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Abstract. We have analyzed the stochastic resonance phenomenon on spatial
networks of bistable and excitable oscillators, which are connected according
to their location and the amplitude of external forcing. By smoothly altering
the network topology from a scale-free (SF) network with dominating long-
range connections to a network where principally only adjacent oscillators are
connected, we reveal that besides an optimal noise intensity, there is also a most
favorable interaction topology at which the best correlation between the response
of the network and the imposed weak external forcing is achieved. For various
distributions of the amplitudes of external forcing, the optimal topology is always
found in the intermediate regime between the highly heterogeneous SF network
and the strong geometric regime. Our findings thus indicate that a suitable
number of hubs and with that an optimal ratio between short- and long-range
connections is necessary in order to obtain the best global response of a spatial
network. Furthermore, we link the existence of the optimal interaction topology
to a critical point indicating the transition from a long-range interactions-
dominated network to a more lattice-like network structure.
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1. Introduction

In the last decade, the theory of complex networks has become a hot topic in social, biological
and information sciences [1, 2]. The so-called small-world [1] and scale-free (SF) [3] networks
have been found within such diverse structures as food webs [4], computer networks [5], social
networks [6], cellular and metabolic networks [7] and in the nervous system [8, 9]. Such
networks are characterized by some exceptional properties. For small-world networks, it is
known that on the one hand, the average path between vertices is relatively short, like in a
random network, but on the other hand, the clustering coefficient indicating the cliquishness
of a typical neighborhood is large, like in a regular graph. Furthermore, in many complex
networks, the connectivity of the vertices is distributed according to power law, thus indicating
the SF character of the network. The most prominent feature of the SF networks is the presence
of a few highly connected vertices, i.e. hubs, whereas there are many nodes with a few
connections.

In order to understand the emergence of the SF networks, the mechanism of preferential
attachment was introduced [3], in which new vertices connect preferentially to existing well-
connected ones. As an alternative, the varying fitness model was introduced [10]–[12], where
fitness values are assigned to individual vertices and links are established between them with
a probability depending on their fitness values. Thus, the vertex fitness mechanism leads to
networks whose topological properties are determined by the characteristics of the vertices.
In particular, it was shown that the SF distributions and even non-SF distributions of fitness
values lead to networks with power-law degree distributions [12]. Nevertheless, many real
networks are embedded in metric space and the establishment of links is also a function of
the Euclidean distance between the vertices [13]–[15]. The most prominent examples of such
genuine networks are the Internet [13], mobile communication [16], traffic networks, power
grids and the nervous system [9].

Stochastic resonance (SR) is a phenomenon in which the response of a nonlinear system
to an external sub-threshold signal is optimized with the addition of noise (for a review
see [17]). Even after almost three decades after its discovery, this contradictory observation
is still a vibrant avenue of research for several scientific disciplines ranging from physics [18] to
biology [19] and chemistry [20]. In parallel with studies of isolated systems with relatively small
numbers of degrees of freedom, the research focus has been shifting to coupled and spatially
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extended systems with many degrees of freedom. Those studies revealed numerous examples of
nontrivial collective dynamic behavior in various setups (for a review see [21]), ranging from
noise-induced propagation [22], spatiotemporal SR [23] and spatial coherence resonance [24]
to array-enhanced SR [25], system size SR [26], diversity-induced resonance [27], etc.

With the advances in network science, the frontier of interest has shifted from regular
networks to ensembles with complex interaction topologies. Studies on the SR phenomenon on
networks with a small-world topology in general emphasize the advantages of added shortcut
links reflected by an enhanced collective response and a greater synchronization [28]. Similar
investigations incorporating the SF network models also emphasize the advantages of complex
interaction topologies [29]. Nevertheless, in contrast to previous investigations, where mostly
topological properties of networks in connection with the SR phenomenon have been studied,
we also take into account spatial aspects of the networks. For this purpose, we make use of
the spatially embedded vertex fitness network model [13, 15], where a fitness value is assigned
to each element of the network and vertices are connected with the probability depending on
the vertex fitness and their spatial localization. With a control parameter we can then adjust the
relative influence of those two factors on the connectivity of individual vertices. In this manner,
the network topology can smoothly be altered between an SF network with dominating long-
range connections originating mostly from a few hubs and a network where, in general, only
adjacent oscillators are connected. Our results indicate that besides an optimal noise intensity,
there is also a best possible network configuration at which the greatest signal amplification
via SR is achieved. Most remarkably, for different distributions of excitability, the optimal
network topology is always between a highly heterogeneous network with mainly long-range
connections and a strong geometric regime. We treat two types of oscillators constituting the
network, one bistable and the other excitable, thus indicating that our findings are independent
of the inherent dynamics driving the nodes. Moreover, we can also identify the value of the
network control parameter giving the optimal network structure.

