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Abstract

In this chapter we look at JOSTLE, the multilevel graph-partitioning software pack-
age, and highlight some of the key research issues that it addresses. We first outline
the core algorithms and place it in the context of the multilevel refinement paradigm.
We then look at issues relating to its use as a tool for parallel processing and, in par-
ticular, partitioning in parallel. Since its first release in 1995, JOSTLE has been used
for many mesh-based parallel scientific computing applications and so we also outline
some enhancements such as multiphase mesh-partitioning, heterogeneous mapping
and partitioning to optimise subdomain shape.
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1 Introduction

JOSTLE is a parallel multilevel graph-partitioning software package written at the
University of Greenwich. It is freely available for academic and research purposes
under a licensing agreement.

In this paper we outline the algorithms devised for and used by JOSTLE, review
the results produced, and give a broad overview of the underlying research.

1.1 History

Work on JOSTLE initially started in 1993 when Chris Walshaw joined the Parallel
Processing Research Group at the University of Greenwich, with a brief to build a
graph-partitioning toolkit. One of the major applications for graph-partitioning is par-
allel mesh-based computational mechanics codes and so, from its inception, it was
anticipated that the software would be able to run in parallel, alongside the solver and
include dynamic load-balancing capabilities.

The software was first released into the public-domain in 1995, with the first paral-
lel version appearing in 1997. Since then it has gained a worldwide user community
of over 135 licensed sites, and, although some are no longer current, has been licensed
by groups based at Los Alamos, Argonne and Sandia National Labs (all in the USA),
NASA, and in Universities across the world (including almost all European countries,
the USA, Canada, Brazil, Russia, Turkey, Israel, Oman, India, Japan, Singapore and
Taiwan). In addition the algorithms have been extended and modified to tackle a vari-
ety of partitioning problem variants, some of which are discussed in Section 5.

1.2 The Graph-Partitioning Problem

Thek-way graph-partitioning problem (GPP) can be stated as follows: given a graph
G(V,E), with verticesV (which can be weighted) and edges (which can also be
weighted), partition the vertices intok disjoint sets such that each set contains the
same vertex weight and such that thecut-weight, the total weight of edges cut by the
partition, is minimised. The GPP is usually cast as a combinatorial optimisation prob-
lem with the cut-weight as the objective function to be minimised and the balancing of
vertex weight acting as a constraint. However, it is quite common to slightly relax this
constraint in order to improve the partition quality. It is well known that this problem
is NP-complete, [8], so in recent years much attention has been focused on developing
suitable heuristics. The GPP has many applications, most notably the partitioning of
unstructured meshes for parallel processing (mesh-partitioning), but also including ar-
eas such as circuit partitioning, telecommunications, air-traffic management and web
search engines.
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1.2.1 Recursive bisection

Historically many researchers have approached the GPP by studying its restriction to
2 subsets, the graph-bisection problem. This can then be easily extended to the full
problem by recursion, i.e. the graph is bisected into two sub-problems which are them-
selves bisected to give 4 sub-problems and so on. This technique is known as recursive
bisection and has been used with a variety of bisection algorithms, e.g. [20]. It is still
widely used and is able to give guarantees on satisfying the balancing constraint, al-
though the resulting partition quality may be limited, [21]. However with the advent
of robustk-way partitioners, including JOSTLE, which arguably can be parallelised
more easily, and are perhaps better suited to dynamic load-balancing, there is now a
considerable body of research on methods which solve the full problem directly, e.g.
[10, 14, 29].

1.2.2 Mesh-partitioning

(a) mesh (b) dual graph (c) nodal graph (d) combined graph

Figure 1: An example mesh and some possible graph representations.

Many of the applications in which partitioning is used involve a parallel computa-
tional mechanics simulation, usually solved on an unstructured mesh which consists
of elements, nodes and faces, etc. For the purposes of partitioning, it is normal to rep-
resent the mesh as a graph and in fact this is a useful abstraction to measure partition
quality, even if, as in the case of geometric partitioners, the graph is never explicitly
constructed. Thus, if we consider the mesh shown in Figure 1(a), the graph vertices
can either represent the mesh elements (the dual graph), Figure 1(b), the mesh nodes
(the nodal graph), Figure 1(c), a combination of both (the full or combined graph),
Figure 1(d), or even some special purpose representation to model more complicated
interactions in the mesh. In each case the graph vertices represent units of workload
that exist in the underlying solver and edges represent data dependencies (e.g. the
value of the solution variable in a given element will depend on those in its neighbour-
ing elements).

