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Abstract. The problem of making a network of dynamical systems synchronize onto a
common evolution is the subject of much ongoing research in several scientific disciplines.
It is nowadays a well-known fact that the synchronization processes are gradually influenced
by the interaction topology between the dynamically interacting units. A complex coupling
configuration can significantly affect the synchronization abilities of a networked system.
However, the question arises what is the optimal network topology that provides enhancement of
the synchronization features under given circumstances. In order to address this issue we make
use of a network model in which we can smoothly tune the topology from a highly heterogeneous
and efficient scale-free network to a homogeneous and less efficient network. The network
is then populated with Poincaré oscillators, a paradigmatic model for limit-cycle oscillations.
This oscillator model exhibits a parameter that enables changes of the limit cycle attraction
and is thus immediately related to flexibility/rigidity properties of the oscillator. Our results
reveal that for weak attractions of the limit cycle, intermediate homogeneous topology ensures
maximal synchronization, whereas highly heterogeneous scale-free topology ensures maximal
synchronization for strong attractions of the limit cycle. We argue that the flexibility /rigidity
of individual nodes of the networks defines the topology, where maximal global coherence is
achieved.

Complex networks are nowadays used for the description of several natural and artificial
systems. Since topological features of interactions between individual units characterize the
global properties of a given system, the research of structural properties is increasingly gaining
on attention. To qualitatively analyze the local and global structural properties of a network,
numerous techniques have been developed, which have been utilized in various disciplines
and diverse circumstances [1]. One of the basic measures that describes the properties of
a network is its degree distribution. Scale-free networks, for instance, are known to have a
highly heterogeneous power-law degree distribution [1], which can foster the synchronization
abilities of a network of coupled oscillators [2], especially due to their hight global efficiency.
Furthermore, it has been shown that a high level of heterogeneity can suppress synchronization,
even thought it also reduces the average distance between the nodes. Another importing
network measure is the average clustering coefficient C' characterizing the cliquishness of a
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network. Remarkably, high clustering coefficients were detected in several real-life networks
[1]. On the other hand, high clustering implies the existence of many transitive connections
and can thus hinder global synchronization [3]. There are several other topological factors,
such as for example the existence of a community structure [4], which also have an impact
on synchronization processes. Nevertheless, even though the dynamical behavior of networks
is inevitable and non-trivially connected with structural properties of the underlying networks,
there are also several other important factors having an impact. With this in mind, in the present
study we focus on the analysis of the role of dynamical properties of individual oscillators. In a
previous theoretical study on cellular oscillators it has been argued that the local dissipation rate
crucially determines the coupling ability of cellular oscillators [5]. Notably, the dissipation rate is
directly correlated with flexibility /rigidity of an oscillator. A low dissipation rate stands for rigid
oscillators whereas on the other hand, oscillators with a near zero dissipation rate have attractors
that are very susceptible to external perturbations and are thus flexible. Therefore, the main
goal of the present work is to explore how the relation between flexibility /rigidity properties of
individual oscillators on one hand and the structure of the network topology that characterizes
the connectivity patterns between them on the other hand impacts the synchronization of
oscillators.

By applying the algorithm described previously [6, 7] we can generate networks whose
topologies can smoothly be altered between a highly heterogeneous scale-free network and a
more homogeneous network. First, N nodes are randomly distributed in a unit square and to
each node a fitness value f; is prescribed. Two nodes are connected if:

(1)

where f; and f; are fitness values of the ¢-th and j-th node, I;; is the Euclidean distance
between them and the ¢ is used to alter the topology of the network. The parameter 6 is used
as a threshold to control the average node degree of the network (k). In order to quantify
topological features of the network and its degree of heterogeneity, the standard deviation of the
node degrees STD(k) (Fig. 1la), the standard deviation of the clustering coefficients STD(C')
(Fig. 1b) and the average clustering coefficient C' (Fig. 1c) are plotted as a function of é.
Both, STD (k) and STD(C') are decreasing monotonically with increasing values of the topology
parameter §. Higher values of STD(k) and STD(C) are indicators of diverse local topological
properties indicating a high degree of network heterogeneity.

Characteristic examples of generated networks are shown in Fig. 1d-f. It can be observed
that for low values of ¢ indeed very heterogeneous networks are generated, in which mostly long-
range connections exist. On the other hand, if § >> 1 mostly nearby nodes are connected and,
in addition, there are no expressive differences in individual node degrees. Finally, intermediate
values of 4, i.e. 6 = 1.1, result in an intermediate heterogeneous network with both long- and
short-range connections. In other words, Fig. 1d-f provide a visual assessment that the network
heterogeneity indeed decreases with increasing values of 9.

