
Generic Support for Policy-Based Self-Adaptive Systems

Richard John Anthony
Department of Computer Science, University of Greenwich, UK

R.J.Anthony@gre.ac.uk

Abstract
This paper presents a policy definition language

which forms part of a generic policy toolkit for autonomic
computing systems in which the policies themselves can
be modified dynamically and automatically. Targeted
enhancements to the current state of practice include:
policy self-adaptation where the policy itself is
dynamically modified to match environmental conditions;
improved support for non autonomics-expert developers;
and facilitating easy deployment of adaptive policies into
legacy code.

The policy definition language permits powerful
expression of self-managing behaviours and facilitates a
diverse policy behaviour space. Features include support
for multiple versions of a given policy type, multiple
configuration templates, and meta-policies to dynamically
select between policy instances.

An example deployment scenario illustrates advanced
functionality in the context of a multi-policy stock trading
system which is sensitive to environmental volatility.

1. Introduction and background

Self-adaptive behaviour can be achieved by
embedding a policy which itself is static at run-time, for
example, it may just provide operational rules or
parameterisation to set bounds of behaviour. In such
approaches policy changes (for example to achieve long-
term optimisation or to resolve rule conflicts), require
open-loop adaptation in which inefficiencies or conflicts
are identified and fixed manually, or are identified
automatically but the solutions require human mediation.

There is a limit to the effectiveness of a system that
has a fixed policy. In dynamic environments it is often
necessary to not only adapt the controlled system, but also
for the policy to self-modify its own behaviour to better
achieve the system’s goals. Fixed rules are likely to be
sub-optimal over at least part of the system behaviour
space. However, if behavioural trends are analysed, it
may be possible to gradually tune the rules dynamically to
better reflect the needs of the specific system, taking into
account its current environment and context. If the policy

configuration can also be persisted between executions,
then longer-term adaptation could be achieved.

There are three distinct levels of sophistication found
in current schemes: 1. In the simplest approach the policy
rules are statically embedded. The template configuration
is exposed and can be modified between executions.
Examples are found in [1, 2]. [3] Embeds fixed rules into
agents. [4] Provides an example where the policy
mechanism is internally sophisticated, embedding utility
functions which achieve dynamic self-configuration,
although the actual policy configuration remains fixed. 2.
Open-loop policy updates. An external entity (usually a
human) identifies potential configuration optimisations,
which can be applied between executions by modification
of the template or direct manipulation of policy rules. An
example of this configuration is IBM Research’s Policy
Management for Autonomic Computing (PMAC) [5], in
which the policy mechanism is maintained externally to
the run-time system and thus policy changes can be made
without changing the application code. 3. Closed-loop
adaptation, where the policy dynamically and
automatically modifies its own rule-base or template
settings during execution. A rule-based system for
application configuration is described in [6], in which
rules are statically assigned either high or low priority. In
this system the dynamic adaptation is in the form of
automated conflict resolution. Where there is a conflict
between low priority rules, dynamic resolution is
performed by using cost functions to select the most
appropriate action.

A number of systems have employed short-term self-
adaptation of policy (in which changes are volatile).
Examples are found in [7], in which event-trigger
conditions are dynamic, and [8] in which conflicts
between the obligations of security policies are
automatically detected and resolved at run-time.

Systems that have a wide potential behaviour space,
with many dimensions of freedom, do not lend
themselves well to governance by a single policy. In such
cases it may be more appropriate to have a collection of
policies and to use the most appropriate one for the given
ambient conditions. A meta-policy can be used to make
this selection. In [9] for example, administrators can view

Proceedings of the 17th International Conference on Database and Expert Systems Applications (DEXA'06)
0-7695-2641-1/06 $20.00 © 2006

CORE Metadata, citation and similar papers at core.ac.uk

Provided by Greenwich Academic Literature Archive

https://core.ac.uk/display/67528?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

and update externally visible security policies at run-time.
A meta-policy is used to dynamically select between
policy versions.

An earlier example of policy self-modification
behaviour is provided in [10] in which internal thresholds
and other configuration is changed dynamically to reflect
environmental conditions. However, that was initial work
in the author’s current policy-library project, and the
adaptation was limited to short-term changes that were
not persisted between executions.

The remainder of this paper is concerned with future
policy-based systems in which policies can modify their
own behaviour as well as adapting the controlled system.
From here on, the term ‘policy’ refers to a structured set
of rules and actions that govern the behaviour of some
aspect of an application’s run-time behaviour. The
implementation of such a policy system requires that
several aspects can be dynamically tuned, including the
initial configuration template settings and the actual
parameterisation of each rule. The action carried out as a
result of executing a rule is permitted to include policy-
updating statements that change the way in which the
same, or another, rule behaves in the future.