1.3 Overview

The rest of this chapter is laid out as follows. First, in Section 2, we outline the key
concepts and algorithms and their implementation within JOSTLE. Next, in Section 3,
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we look at how the multilevel paradigm has contributed to research in the partitioning
problem and attempt to explain its runaway success. One of the main applications
associated with partitioning, and driving many of the developments in the field, is
parallel or distributed computing, and so, in Section 4, we discuss the parallelisation
of partitioning schemes. In Section 5 we then outline four extensions which have been
successfully applied to address variant partitioning problems. Finally, we summarise
the chapter in Section 6.

2 Key algorithms within JOSTLE

In this section we outline the key concepts and algorithms and their implementation
within JOSTLE. In particular we look at the the multilevel refinement strategy and
outline the refinement algorithm.

2.1 Background

JOSTLE uses a multilevel refinement strategy. Typically such multilevel schemes
match and coalesce pairs of adjacent vertices to define a new graph and recursively
iterate this procedure until the graph size falls below some threshold. The coarsest
graph is then partitioned (possibly with a crude algorithm) and the partition is succes-
sively refined on all the graphs starting with the coarsest and ending with the original.
At each change of levels, the final partition of the coarser graph is used to give the ini-
tial partition for the next level down. The use of multilevel refinement for partitioning
was first proposed by both Hendrickson and Leland, [10] and Bui and Jones, [3], and
was inspired by Barnard and Simon, [1], who used a multilevel numerical algorithm
to speed up spectral partitioning.

Figure 2: An example of multilevel partitioning

Figure 2 shows an example of a multilevel partitioning scheme in action. On the
top row (left to right) the graph is coarsened down to 4 vertices which are (trivially)
partitioned into 4 sets (bottom right). The solution is then successively extended and
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refined (right to left). Although the refinement is only local in nature at each level, a
high quality partition is still achieved.

The GPP was the first combinatorial optimisation problem to which the multilevel
paradigm was applied and there is now a considerable body of literature about multi-
level partitioning algorithms. Initially used as an effective way of speeding up parti-
tioning schemes, it was soon recognised as, more importantly, giving them a ‘global’
perspective, [13], and has been successfully developed as a strategy for overcoming
the localised nature of the Kernighan-Lin (KL), [15], and other optimisation algo-
rithms. Indeed, as we see in§3.2, this coarsening has the effect offiltering out most of
the poor quality partitions from the solution space, allowing the refinement algorithms
to focus on solving smaller, simpler problems.

2.2 Multilevel framework

2.2.1 Graph coarsening

A common (although not universal) method to create a coarser graphGl+1(Vl+1, El+1)
from Gl(Vl, El) is the edge contraction algorithm proposed by Hendrickson and Le-
land, [10]. The idea is to find a maximal independent subset of graph edges (or a
matchingof vertices) and then collapse them. The set is independent if no two edges
in the set are incident on the same vertex (so no two edges in the set are adjacent),
and maximal if no more edges can be added to the set without breaking the indepen-
dence criterion. Having found such a set, each selected edge,(v1, v2) ∈ El say, is
collapsed and the vertices,v1, v2 ∈ Vl, are merged to form a new vertexv ∈ Vl+1 with
weight‖v‖ = ‖v1‖+ ‖v2‖. Edges which have not been collapsed are inherited by the
child graph,Gl+1, and, where they become duplicated, are merged with their weight
combined. This occurs if, for example, the edges(v1, v3) and(v2, v3) exist when edge
(v1, v2) is collapsed. Because of the inheritance properties of this algorithm, it is easy
to see that the total graph weight remains the same,‖Vl+1‖ = ‖Vl‖, and the total edge
weight is reduced by an amount equal to the weight of the collapsed edges.
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Figure 3: An example of coarsening via matching and contraction

Figure 3 shows an example of this; on the left two pairs of vertices are matched
(indicated by dotted lines). On the right the graph arising from the contraction of this
matching is shown with numbers illustrating the resulting vertex and edge weights
(assuming that the original graph had unit weights).