2. Mathematical model of the network system

2.1. The core models of coupled oscillators

For the sake of generality, we consider two prototypical nonlinear systems: one bistable and
the other excitable. First we consider an ensemble of coupled bistable overdamped oscillators,
whose dynamics is driven by Langevin equations of the form

dxi

dt
= xi − x3

i + g
∑

j

εi j(x j − xi) + Ai cos(ωt) +
√

2Dξi(t), (1)

where dynamical variables xi describe the state of the ith oscillator located at the ith site,
D defines the strength of Gaussian noise with zero mean and autocorrelation 〈ξi(t)ξ j(t ′)〉 =

δi jδ(t − t ′), the sum signifies the coupling and it runs over all units, whereby εi j = 1 if the unit i
is coupled to unit j , while otherwise εi j = 0. g is the coupling constant and Ai is the amplitude
of the external periodic forcing with frequency ω.

As the second system, we examine coupled excitable elements. In particular, we make
use of a two-dimensional (2D) iterated map, the so-called ‘Rulkov map’, describing neuronal
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dynamics as proposed by Rulkov [30],

ui(n + 1) = α/(1 + ui(n)2) + vi(n) + g
∑

j

εi j(u j − ui) + Ai cos(ωt) +
√

2Dξi(n), (2)

vi(n + 1) = vi(n) − σ ui(n) − χ, (3)

where ui(n) and vi(n) are the slow and fast dynamical variables, respectively, and are considered
as dimensionless variables, n is the discrete time index and α, χ and σ are the system’s
parameters. By choosing χ = σ = 0.001 � 1, we ensure that the dynamics of ui(n) is much
faster than that of vi(n). Furthermore, by setting α = 1.95 < 2, we ensure that the system
exhibits a single excitable steady state. In the case of minor deviations from the excitable
steady state, the system remains quiescent. Only substantial perturbations push the system into
the firing state, which is characterized by large-amplitude spikes. Although the dynamics of
excitable systems is qualitatively different from the one characterizing the bistable oscillator,
both setups have proven to be suitable candidates for the realization of the SR.

2.2. External forcing

The external periodic forcing is of the so-called sub-threshold type, which means that in the
absence of noise the external driving can neither provoke hopping from one stable state to
the other in the case of bistable oscillators, nor trigger large-amplitude excitations in the case
of excitable oscillators. Moreover, the sub-threshold amplitude of the external forcing Ai is
assumed to follow a power-law distribution P(A) ∼ A−β . Here the values of Ai are assigned
deterministically as shown below [15],

Ai = (i/N )1/(1−β), (4)

where i = 1, 2, . . . , N and N signifies the number of units. In order to ensure that all oscillators
are subjected to the sub-threshold driving, we bound values Ai by setting the maximum allowed
value Ai(max), so that in both cases none of the units can provoke a response without the sup-
port of noisy perturbations, whereby the characteristics of the distribution remain unchanged.

2.3. Constructing the network of coupled oscillators

The generation of an interaction network of coupled oscillators is based on the vertex fitness
network model [11] and the spatially embedded vertex fitness network model [15]. The
amplitudes of external forcing Ai are used for characterizing the fitness of each vertex and
the network connectivity is determined as shown below,

5i→ j ∼
Ai A j

(li, j)δ
, (5)

where li, j signifies the Euclidean distance between the i th and j th oscillators in a d-dimensional
space and δ is the control parameter that characterizes the topology of the network. In particular,
for δ 6 1, the connectivity is predominantly dependent on the fitness of the vertices and
consequently the long-range interactions dominate in the network structure. On the other
hand, for δ � 1, the distances between oscillators become the key constraint that impacts the
topology of the network, so that mainly short-range interactions exist between the oscillators.
The i th and j th cells are connected if the connectivity exceeds the threshold value 5i→ j > 2.
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Figure 1. Characteristic network structures (upper row) obtained for δ = 0.4
(left panel), δ = 2 (second panel from left), δ = 3.8 (third panel from left) and
δ = 5 (right panel) and the corresponding degree distributions (lower row). In all
cases the mean degree was set to 〈k〉 = 5, the number of units was N = 100 and
β = 2.5.

