
Engineering Emergence for Cluster Configuration

Richard John ANTHONY
Department of Computer Science, University of Greenwich

Greenwich, London, SE10 9LS, United Kingdom.

ABSTRACT

Distributed applications are being deployed on ever-increasing
scale and with ever-increasing functionality. Due to the
accompanying increase in behavioural complexity, self-
management abilities, such as self-healing, have become core
requirements. A key challenge is the smooth embedding of such
functionality into our systems.
Natural distributed systems such as ant colonies have evolved
highly efficient behaviour. These emergent systems achieve
high scalability through the use of low complexity
communication strategies and are highly robust through large-
scale replication of simple, anonymous entities. Ways to
engineer this fundamentally non-deterministic behaviour for use
in distributed applications are being explored.
An emergent, dynamic, cluster management scheme, which
forms part of a hierarchical resource management architecture,
is presented. Natural biological systems, which embed self-
healing behaviour at several levels, have influenced the
architecture. The resulting system is a simple, lightweight and
highly robust platform on which cluster-based autonomic
applications can be deployed.

Keywords
Dynamic Cluster Management, Self-Healing, Emergence,
Scalability, Fault-Tolerance, Layered Architecture

1. INTRODUCTION

A cluster management scheme to support autonomic applications
is described. The scheme is designed specifically to support the
significant subset of such applications that can be said to be
LAN-scoped, that is, are deployed within the geographical area
of a LAN and can thus enjoy the benefits of such technology –
low latency and broadcast communication being specific
examples.

LAN-scoped autonomic applications are deployed in a wide-
range of domains; examples include aircraft control systems,
industrial plant management and monitoring systems, and high-
performance computing applications distributed over processor
pools. These application domains have some common
requirements which include: robustness, the ability to
reconfigure dynamically; scalable deployment platforms;
stability despite configuration change; efficiency in the use of
systems resources, especially in relation to the number of
messages transmitted as scale increases; and low
communication latency because the applications have a real-
time aspect.

Clusters of loosely-coupled processors provide a suitable

platform for this class of distributed application. Specifically
clusters are robust (because of their natural ability to provide
redundancy), scalable (because of their ability to be
incrementally expanded), efficient (because resource-pull
scheduling, in which idle processors request tasks, and/or load
sharing can be implemented), offer suitable communication
modes (broadcast and multicast mechanisms are a useful
technique to cut down the number of messages and the
communication latency when many components interact).
Clusters are also highly cost-effective because the physical
resources they employ are often already deployed as part of a
general purpose system. The ‘cluster’ can be a logical subset of
the physical computers in a LAN, selected by some criteria
(typically that they have low load).

Implementation examples of cluster-based autonomic systems
include a multi-agent system for shipboard automation [1], in
which a number of systems are interconnected and whilst
retaining autonomy, cooperate to deliver fault-tolerant, adaptive
behaviour; and [2], a ubiquitous museum information system
which provides real-time modification of museum information
to suit visitors’ specific preferences.

The automatic deployment of diverse applications in non-
dedicated systems requires the dynamic creation and maintenance
of appropriately-sized clusters to ensure effective and appropriate
use of resources.

This paper proposes that the autonomic behaviour of systems
should be layered throughout the entire system, including the
software platforms and core services that support higher-level
autonomic applications. [3] Suggests that autonomic computing
systems can only be controllable if they consist of components
with limited capabilities and finite internal state-spaces.
Extending the autonomic behaviour to the core services, such as
cluster management, creates additional opportunities for the
provision of self-organising and self-healing, removing the
burden for entire provision at the application layer.

A hierarchical implementation approach enables functionality to
be spread across several components arranged in layers. Thus
individual components can be less complex, as they ‘inherit’ or
use the services of components in lower layers. This in turn
makes components simpler to develop and likely to be more
reliable, and therefore improves the overall scalability,
robustness and stability of systems.

Natural emergent systems employ self-healing at many levels,
and in many contexts, simultaneously. Mammalian immune
systems operate at the cellular level and self-heal by ‘learning’
to distinguish dangerous invaders, evolving ways to defend
against them [4, 5]. Mammals also employ self healing at the

SYSTEMICS, CYBERNETICS AND INFORMATICS VOLUME 3 - NUMBER 2 17

CORE Metadata, citation and similar papers at core.ac.uk

Provided by Greenwich Academic Literature Archive

https://core.ac.uk/display/67523?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

level of individual organs, such as the way the human liver can
recover from alcohol poisoning. Mammals self-heal at the
animal level, for example by resting an injured limb, or by
eating medicinal herbs. The combination of self-healing at so
many different levels enables the system to cope with a very-
wide range of disturbances, deploying the most appropriate
mechanism(s) for a particular situation.

As with transparency, which should pervade all layers of
software systems, i.e. it should be ‘designed in’ rather than
‘built on’ [6], this paper proposes that self-healing should be an
intrinsic property throughout the system, as in the evolved
biological systems.

Many highly successful distributed systems are found in nature.
Systems such as ant colonies have evolved highly efficient
behaviour, including the ways in which the actors communicate.
These emergent systems deploy low complexity communication
strategies, enabling them to achieve high scalability. A high
level of robustness is achieved through the large-scale
replication of simple, anonymous entities which act
autonomously.

Distributed computer applications typically have the same non-
functional requirements as natural biological systems, such as
the need for efficiency and low-complexity communication. In
particular however, scalability and robustness are increasingly
important as more and more systems with global and ubiquitous
scope are launched. Designing to simultaneously meet demands
of high scalability and high robustness can lead to conflicts.

Communication design is one of the most critical aspects of
distributed application design. With traditional designs, the
more robust an application is, the greater the communication
intensity tends to be (because of, at least some of, checkpointing
activities, status messages, updates of replicas and
acknowledgement messages). This in turn impacts on
scalability. The amount of stored-state is also often greater in
robustly designed applications. Excessive communications can
degrade performance. Network bandwidth is also a precious
commodity that should be conserved where possible. The
latency of decisions is often extended as the number of
communication partners and the amount of state exchanged is
increased. For these reasons, it is important that highly efficient
communication strategies are employed, in accordance with the
specific requirements of a particular distributed application.
Due to issues arising from their design, including the
communications strategies, many implemented distributed
applications fail to fully meet all of their non-functional
requirements; compromises occur.