Also envisioned are systems that embed a suite of
policies and use a meta-policy to dynamically select the
most appropriate one for the ambient environmental or
contextual conditions. In these systems it will be possible
for several dimensions of adaptation to occur
concurrently, from fine-grained policy-static control to
medium-grained optimisation achieved through policy
self-modification, to coarse-grained behavioural shifts
achieved through automated switching between different
policy instances.

2. A policy definition language

Several languages have been devised to permit
specification of policy rules, including TPL [11] and
Ponder [12]. The eXtensible Access Control Language
(XACML) [13] includes a query protocol to examine
policies and determine whether a particular access should
be allowed. Some languages have additional features such
as the automatic detection and resolution of rule conflicts,
see for example [14].

The proposed language extends the state of the art in
policy languages in several ways. It explicitly supports
dynamic self-modification of policies over both short and
long term through persisted configuration changes. Also
supported are policy suites, in which a particular type of
policy can have many differently-geared instances (for
example cautious and aggressive versions). Suites of
templates for a given policy-type allow different initial
configurations to be used, depending on start-up
circumstances. Meta-policies are also supported. These
can be used to select amongst many policy-instances and

templates at initiation time, and can also be used to
automatically hot-swap between instances of the same
type of policy should the environmental conditions or
context change significantly. The language also
incorporates features to support bounded behaviour,
enhance stability and facilitate policy-object reuse.
Policies, meta-policies and initial templates can be simply
and unambiguously written using straightforward syntax
and type-safe semantics.

The language is generic, in the sense that is capable of
describing a very-wide space of policies for a very diverse
set of application domains. This is achieved through using
syntax and structure which is simple yet flexible and
expressive. The language has a number of novel features:

The language is object oriented. Different objects
represent policies, rules, actions etc. The object
approach facilitates re-use of behaviour, through
reusing tested objects. For example a new policy can
share some of the rules and actions of existing
policies. This reduces (policy) development and
testing effort and enhances reliability.
The flexibility and powerfully expressive nature of the
language stems from its hierarchical support for
effectively three categories of policy: 1. Templates
provide configuration parameters (in some schemes
this is the extent of the ‘policy’). These are used to
initialise the other categories of policy - Normal
Policies (NP) and Meta-Policies (MP). 2. NPs are
those which contain the low-level autonomics
business logic of applications (for example to achieve
self-optimisation or self-protection). 3. MPs can be
used to provide higher-level adaptation (typically by
selecting the most appropriate NP for the prevailing
circumstances, and/or selecting the most appropriate
template with which to configure the policy). MPs can
also be configured by a user-supplied template. A
single policy script may contain all three categories of
policy.
MPs can either perform an initial configuration, or can
operate continuously. In this latter mode, MPs support
‘hot-swapping’ between NP instances.
The language reinforces the natural semantic
differences between variables that are used to convey
external information to the policy (environmental and
contextual state) and those that are used to maintain
internal policy state (such as counts, flags and
thresholds). The values of External Variables (EV)
represent the dynamic context in which the policy
executes and therefore must be passed in (e.g. from
sensors) each time the policy is fired. Thus EVs must
not be modified by the policy, and there is no reason
to persist the values of EVs, or to include them as part
of a policy configuration template. The Internal
Variables (IV) are part of the current configuration of
the policy. As such it is important that IVs can be

Proceedings of the 17th International Conference on Database and Expert Systems Applications (DEXA'06)
0-7695-2641-1/06 $20.00 © 2006

updated and their values persisted to enable longer-
term adaptation. The separation of variables into two
classes simplifies policy writing and debugging, and
reinforces type-safety and semantic checking. For
example, an EV may only occur on the RHS of an
assignment, whereas an IV may be placed on either
side.
Template and run-time configuration of IVs supports
specification of various attributes, such as value
ranges (upper and lower limits) and increment /
decrement amounts. For example when specifying a
timer value in milliseconds, it may be desirable to set
the increment amount to 100. In this way each time
the policy increments the variable it actually adds 100
ms to the timer value. Such techniques can greatly
simplify policy writing and reduce the occurrence of
errors.
The policy mechanisms are truly self-adaptive. At run-
time the IVs can be dynamically updated. EVs change
according to ambient conditions. The language
structure makes it possible for rule execution to be
influenced (ordering, omission or inclusion of specific
rules) by the values of either IVs or EVs.
To promote and enhance stability, a policy language
object ToleranceRangeCheck (TRC) is provided to
facilitate simple dynamically-configurable
specification of dead-zones; which help to avoid
oscillation. This language object replaces at least two
rules and two threshold variables that would otherwise
be needed to configure a dead-zone.
Policy scripts are formatted in XML which enforces a
standard general syntax and facilitates the deployment
of policies in heterogeneous systems. The various
objects of each type are grouped together in the script;
i.e. the policy is not written in a procedural format as
with for example pseudo-code and most other policy
script-languages. The object format simplifies parsing
and syntactic checking.
A policy library implementation further complements
the language by providing implicit support
mechanisms such as long-term state persistence and
library interface mechanisms that are easy to deploy
into legacy code.