Given a fixed set of N units, we can set the number of links (or mean vertex degree 〈k〉)
in the network by choosing the appropriate 2. Note that the model given by equation (5) is
similar to the probability function employed by Morita [15], where for simplicity reasons the
distance li, j was defined by the Lmax norm (supremum norm), while in our calculations, the
usual Euclidean L2 norm is used. In figure 1 (upper row), we show characteristic examples of
network structures for different values of the parameter δ. For the lower values of δ (δ = 0.4),
long-range connections are dominating in the network, whereas for larger values of δ (δ = 5),
mostly nearest-neighboring oscillators are connected, while for intermediate values of δ, both
short- and long-range interactions can be observed and the ratio between them is obviously
proportional to the values of δ.

In order to quantify the network properties, we calculate the corresponding degree
distributions. As shown in the lower row of figure 1, the degree distribution for δ = 0.4
indicates an SF structure of the network, and for δ = 5, the degree distribution obeys a Poisson
distribution, as found in random geometric graphs. For intermediate values of δ, the degree
distribution is smoothly altered between these two extremes. In particular, for δ = 2, the fraction
of long-range connections is, in comparison with the case where δ = 0.4, obviously decreased.
However, there still exist some well-connected vertices, i.e. hubs, but their extent is declining
due to the increased number of connections between the neighboring units. As δ is further
increased (δ = 3.8), short-range interactions begin to dominate in the network and the degree
distribution becomes more and more similar to the Poisson distribution, as typical for δ � 1.
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Note that for other distributions of the fitnesses of vertices, qualitatively similar networks
appear as a function of δ, e.g. for δ close to 0, we obtain a network with a few hubs, which are
connected with the majority of the nodes via long-range links. However, in this case, the degree
distribution does not exactly follow the power law. Namely, according to Servedio et al [12], an
SF network can be produced by arbitrary distributions of vertex fitnesses, but in this case one
has to find a suitable linking probability function, which is in general different from those used
in the present paper, even at δ = 0. For that reason and because of the investigation of the role
of the scaling exponent β in the continuation of the paper, we use a power-law distribution of
forcing amplitudes.

2.4. Evaluating the response of the network to the external forcing

In order to quantify the global response of the system to the external forcing, we calculate the
Fourier coefficient Q of the mean field,

S(t) =
1

N

∑
i

si(t), (6)

where the coefficients are defined as

V =
ω

πn

∫ 2πn/ω

0
S(t) sin(ωt) dt,

W =
ω

πn

∫ 2πn/ω

0
S(t) cos(ωt) dt, (7)

Q =

√

V 2 + W 2.

Furthermore, we also define the local Fourier coefficients Qi as

Vi =
ω

πn

∫ 2πn/ω

0
si(t) sin(ωt) dt,

Wi =
ω

πn

∫ 2πn/ω

0
si(t) cos(ωt) dt, (8)

Qi =

√
V 2

i + W 2
i ,

which measures the strength of the resonant response of individual units. In equations (7)
and (8), n defines the number of oscillation periods used. Note that si in equations (6) and (8)
denotes xi for the case of bistable oscillators, whereas it signifies ui when excitable oscillators
are analyzed. Since the Fourier coefficients characterize the amplitude of the input frequency ω

in the output signal, they represent a suitable and commonly used measure for the quantification
of the SR in the system.

Furthermore, in order to examine the correlation between the individual oscillators in the
system, we calculate the correlation matrix R, whose ijth element is defined as

Ri j =

∑
(si − s̄i)(s j − s̄ j)

σsi σs j

, (9)

where si has the same meaning as in equations (8), and s̄i and σsi are the mean value and the
standard deviation of the time series si(t) of the ith oscillator, respectively. The correlation
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Figure 2. Response of the system quantified via the Fourier coefficient Q as
a function of noise intensity D and network configuration expressed by δ for
bistable oscillators (upper row) and for the ensemble of excitable maps (lower
row). Scaling exponents β are β = 2.0 (left column), β = 2.5 (middle column)
and β = 3.0 (right column).

coefficient Ri j thus indicates the relationship between the dynamics of the ith and the jth
oscillator.