The design of the cluster management scheme presented in this
paper is inspired by the self-healing characteristics of natural
systems described above (i.e. it has a hierarchical architecture
that deploys self-managing behaviours at several layers which
cooperate to provide a highly adaptive and robust framework).
The system layer and cluster layer have self-stabilising
emergent behaviours which continually adjust the system
towards the desired configuration despite disturbances. The
autonomic applications which are deployed at the application
layer will have their own self-healing behaviour.

The rest of the paper is organised as follows: section 2 discusses

the use of clusters in resource management; section 3 discusses
emergence; section 4 provides an outline of the resource
management architecture; section 5 identifies the emergence
aspects of the design; section 6 provides an overview of the
operation of the simulation model; section 7 evaluates the
performance of the system and cluster layers; and section 8
presents the conclusions.

2. CLUSTER-BASED RESOURCE MANAGEMENT

Within most large organisations there exist research groups and
individuals who require greater processing capacity than is
currently available to them. Researchers performing
computationally-intense simulations involving for example
CFD, Fourier transforms, and the like must either acquire
sufficient dedicated resource (at high cost) or suffer the
relatively slow response-times afforded by the ‘standard’
provision (each user’s desktop).

Meanwhile, these organisations tend to have a massive unused
computing capacity. This occurs because at any given moment
many of its computers lie idle whilst a large fraction of those
that are in use are underutilised [7, 8, 9]. This resource is widely
distributed in staff offices and computer laboratories. One way
to reclaim some of this unused resource is to encompass these
computers within a cluster-based resource management system.
Clusters of workstations offer a flexible platform on which a
wide variety of distributed applications and services can be
based. The main reasons for the popularity of the cluster
approach are its extensibility, efficient use of resources and
better cost/performance effectiveness (when compared to large-
scale multi-processor machines [10, 11, 12, 13]), robustness
(see for example the cluster-level recovery scheme described in
[14]) and load sharing [15, 16].

Several cluster architectures have been specifically designed to
support parallel applications [10, 17] or sub-tasks such as
parallel query processing, as in [11]. [16] Describes a scheme in
which load distribution is achieved by distributing the
middleware components over the cluster. In [18], a scheme in
which the server-side of applications are run over a cluster but
the client side executes at the originator workstation, is
described.

Non-dedicated clusters for processing coarse-grained parallel
tasks can be built using existing general-purpose computers
which have individual owners [12]. Such non-dedicated clusters
reuse existing computers and only execute cluster tasks when
their owner-initiated workload is low.

Non-dedicated clusters must be capable of dynamic self-
management because the actions of the individual-computer
owners are unpredictable. Users who have specifically allocated
computers tend to leave them powered on throughout the
working day (and even overnight), logging in/out as required.
Users of shared laboratory-based computers might reboot a
computer at the start or end of a use session.

A cluster whose coordinator node (or any other) is rebooted by
its local user (or otherwise ‘fails’) must be able to recover in a
way that is transparent to the cluster-level task.

SYSTEMICS, CYBERNETICS AND INFORMATICS VOLUME 3 - NUMBER 218

3. AN OVERVIEW OF EMERGENCE

The science of emergence is described in [5, 19, 20].
Emergence is the term used to describe a higher-level state or
pattern or other behaviour that arises from the interaction of
lower-level components. The higher-level behaviour cannot be
predicted by examining the individual components or their
behaviour in isolation.

The term ‘engineered emergence’ is used in this paper to
describe the purposeful design of interaction protocols so that a
predictable, desired outcome is achieved at a higher level (i.e.
emerges), although at lower levels the specific state of
individual components at any moment cannot be predicted. For
(very simple) example, consider a pair of processing nodes each
capable of providing a given service. In addition each node
sends periodic messages to inform the other node of the
sender’s state {active service provider, standby}. It is
straightforward to imagine how such a scheme can be tuned
(typically employing random numbers in some way to break
symmetry) to automatically ensure that a single node provides
service at all times that at least one of them is capable to do so.
The status of individual nodes at any moment cannot and need
not be predicted, but the overall status of the system is
predictable within the system’s stated operational envelope (at
least one node is ‘healthy’).

Thus emergence offers significant potential to the developers of
distributed systems. It can be witnessed in nature that many
successful systems that exhibit complex behaviour are made up
of large numbers of very simple entities, each exhibiting very
simple behaviour and having no global system knowledge [21].
These self-organising systems have evolved solutions for
problems similar to those that we face when designing our
systems.

Of particular interest is the pheromone exchange
communication employed in (for example) Harvester Ant
colonies, in which different pheromones have different
meanings and anonymous ants pay attention to the frequency
and strength of the messages they receive [5]. Ants
autonomously determine their behaviour over the short-term
based on these pheromone exchanges. Individuals have low
intelligence and only have a local perspective. The overall
colony behaviour is highly ‘intelligent’ achieving sophisticated
goals such as nest building and defence, and cooperative
foraging for food

Emergent systems are self-healing in many contexts, including
in the most literal sense: Immune systems, operating at the
cellular level, ‘learn’ to distinguish dangerous invaders, and
evolve ways to defend against them [5].

4. THE CLUSTER MANAGEMENT SCHEME

Overview
The functionality required to provide reliable, scalable and
efficient cluster-based task execution has been mapped onto a
three-layer resource management architecture, as shown in
figure 1.

Application layer (autonomic applications)

Cluster layer (self-managing application platform)

System layer (self-managing base technology)

Figure 1. The resource-management architecture.