The policy language comprises several object types,
the semantics of which are described in turn:

ExternalVariable: Representation of environmental or contextual
conditions. Passed in to the policy at the point of policy evaluation.
InternalVariable: Used internally by a policy (typically counters, flags
and thresholds).
Each class of variable can be of three basic types: Long, Boolean and
PolicyName, and strong validation is performed (for example
assignment requires similar types for the LHS and RHS variables).
PolicyName variables are only used in MPs.
Template: A set of configuration statements that apply to a particular
policy-type. The configuration for each variable can include attributes

such as maximum and minimum values.
ReturnValue: Numerical return codes are mapped onto named values
for use within the policy script.
Rule: A statement that can evaluate to either true or false. Rules have
separate Actions for the evaluate true and evaluate false cases.
ToleranceRangeCheck: A specialized rule used to implement fuzzy
variable comparison and dead-zones.
Action: A grouped sequence of activities that occur when a rule or TRC
evaluates to either true or false.
Policy: A sequence of Rules and TRCs. An MP is a special policy that
can be used to dynamically select the current NP and template
configuration.
PolicySuite: A collection of policies of the same type, i.e. concerned
with the same aspect of business logic. Dynamic selection between NPs
within a suite can be mediated by an MP, based on environmental and
contextual influences and recent behaviour history. For example if the
current adaptation is too slow for the ambient conditions, a ‘cautious’
policy might need to be replaced by a more ‘aggressive’ policy.

The language grammar is formalised using EBNF
notation:

Non Terminals:
E ExternalVariable I InternalVariable A Action
T Template N returNvalue R Rule
C ToleranceRangeCheck S PolicySuite P Policy

Terminals:
number: constants used in rules and assignments, and numerical return

codes.
‘true’ and ‘false’: when assigning or comparing boolean variables, and

in rules.
‘Null’: used in Rules and TRCs when no action is required in either

branch.
‘EQ’, ‘NE’, ‘GT’, ‘LT’, ‘GE’, ‘LE’: Operator values, used in Rules.

Attributes:
PolicySuite: Name
Policy: Name, Type {MetaPolicy, NormalPolicy}
Rule: Name, LHS, Operator, RHS, ActionIfTrue,

ElseAction
ToleranceRangeCheck: Name, CheckVariable,

CompareAgainstVariable,
ToleranceRangePercentSpecifier,
ActionIfInZone, ActionIfOutsideZone

Action: Name
ReturnValue: Name, Value
ExternalVariable: Name, Type {Long, Boolean, PolicyName}
InternalVariable: Name, Type {Long, Boolean, PolicyName},

InitialValue, MinValueValid {true, false},
MinValue, MaxValueValid {true, false},
MaxValue, IncrementAmount

Template: Name

Production rules:
E: true | false | number I: true | false | number P: [T] (R | C)+
T: Assignment+ N: number S: P+
A: {Assignment | Increment | Decrement}+ [R | C | N]
R: if ((E | I) Operator (E | I)) then (A | Null) else (A | Null)
C: if ((E | I) in-range-of (E | I) where-range-specified-by (E | I))
 then (A | Null) else (A | Null)
Operator: {EQ, NE, GT, LT, GE, LE}
Assignment: I = (I | E | number | true | false)
Increment: I = I + Iattribute_Increment_Value
Decrement: I = I - Iattribute_Increment_Value

The Action production rules ensure that an Action can
comprise many Assignment, Increment or Decrement

Proceedings of the 17th International Conference on Database and Expert Systems Applications (DEXA'06)
0-7695-2641-1/06 $20.00 © 2006

statements, in any order, but can contain a maximum of
one of either a Rule, TRC or ReturnValue, which if
present, must be the last action statement. A Rule or TRC
can conditionally invoke further Actions.

