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The Richit-Richards family of distributions and its
use in forestry

Mingliang Wang, N. I. Ramesh, and Keith Rennolls

Abstract: Johnson's Sg and the logit-logistic are four-parameter distribution models that may be obtained from the stand-
ard normal and logistic distributions by a four-parameter transformation. For relatively small data sets, such as diameter at
breast height measurements obtained from typical sample plots, distribution models with four or less parameters have been
found to be empirically adequate. However, in situations in which the distributions are complex, for example in mixed
stands or when the stand has been thinned or when working with aggregated data, then distribution models with more
shape parameters may prove to be necessary. By replacing the symmetric standard logistic distribution of the logit-logistic
with a one-parameter “standard Richards” distribution and transforming by a five-parameter Richards function, we obtain
a new six-parameter distribution model, the “Richit-Richards”. The Richit-Richards includes the “logit-Richards™. the
“Richit-logistic”, and the logit-logistic as submodels. Maximum likelihood estimation is used to fit the model, and some
problems in the maximum likelihood estimation of bounding parameters are discussed. An empirical case study of the Ri-
chit-Richards and its submodels is conducted on pooled diameter at breast height data from 107 sample plots of Chinese
fir (Cunninghamia lanceolata (Lamb.) Hook.). It is found that the new models provide significantly better fits than the
four-parameter logit-logistic for large data sets.

Résumé : Les équations Johnson Sg et logit-logistique sont des modéles de distribution a quatre paramétres qui peuvent
étre développés a partir des distributions standard normale et logistique par une transformation a quatre paramétres. Pour
les jeux de données relativement de petite taille, tels que les mesures de diamétre & hauteur de poitrine obtenues a partir
des placettes échantillons typiques, les modéles de distribution 4 quatre paramétres ou moins se sont avérés empiriquement
adéquats. Cependant, dans les situations ou les distributions sont complexes, dans les peuplements mélangés par exemple,
ou lorsque le peuplement a été éclairci ou encore lorsqu’on veut travailler avec des données agrégées, des modéles de dis-
tribution avec plus de paramétres peuvent s’avérer nécessaires. En remplagant la distribution logistique symétrique stand-
ard du modéle logit-logistique par une distribution de « Richards standard » & un parametre el en faisant la transformation
avec la fonction de Richard 4 cing paramétres, nous obtenons un nouveau modeéle de distribution & six paramétres appelé
« Richit-Richards ». Ce nouveau modéle inclut les sous-modéles « logit-Richards », « Richit—logistique » et logit-logistique.
L’estimation par maximum de vraisemblance est utilisée pour ajuster le modéle ct certains des problémes associés a Iesti-
mation par maximum de vraisemblance des paramétres de démarcation sont discutés. Une étude de cas du modele Richit
Richards et de ses sous-modéles est réalisée avec des données agrégées de diamétre a hauteur de poitrine provenant de
107 placettes échantillons de sapin de Chine (Cunninghamia lanceolata (Lamb.) Hook.). Le nouveau modéle permet d’ob-
tenir, avec ses sous-modéles, un ajustement significativement meilleur que le modele logit-logistique a guatre paramétres
pour les jeux de données de grande taille.

[Traduit par la Rédaction]

Introduction used to predict volume production and the range of products

that might be expected from a stand.

A wide range of probability density functions, and fitting
methods, have been considered and compared for use in for-
estry to model tree diameter distributions. These distribution
models include lognormal (Bliss and Reinker 1964), gamma
(Nelson 1964), Weibull (Bailey and Dell 1973; Rennolls et
al. 1985), beta (Zohrer 1972; Li et al. 2002), S (Hafley and
Schreuder 1977; Kamziah et al. 1999; Zhang et al. 2003;
Rennolls and Wang 2005), and the logit-logistic, general-

Diameter distribution models are a central tool in charac-
terizing the size-class distribution of a forest stand and are
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ized Weibull, and Burr XII (Wang and Rennolls 2005).
Wang and Rennolls (2005) found that the logit-logistic
gave the best performance in their case study.

The utility of a distribution model depends on its flexibil-
ity of distribution shape representation, tractability, and par-
simony. The “principle of parsimony™ (otherwise known as
Occam’s razor or the Pareto principle) states that if there are
two alternative models that describe a data set equally well,
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then the simplest model, usually that with fewer parameters,
is o be preferred (Baker 2004; Sarkar and Pfeifer 2005).