The resource consists of a pool of available workstations. At the
system-layer, nodes cooperate to maintain a single system-wide
coordinator. This coordinator is responsible for dynamically
creating clusters of specified size, on demand. The design of the
system-layer ensures that clusters are created quickly and
efficiently, even in large systems. This layer is based on a
highly efficient election algorithm which combines
deterministic and non-deterministic behaviours to achieve self-
healing and adaptation whilst remaining very stable, and
because it uses a very small number of messages, is very
scalable.

A cluster is a subset of the workstations in the system,
assembled to process a specific task. Nodes that are available to
join clusters, i.e. have low load and are not already a member of
a cluster, join the system-level pool. Nodes are then recruited
from this pool into clusters, as required. Tasks that require
execution on a cluster make a request to the system-level
coordinator for a cluster to be created. The cluster-level adapts
the election algorithm on which the system-layer is based, to
maintain a single coordinator per cluster. The cluster
coordinator manages the execution of requests sent to the
cluster.

The application layer is concerned with requesting cluster
creation, submitting tasks to the cluster for execution,
overseeing the execution and ensuring that it completes
successfully.

Broadcast communication is used within both the system-layer
and cluster-layer so that there is no need for individual non-
coordinator nodes to keep track of the identity of their cluster
coordinator, or for the coordinator to keep track of the identities
of individual cluster members. This stateless approach
facilitates simple role allocation, provided by the election
algorithm, without the complexity of additional informational
updates each time a change in membership or role occurs.

Discussion
This paper is primarily concerned with the design of the system
layer and the cluster layer. The functional requirements of these
layers are: maintain exactly one system-level coordinator to
manage cluster creation; create clusters on demand, of specified
size; and maintain exactly one coordinator per cluster to manage
the cluster (i.e. receive tasks, distribute over the cluster, collect
results, transmit to task originator and disband the cluster). The
non-functional requirements are: stability; high scalability; high
robustness; efficiency, especially in terms of communications
intensity; and low-latency.

SYSTEMICS, CYBERNETICS AND INFORMATICS VOLUME 3 - NUMBER 2 19

Externally deterministic behaviour is needed to ensure the
functional requirements are fully met. However, it can be
witnessed that natural distributed systems (which are inherently
non-deterministic) have evolved better strategies for achieving
non-functional requirements very similar to those we are
presented with when developing distributed applications. The
design approach taken in this work is based on the view that a
lot of the (internal) determinism built into our systems (at great
expense) is redundant. What is important is that the systems
behave deterministically overall. It is not always important that
every single step is deterministic. The design and development
of the cluster management system thus contributes to the
exploration of the extent to which the benefits of non-
deterministic design can be harnessed within successful
distributed computer applications.

An election algorithm based on emergent behaviour forms the
system layer of the architecture. Nodes adopt one of four states
as shown in the state-transition diagram (figure 2). The
algorithm achieves very high scalability because most of the
nodes remain in the idle state, in which they are completely
passive with respect to communication. Slave nodes have the
role of monitoring the presence of the master, and upon its
failure, of electing a replacement. A small pool of slaves is
sufficient to achieve this behaviour reliably so elections are very
efficient. Idle and slave nodes count the number of periodic
transmissions from slave nodes over a time interval and
compare them to a pair of threshold values. An idle node whose
local count of slave messages is below the lower threshold
elevates to slave state. A slave node whose local count of slave
messages is above the upper threshold demotes to idle status.

A random component in the local time interval, over which
slave messages are counted, and randomness in end-to-end
messaging latency breaks the symmetry which, in conjunction
with a dead-zone between the lower and upper threshold values,
ensures that the non-deterministic idle-slave interaction is
stable, although there can be some fluctuation in the size of the
slave-pool.

The election of a master (the coordinator of either the system
layer or of a specific cluster) must be deterministic, as there
must be exactly one node elected. To ensure this, the candidate
state is introduced as an intermediary between the slave and
master states, to facilitate a form of implicit negotiation. A slave
node that times-out three times consecutively whilst waiting for
periodic master messages elevates itself to the candidate state. It
then sends a candidate message containing its node ID. This
message is interpreted by the remaining slaves as “I have
noticed the lack of a master and will elevate to that role if I do
not hear from any nodes with a higher ID”. The node then waits
a short time period for responses. On receipt of the candidate
message, slave nodes that have a higher ID now elevate to
candidate status and they too send a candidate message.
Candidate nodes that receive candidate messages from higher
ID nodes demote to slave status. After a short time only the
highest ID candidate should remain and, on timeout, it elevates
to master. The node immediately transmits a master message
which causes any remaining candidate nodes to demote
immediately to slave state and all slave nodes to reset their
timers and revert to monitoring the presence of the master.

The symbol n represents the total number of nodes in the
system.

The symbols m, c, s, i, represent the number of nodes with
master status, candidate status, slave status and idle status
respectively, other than during elections.

The symbols mE, cE, sE, iE, are used to represent the number of
nodes with master status, candidate status, slave status and idle
status respectively, during elections.

At all times except during elections:

n = m + c + s + i (1)

During elections:

n = mE + cE + sE + iE (2)

The communication intensity of the algorithm is very low. An
election begins when a slave times-out and elevates to candidate
status because it has not received any master messages. Thus,
immediately before an election begins:

i ≥ 0, s ≥ 1, c = 0 and m = 0 (3)

Eq. (3) states that at least one slave node must exist in order for
an election to begin. This could be the only node in the system.

During an election:

 iE ≥ 0, sE ≥ 0, cE ≥ 1 and mE = 0 (4)

 where:
1 ≤ cE ≤ s (5)

Eq. (4) states that at least one candidate node must exist during
an election. This could be the only node in the system.

With respect to iE idle nodes and sE slave nodes (those that
remain slaves throughout the election), the communication
complexity is zero (as they do not participate in the election).

Eq. (5) states that at least some, but not necessarily all of the
nodes that are slaves prior to the election elevate to candidate
state during an election. The value of cE depends on the ID of
the slave that first elevates to candidate status, relative to the
IDs of the remaining slaves. In the worst case, the slave with the
lowest ID elevates first and the remaining slave nodes respond
to the candidate messages in ascending order. Conversely, if the
slave with the highest ID elevates first, it will suppress the
elevation of other slaves. On average: cE = s/2, implying that s/2
candidate messages are typically generated during an election.
The election is completed when the new master node sends the
first of its periodic master messages.

