growth rate can be evaluated
from the expression
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U =290, (41)
where U = [ ud®r is the total wave energy and u stands
for the wave energy density. The integration is carried
out over the entire region of the wave localization. The
value U can be determined from the energy balance.
The total change in wave energy due to interaction with
resonant particles is

U=- / j-0Ed’r, (42)
where j is the current density of the resonant particles.
It is customary to define this by means of a distribution
function f normalized as [ fd®v = n (where n is the

particle number density and the integration is carried
out over velocity space). Thus

i= e/vfd3v, (43)
and therefore
U=-ce / v -SEfd*vd’r. (44)
In our case this implies
U=- e/rwdE¢ cos (wt — mo) fresdl, (45)

where dT' = dudXdpdY dy (see (37)). After substitu-
tion of (13) and (40) into (45) and keeping in mind the
resonant condition (14), we find

Uz—wZ/aNcos)\(t) ,

5 (46)
/dt [ Q(t)] (Y —Y,)dT.
X
Using (30), we then obtain
U=2wZ/aNsin2§(t)
N
t 50(¢ . (47)
x/dt' Q(t) €g)dr_
0 Ky

Using dI’ = dudX dpdY dip = dudXdy (4/NQ') déd{ we
obtain

U = 8w Z / dudXdcpﬂ‘fvg—“)aN

8Q(t)
/dt [ ]

or using the relation derived from (31) and (32) for the
Jacobian d¢d¢ = (1/k%ry,) dFdx,

48
£(t) .

()255,
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Ra [ dF in 2¢ (t)

. K an Sin

U:SwZ/dudngo/? / E(Q’)Z—N*
N 0 —K(x)

/dt |24

where K (k) is the full elliptic integral of the first kind
[Abramowitz and Stegun, 1964]. Substituting (33) and
(34) in (49), we then obtain

U=8w). / dudXdep
N

o0 K(K
X /d—': dF——s1n2am[F(§0,n) + t/KTw, K]
K
0 —K(k)

N o
/dt

0

} E@),

(49)

oQ(t )} dn [F (&, k) +t'/6Ty) .
p X

(50)

Using 8 [dn (F, k)] /OF = — (1/2) &* sin 2am (F, k) to
expand the elliptical Jacobian functions in a Fourier
series, and treating separately k < 1 or K > 1, we obtain
after straightforward calculations

Z / dpdXdy

t—t 1)
/ w53, (55
Here, N(2) is the O’Neil function [O’Neil, 1965],
_ 64 i/ldn [2mr2q2" sin g—l’éz
Ly kK2 (1 + ¢2n) 62)

(2n + 1) n2¢?m+ i sin ZotlT
K2(1+ g2nt1)? ’

where K = F' (k,m/2) is the complete elliptical integral
of the first kind, ¢ = exp[-7nK (k') /K (k)] and &' =
(1-— k)12

4. Nonlinear Drift- Bounce Resonance
Growth Rates

The nonlinear growth and saturation of Pgs, driven
by drift-bounce resonance, depend critically upon the
form and time dependence of the driving resonant par-
ticle distribution. In what follows we derive the wave
growth rate and amplitude modulation resulting from
two limiting cases of sudden and quasi-stationary par-
ticle injections.
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4.1. Sudden Resonant Particle Injection

In this case we consider the resonant particles to be
suddenly injected at the initial moment ¢ = 0 into the
region of wave localization. After this time the influx
of resonance particles is absent, and hence we can ap-
proximate the source by Qo (t) = fod(t). Thus the
expression for the growth rate is

N (i) .
b'¢ Tw

Z/dudXdcpaN [g{f}] )
(53)

The expected pattern of the nonlinear growth and evo-
lution of the -Pg wave packet for this delta function
driver is presented as the solid line in Figure 4. The
dashed line refers to the exponential growth derived
from purely linear theory. For times less than the linear
time to, as defined by to = 1/vr, where ~f, is the linear
growth rate, the quantitative behavior of both the linear
and nonlinear solutions is the same. In the nonlinear
case, however, the wave amplitude reaches a maximum
value B,, in an additional nonlinear timescale ~ 7, at
time t = tg + 1,. The wave envelope then oscillates for
a few 7y, before tending to a constant asymptotic value
By < Bp,.