In studies of the distribution of diameter at breast height
(DBH), it has often been found that a simple three-parame-
ter Weibull distribution is an adequate description of the
data from sample plot studies. The literature of distribution
modelling of typical sample plot data suggests that models
with more than four parameters would be unnecessarily
complex. However, for atypical sample plot DBH distribu-
tion data, for example from mixtures or when the stand is
multistory or when the stand has been subjected to novel
thinning regimes, it is possible that a model with more than
four parameters will be better than the four-parameter mod-
els currently available. If the distribution data set is very
large, as might be the case if data are collected from a
whole stand, or from a region, possibly by pooling data
sets, then it is also possible that more highly parameterized
distribution models will be required to adequately describe
the data.

We develop a new six-parameter family of distribution
models, the “Richit-Richards’ (RR), a generalization of the
four-parameter logit-logistic (LL) of Wang and Rennolls
(2005). The RR has two five-parameter submodels, the
“logit-Richards” (LLR) and the “Richit-logistic” (RL).

We present a case study that uses large pooled DBH dis-
tribution data sets to demonstrate that the RR (and its five-
parameter submodels) provide a betier description than the
four-parameter LL distribution.

The RR distribution

Before defining the RR distribution, we first define the Sg
and LL distributions that lead naturally to it.

The Sy distribution

Johnson (1949) defined the Sp distribution as that
bounded distribution that when scaled to the range (0, 1),
transformed by the logit function and scaled by a linear
transformation, produces a standard normal distribution.
Hafley and Schreuder (1977) and Schreuder and Hafley
(1977) first demonstrated its utility in forest distribution
modelling. Rennolls and Wang (2005) viewed the transfor-
mation process in the opposite direction and consequently
suggested what they regarded as a more natural parameter-
ization of Sg.

The LI distribution

Tadikamalla and Johnson (1982), following the approach
of Johnson (1949), used a logit transformation of a two-pa-
rameter Jogistic distribution (a symmetric distribution simi-
lar to the normal but with fatter tails (Berkson 1951)) to
give what Wang and Rennolls (2005) have called the LL
distribution. Wang and Rennolls (2005), following the ap-
proach of Rennolls and Wang (2005), based their definition
and parameterization of the LL distribution on a transforma-
tion of a standard logistic (SL) distribution (with CDF 1/(1
+ e79), first by a linear scaling, then by a (symmetric) SL
function, and finally by a linear scaling to the range (&, & +
A). The overall transformation from z ~ SL to x ~ LL is
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where p and o are the usual parameters of a linear scaling
transformation of z and £ and X are, respectively, the lower
bound and range parameters of x. The LL cumulative distri-
bution function (CDF) and probability density function (pdf)
are given in Wang and Rennolls (2005) and may be easily
obtained from those of the RR given below in this paper.

The RR distribution and its submodels

The symmetry properties of the logistic and logit compo-
nents of the LL distribution limit its representational flexi-
bility. Hence, in looking for a flexible generalization of the
LL, two generalizations are natural: first, to replace the sym-
metric SL distribution by an asymmetric one-parameter
“standard Richards” (SR) distribution (defined below), and
second, to replace the (symmetric) SL transformation func-
tion by a one-parameter (asymmetric) SR function. This is
equivalent to applying a power transformation after the SL
transformation in the construction of the LL distribution,
We call the inverse of the SR function the “Richit”, in anal-
ogy to the logit. Hence, the resulting six-parameter distribu-
tion model is obtained by applying a linear scaling to an SR
distribution, which is then transformed by an SR function,
which is finally scaled to an arbitrary range. We call the re-
sulting distribution the Richit-Richards (RR) distribution.

The SR distribution
The SR distribution has CDF

1

2]  Fzelad) = Tref

where k is a shape parameter. This is a simple form of a Ri-
chards function (Richards 1959; Nelder 1962). The Richards
distribution (the SR with z replaced by p + oz) is also
known as the Burr II distribution (Burr 1942) and has been
used in forest diameter distribution modelling by Ishikawa
(1991, 1996).

We note, to avoid confusion, that there is another form of
(standardized) Richards function (i.e., (I - exp(-=z))¥) that is
usually known as the “Chapman-Richards” function in for-
estry (Pienaar and Turnbull 1973). The two forms of the Ri-
chards function are related (see Garcia 2005), but we do not
use the Chapman-Richards function in defining the RR dis-
tribution.