SYSTEMICS, CYBERNETICS AND INFORMATICS VOLUME 3 - NUMBER 220

Key:
A Slave pool too small (local view)
B Slave pool too large (local view)
C Slave timeout (no master messages received)
D Receive lower-addressed candidate message
E Receive higher-addressed candidate message
F Receive master broadcast
G Candidate timeout (no higher-addressed candidate message received)
H Receive higher-addressed master broadcast

CandidateIdle Slave Master

A

EB

F

H

G
D

C

initialise

Key:
A Slave pool too small (local view)
B Slave pool too large (local view)
C Slave timeout (no master messages received)
D Receive lower-addressed candidate message
E Receive higher-addressed candidate message
F Receive master broadcast
G Candidate timeout (no higher-addressed candidate message received)
H Receive higher-addressed master broadcast

CandidateIdle Slave Master

A

EB

F

H

G
D

C

initialise CandidateIdle Slave Master

A

EB

F

H

G
D

C

initialiseinitialise

Figure 2 State transitions at the system level

Therefore election complexity is:

O(s/2 + 1) (6)

which is independent of the system size. The typical slave-pool
size is between two and four nodes:

2 ≤ sTYPICAL ≤ 4 (7)

A typical election therefore (from Eq. (6) and Eq. (7)) requires
only two or three messages (for any system size).

The normal mode communication (i.e. in the absence of elections)
is also highly efficient. In this mode:

i ≥ 0, s ≥ 0, c = 0 and m = 1 (8)

Eq. (8) states that exactly one master node must exist during
normal operation. This could be the only node in the system.

With respect to i idle nodes the communication complexity is zero
(as no messages are sent). Slaves and the master node transmit
messages at slow periodic rates (intervals of 10 and 5 seconds
respectively). The normal mode communication complexity is
thus:

O(s/10 + 1/5) (9)

messages per second, independent of the system size. The typical
communication cost of running the algorithm, outside elections,
is thus approximately 0.5 messages per second (from Eq. (7)
and Eq. (9)). For the system-level communication all messages
contain only a single data byte to indicate message type, and so
they are of the minimum frame size. For a Fast Ethernet
network this equates to less than 3 millionths of the bandwidth.
The emergence-inspired design is very efficient.

The role of the system-level coordinator is to create clusters of
specified size on demand. The interaction that occurs to achieve
this is illustrated in figure 3.

Several message types are used. CreateCluster(n) is a directed
broadcast from an external node requesting that a cluster of size
n be created. The use of directed broadcast avoids the need to
know the address of the system-level coordinator, which is
dynamically elected. InviteMembershipBids(k) is a broadcast
message inviting nodes to join cluster k. The value of k, the
cluster ID, is chosen by the system-level coordinator.

To reduce the total number of messages needed to create a
cluster, a ‘delayed-bids’ mechanism has been devised. Nodes
that are not currently members of clusters reply to an
InviteMembershipBids(k) message by sending a unicast
MembershipBid(k), after waiting a short, random delay time.

The system-level coordinator accepts the required number of
bids by sending unicast AcceptBid(k, role) messages. The role
parameter indicates the node’s initial role within the newly
formed cluster. The first node accepted initially coordinates the
new cluster (saving the cost of an initial election), others are
given the idle role. Once the appropriate number of acceptances
have been issued, the system-level coordinator broadcasts a
StopBids(k) message, which has the effect of cancelling any
outstanding unsent MembershipBid(k) messages. The
performance benefit of the delayed bids mechanism is evaluated
in section 7.

The delayed bids mechanism is more efficient than bidding
protocols such as the Contract Net [22] because the delayed
response reduces the total number of messages sent, and also
the burst of communication (when all nodes respond within a
very short time-frame) which causes congestion and thus delay.
The random delay values used by bidding nodes effectively
replaces the selection function. The selection role (of bidding /
allocation protocols such as Contract Net) is reduced to simply
counting the number of replies needed and responding to them,
thus reducing computational complexity at the coordinator.

A unicast CreateClusterAck(k) message is used to signal the ID
of the cluster created to the request originator. The cluster ID
relates directly to the port number the cluster uses for its private
communication. The cluster originator can thus locate and
communicate with the cluster coordinator using a directed
broadcast and the cluster port number. This approach avoids the
need for the application-level cluster-deployed application to be
aware of the specific address of the cluster coordinator (which is
subject to change, for example due to failure of the original
coordinator).

2. InviteMembershipBids(9)

1. CreateCluster(3)

4.
Acc

ep
tB

id(
9,

mas
ter

)

An
external

node
System
-level

coordinator

Logical system
boundary

Node Node

NodeNode Node

Node Node

5. StopBids(9)

3.
Mem

be
rsh

ipB
id(

9)

3

3

3 3

3 3

4. AcceptBid(9, idle)

4. A
cceptBid(9, idle)

6. CreateClusterAck(9)

2. InviteMembershipBids(9)

1. CreateCluster(3)

4.
Acc

ep
tB

id(
9,

mas
ter

)

An
external

node

An
external

node
System
-level

coordinator

System
-level

coordinator

Logical system
boundary

NodeNode NodeNode

NodeNodeNodeNode NodeNode

NodeNode NodeNode

5. StopBids(9)

3.
Mem

be
rsh

ipB
id(

9)

3

3

3 3

3 3

4. AcceptBid(9, idle)

4. A
cceptBid(9, idle)

6. CreateClusterAck(9)

Figure 3. The interaction that occurs to create a cluster of 3
nodes.