3. A case example

A multi-policy stock trading scenario is used as a
vehicle to illustrate the flexibility afforded by the use of
MPs to perform higher-level configuration choices; and
the ability to dynamically switch between policy
instances. The language’s support for these features is
demonstrated.

The stock trading system is representative of many
real-world problems that have highly complex behaviour
and have dissimilar sensitivities to several sources of
environmental volatility. The system has many
dimensions of freedom and a very wide behaviour space.
Tracking the fluctuations in stock prices, and making
trading decisions (buy, sell, hold), is subject to influences
which include: recent and longer-term trends in price
behaviour, trading volumes, the rate of change in traded
volumes and the rate of change in price. It is not desirable
to closely track such a system over the entire behaviour
range with a single policy, because the system is non-
linear in its sensitivity to the various environmental
parameters. For example, bolder decisions are typically
made when the rate of price change is low because there
is less risk. Conversely, when the price is less stable the
policy must make more cautious decisions to reflect the
greater risk. In such a scenario, the use of a single policy
could lead to significant sub-optimality across a wide
spectrum of behaviours. Also, a policy that could cope
with all conditions would itself be a source of
considerable complexity and thus risk. One way to
resolve this problem is to divide the application behaviour
space into several zones, as shown in Figure 1. For the
purpose of simple illustration the example uses only two
zones per dimension of behavioural freedom. The actual
number of zones required is a function of the extent of
non-linearity in a particular application domain.

Zone # 2

Zone # 3Zone # 1

Zone # 4

Rate of ‘Volume Traded’ change

Rate of
‘Price’
change

Zone # 2

Zone # 3Zone # 1

Zone # 4

Rate of ‘Volume Traded’ change

Rate of
‘Price’
change

Figure 1. Segmentation of application behaviour space along two
dimensions of freedom, creating four zones.

A policy is devised for each zone. Each policy is thus
tuned specifically for optimal operation over a subset of
the application behaviour space. This facilitates a possible
solution to non-linear sensitivity to environmental
conditions. Following the price-rate-change example;
certain rules that work well when the stock price changes

gradually might be totally inappropriate in more-volatile
conditions when sudden fluctuations are encountered. The
zoning yields numerous individually-simple policies
(relatively) in place of one large unwieldy policy. For
example, if the zones are chosen appropriately it might be
possible to approximate a complex non-linear global
relationship with a series of simpler, (possibly) linear
rules.

The four policies have different configurations but are
of the same type because they both address the same
business logic decision (although they arrive at their
decisions differently).

Policy
maintained
thresholdsPolicy

Time

Price Policy
maintained
thresholdsPolicy

Time

Price

Figure 2. A policy operating within its zone.

Each policy is configured such that its operational
envelope (that over which it guarantees safe and desirable
behaviour) maps closely onto its zone. A self-adaptive
policy may adjust its own thresholds over time, as
depicted in figure 2, or these might be supplied externally.
Individual policies need not be aware of the delimitation
of their zones (which might even be dynamically
variable). An MP is employed to select between the
different business policies. The MP must monitor the
behaviour of the target system and determine which
policy should be employed at any given moment. This
behaviour is depicted in figure 3. The policy tools
described in this paper support dynamic switching
between policies.

Policy
maintained
thresholdsPolicy

Time

Price

Meta
Policy

Policy
maintained
thresholdsPolicy

Time

Price

Meta
Policy

Figure 3. The meta-policy monitors the target system and selects an
appropriate policy for the ambient conditions.

However, there is a risk of instability if simple cut-off
points are used to determine the policy selection. If the
behaviour of the monitored system is close to a zone
boundary it is possible that small changes in target system
behaviour could lead to oscillatory switching to and fro
between policies, causing extra work for the system. To
avoid this, the policy tools directly support stability
through the use of dead-zones, as illustrated in figure 4.

Proceedings of the 17th International Conference on Database and Expert Systems Applications (DEXA'06)
0-7695-2641-1/06 $20.00 © 2006

Policy # 2

Policy # 3Policy # 1

Policy # 4

Rate of ‘Volume Traded’ change

Rate of
‘Price’
change

Price
rate-change
dead-zone

Volume rate-change dead-zone

Policy # 2

Policy # 3Policy # 1

Policy # 4

Rate of ‘Volume Traded’ change

Rate of
‘Price’
change

Price
rate-change
dead-zone

Volume rate-change dead-zone

Figure 4. Policy zone boundaries are wrapped by dead-zones to avoid
oscillatory switching by the meta-policy when the behaviour of the

monitored system is ‘marginal’.

The MP takes no action while the system is in a dead-
zone. A significant shift in behaviour is needed to cross
the dead-zone in one go. Localised oscillatory behaviour
in the target system is not mirrored in the behaviour of the
MP.