The standard Richards function

We call the functional form of the SR CDF in eq. 2 the
SR function and its inverse function the (standard) Richit
function. They are, respectively:

N S
S (e L ]“(1 y*)

where ¢ is a shape parameter. Note that the SR function is
to be used to transform distributions and is distinct from
the SR CDF of eq. 2. Parameters k of eq. 2 and (1/c) of eq.
3 are distinct parameters.
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The Richit-Richards CDF and pdf

If z is distributed as SR with single parameter k, as speci-
fied by eq. 2, then x, given by the five-parameter (Richards)
transformation

A
(] + e—(p-»crz))!h:

has the RR(0) distribution with parameter vector 0 = (k, y,
o, ¢, & L). The parameters are defined in eqs. 1, 2, and 3.
Transformation 4 was used by Mead (1965) to generalize
Johnson's Sg distribution to a generalized logit-normal dis-
tribution (that is, the Richit-normal: note that Sg is logit—
normal). Note also (following Garcia 2005) the close asso-
ciation between growth curves models and the distributions
they produce when used as transformations of basic distribu-
tion models such as the standard of the normal, logistic, Ri-
chards, and uniform distributions.

Since eq. 4 is a monotonic transformation function ap-
plied to the SR distribution of z to produce the RR distribu-
tion of x, we have

4 x=t+

. 1
] ¥ — F. o s N
[5.' Fxge(x) = Fzge (2) (I+e -:)k

!

{reslls) -}

where z as a function of x is found by inverting eq. 4. This
explicit and tractable form of the RR CDF allows the RR
distribution to be directly simulated by applying the inverse
of the CDF in eq. 5 to u ~ U0, 1) (or z = —In(u® — 1)
from eq. 2. u ~ U(0, 1), and x ~ RR(0) using eq. 4).

The RR pdf is obtained by differentiating the RR CDF in

eq. 5 to give
- - 1 N =(e+1
() () T
k

{l~+- es[(%;)“'_ ]]é} 1

[6]  frwl(x) =
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The RL and LR RR submodels

The five-parameter RL distribution is obtained from set-
ting k = 1 in the RR distribution. corresponding to the use
of the SL instead of SR as the source distribution to be
transformed by eq. 4. The RL is an analogue of the Richit-
normal introduced by Mead (1965) as a generalization of Sg.
The five-parameter LR distribution is obtained from setting
¢ =1 in the RR distribution. LR results from the transforma-
tion of the SR distribution by eq. 1. The CDFs and pdfs of
the RL, LR, and LL are obtained from egs. 5 and 6 by set-
tingk=1,¢=1, and k = ¢ = 1, respectively.

Inferential methods

Parameter estimation method

There has been a wide range of criteria used for fitting
empirical distribution models and for evaluating the good-
ness-of-fit, including error sum of squares, likelihood, per-
formance in volume prediction usage, etc. (Zhou and
McTague 1996). In some cases, performances over a range
of criteria-of-fit have been considered (Wang 2005, pp. 69—
g3);

We use maximum likelihood estimation (MLE) and adopt
the corresponding measure of goodness-of-fit, -2 log-likeli-
hood, to compare via likelihood ratio tests the relative per-
formances of the models in the RR — (RL/LR) —» LL
hierarchy of models. We note that MLE of bounded distri-
bution models is known to be problematic (Davison 2003,
p. 146).

If we assume that the sample data x = {x;};_, _, are in-
dependently and identically distributed of size n from the
RR(0) distribution, then the likelihood of the observed data
18

o o) = _ijan{x,-lﬁ')

where § = (k, p, o, ¢, £, L). In the case study, x is DBH.
The log-likelihood function L is

L—n(lnk tlnec—Ing+clnA +§> - (§+ I)Z]n(x,- - &)
i=1

8]

For fitting purposes, a simple reparameterization was used
that replaced the range parameter A by the upper bound
parameter v = § + A. This made the boundary constraints
simpler to specify, as § < x(;) (the minimum sample value)
and 0 > x(u (the maximum sample value). The invariance
property of MLE means that Amy = Om — Em. We have
left the parameterization in the above treatment in terms of
). since this is the conventional parameterization following
Johnson (1949). MLE has been achieved by minimizing -L
with respect to the parameter vector 6 using the function op-

;_(% - Q)Z]n[,\" — (x5 = &) — (k+ l)gt:ln l1+e

x—§

5 —]

tim of the statistical package R (R Development Core Team
2006).