The employed system parameters used throughout this study were g = 0.1, ω = 0.01,
Ai(max) = 0.08 for the network system of bistable oscillators and g = 0.005, ω = 0.004,
Ai(max) = 0.012 for the network of excitable oscillators (Rulkov map). The number of nodes
was N = 100, unless otherwise stated, and the average degree of the network was set to
〈k〉 = 5. All calculations were averaged at least over 50 independent realizations, in order to
diminish statistical fluctuations originating from the stochastic dynamics and from randomness
incorporated into network generations.

3. Results

We analyze the collective response of coupled bistable and excitable oscillators as a function
of the network structure. For this purpose, we calculate the Fourier coefficient Q for different
noise intensities D and different network configurations characterized by different δ. The results
are presented in figure 2: the upper row for the ensemble of bistable oscillators and the lower
row for the excitable system; in both cases three different values of the scaling exponent β were
considered. It can be observed that besides an optimal noise intensity, there is also a best possible
network configuration for which the system’s collective response is at best correlated with weak
external driving. The comparison between the upper and lower rows of figure 2 indicates that
this observation does not depend on the inherent dynamics of elements constituting the network.

New Journal of Physics 13 (2011) 013012 (http://www.njp.org/)

http://www.njp.org/


8

Figure 3. Q as a function of noise intensity D and network configuration δ

for bistable (upper row) and excitable (lower row) ensembles of oscillators for
different system sizes: N = 200 (left column) and N = 300 (right column). The
scaling exponent in all cases is β = 2.0.

Furthermore, for different values of β, qualitatively similar results are obtained, since in all
cases an intermediate network configuration exists at which the greatest synchrony between the
forcing and the response of the system is achieved. However, for higher values of β, the optimal
network structure is attained at lower values of δ.

Next we investigate the role of the system size expressed by different values of N .
Similar to figure 2 (N = 100), in figure 3 Q as a function of D and δ is shown for N = 200
(left column) and N = 300 (right column) and for both the cases of the inherent dynamics
of units constituting the network. Evidently, in all cases the optimal responses coincide with
those inferred by N = 100 (see the left column of figure 2), which confirms that the reported
phenomenon is qualitatively independent of the system size. Importantly, however, the overall
values of Q decrease as the system size is increased, which is a consequence of the lower
average forcing amplitudes to which all oscillators are subjected. This reflects the fact that on
the one hand the values Ai are arranged in descending order of i , as given by equation (4),
and on the other hand, we are obliged to fix the maximal amplitude Ai(max) in order to ensure
that all oscillators are subjected to sub-threshold forcing. Therefore, lower amplitudes of
periodic excitations result in a decreased resonant response of individual oscillators and hence
a decreased collective response Q is attained as N is increased.

To gain more insights into the observed phenomenon, we show in figure 4 the responses
of individual units Qi as a function of δ at optimal noise intensity. In the left panel, the results
for the case of bistable oscillators are shown, whereas in the right panel the same analysis
for coupled excitable elements is performed. In both cases, we use β = 2 as a representative
example, but analogous interpretations are attained irrespective of the scaling exponent char-
acterizing the distribution of driving amplitudes. At this point it should be emphasized that the
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Figure 4. Resonant responses of individual units Qi as a function of network
configuration δ for coupled bistable oscillators (left panel) and for the network
of excitable units (right panel). In both cases, the scaling exponent is β = 2. The
color profile is linear, yellow depicting 0.02 and dark orange depicting 0.18 (for
bistable oscillators) and 0.0 and 0.045 (for excitable oscillators) values of Qi .

amplitudes of periodic forcing are decreasing with increasing i , as given by equation (4), so that
accordingly the responses of individual units are expected to decrease with increasing i as well.
However, the decrease in the resonant response reflected by values of Qi obviously depends
on the network structure. There exists a most favorable δ, at which the resonant responses
of individual units decrease the most slowly with increasing i . These results corroborate the
findings already described in figure 2 that indeed an optimal global response is achieved in the
intermediate regime between an SF network and a network with only short-range interactions.