Dead-zones are identified by two parameters: the
centre-point, and the width of the zone (expressed as a
percentage deviation from the centre-point). These
parameters are maintained within the policy as IVs so that
they can be dynamically modified.

The overall behaviour exhibits three dimensions of
adaptability: 1. Low-level changes enforced by the
operation of a particular business policy; 2. Automatic
meta-policy switching between business policies to ensure
that the CurrentPolicy always remains within its optimal
operational envelope; 3. Dynamic adjustments to
configuration parameters, including those that define the
position and width of the dead-zones. The dead-zones
ensure stability despite the high extent of adaptability.
Each of these dimensions of adaptability has the potential
to operate at the level of adapting the target system, as
well as at the level of modifying the policy system itself
(i.e. the controlling system).

Figure 5 presents the XML policy script for the stock-
trading example illustrating how the language’s simple
yet powerful syntax and object-oriented semantics support
the expression of sophisticated policy logic. Due to
limited space, the example focuses on the meta-policy and
its dynamic selection of the active business policies. The
actual details of the four business policies are not shown
in the illustration.

The example illustrates several novel features of the
language. Multiple NP business-logic policies (named
Policy1 – 4) are used. Each of these policies makes the
same type of business decisions (buy / sell stock etc.),
however, each is specifically tuned for operation over a
specific zone of application behaviour space. An MP
(named Meta_Policy) is responsible for dynamically
selecting which of the business policies should be
executed at any given moment, based on the current
behavioural zone of the system which the MP determines
from the values of two EVs. The current business policy
selection is identified by the special variable
CurrentPolicy. A template is used to configure the MP
upon initiation, setting the CurrentPolicy variable to point
to Policy1. Two dead-zones are implemented through the
use of TRC objects. The deadzones are initially

configured by the MP template and prevent excessive
swapping between business policy instances when the
target system’s behaviour loiters close to a boundary
between zones.
!-- Policy Definition XML file: Policy Language version 1.0 -->
<!-- Application: Multi-Policy Stock-Trading illustration -->
<PolicyConfiguration> <!-- PolicyTypeName= Stock-Trading Policy -->
 <EnvironmentVariables>
 <Variable Name="E_iCurrentPriceRateChange" Type="long"/>
 <Variable Name="E_iCurrentVolumeRateChange" Type="long"/>
 <!-- Details of EnvironmentVariables used by NormalPolicies not shown -->
 </EnvironmentVariables>
 <InternalVariables>
 <Variable Name="I_iPriceRateChangeDeadZone" Type="long"/>
 <Variable Name="I_iVolumeRateChangeDeadZone" Type="long"/>
 <Variable Name="I_iDeadZoneTolerancePercent" Type="long"/>
 <!-- Details of InternalVariables used by NormalPolicies not shown -->
 </InternalVariables>
 <Templates>
 <Template Name="MetaTemplate">
 <Assign Variable="I_pCurrentPolicy" InitialValue="Policy1"/>
 <Assign Variable="I_iPriceRateChangeDeadZone" InitialValue="60"/>
 <Assign Variable="I_iVolumeRateChangeDeadZone" InitialValue="50"/>
 <Assign Variable="I_iDeadZoneTolerancePercent" InitialValue="10"/>
 </Template>
 <!-- Details of templates used by NormalPolicies not shown -->
 </Templates>
 <ReturnValues> <!-- Details of ReturnValues not shown --> </ReturnValues>
 <Actions>
 <Action Name="A_DeterminePolicyBasedOnPriceRateChange">
 <Evaluate Rule="R_CurrentPriceRateChange"/>
 </Action>
 <Action Name="A_DeterminePolicyBasedOnVolumeRateChange">
 <Evaluate Rule="R_CurrentVolumeRateChange"/>
 </Action>
 <Action Name="A_SelectLowPriceRateChangePolicy"> <!-- . . . --></Action>
 <Action Name="A_SelectHighPriceRateChangePolicy"> <!-- . . . --></Action>
 <Action Name="A_SelectLowVolumeRateChangePolicy"> <!-- . . . --></Action>
 <Action Name="A_SelectHighVolumeRateChangePolicy"> <!-- . . . --></Action>
 <!-- Details of Actions used by NormalPolicies not shown -->
 </Actions>
 <Rules>
 <Rule Name="R_CurrentPriceRateChange" LHS="E_iCurrentPriceRateChange"