Estimation of the boundary parameters £ and v

Previous studies (e.g., Hafley and Schreuder 1977; Li et
al. 2002; Zhang et al. 2003) have determined the bounding
parameter by heuristic means, for example, either by setting
the lower boundary parameter to zero or by setting é = X(1)
(or a little less) before estimating the remaining model pa-
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Fig. 1. Empirical relative frequency polygons for the four aggregated data sets and the whole data set. The plotted points are at the mid-
points of | cm intervals and the relative frequency for subset 7 (RF()) has been scaled to (RF() + 0.02 x I) x 100. For the whole data set,

1=0.
20.0 -

18.0 -

(Relative frequency+0.02 x ) x 100

16.0 -
14.0 -
12.0 -
10.0
8.0
6.0

== Group 4
= Group 3
40 1 ——Group 2
20 A = Group 1
0.0 - AR ; : r == \Vhole
0 5 10 15 20 25 30

DBH (1 cm classes)

rameters. In practical terms, such procedures would seem to
be justified. Visual examination of the empirical DBH distri-
butions in Fig. 1 suggests that the lower bound parameter §
might reasonably be set to a value of about 3 c¢m. Mead
(1965) used a two-stage estimation procedure, estimating
the boundary parameters first and subsequently the remain-
ing parameters. There seems to be little other published
guidance on formal methods of estimating the boundary pa-
rameters of a distribution.

We have estimated the bounding parameters & and v using
MLE. The advantages of doing so are that the same MLE
procedure is used for all the model parameters, and hence
in principle, an asymplotic variance—covariance matrix of
the whole parameter vector can be obtained and hence
asymptotic standard errors and correlations of all parameter
estimates.

However, there is a technical difficulty that arises in using
MLE for the boundary parameters £ and v, and this is prob-
ably the reason why previous studies have estimated these
parameters heuristically. If there is a boundary constraint on
a parameter, such as & < x;;) (the minimum observed diame-
ter), then if the MLE of E approaches its bounding value
X1, we are in what is called the “nonstandard conditions”
of MLE (Moran 1971; Self and Liang 1987). The likelihood
equation #5A = 0 is not satisfied in general under nonstan-
dard conditions. For example, for an independently and
identically distributed sample from U(E, v), the MLEs are
the biased estimates: £ = x(;) and © = x(,). Under nonstan-
dard conditions for more general distribution models, such
as the RR family, the likelihood as £ — x(1) can have vari-

ous nonstandard properties depending on the nature of the
shape of the lower tail of the model adopted. The shape of
—L is not explicitly convex-down if f; — X(1), since it termi-
nates at the boundary in parameter space. We discuss in the
case study section some of the problems encountered in us-
ing MLE of the bounding parameters & and v.

Model comparisons
The comparisons of the fit of submodels in the RR family
are achieved using likelihood ratio tests.

Correlation matrix of parameter estimates

After ML parameter estimation, the asymptotic informa-
tion matrix, the variance—covariance matrix, and the correla-
tion matrix (of the estimated parameter vector) can be
computed. The (i, j)th element of Fisher's information ma-

. . 3 B pe e - 6.8
trix (of the parameter estimates) is 7(9) = b(—ga—lf?@%)g____g,

The asymptotic variance—covariance matrix of parameter es-
timates, V(@), is the inverse of the information matrix (Cox
and Hinkley 1974). The correlation matrix (of the estimated
parameter vector) is obtained from the variance—covariance
matrix in the usual way.

In this study, to estimate V, the following approximation
was used;

- aL(0)
[9]  I(8) = Observed (— (’)G,-B()j) e

The partial derivatives may be evaluated symbolically using
the S-Plus function deriv, and we have used such an ap-
proach in S-Plus implementations. Such symbolic evaluation

© 2007 NRC Canada
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Table 1. Summary statistics for the four aggregated data sets and the whole data set.