At t = 0, however, the nonlinear growth rate will
be identical to that generated by linear theory, and the
nonlinear and linear wave growth can clearly be seen
to be identical at ¢ = 0 in Figure 4. Since at t = 0,
N (t/7w) — 1, then the growth rate reduces to

Z/dudXdcpaN (g_f_g>
v ), x

VL = (54)

or

T™Ww
—U; / dud®dJde

=g
(55)
2
x § (Nwp + m@g — w) ol 4 (%)
o "

oY

The latter expression for this linear growth rate coin-
cides with that obtained by Southwood [1973] if one
takes into account that

(&%), ~\(&%), ,~ s (a2)
Y )y “I\aW), . eBeRyLw \3L ),

=g
aw’
(56)

where B., = BgL™3 is the geomagnetic field strength
in the equatorial plane of the L-valued field line.
4.2. Quasi-stationary Injection

Rather than the delta function type of injection con-
sidered above, we can also consider the more realistic
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1

0 t

t0+rW t

Figure 4. Pulsation evolution expected from nonlinear theory with sudden resonant particle

injection (solid line).

Initially, the wave grows exponentially over the linear timescale ¢y =

1/vrL, where g, is the linear growth rate. This is followed by an oscillatory saturation during
a characteristic timescale approximately equal to 7, i.e., the period of particle phase bouncing
around the resonance with the wave. The dashed line shows the envelope of linear growth.

case in which the injection of resonant particles has a
finite duration. If we take the case where the variation
of the source is so slow that 81n Q/8t < 7,1, then the
expression (51) may be further simplified by integrating
it by parts. In this case we obtain

U = r?w? /dudéd [(0‘37”53,) D (0)
i

57
B ozN'rw aQ D(t) 57)
T aw ’
where
1 i & ;
K nw
D(t) =128 / ; Z [ —
kiK 1+ g2» S KT
o = L@ NG
k9?1 n—-1m7 t

+ (1+ g2~ 1) % K1y
The second term in (57), which contains D(t), vanishes
within a few 7,,. Therefore one may neglect these os-

cillations in the course of the wave evolutlon at t > 1y
Then

aN Tw dQ

a9

2,2 D( O)Z / dud®dy

where

1
dk <=
D(0) =128
) 0/ kK Z} [(1 + q2n) (60)
5

K q2n-1

Since ay ~ E ~ b, 7y ~ b/, and U ~ b?, we can
rewrite (59) as

= n2w?D(0) Z / dpd®dy

61
(am) [ (t)]3/2 dQ o
“\ "o 50)| aw
After integration of (61) we obtain
_ n2w?D(0)
Ut) =U(0) [1+ —m-('))—
: 4
, oA\ dQ(t)
(62)

Suppose further that the injection is not only quasi-
stationary but is also constant. In this case the wave
amplitude will vary as
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0 t

Figure 5. Pulsation evolution expected from nonlinear
theory with constant (quasi-stationary) particle injec-
tion.

72w?D(0)t
4T (0)

) 40 2 (63)
x 3 / dud®dyp (a—g@)ow] :
N

i.e., asymptotically b(t) o t2. Figure 5 shows an exam-
ple of such evolution.

Note that this case of a slowly changing source of
resonant particles seems to be the most relevant to real
magnetospheric conditions. It is hard to imagine that
a source, which actually appears as a kind of drifting
cloud of energetic particles, would have sharp tempo-
ral dependence with timescales less than or equal to
those of the pulsation period. In this respect the case
of sudden injection has only illustrative interest while
the quasi-stationary source serves as a reasonable ap-
proach to the problem in hand.

b(t) = b(0) [1 +

5. Discussion

In the previous section we calculated the nonlinear
growth and amplitude modulations of Pgs driven by
nonlinear drift-bounce resonance. These calculations;
of course, neglect the damping effects of ohmic dissi-
pation in the ionosphere. In order for waves to be ob-
served for extended intervals of numerous wave peri-
ods, the growth of the instability must overcome iono-
spheric damping. The linear growth rate of typical
waves is given by vy, ~ wf [e.g., Southwood, 1976;
Hughes et al., 1978], where 8 = 2uop/B§ with p as
the plasma pressure, and hence for 8 ~ 0.2 we have
qL/w ~ 0.2. Such a growth significantly exceeds the
ionospheric damping, even on the nightside. The ma-
jority of Pgs are observed in the early morning hours,
having foot points in a dark ionosphere. Assuming typ-
ical nightside height-integrated Pedersen conductivities

GIANT PULSATIONS

Y p ~ 0.5—1 mho, and using the results of Newton et al.
[1978] at L = 7, we find that the ionospheric damping
decrement yy/w ~ 0.075 — 0.04, much slower than typ-
ical wave growth rates.