SYSTEMICS, CYBERNETICS AND INFORMATICS VOLUME 3 - NUMBER 2 21

For each cluster created, a coordinator must be maintained to
manage the execution of application-level requests sent to the
cluster. Thus the cluster-level reuses the election algorithm
described above, extending the highly efficient and robust
design up to this second level of the architecture. The state-
transition behaviour at the cluster-level is modified to allow for
the fact that nodes do not always have cluster membership.
Nodes retain a role at the system-level regardless of whether
they are a member of a cluster or not. Figure 4 illustrates the
cluster-level modifications.

The first node assigned to each cluster is designated by the
system coordinator to be the coordinator of the cluster. From
that point on the cluster operates independently and maintains
its coordinator.

The system level coordinator is not concerned with subsequent
changes that occur within the cluster. This cluster-level
independence contributes to the simplicity, and thus to the
robustness and efficiency of the architecture.

Key:
J. Receive AcceptBid message from system coordinator,

indicated initial cluster-level role is Idle
K. Receive AcceptBid message from system coordinator,

indicated initial cluster-level role is Master
L. Receive DisbandCluster message from cluster coordinator

CandidateIdle Slave Master

J
L

K

Not in a
cluster

LL L

Key:
J. Receive AcceptBid message from system coordinator,

indicated initial cluster-level role is Idle
K. Receive AcceptBid message from system coordinator,

indicated initial cluster-level role is Master
L. Receive DisbandCluster message from cluster coordinator

CandidateIdle Slave Master

J
L

K

Not in a
cluster

LL L

CandidateIdle Slave Master

J
L

K

Not in a
cluster
Not in a
cluster

LL L

Figure 4. Modified state transition diagram for the cluster level.

All aspects of actual task execution on the cluster are the
concern of the application layer. This separation allows the
cluster layer operation to be highly efficient.

The simple architecture incorporates self-adaptability at each
layer, resulting in a highly robust, scalable and flexible resource
configuration system. The cluster-layer re-uses and adapts the
highly efficient design of the system-layer to the management
of clusters. As with the system layer, the cluster layer utilises
non-deterministic behaviour to achieve highly scalable and
robust behaviour, which is stable and externally appears
deterministic because it self-adapts and self-heals such that a
single coordinator is maintained for each cluster. This
coordinator is responsible for cluster-level activities such as the
replacement of failed nodes and the release of members when
the cluster’s host application terminates. In addition to
managing its cluster, the cluster coordinator may take on a role
at the application-level, depending on the nature of the
application deployed on the cluster. It may for example, provide
coordination of specific activities such as managing
transactions, identify the master instance of a replicated service,
or it may handle communication with external components.

The application layer comprises autonomic applications which
require a stable and reliable cluster platform on which to
operate. Clusters are created dynamically to suit the needs of
such applications.

A typical configuration snapshot is illustrated in figure 5. Note
1. there is a coordinator at the system layer and also for each
cluster, 2. nodes within clusters retain system-level roles.

System
boundary

Cluster 1

Cluster 2 S

S

I

II

Sm
Ii

Is

Is
Is Ii

Mi
Is

Im

Is System
boundary

Cluster 1

Cluster 2 S

S

I

II

Sm
Ii

Is

Is
Is Ii

Mi
Is

Im

Is

Key: Upper-case indicates system-level role,
 lower-case indicates cluster-level role.

M = master (coordinator), S = slave, I = idle
(candidate state only occurs during elections)

Figure 5. A typical system configuration containing two
dynamically created clusters, each with their own dynamically-
elected coordinator.

5. EMERGENCE ASPECTS OF THE DESIGN

The design has been inspired by natural systems, especially in
terms of communication and interaction protocols. In natural
emergent systems these tend to be simple, consisting of a small
number of simple rules.

Communication at both the system level and the cluster level is
loosely modelled on pheromone communication systems found
in natural distributed systems such as ant colonies [5, 20]. This
yields low interaction and communication intensity, although
much of the internal behaviour is non-deterministic. It cannot be
predicted which role a particular node will take on at any given
time, at either level.

However, a stable pattern (configuration) is certain to emerge.
I.e. the overall behaviour (described at a higher level) is
deterministic despite the non-deterministic behaviour at the
level of individual nodes at any specific moment.

The pheromone-based communication strategies involve low
numbers of simple messages which contributes significantly to
high scalability. The messages have individually low value so
no recovery action is needed if they are lost, enhancing
robustness. The election algorithm that has been employed has
been purposefully designed to tolerate high levels of (non-
recovered) message loss (see performance evaluation in section
7, and also [23]).

SYSTEMICS, CYBERNETICS AND INFORMATICS VOLUME 3 - NUMBER 222

As is common in the natural systems, the main non-
deterministic interaction (the idle-slave interaction) is regulated
by negative feedback and relies on several sources of
randomness to break the symmetry (and thus avoid oscillation
that can occur when many nodes take the same action at the
same time). This, combined with the use of negative feedback,
ensures stability.

In keeping with the minimal state storage used in natural
systems, very little state is required for nodes to operate at both
levels. In addition to the node’s IP address, which is used as its
system-wide unique NodeID, a node’s state consists simply of
five integers:

• SystemLevelRole {Master, Candidate, Slave, Idle};
• SystemLevelCountOfSlaveMessages (used in the idle-

slave interaction);
• ClusterID (-1 indicates ‘not-in-a-cluster’);
• ClusterLevelRole {Master, Candidate, Slave, Idle};
• ClusterLevelCountOfSlaveMessages (used in the idle-

slave interaction);
Some additional state will be held at the application-level,
concerning the execution of the task on the cluster.

As with pheromone-exchange, almost all of the information
transmitted in messages is used to make decisions upon
message receipt. Very little transmitted information is retained
as state information.

Node’s state mainly arises as the result of autonomous decisions
based on the node’s local system view. As with pheromone-
exchange systems, the frequency of communication events is
itself a source of information. For example the idle-slave
interaction (at both levels) requires that nodes maintain a count
of slave messages received over a short time interval. Such
messages have no content other than the message-type identifier
(one byte).