In order to explore how the existence of an optimal topologically determined SR response
is related to dynamical correlation among oscillators, we calculate the correlation matrices R for
different network configurations. To provide insights into the relation between the topological
and dynamical features of the network, we show in figure 5 characteristic connectivity matrices
ε along with the correlation matrices R for both cases of the inherent dynamics of units
constituting the network. The optimal noise intensity and three different network configurations
are considered: a network with dominating long-range connections and a power-law degree
distribution (δ = 0.4); a random geometric network (δ = 5); and a network whose topological
properties are between those two extremes (δ = 2) and that was found to ensure the best
synchrony between the external driving and the mean field. Evidently, for intermediate values
of δ, the greatest overall correlation between oscillators is achieved, which once again confirms
that the optimal response is attained if both long- and short-range interactions constitute the
structure of the network.

For the quantification of this visual assessment we further calculate the average correlation
coefficient

〈R〉 =
1

N (N − 1)

N∑
i 6= j

Ri j . (10)

The results shown in figure 6 indicate that indeed the best average correlation is achieved for
intermediate values of δ and, in addition, the maximum roughly coincidences with the optimal
δ at which also the greatest signal-to-noise ratio was attained. Apparently, the optimal SR
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Figure 5. Characteristic connectivity matrices ε (left column) and the
corresponding correlation matrices R for coupled bistable oscillators (middle
column) and for excitable oscillators (right column) for δ = 0.4 (upper row),
δ = 2.0 (middle row) and δ = 5.0 (lower row). In all cases the scaling exponent
is β = 2 and the color profile is linear, yellow depicting 0 and black depicting 1
values of εi j and Ri j .

response can be associated with the network topology, which ensures the best transmission
of weak forcing across the network.

A more advanced analysis of this optimal global response of the system being realized
at a given threshold, at a critical (optimal) δ, in a phase-transition manner, is presented in
the appendix.
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Figure 6. The average correlation coefficient 〈R〉 as a function of δ for bistable
oscillators (left panel) and for coupled excitable elements (right panel). Other
parameters are the same as in figure 5.

4. Summary

In this paper, we have studied the SR phenomenon in spatial networks, where the connectivity
is a function of the location of oscillators and the amplitude of external forcing. By varying a
control parameter, the network topology was smoothly altered between an SF network with
a high inherent degree of inhomogeneity of individual oscillators and a random geometric
network where no substantial discrepancies in the degrees of individual nodes are found. Our
results show that besides an optimal noise intensity, there is also a most favorable interaction
topology at which the best correlation between the response of the network and the imposed
rhythm is achieved. For various distributions of amplitudes of external forcing, an optimal
topology was always found in the intermediate regime, where long- and short-range connections
exist between the oscillators. Here, units that are subjected to the highest forcing amplitudes act
as local hubs that govern the dynamics of interconnected neighborhood, and long-range links
primarily represent connections between those hubs (see the second panel from left in figure 1).
For comparison, in the SF network (left panel in figure 1), the majority of the units are connected
exclusively to a few hubs, which operate as global pacemakers with a very large node degree,
and thereby influence very different parts of the network. It seems that the entraining of the
network is less efficient if there are large discrepancies in the node degrees. On the other hand,
in a network with mainly short-range interactions (see the right column of figure 1), there are
no significant differences in node degrees, and the leading oscillators remain unexpressed and
hence fail to efficiently dictate the rhythm of the network. Apparently, a suitable number of hubs
and an optimal ratio between short- and long-range connections are necessary for ensuring the
greatest global response of the whole network. The results presented here are also in agreement
with our previous study, where the influence of interaction topology on the regularity of noise-
induced oscillations in an ensemble of excitable oscillators has been analyzed [34]. These results
have revealed that besides an intermediate noise intensity, there is also a best possible network
configuration at which the noise-induced oscillations are most regular. The reported optimal
network architecture approximately coincides with those in the present paper, thus indicating
that a most favorable topology exists for various dynamical processes in spatially embedded
complex networks.
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Furthermore, from the results presented in the appendix, we observed that the critical point
of the oscillators dynamics giving the optimal global response coincides with δc = d/(β − 1),
the critical point of the network structure, signaling the change in network organization from
a long-range dominated (δ < δc) to a more compact one (δ > δc). We hope that our results
presented here will help in further clarifying the impact of the spatial organization of coupled
oscillators on their global dynamic response.