Data set Count Mean SD Skew  Kurtosis Minimum  Maximum
1 3172 11.23 375 0.38 0.18 35 27

2 3106 11.11 367 042 0.23 3.5 275

3 3210 11.20 371 034 -0.01 22 269

q 3228 11.23 374 038 0.11 1.9 275
Whole 12716 11.19 372 038 0.12 1.9 275

is only possible because of the explicit form of L for the RR
distribution, as given in eq. 8. However, we have also used
the usual numerical method of evaluating the Hessian in eq.
9 when using R, and this approach may be used when the
analytic approach is not possible. The results obtained are
essentially the same, subject to small numerical differences
resulting from the differing numerical algorithms and stop-
ping criteria used.

Case study with Chinese fir (Cunninghamia
lanceolata (Lamb.) Hook.) sample plot DBH
distribution data

Sample plot data

The diameter data of 107 plots for Chinese fir plantations
were provided by the Chinese Academy of Forestry. These
plots were located at Kaihua forestry farm, Zhejiang Prov-
ince, southeastern China. The plot size ranges from 400 to
600 m?, age varies from 10 to 29 years, and density ranges
from 1000 to 4500 stems/ha. The number of trees per plot
ranges from 63 to 239 with a mean of about 119. Further
details about the data may be found in Wang and Rennolls
(2005).

Results for sample plot data

The RR family of models has been fitted to all of the
sample plot data sets individually. As expected, the six-pa-
rameter RR and five-parameter LR and RL models do not
demonstrate significantly better fits than the four-parameter
I.L. since the range and complexity of the distributional
forms exhibited by the sample plot data sets are rather lim-
ited and the sample sizes are not sufficiently high to warrant
the use of the models with more parameters than the four of
the LL distribution.

Aggregated case study data

The 107 sample plots were therefore aggregated into four
sets in a random manner so that each set contained about the
same number of DBH measurements. These pooled data sets
were of sizes 3172, 3106, 3210, and 3228, large compared
with typical sample plot sample sizes but possibly around
the size expected for an intensive study or a regional inven-
tory. The DBH data from all the plots resulted in a sample
size of 12716.

The basic statistics for the four aggregated data sets and
all data are shown in Table 1. The means and standard devi-
ations of all data sets are similar, as expected from the
method of construction. The skew of the data sets varies be-
tween 0.34 and 0.42, corresponding to a fairly well-defined
lower limit to the distributions and fairly long upper distri-
bution tails. The kurtosis statistics vary from -0.01 to 0.23.

Even though our aggregated data sets are the result of pool-
ing many sample plot data sets, the central limit theorem
does not apply to the resulting distributions: Normality
(with skew and kurtosis both zero) is not to be expected.

The empirical relative frequency polygons are shown in
Fig. 1. The relative frequency (RF) axis for data set [/
(RF(I), say) has been scaled to (RF(/) + 0.02 x [) x 100
for clarity of presentation. Data sets 1, 3, and 4 seem to dis-
play some bimodality, but this has been averaged out in the
whole data set.

Aggregated data results

Model fits

The estimated parameters (and standard errors) for the RR
family of models are presented in Table 2. The estimation
procedure converged in all cases, although a selection of pa-
rameter starting values had to be tried to avoid convergence
to local minima of —L. Only for the RL model, for subset 2,
were standard errors unobtainable.

Figure 2 shows the fitted models on the whole data set us-
ing 2 cm DBH classes that are conventional for management
purposes in China. It is apparent that the RR model provides
a qualitatively better fit to the empirical DBH distribution
than its submodels. Figure 3 shows the empirical DBH dis-
tribution for subsample 4 and 99 simulations from the fitted
RR model. This demonstrates that the fitted RR model has a
significant lack of fit to this bimodal empirical distribution,
rather as expected, even though the RR family of models is
able to take a bimodal form for appropriate parameter set-
tings. It is possible that the beta distribution, with its poly-
nomial pdf form, might provide a better fit to multimodal
distributions than the RR family. Observation of a multimo-
dal tree size distribution can indicate that the population is a
mixture, in which case, a mixture distribution model, for ex-
ample, a Weibull mixture (Zhang et al. 2001), would be
most appropriate.

Boundary parameter estimates

To illustrate the issues relating to nonstandard conditions
of MLE, consider the RR model fitted to data set 2. Figure 4
shows plots of —L as functions of the individual parameters
(the other parameters being set to their MLE values) for this
case. The MLE of (k, p, o, ¢, & v = § + L) was
(0.3477, -1.4298, 0.3499, 1.6735, 3.4129, 31.4579) in this
data set, with the minimal value of —-L attained being
8361.4. It may be seen from Fig. 4 that the parameters (k,
W, 0, ¢, v) have values at which —L is both minimal and
convex-down, However, for the lower boundary parameter
&, —L approaches its minimal value as the lower boundary
parameler approaches the boundary of its feasible region,
in this case the minimal observed data value of 3.5 cm.
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Table 2. Summary of estimated parameters for the RR family of distribution models with

standard errors.