A further simple innovation borrowed from natural systems is
the concept of randomly delaying interactions. In systems such
as an ant colony, individual actors interact at random intervals.
An external stimulus, such as an attack by another colony, is not
communicated immediately to all actors – it ripples through.
Once sufficient actors have responded, the propagation is
ceased. Although this delay increases latency, it can also be
used a means of dramatically reducing the number of messages
actually required to perform some function. This approach has
been used in the cluster management system when forming
clusters. Details of the delayed bid implementation, and its
effectiveness in reducing message numbers, are provided in
section 7.

It was desired to retain the autonomy and anonymity of nodes to
as great an extent as possible, as these contribute significantly to
self-organisation and robustness, whilst keeping the number of
messages low. Clusters of a specified size must be created on
demand, without the system-level coordinator having to
specifically identify each node, and without costly inter-node
negotiation or many message rounds. Nodes do not cache the
addresses of others at any time. Unicast reply addresses are
retrieved from received messages so there is no need to
remember, for example, the identity of the coordinator (which is
subject to change). Cluster members identify one-another

simply by the cluster ID, which can be translated directly into a
cluster-private port number.

6. OVERVIEW OF MODEL OPERATION

The model is based around an array of node details. For each
node in the array, a linked-list of delivery-pending messages is
maintained.

Both unicast and broadcast messages are used. At the point of
generation, a probability distribution is used to determine if the
message should be dropped, to simulate message loss or
corruption. Messages deemed to have been lost or corrupted are
not actually generated.

Messages, once generated, are placed in the message-list for
each recipient node. Data held concerning each message
includes the timestep at which it should be delivered to the
recipient. The model uses a 1ms timestep. The delivery timestep
is offset into the future by a random transit delay of up to 20ms
(separate random values are generated for each recipient of a
broadcast message). The message delivery behaviour is thus
highly realistic in the sense that the delivery order of messages
is not guaranteed to be the same as the sent-order, and can differ
from recipient to recipient.

Nodes’ system-level behaviour is executed independently of
their cluster-level behaviour. A node can be simultaneously idle
at the system level, and master at the cluster level, for example.

Clusters are disbanded once their task has been executed to
completion. Detection of task completion is the responsibility of
the application level, so the cluster-level simulation-model uses
a simple random distribution to model task duration.

7. PERFORMANCE EVALUATION

A simulation model of the cluster management system has been
developed and is available for evaluation purposes at:
http://staffweb.cms.gre.ac.uk/~ar26/Research/CurrentResearch/
EmergentClusterManagement/EmergentClusterManagementMe
nu.htm

Using the model, robustness and scalability are evaluated by
stress testing to determine the sensitivity to message loss and
node failure of both the cluster-layer and the system-layer. The
results presented relate to the system-layer but can be
extrapolated to the cluster layer because, in terms of the
maintenance of a coordinator, the two layers use fundamentally
the same algorithm.

In modern networks the probability of a message being lost (or
corrupted) is generally very low but is dependent on the type of
network, type of medium and congestion levels in networks.

Message loss is expected to lead to false elections, as the
probability of slave nodes incorrectly detecting the failure of the
master is related to the probability of message loss. The simulation
model is capable of randomly dropping messages. The probability
of dropping messages is governed by a user-supplied parameter.
The range of message-loss levels used in the evaluation include

SYSTEMICS, CYBERNETICS AND INFORMATICS VOLUME 3 - NUMBER 2 23

extremely high levels that are not expected to occur in realistic
deployment scenarios but are included to stress-test the algorithm.

The model was configured as follows. Simulation period: 1 hour;
System size: 200 nodes; Initial node state: all idle; Lower slave-
pool size threshold: 2; Upper slave-pool size threshold: 4; Node
failure: not active. A series of experiments were conducted,
varying the message loss probability each time. The results
presented are averaged over ten simulation runs per configuration.

0

0.1

0.2

0.3

0.4

0.5

0.6

0.0001 0.001 0.01 0.1 1
Message Loss Probability

Ti
m

e
M

ul
tip

le
 M

as
te

rs
 e

xi
st

 (%
)

Figure 6. Sensitivity to message loss.

Figure 6 shows that the algorithm maintains a single coordinator
up to a message loss level of as high as 5%. As message loss
increases beyond this point the number of occurrences of multiple
coordinators rises more steeply. Even so, at pessimistic message
loss levels of 10%, multiple coordinators only exist approximately
0.1 % of the time and at loss levels as high as 20% multiple
masters only occur for 0.552 % of the time.

In the presence of node failures, the proportion of time a
coordinator is maintained is a reflection of the algorithm’s ability
to quickly detect coordinator failure and elect a replacement.

The simulation model assigns a MTBF value to each node,
determined by a probability distribution which is governed by a
user-supplied parameter.

MTBF values for computer hardware is typically of the order of
thousands of hours, but when software, user-behaviour and
network connectivity are taken into account, the actual MTBF
value for a processing node can be much lower. In this evaluation,
node failure is taken to include unexpected user-initiated reboots,
hardware failure, operating-system crashes and isolation from the
network. MTBF values indicate the probability of each individual
node failing completely independently of, and possibly
concurrently with, any other node. Node failure is expected to lead
to periods when the system is leaderless.

The model was configured as follows. Simulation period: 24
hours. System size: 200 nodes; Initial node state: all idle; Lower
slave-pool size threshold: 2; Upper slave-pool size threshold: 4;
Message-loss probability: 0.0001; Node MTTR: 30 minutes. A
series of experiments were conducted varying the node MTBF
value each time. The results presented are averaged over ten
simulation runs per configuration.

Figure 7 shows the effect of reducing per-node MTBF on the
proportion of time the system is leaderless. Each time a
coordinator node fails there is a short period, the duration of an
election, in which no coordinator exists. With per-node MTBF as
low as 1000 and 60 minutes the algorithm maintained a
coordinator approximately 99.98 % and 99.22% of the time
respectively.

The MTTR value does not directly affect these results because
newly-recovered nodes always rejoin the algorithm in the idle state
at the system level, and the not-in-a-cluster state at the cluster
level. This design approach enhances stability since a failed
coordinator, on recovery does not try to regain its previous status.