Appendix

To check whether the existence of an optimal δ, as detected from the analysis of the response of
coupled oscillators, points to the specific network organization, we computed the fluctuation of
the length of links between nodes in the system, defined as 〈li j〉

2/〈l2
i j〉, where 〈li j〉 is the average

distance of the links between connected vertices and 〈l2
i j〉 is the average of the square of the

distances, as a function of δ. The results for three different exponents β are shown in figure A.1.
We note (figure A.1, left panel) that for each β, the link length fluctuation exhibits an obvious
increase at particular values of δ that might indicate a change in the network structure from
long-range dominated for low values of δ to more compact one as δ increases. Most amazingly,
these particular values of δ indeed correspond to the optimal values observed in the collective
responses of oscillators (see figures 2–6).

Our model for constructing the network (equation (5)) can be classified as a geographical
threshold network model [31]. It was shown that using the power-law weight distribution
leads to SF network organization with degree distribution P(k) ∝ k−γ , where γ = 1 + δ(β −

1)/d [31]. The probability that two vertices at distance r are connected is, in a threshold network,
given by g(r) ∝ r−δ(β−1). On the other hand, adding long-range connections with probability
g(r) ∝ r−p to d-dimensional lattices [32] resulted in an efficient network at the critical value of
the exponent p = d . Thus, we would expect to reach the optimal response in our model at the
critical value δc = d

/
(β − 1).

Alternatively, we can consider the statistical properties of the network connectivity to find
the relation between the network parameters β and δ. The network construction in this model
can be reformulated as the problem of maximization of the connectivity function. A chosen
node j seeks to link to a node i for which the connectivity 5i→ j is maximal. If the jth node
is connected in the network, then its link to the largest connectivity 5i→ j is included in the
set of M links. We treat the problem similarly to the deterministic walk [33] in a slightly
simplified form. Let the nodes be distributed randomly with uniform density ρ in infinite
d-dimensional space, and let their fitness values A′

j be integers with the power-law distribution
with the exponent β,

p(A′) =
A′−β

ζ(β)

∞∑
m=1

δ(m − A′), (A.1)

where the normalization is given by the Riemann zeta function ζ(β). The optimal node
to which node j will connect is given by the maximum of the function A′

i/ lδ
i j (using the

connectivity model given by equation (5)) or, equivalently, by the minimum of the function
lδ
i j/A′

i representing the ‘cost’ of the link from node j to i. Let C = min(lδ
i j/A′

i). We seek the
probability P(C) that all other connectivities are larger than C, and assuming no correlation

New Journal of Physics 13 (2011) 013012 (http://www.njp.org/)

http://www.njp.org/


13

Figure A.1. Fluctuation of the length of links between nodes in a network as a
function of δ (left panel) and δ(β − 1) (right panel). The results are shown for
three different exponents β.

Figure A.2. Normalized resonant responses Qnorm as a function of (β − 1)δ for
coupled bistable oscillators (left panel) and for coupled excitable maps (right
panel).

between nodes, we find [33]

P(C) = exp

[
−

�(d)ρζ(β − d/δ)

ζ(β)d
Cd/δ

]
. (A.2)

From this, we can compute the mean of C,

〈C〉 = 0(1 + δ/d)

[
d

�(d)ρ

]δ/d [
ζ(β)

ζ(β − d/δ)

]δ/d

, (A.3)

where �(d) is the d-dimensional solid angle for example 2π in 2D space. It is interesting to
note that when the parameter δ approaches the critical value δc = d/(β − 1), the cost of links
〈C〉 drops to zero. Expanding 〈C〉 in series to the first order as δ → δc gives

〈C〉 ∝ (δ − δc)
1/(β−1). (A.4)

New Journal of Physics 13 (2011) 013012 (http://www.njp.org/)

http://www.njp.org/


14

The critical point δc = d/(β − 1) denotes the transition from the long-range dominated network
to a more lattice-like network structure. By plotting the links length fluctuation against δ(β − 1),
we observe that the curves obtained with different exponents β collapse to a single one
(figure A.1, right panel).

We further explore the dependence of the resonant responses on δ(β − 1) for different
values of β and for both types of oscillators. For a better comparison, we normalize the
Fourier coefficients Q, so that they are bounded in the unit interval and denote it as Qnorm.
The results showing the normalized resonant responses at optimal noise intensity are presented
in figure A.2. It can be observed that for all values of β, the curves reach their maximums
at roughly the same value of (β − 1) δ = d = 2. This finding indicates that indeed the optimal
global response is realized at the critical point δc.
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