Operator="LT" RHS="I_iPriceRateChangeDeadZone"
ActionIfTrue="A_SelectLowPriceRateChangePolicy"
ElseAction="A_SelectHighPriceRateChangePolicy"/>

 <Rule Name="R_CurrentVolumeRateChange"
LHS="E_iCurrentVolumeRateChange" Operator="LT"
RHS="I_iVolumeRateChangeDeadZone"
ActionIfTrue="A_SelectLowVolumeRateChangePolicy"
ElseAction="A_SelectHighVolumeRateChangePolicy"/>

 <!-- Details of Rules used by NormalPolicies not shown -->
 </Rules>
 <ToleranceRangeChecks>
 <ToleranceRangeCheck Name="C_PriceRateChangeDeadZone"

CheckVariable="E_iCurrentPriceRateChange"
CompareAgainstVariable="I_iPriceRateChangeDeadZone"
ToleranceRangePercentSpecifier="I_iDeadZoneTolerancePercent"
ActionIfInZone="Null"
ActionIfOutsideZone="A_DeterminePolicyBasedOnPriceRateChange"/>

 <ToleranceRangeCheck Name="C_VolumeRateChangeDeadZone"
CheckVariable="E_iCurrentVolumeRateChange"
CompareAgainstVariable="I_iVolumeRateChangeDeadZone"
ToleranceRangePercentSpecifier="I_iDeadZoneTolerancePercent"
ActionIfInZone="Null"
ActionIfOutsideZone="A_DeterminePolicyBasedOnVolumeRateChange"/>

 </ToleranceRangeChecks>
 <Policies>
 <Policy Name="Meta_Policy" PolicyType="MetaPolicy">
 <Initialise CurrentTemplate="MetaTemplate"/>
 <Evaluate ToleranceRangeCheck="C_PriceRateChangeDeadZone"/>
 <Evaluate ToleranceRangeCheck="C_VolumeRateChangeDeadZone"/>
 </Policy>
 <Policy Name="Policy1" PolicyType="NormalPolicy"> <!-- . . . --> </Policy>
 <Policy Name="Policy2" PolicyType="NormalPolicy"> <!-- . . . --> </Policy>
 <Policy Name="Policy3" PolicyType="NormalPolicy"> <!-- . . . --> </Policy>
 <Policy Name="Policy4" PolicyType="NormalPolicy"> <!-- . . . --> </Policy>
 </Policies>
</PolicyConfiguration>

Figure 5. The stock-trading multi-policy XML script

One example of object re-use is demonstrated in the
form of a variable (DeadZoneTolerancePercent) which is
shared between the two TRC objects. The IVs (such as
the dead-zone specifiers), and EVs (in this case the price

Proceedings of the 17th International Conference on Database and Expert Systems Applications (DEXA'06)
0-7695-2641-1/06 $20.00 © 2006

rate-change and volume rate-change variables) are clearly
separated.

4. Conclusion

A policy definition language has been presented. The
language facilitates a very diverse policy behaviour space
through both hierarchical and recursive uses of language
elements. The object-oriented nature of the language
enables highly expressive policy logic using a simple and
consistent syntax. In particular it promotes reuse of policy
objects. Reusing policy objects represents significant
savings in the time and cost associated with policy
development and testing.

The object oriented approach allows attributes to be
assigned to the various objects (rules, actions, variables
etc). The attributes are treated semantically in the same
way as IVs and thus facilitate flexible run-time
configuration, beyond simply changing the values of
variables. For example, the size of a deadzone, or the
upper-value-limit for a variable can be changed
dynamically. The object attributes are also persisted in the
same way as the IVs, as they form part of the current
configuration state of a policy.

Policy configuration state is persisted in well-formed
XML script, which promotes interoperation in
heterogeneous environments. Innovations include support
for multiple policy versions of a given policy type,
multiple configuration templates, and MPs to dynamically
select between policy instances and templates. This use of
MPs represents a meta-state transition in the evolution of
policy-based computing; bringing far greater flexibility
and a hierarchical aspect that helps control complexity. A
large monolithic policy is replaced with a suite of simpler,
more-highly-tuned, policies with limited operational
envelopes and selection between these is controlled by a
higher-layer policy which may also be self-modifying.

The language, together with its library
implementation, is intended to facilitate adaptive-policy
deployment in designed-in circumstances, as well as
retro-fitting self-management into legacy code. This is a
very important issue because there are a great many
applications in current use that are in urgent need of self-
management, but complete re-development is ruled out
due to costs and operational logistics.