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

10 100 1000 10000 100000
Node MTBF (minutes)

Ti
m

e
no

 M
as

te
r e

xi
st

s
(%

)

Figure 7. Sensitivity to node failure.

The effect of the system-level being leaderless is that clusters
temporarily cannot be created. This can be dealt with at the
application-level by arranging that unanswered cluster creation
requests are re-submitted after a short delay.

The main impact of the loss of leader at the cluster-level is that
task execution and results-collection will not be coordinated. To
overcome this problem, the small amount of state held by the
cluster coordinator can be appended to its periodic master message
broadcasts for caching by the other members of the cluster. Any
node that subsequently takes over the coordinator role then has
access to the state. The refined details of this aspect will be dealt
with in follow-up work.

The model is used to evaluate cluster-layer efficiency in terms of
the relationships between the number of messages required to
create clusters, cluster size, and system size. To create a cluster,
the system-level coordinator sends an InviteMembershipBids
message to elicit membership bids. When creating relatively
small clusters in large systems, it is possible that a much larger
number of nodes will respond with MembershipBid messages
than are needed to form the cluster. This would be inefficient
and impact on scalability.

To resolve the issue, a delayed-bid mechanism is deployed.
Nodes that are available to join an advertised cluster wait a
short random period before sending their MembershipBid
message. This spreads out, in time, the arrival of bids at the
system coordinator. Once the system coordinator has received
sufficient membership bids to build the cluster, it sends a

SYSTEMICS, CYBERNETICS AND INFORMATICS VOLUME 3 - NUMBER 224

StopBids broadcast which prevents outstanding MembershipBid
transmissions from occurring.

Consider a system of 100 nodes in which 80 are not currently
members of clusters and thus available. Without the delayed bid
mechanism, an InviteMembershipBids message to create a
cluster of 10 nodes would receive 80 replies. The coordinator
would then send 10 Accept messages. The total number of
messages to create the cluster would be 91. However, with the
delayed bid mechanism in place, the StopBids transmission will
prevent up to 70 of the MembershipBid messages, for a cost of
one additional broadcast. The random delay used is between 0
and 500ms. Thus the worst-case effect of the mechanism is to
add 500ms to the cluster-creation latency. Probabilistically, for
large systems, enough messages arrive at the coordinator to
create typical-sized clusters before the majority of messages
have been sent, allowing the cancellation message to be highly
effective and limiting the effect that the delay mechanism has
on the latency of cluster creation. Figure 8 shows the
relationship between system size and the actual numbers of
messages required to build clusters of several sizes, based on
experimentation with the simulation model.

0

50

100

150

200

250

0 50 100 150 200 250 300 350 400
System Size (number of nodes)

M
ea

n
nu

m
be

r o
f m

es
sa

ge
s

re
qu

ire
d

to

es
ta

bi
sh

 a
 s

in
gl

e
cl

us
te

r

Mean cluster size = 10
Mean cluster size = 50
Mean cluster size = 100

Figure 8. Mean message costs of cluster creation.

Typical savings (in terms of the percentage of potentially-
generated messages) achieved by using the delayed-bid
mechanism are illustrated in table 1. For example, if all
messages were sent (i.e. not using the delayed-bid mechanism)
then to create a cluster of 10 nodes in a 400-node system, 411
messages would be generated. However, by using the
mechanism, typically 90% of these messages are avoided,
approximately 41 being sent. The minimum number of
messages needed is actually 21.

Table 1. Message reduction achieved by
delayed bid mechanism

System size (number of nodes)

 100 200 300 400
10 78% 87% 89% 90%
50 37% 57% 68% 75%

Cluster size
(mean

number of
nodes)

100 - 48% 53% 55%

The system-level communication complexity for normal-mode
operation and during elections have been discussed in section 4.

The same election algorithm as used at the system-level
operates within each cluster. Thus, in addition to cluster
creation communication, the mean communication costs for the
normal-mode are O((j + 1) (s/10 + 1/5)) messages per second,
where j is the mean number of clusters coexisting. The election
communication complexity is the same for a cluster as it is for
system-level elections (i.e. very low and independent of cluster
size if the cluster contains more than 4 nodes). Where clusters
are sufficiently long-lived, the creation costs are amortized over
time and become insignificant. The application domain implies
that generally this condition will be upheld. Scalability is
ensured since the normal-mode and election communication
complexity are independent of system size and cluster size.

8. CONCLUSION AND FURTHER WORK

This paper proposes that self-healing should be embedded at all
layers of autonomic systems, including the software platforms and
core services on which they depend.

To illustrate the flexibility of this approach, a layered resource-
management architecture was presented. Inspired by biological
systems, the architecture embeds self-management in services
deployed at each of its three layers. Each layer has the ability to
self-heal and self-stabilise. This is precisely the type of design that
should be considered when building higher-level distributed
applications which must themselves be scalable, robust, stable and
self-healing.

The main discussion in this paper concerns the design of the
middle (cluster-management) layer. The design of the cluster
management system incorporates a novel mix of deterministic
and non-deterministic behaviour. The non-deterministic aspects
of the design were inspired by interaction protocols found in
natural emergent systems. These aspects impart highly robust
and scalable operation, whilst the design remains simple and has
a very-low-complexity communication model. The overall
operation, at both the system level and the cluster level, is
deterministic and stable.

Wrapping the non-deterministic core behaviour (the idle-slave
interaction) to ensure that the externally-visible behaviour is
deterministic required some additional communication and an
increase in internal complexity (in the form of the candidate
state and its accompanying transmissions and timers), but has
been achieved without eroding the benefits gained.

The failure-sensitivity testing results show that under realistic
operating conditions the system remains completely stable in a 200
node system. The independent variable ranges used in these
experiments included extremely pessimistic values to stress-test
the algorithm. The algorithm tolerates message loss levels of 20-
30%. At such levels the momentary occurrence of multiple
coordinators is in the order of 0.5 – 1% of operational time. The
algorithm adequately tolerated realistic per-node MTBF values,
quickly returning to a legal state after master failure.