& v n o ¢ k

Subsample | RR 3.46 32.39 -2.09 0.39 2.34 0.27
Standard error  0.04 421 1.02 0.13 1.12 0.05
RL 3.50 27.55 0.74 0.33 0.33
Standard error  0.02 0.34 0.27 0.02 0.08
LR 3.48 38.00 -0.81 0.24 0.34
Standard error  0.02 9.26 0.33 0.05 0.06
LL 2.02 27.46 —0.61 0.40
Standard error  0.31 0.34 0.04 0.01

Subsample 2 RR 341 31.46 -1.43 0.35 1.67 0.35
Standard error 0,07 4.18 1.53 0.17 1.56 0.12
RL 3.30 28.44 1.06 0.29 0.25
Standard error na 0.52 na 0.01 na
LR 3.45 33.08 -0.67 0.28 0.42
Standard error  0.04 3.95 0.16 0.03 0.05
LL 2.06 27.96 -0.67 0.39
Standard error  0.30 0.36 0.04 0.01

Subsample 3 RR 2.15 27.62 -2.32 0.52 3.09 0.38
Standard error 0,05 0.91 0.67 0.10 0.93 0.05
RL 2.15 27.78 0.30 0.32 0.52
Standard error  0.06 0.64 0.28 0.02 0.12
LR 2.15 28.26 =0.46 0.34 0.67
Standard error  0.05 1.05 0.05 0.02 0.06
LL 1.85 27.19 -0.58 0.40
Standard error  0.23 0.24 0.03 0.01

Subsample 4 RR 1.83 28.41 -2.19 0.50 2.80 043
Standard error  0.06 1.03 0.78 0.11 1.04 0.08
RL 1.83 28.82 0.11 0.31 0.59
Standard error 0,09 0.82 0.28 0.03 0.13
LR 1.83 29.03 -0.51 0.34 0.73
Standard error 0,07 0.99 0.05 0.02 0.07
LL 1.60 28.01 —0.60 0.38
Standard error (.21 0.37 0.03 0.01

Whole RR 1.88 28.18 ~2.30 0.52 2.94 042
Standard error 0,02 0.48 0.35 0.05 0.47 0.03
RL 1.88 28.59 0.11 0.31 0.59
Standard error  0.02 0.41 0.14 0.01 0.07
LR 1.88 29.18 -0.52 0.33 0.71
Standard error  0.02 0.63 0.03 0.01 0.03
El 1.74 27.81 -0.61 0.39
Standard error (.10 0.16 0.01 0.005

Note: na. not available.

2057

Fig. 2. Fitted distribution models of the RR family for the whole data set. The ordinate indicates the number of sample trees in a 2 cm DBH class.
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Fig. 3. Empirical DBH distribution for subset 4 (bold line) and 99 simulations from the fitted RR model.
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These features of MLE under nonstandard conditions can
lead o some software optimization packages indicating a
“nonconvergence condition” even though the minimum of
—L has been achieved. Some software packages fail to calcu-
late the variance—covariance matrix in this case, since the
numerical calculation involves second derivatives of -L
about the estimated parameter value. For our five case study
data sets, use of R software with numerical variance—
covariance estimation did find the ML parameter estimates
of the RR model satisfactorily, and variance—covariance es-
timates were obtained. The variance-covariance estimates
obtained should be treated with caution, since they are
biased estimates in these nonstandard conditions (Self and
Liang 1987).

Correlation matrices

The estimated correlation matrix for the parameters of the
RR model for the whole sample is shown in Table 3. The
estimated correlations between (i and the other two shape
parameter estimates (& and ¢) and between & and ¢ are
very high, at -0.96, -0.99, and 0.97, respectively. Two-di-
mensional sections of the —L function about the MLE have
essentially elliptical contours, and so are not presented. The
correlation of —0.99 between [i and & would normally be
taken to indicate that the later parameter is redundant in
this case. However, the =L of the fitted RR model in this
case is 34533.5, a significant improvement over the —L of
34551.7 for the LR submodel (which is equivalent to the
RR model with ¢ set to 1). See Table 5.