The dynamics of individual nodes is driven by the paradigmatic Poincaré oscillator:

N

i == (ri — A) wi —wiyi — € Y dij (x — ;) (2)
=1
N

i == (ri — A) yi +wizi — €y _ dij (yi — y;5) , (3)
i=1

where z; and y; are the phase space coordinates of the i-th oscillator, A is the limit cycle radius,
ry = q/x? + y2-2 is the distance between the origin of the phase space and the position of the i-th
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Figure 1. Standard deviation of node degrees (a), standard deviation of the local clustering
coefficient (b), the average clustering coefficient (c) and characteristic network structures
obtained for § = 0.1 (d), § = 1.1 (e) and 6 = 4.0 (f). Note that in lower panels the size of
the nodes is proportional to their degrees. The number of nodes is N = 100 and the average
node degree is (k) = 5.0

node in the phase space, w; is the angular velocity of the i-th oscillator and e is the coupling
strength and d;; is the connectivity matrix with values of 1 if the i-th and j-th node are connected
and 0 otherwise. Angular velocities w; were distributed according to a normal distribution with
mean angular velocity @ = 1.0 with standard deviation of 0.2. The limit cycle radius was set to
A = 1.0 and the coupling strength to € = 0.25.

The parameter v determines the relaxation towards the limit cycle and is immediately related
with the dissipation rate of the oscillators [5, 8]. In order to investigate the interplay between
structural and dynamical features of the network, we simulated how the overall synchronization
in the systems changes according to the initial rigidity of the oscillators and structural properties
of the network. For that purpose we analyze the synchronization behavior as a function of
the relaxation rate v and network topology parameter . For the quantification of the global
network synchronization we calculate the average correlation coefficient R. Accordingly, we have
to construct the N x N correlation matrix, whose ij-th element is defined as:

Ry — 3 o) =Tl (1) ~ 73] @
M~ S;iS;
where M is the number of integration steps, ;(t) and z;(t) are the time series of the i-th and j-
th oscillator, Z; and Z; are the average values of the time series and S; and S; the corresponding
standard deviations. The average correlation coefficient R is then obtained as the average over
all non-diagonal elements of the matrix. Its values range between 0 (uncorrelated dynamics)
and 1 (complete synchronized motion).

Numerical simulations were carried out on a network of N = 100 Poincaré oscillators, with
an average node degree (k) = 5.0. Fig. 2a features the results showing the average correlation
as a function of the dissipation rate v and the network structure §. It can be observed that
both parameters mutually affect the synchronization behavior. For rigid oscillations where
~v > 100, maximal synchronization is achieved in the highly heterogeneous scale-free network.
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On the other hand, in case the network is populated with flexible oscillators (v < 100), maximal
synchronization is achieved for intermediate values of the topology parameter &, where the
network is less heterogeneous as the scale-free network and is constituted by long- as well as
short-range links (see Fig. 1). Notably, for this intermediate values of § the network exhibits
a higher average clustering coefficient. Furthermore, in the homogeneous network (§ > 2) with
mostly short-range interactions, the degree of synchronization does not change by changing
7, thus indicating that in this case the synchronization does not depend on flexibility /rigidity
properties of oscillators. In order to provide a better inside into the reported phenomena, we
additionally plotted characteristic cross-sections of the color-contour plots for different values of
~. The results presented in Fig. 2b additionally confirm the existence of a resonant response
due to changes in network topology for flexible oscillators, whereas for rigid oscillators the level
of synchronization decreases monotonically with increasing 9.

In sum, we have shown that the network topology ensuring most synchronized response
in an ensemble of coupled oscillators depends on individual oscillator properties. While rigid
oscillators synchronize best in heterogeneous scale-free networks, flexible oscillator exhibit the
most coherent collective response when they are connected in a less heterogeneous network.
Our findings provide novel insights into synchronization behavior of coupled oscillators, which
may be of importance especially from biological point of view. Signal transduction systems
have to respond sensitively to weak external stimuli, thus indicating that cellular oscillators in
general should behave like flexible oscillators. On the other hand it is known that different
biological oscillators differ in their rigidity and, moreover, that the coupling influences the
flexibility /rigidity properties of an oscillator [8]. Apparently, the optimal structural organization
of the intercellular communication networks is determined also by characteristics of individual
cells. Interestingly, the intermediate network structure that ensures best synchronizability of
flexible oscillators is very economic, since it represents a good compromise between efficiency,
wiring economy and robustness - a desirable attribute of several real-life systems.
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