A main contribution of this paper has been to demonstrate that
‘engineered emergence’ can be a powerful design paradigm for
high-quality distributed applications which are highly efficient,
scalable and robust, yet have quite simple internal behaviour.

SYSTEMICS, CYBERNETICS AND INFORMATICS VOLUME 3 - NUMBER 2 25

The investigation of emergence-inspired computing as a
foundation for the development of autonomic systems is
ongoing.

The application-layer is being extended to support a wide-range
of autonomic applications including highly-adaptive self-load-
balancing parallel applications [24].

Strategies for generalising the effective embedding of self-
managing and self-healing behaviour into many levels
throughout a system are being explored.

9. REFERENCES

[1] F. Maturana, P. Tichy, P. Slechta, F. Discenzo, R. Staron
and K. Hall, “Distributed Multi-Agent Architecture for
Automation Systems”, Expert Systems with Applications,
Vol. 26, No. 1, Elsevier Science, 2004, pp.49-56.
[2] K. Shindo, N. Koshizuka and K. Sakamura, “Large-Scale
Ubiquitous Information System for Digital Museum”,
Proceedings of 21st International Conference on Applied
Informatics, IASTED, Innsbruck, February 2003, pp. 172-178.
[3] J. Koehler, C Giblin, D. Gantenbein and R. Hauser, On
Autonomic Computing Architectures, Research Report
(Computer Science) RZ 3487(#99302), IBM Research (Zurich),
2003.
[4] N. Shadbolt, “Nature-Inspired Computing”, Intelligent
Systems, IEEE, 2004, pp.2-3.
[5] S. Johnson, Emergence: The connected lives of Ants, Brains,
Cities and Software, Penguin Press, London, 2001).
[6] R. Anthony, “Transparency-Driven Design of Distributed
Software”, Proceedings of 19th International Conference on
Applied Informatics, IASTED, Innsbruck, February 2001, pp.
45-50.
[7] G. Eschelbeck, “Parallel computation with dynamic load
distribution for locally distributed NT environments”, Journal of
Microcomputer Applications, Academic Press, Vol. 18, 1995,
pp. 193-201.
[8] P. Krueger and R. Chawla, “The Stealth Distributed
Scheduler”, Proceedings of 11th International Conference on
Distributed Computing Systems, IEEE, 1991, pp. 336-343.
[9] R. Anthony, Load-Sharing in Loosely-Coupled Distributed
Systems: A rich-information approach, D.Phil. Thesis, Dept.
Computer Science, University of York, UK, March 2000.
[10] A. Goscinski, “Finding, expressing and managing parallelism
in programs executed on clusters of workstations”, Computer
Communications, Vol. 22, Elsevier Science B.V., 1999, pp. 998-
1016.
[11] C. Soleimany and S. Dandamudi, “Performance of a
distributed architecture for query processing on workstation
clusters”, Future Generation Computer Systems, Vol. 19,
Elsevier Science B.V., 2003, pp. 463-478.
[12] A. Goscinski, “Towards an operating system managing
parallelism of computing on clusters”, Future Generation
Computer Systems, Vol. 17, Elsevier Science B.V., 2000, pp.
293-314.
[13] J. Jaen-Martinez, “The Java Management Extensions (JMX):
Is Your Cluster Ready for Evolution?”, Journal of Parallel and
Distributed Computing, Vol. 60, Academic Press, 2000, pp.
1341-1353.
[14] L. Lundberg and C. Svahnberg, “Optimal Recovery Schemes
for High-Availability Cluster and Distributed Computing”,

Journal of Parallel and Distributed Computing, Vol. 61,
Elsevier Science, 2001, pp. 1680-1691.
[15] H. Unger and G. Hipper, “LYDIA – Load Sharing for PVM-
applications in a Workstation Cluster”, Proceedings of 9th
International Conference on Parallel and Distributed
Computing and Systems, IASTED, Washington DC, October
1997, pp. 183-187.
[16] F. Turck, S. Vanhastel, B. Volckaert and P. Demeester, “A
generic middleware-based platform for scalable cluster
computing”, Future Generation Computer Systems, Vol. 18,
Elsevier Science B.V., 2002, pp. 549-560.
[17] R. Brightwell, L. Fisk, D. Greenberg, T. Hudson, M.
Levenhagen, A. Maccabe and R. Riesen, “Massively parallel
computing using commodity components”, Parallel Computing,
Vol. 26, Elsevier Science B.V., 2000, pp. 243-266.
[18] T. Priol, G. Alleon, “A client/server approach for HPC
applications within a networking environment”, Future
Generation Computer Systems, Vol. 17, Elsevier Science B.V.,
2001, pp. 813-822.
[19] J.L. Casti, Complexification: Explaining a Paradoxical
World Through the Science of Surprise, Abacus, London,
1994.
[20] R. Genet, The Chimpanzees who would be Ants: A Unified
Scientific Story of Humanity, Nova Science Publishers Inc, New
York, 1997.
[21] M. Gell-Mann, The Quark and the Jaguar: Adventures
in the Simple and the Complex, Abacus, London, 1994.
[22] J. Ferber, Multi-Agent Systems: An Introduction to
Distributed Artificial Intelligence, Addison Wesley Longman,
Harlow, England, 1999.
[23] Anthony. R, Emergence: A Paradigm for Robust and
Scalable Distributed Applications, 1st Intl. Conf. Autonomic
Computing (ICAC), IEEE, New York, 2004, pp.132-139.
[24] R. Anthony, “Self-Configuration in Parallel Processing”,
3rd International Workshop on Self-Adaptable and
Autonomic Computing Systems - SAACS '05 (DEXA 2005),
IEEE, Copenhagen, Denmark, August 2005, 175-180.

SYSTEMICS, CYBERNETICS AND INFORMATICS VOLUME 3 - NUMBER 226

	9. REFERENCES