Whilst it is accepted that the policy tools proposed in
this paper are not yet fully mature, their inbuilt scalability
facilitates a developmental bridge allowing self-
management to be embedded in a piecemeal fashion. For
example a simple, single policy and template can be
created initially, providing limited adaptability, but quick
to deploy. It is possible to subsequently expand to several
policies and / or templates, and to introduce a meta-policy
to mediate dynamically.

An example deployment scenario has been presented,

providing an illustration of how meta-policy mediated
policy hot-swapping can facilitate highly-optimised,
hierarchical self-management using multiple, individually
non-complex, policies.

References

[1] K. Phanse, L. DaSilva, and S. Midkiff, “Design and
demonstration of policy-based management in a multi-hop ad
hoc network”, Ad Hoc Networks, 3(2005), Elsevier B.V., 2005,
pp. 389-401.
[2] E. Terzi, A. Vakali, and L. Angelis, “A simulated annealing
approach for multimedia data placement”, The Journal of
Systems and Software, 73, Elsevier Inc, 2004, pp. 467-480.
[3] R. Basra, K. Lu, G. Rzevski, and P. Skobelev, “Resolving
Scheduling Issues of the London Underground Using a Multi-
agent System”, 2nd International Conference on Industrial
Applications of Holonic and Multi-Agent Systems (HoloMAS),
Copenhagen, Denmark, LNAI 3593, Springer-Verlag, 2005, pp.
188-196.
[4] V. Kumar, B. Cooper, and K. Schwan, “Distributed Stream
Management using Utility-Driven Self-Adaptive Middleware”,
proceedings of the 2nd International Conference on Autonomic
Computing (ICAC), IEEE, Seattle, 2005, pp. 3-14.
[5] IBM Research, Policy technologies.
http://www.research.ibm.com/policytechnologies/.
[6] H. Liu, and M. Parashar, “A Framework for Rule-Based
Management of Parallel Scientific Applications”, proceedings of
the 2nd International Conference on Autonomic Computing
(ICAC), IEEE, Seattle, 2005, pp. 360-361.
[7] L. Lymberopoulos, E. Lupu, and M. Sloman, “An adaptive
policy based management framework for differentiated services
networks”. Workshop on policies for distributed systems and
networks, California, 2002, pp. 147-158.
[8] R. Ananthanarayanan, M. Mohania, and A. Gupta,
“Management of Conflicting Obligations in Self-Protecting
Policy-Based Systems”, proceedings of the 2nd International
Conference on Autonomic Computing (ICAC), IEEE, Seattle,
2005, pp. 274-285.
[9] J. Tan, and S. Poslad, “Dynamic security reconfiguration for
the semantic web”, Engineering Applications of Artificial
Intelligence, 17(2004), Elsevier Ltd, 2004, pp. 783-797.
[10] R. Anthony, “Self-Configuration in Parallel Processing”,
3rd International Workshop on Self-Adaptable and Autonomic
Computing Systems - SAACS '05 (DEXA 2005), IEEE,
Copenhagen, Denmark, August 2005, pp. 175-180.
[11] A. Herzberg, Y. Mass, J. Michaeli, and Y. Ravid, “Access
control meets public key infrastructure, Or: assigning roles to
strangers”, Symposium on Security and Privacy, IEEE,
California, USA, May 2000, pp. 2-14.
[12] N. Damianou, N. Dulay, E. Lupu, and M. Sloman, “The
Ponder policy specification language”, In: M. Sloman, J. Lobo,
E. Lupu (Eds), Policies for Distributed Systems and Networks,
Springer, Berlin, 2001, pp. 18-38.
[13] XACML standard. Available at http://www.oasis-
open.org/comittees/xacml.
[14] J. Chomicki, and J. Lobo, “Monitors for history-based
policies”, In: M. Sloman, J. Lobo, E. Lupu (Eds), Policies for
Distributed Systems and Networks, Springer, Berlin, 2001, pp.
57-72.

Proceedings of the 17th International Conference on Database and Expert Systems Applications (DEXA'06)
0-7695-2641-1/06 $20.00 © 2006