A “well-parameterized” model is often characterized as
one in which the —L manifold at the MLE fit to the data set
concerned is expressed orthogonally in terms of the parame-
ters (Cox and Reid 1987; Ratkowsky 1990; Ross 1990; Ren-
nolls 19956 Davison 2003). In such an “orthogonal”
parameterization, the estimated correlations between MLE
parameter estimates will be close to zero. To summarize
our correlation results, and the lack of orthogonality of the
RR parameterization in our five data sets, we take the value
of 0.95 as indicating excessive correlation between parame-
ter estimates.

For LL, no excessive correlations were found among the
four parameter estimates of LL. However, for LR, high cor-

Table 3. Estimated correlation matrix for the parameter estimates
of the RR model for the whole sample.

4 v u ] ¢ k
13 1.0000  0.0049 -0.0252 0.0179  0.0253 -0.0842
v 0.0049 1.0000 03686 -0.5810 -0.4721 0.2070
p o 00252  0.3686 1.0000 -0.95%6 -0.9910  0.8725
o 0.0179 -05810 -0.9596  1.0000 09736 -0.7571
¢ 0.0253 -04721 -09910 09736 1.0000 —0.8802
k -00842 02070 08725 -0.7571 -0.8802  1.0000

relation was found between pairs (0, fi), (0. &), (0, k), (f,
&), and (k, &) on the first subsample and between (0, i),
(0, &), and (k, &) on the second subsample. The high corre-
lation between (fi, &) and (or) (k, &) is not unexpected,
since they are all shape parameters. The high correlation be-
tween the parameter estimate © and the estimates of the
other (shape) parameters i, &, and k for data sets 1 and 2
was not expected.

For RL, there was high correlation between pairs of (¢, fi)
for all data sets and between (¢, &) for data sets 1, 2, and 3.
For RR, high correlation between pairs of (&, {i) and pairs of
(¢, &) for all data sets, between (fi, &) for data sets 2, 3, and
4, and between (£, fi) and (k, &) for the second subsample
was found.

These results suggest that some reparameterization of the
RR distribution model might be necessary. Rennolls and
Wang (2005) suggested such a reparameterization for Sg,
which seemed to improve the statistical properties (ortho-
gonality) of the parameter estimates. However, this parame-
terization has already been used in our specification of the
RR family of models. Rennolls (1995a) also used reparame-
terization of the Richards growth model to overcome con-
vergence problems. Further discussion of such ill-
parameterization and reparameterization issues may be
found in Grosenbaugh (1965) and Rennolls (1995b). We are
unable to suggest at the present time a suitable reparameteri-
zation of the RL and RR models with respect to parameter
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Fig. 4. RR model fitted to subsample 2: profile (minus) likelihood functions plotted for the (k, p, o, ¢, &, v) parameters.
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¢, which would remove the high correlations involving pa-
rameter estimates of ¢.

Overall, from the results on correlations among parameter
estimates for this case study, it is suggested that introducing
an additional (shape) parameter k (to give the SR distribu-
tion) is justified as a means of extending the LL model to
the LR model. This conclusion is in concordance with the
conclusion reached, in the next section, on the superiority
of LR over RL in terms of a goodness-of-fit evaluation.

Goodness-of-fit evaluation

Table 4 lists the minimal attained value of —L for each of
the models for each of the data sets considered.

For nested models, the deviance (= 2(L(unconstrained) —
L{constrained)) is distributed approximately as the %2 distri-
bution with degrees of freedom determined by the number
of parameters reduced from the unconstrained model to the
constrained (McCullagh and Nelder 1989). Table 5 presents
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Table 4. Minimal —L trom fitting LL, LR, RL, and RR distributions

on the large sample data sets.

LL LR RL RR
Subsample 1 8649.79 8597.03 8622.97 8596.50
Subsample 2 8397.73 8361.61 8375.43 8361.40
Subsample 3 8729.11 8718.82 8722.52 8713.41
Subsample 4 8799.09 8793.46 8795.21 8789.99
Whole 34 580.95 34551.74 34563.43 3453351

Table 5. Likelihood ratio test statistics of compared distribution pairs.