Observations of Pgs, such as those discussed in sec-
tion 2, show wave trains that continue for numerous
cycles, typically lasting continuously for many hours. If
we define the e-folding ionospheric damping time as 7y,
we find that 77 ~ 2-4 wave periods for the conditions
above [e.g., Chisham et al., 1997]. Hence 77 is much
shorter than the length of typical Pg wave trains, and
we infer that Pgs must be continually driven. If Pgs
are continually driven over extended periods, then we
need to estimate the nonlinear timescale 7, and assess
whether the nonlinear saturation effects are important
for Pgs.

Linear theory assumes that the particles, which may
be trapped in the wave potential (see Figure 3), inter-
act only once with the wave. If the particles driving the
waves are trapped and interact with the waves more
than once during the liftime of the wave packet, then a
nonlinear theory must be adopted. The nonlinear par-
ticle trapping timescale is 7,, and this can be estimated
from 7, /74 ~ (Bo/b)'/?, where 74 is the Alfvén wave
period. Taking a typical Pg amplitude of ~10 nT in
the Earth’s magnetosphere [e.g., Kokubun et al., 1989]
and taking By to be ~100 nT at the geostationary or-
bit results in 1, /74 ~ 3. Consequently, as indicated in
Figure 4, the nonlinear timescale 7,, occurs well within
the lifetime of typical Pg wave packets.

The estimates of 7, and 77 given above suggest that
these parameters have similar magnitudes, both being
much shorter than typical Pg wave packet lifetimes.
Despite the fact that the waves are being continually
damped by the ionosphere, the overall Pg amplitude is
being maintained by an injection of energy from reso-
nant particles. Since this results in a wave train much
longer than 7, the resonant particles will interact more
than once with the wave fields. The linear theory, which
predicts an exponentially growing wave solution, is in-
adequate and is only valid for times short compared to
Pg lifetimes (see Figure 4). This means that if Pg be-
havior is to be fully understood, a nonlinear theory such
as that developed in this paper is required.

It should be noted that similar nonlinear evolution
of monochromatic ion-acoustic waves was studied ex-
perimentally by Ikezi et al. [1978], but the effects of
the particle injection in the resonance region were not
discussed.

6. Conclusions

The Pg is a unique class of geomagnetic pulsation be-
lieved to be associated with injected protons undergo-
ing drift-bounce resonance in the magnetosphere. Pre-
vious theoretical explanations of the phenomenon, as
discussed in the introduction, are flawed by their as-
sumptions of either small-amplitude (linear theory) or
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broadband wave packets (random phase approximation)
which do not fit the observed properties of these pulsa-
tions.

In our paper we have presented a nonlinear descrip-
tion of the drift-bounce resonance in the presence of
resonant particle injection. We have demonstrated that
nonlinear effects such as amplitude modulation and sat-
uration should occur within the observed lifetime of typ-
ical Pg wave packets, hence these nonlinear effects must
be included in any model that attempts to explain Pg
excitation and evolution.

For clarity we have analyzed two simplified but im-
portant cases of sudden and quasi-stationary particle
injections. The case of sudden particle injection meets
the usual initial problem of the nonlinear wave growth
due to instability of an initially given particle distribu-
tion. In this case the growth rate starts from its linear
value and then begins to oscillate at ¢ > 7,. Finally, at
t > T, the growth rate vanishes owing to the nonlinear
phase mixing and the wave amplitude saturates. In the
more realistic case of quasi-stationary particle injection,
when the characteristic time of the particle source vari-
ation is much longer than 7,,, the evolution of the wave
amplitude starts to follow the temporal behavior of the
source of newly injected particles. Both cases illustrate
the importance of the nonlinear saturation of the ex-
citation mechanism, and, in reality, depending on the
form of the source function @, various regimes for the
temporal behavior may be realized.

If Pgs are driven by drift-bounce resonance with in-
jected energetic ions, then the observed modulation of
the wave packets may give an indication of temporal
variations in the resonant source populations. For ex-
ample, the particle injection is likely to last for a fi-
nite time. As we have shown, the drift-bounce res-
onance mechanism saturates after a time ~ 7,, and
hence wave amplitude modulations on timescales longer
than this are likely to be due to temporal variations in
the source. The ionosphere is expected to damp the
waves on timescales ~ 7y, which may be ~ 7,; how-
ever, this damping will generally not be expected to
produce any wave amplitude modulations. Moreover,
since Pg wave trains last very much longer than 77, we
can infer that the waves are being driven over an ex-
tended period. Hence amplitude modulations during
the lifetime of the Pg wave packet could be, at least in
part, due to variations in the source populations, and
this might provide an important diagnostic for future
Pg investigations. :
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