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles false
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (None)
 /CalRGBProfile (None)
 /CalCMYKProfile (None)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo false
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo false
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 2.00333
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 2.00333
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.00167
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /Description <<
 /JPN <FEFF3053306e8a2d5b9a306f300130d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f00200050004400460020658766f830924f5c62103059308b3068304d306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103057305f00200050004400460020658766f8306f0020004100630072006f0062006100740020304a30883073002000520065006100640065007200200035002e003000204ee5964d30678868793a3067304d307e30593002>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e0020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f0062006100740020006f0064006500720020006d00690074002000640065006d002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /FRA <FEFF004f007000740069006f006e00730020007000650072006d0065007400740061006e007400200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e007400730020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e00200049006c002000650073007400200070006f0073007300690062006c0065002000640027006f00750076007200690072002000630065007300200064006f00630075006d0065006e007400730020005000440046002000640061006e00730020004100630072006f0062006100740020006500740020005200650061006400650072002c002000760065007200730069006f006e002000200035002e00300020006f007500200075006c007400e9007200690065007500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300740061007300200063006f006e00660069006700750072006100e700f5006500730020007000610072006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006d00200075006d0061002000760069007300750061006c0069007a006100e700e3006f0020006500200069006d0070007200650073007300e3006f00200061006400650071007500610064006100730020007000610072006100200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f0073002000500044004600200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002c002000520065006100640065007200200035002e00300020006500200070006f00730074006500720069006f0072002e>
 /DAN <FEFF004200720075006700200064006900730073006500200069006e0064007300740069006c006c0069006e006700650072002000740069006c0020006100740020006f0070007200650074007400650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650072002000650067006e006500640065002000740069006c0020007000e5006c006900640065006c006900670020007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e007400650072006e00650020006b0061006e002000e50062006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /NLD <FEFF004700650062007200750069006b002000640065007a006500200069006e007300740065006c006c0069006e00670065006e0020006f006d0020005000440046002d0064006f00630075006d0065006e00740065006e0020007400650020006d0061006b0065006e00200064006900650020006700650073006300680069006b00740020007a0069006a006e0020006f006d0020007a0061006b0065006c0069006a006b006500200064006f00630075006d0065006e00740065006e00200062006500740072006f0075007700620061006100720020007700650065007200200074006500200067006500760065006e00200065006e0020006100660020007400650020006400720075006b006b0065006e002e0020004400650020005000440046002d0064006f00630075006d0065006e00740065006e0020006b0075006e006e0065006e00200077006f007200640065006e002000670065006f00700065006e00640020006d006500740020004100630072006f00620061007400200065006e002000520065006100640065007200200035002e003000200065006e00200068006f006700650072002e>
 /ESP <FEFF0055007300650020006500730074006100730020006f007000630069006f006e006500730020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000500044004600200071007500650020007000650072006d006900740061006e002000760069007300750061006c0069007a006100720020006500200069006d007000720069006d0069007200200063006f007200720065006300740061006d0065006e0074006500200064006f00630075006d0065006e0074006f007300200065006d00700072006500730061007200690061006c00650073002e0020004c006f007300200064006f00630075006d0065006e0074006f00730020005000440046002000730065002000700075006500640065006e00200061006200720069007200200063006f006e0020004100630072006f00620061007400200079002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004e00e4006900640065006e002000610073006500740075007300740065006e0020006100760075006c006c006100200076006f006900740020006c0075006f006400610020006a0061002000740075006c006f00730074006100610020005000440046002d0061007300690061006b00690072006a006f006a0061002c0020006a006f006900640065006e0020006500730069006b0061007400730065006c00750020006e00e400790074007400e400e40020006c0075006f00740065007400740061007600610073007400690020006c006f00700070007500740075006c006f006b00730065006e002e0020005000440046002d0061007300690061006b00690072006a0061007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f006200610074002d0020006a0061002000520065006100640065007200200035002e00300020002d006f0068006a0065006c006d0061006c006c0061002000740061006900200075007500640065006d006d0061006c006c0061002000760065007200730069006f006c006c0061002e>
 /ITA <FEFF00550073006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e007400690020005000440046002000610064006100740074006900200070006500720020006c00610020007300740061006d00700061002000650020006c0061002000760069007300750061006c0069007a007a0061007a0069006f006e006500200064006900200064006f00630075006d0065006e0074006900200061007a00690065006e00640061006c0069002e0020004900200064006f00630075006d0065006e00740069002000500044004600200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f00700070007200650074007400650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000700061007300730065007200200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f0067002000730065006e006500720065002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006e00e40072002000640075002000760069006c006c00200073006b0061007000610020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f600720020007000e5006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b0072006900660074002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e0020006b0061006e002000f600700070006e006100730020006d006500640020004100630072006f0062006100740020006f00630068002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006100720065002e>
 /ENU <FEFF005500730065002000740068006500730065002000730065007400740069006e0067007300200074006f0020006300720065006100740065002000500044004600200064006f00630075006d0065006e007400730020007300750069007400610062006c006500200066006f007200200049004500450045002000580070006c006f00720065002e0020004300720065006100740065006400200031003500200044006500630065006d00620065007200200032003000300033002e>
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