(LL,LR)  (LL,RL) (LL,RR) (LR,RR) (RL,RR) (RL,LR)
(df = 1) df=1) (df = 2) (df = 1) df=1) (df = 0)
Subsample 1 105.52%%% 53 64%%*  ](6,58%** 1.06 ns  52.94*+* 5] 8§
Subsample 2 T2.24%%% 44 60*** 72.60%*%% (.42 ns 28.06%** 27 64
Subsample 3 20.58*%% 13 18*** 31.40%*% (), §2%** 182 2% 7.40
Subsample 4 11.26%%=* 7.76%* 18.20%*%  6.94%* 10.44%* 3.50
Whole 58.42%%% 35 (fd 04 g®*kk 36 46%** 59 Btk 23 38

Note: The asterisks indicate a nominal significance level from the y* distribution for the improve-
ment of fit by the more general model. **Highly significant (p < 0.01); ***very highly significant (p <

0.001); ns, not significant.

the estimated deviances between model pairs. The critical
values of the ¥2 distribution with 1 df at the 0.05, 0.01, and
0.001 probability levels are 3.84, 6.63, and 10.83 and for 2
df are 5.99, 9.21, and 13.82, respectively. We also include
the nonnested pair of (RL, LR) for which the likelihood test
cannot be used. Note that the Akaike criterion of model fit
(Akaike 1974) is given by AIC = 2(p — L). For models with
differing numbers of parameters, the best model is that with
the smallest AIC. Hence, use of AIC to compare RL and LR
is equivalent to the use of the difference in the —L values for
the two models.

We see from Table 5 the impact of large sample sizes on
the significance of the improvement of fit provided by the
five-parameter and six-parameter models over the four-pa-
rameter LL. The p values corresponding to the very high
significance level are generally much less than the nominal
(.001 value. The differences in the —L values that reach the
nominal significance levels in Table 5 are so large that use
of the AIC for model selection reaches the same conclusions
as indicated by the nominal significance levels in Table 5.

The summary statistical conclusions, for this case study,
from Table 5 arec (i) LR is very significantly better than LL
for all data sets, (i) RL is significantly better than LL for all
data sets, (iif) RR is very significantly better than LL for all
data sets, (iv) RR is significantly better than LR for two of
the four aggregated data sets and for the whole data set, and
(v) LR is superior to RL for all of the four subsamples and
for the whole data set.

Our conclusion from this empirical study is that if the em-
pirical data set has a very large sample size, then the six-pa-
rameter RR model may prove to be statistically superior to
models with a smaller number of parameters. From our case
study data, the indication is that LR is superior to RL. That
is, if we are to increase the degree of parameterization from
the four-parameter LL by | (or equivalently decrease the de-
gree of parameterization form the six-parameter RR by 1),
then use of SR as the source distribution is to be preferred
over the use of the Richit transformation. However, we can-

not assert from this empirical case study that LR will be
superior to RL for other shapes of (diameter) distribution.

Discussion and conclusions

All empirical models are (strictly speaking) “wrong™, but
some are less wrong than others. The principle of parsimony
is a reasonable approach for choosing the most suitable em-
pirical model for characterizing DBH distributions. Signifi-
cance tests are a reasonable way of assessing if two
alternative models describe the data equally well. Using
these principles, we find that distribution models of no
more than four parameters are sufficient to describe the indi-
vidual sample plot data of our case study. We have also
found in our pooled-data large-sample case study that the
five-parameter LR and the six-parameter RR are superior to
the four-parameter LL.

For practical forest distribution modelling, the available
models comprise a “toolkit” from which the most conven-
ient and useful model can be selected and used in the mod-
elling task at hand. The tractable RR family of models
extends the range of distribution model tools. The R code
for MLE of the RR family and other Excel-based facilities
for using the RR family will be made available on the Forest
Model Archive (www.forestmodelarchive.info) in  due
course.

However, we do feel that there is a limit to the number of
parameters that can reasonably be used in an explicit para-
metric distribution model, and our experience in this study
suggests that this is about five or six! Ideally, the parameter-
ization of an explicit parametric model should be such that
each of the parameters relates to a separate observable fea-
ture of the empirical data (Ross 1990), such as the minimal
and maximal bounding parameters in a distribution model.
In the large-sample case study of this paper, the high corre-
lations between the estimates of the shape parameters of the
RR family follow from the fact that they do not independ-
ently represent separate well-defined features of the empiri-
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