A simple way to construct a maximal independent subset of edges is to create a
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randomly ordered list of the vertices and visit them in turn, matching each unmatched
vertex with an unmatched neighbour (or with itself if no unmatched neighbours exist).
Matched vertices are removed from the list. If there are several unmatched neighbours
the choice of which to match with can be random, but it has been shown by Karypis
and Kumar, [13], that it can be beneficial to the optimisation to collapse the most
heavily weighted edges.

JOSTLE uses a similar scheme, matching across the heaviest edges, or, in the event
of a tie, matching a vertex to the neighbour with the lowest degree (with the aim of
trying to avoid highly connected vertices).

2.2.2 The initial partition

The hierarchy of graphs is constructed recursively until the number of vertices in the
coarsest graph is smaller than some threshold and then an initial partition is found
for the coarsest graph. Since the vertices of the coarsest graph are generally inho-
mogeneous in weight, some mechanism is then required for ensuring that the final
partition is balanced, i.e. each subset has (approximately) the same vertex weight.
Various methods have been proposed for achieving this, often by terminating the con-
traction so that the coarsest graph,GL, still retains enough vertices,|VL|, to compute
a balanced initial partition (i.e. so that typically|VL| � k), [10, 13]. Alternatively, if
load-balancing techniques are incorporated alongside the refinement algorithm, as is
the case with JOSTLE, [29], the contraction can be terminated when the number of
vertices in the coarsest graph is the same as the number of subsets required,k, and
then vertexi is assigned to subsetSi.

2.2.3 Partition extension

Extension is the reverse of coarsening and operates in tandem with the refinement
algorithms. Thus, having refined the partition on a graphGl+1, the partition must be
extended onto its parentGl. The extension algorithm is trivial; if a vertexv ∈ Vl+1 is
in subsetSi then the matched pair of vertices that it represents,v1, v2 ∈ Vl, are also
assigned toSi.

2.3 Refinement

At each level the new partition, extended from the previous level, is refined. Because
of the power of the multilevel framework, the refinement scheme can be anything from
simple greedy optimisation, to a much more sophisticated one, such as the Kernighan-
Lin algorithm. Indeed, in principle any iterative refinement scheme can be used and
examples of multilevel implementations exist for simulated annealing, tabu search,
genetic algorithms, cooperative search and even ant colony optimisation (see [27] for
references).
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2.3.1 The gain and preference functions

Two key concepts for refinement (which we will use later in the chapter to extend and
adapt the algorithms) are the ideas ofgain andpreference. The gain,gain (v, q), of
a vertexv in subdomainSp can be calculated for every other subdomain,Sq, q 6= p,
and expresses some measure of how much the partition would be improved, werev
to migrate toSq. The preference,pref (v), is then just the preferred subdomain for
v to migrate to, and thus the value ofq which maximises the gain; i.e. ifgain (v, q)
attainsmaxr gain (v, r), thenpref (v) = q. In the event of a tie, other criteria, such
as subdomain weight, are used to make the final preference decision.

For the classic GPP then, thegain (v, q) just expresses the reduction in the cut-
weight, although the idea of gains is generic (see§5.1 and§5.2 for different examples).
Also, since there can never be a reduction in cut-weight if a vertexv is transferred to a
subdomainSq to which it is not adjacent (because there will be no cut edges between
v andSq), gains are only calculated forborder vertices (i.e. those actually adjacent
to another subdomain) and furthermore, it usually suffices to calculate gains just for
the adjacent subdomains (although see§5.2). This in turn restricts the preference to
adjacent subdomains and indeed, in a high quality partition of a sparse graph, most
border vertices will only be adjacent to one other subdomain.

2.3.2 Greedy refinement

Various refinement schemes have been successfully used includinggreedyrefinement,
a steepest descent approach, which is allowed a small imbalance in the partition (typ-
ically 3-5%) and transfers border vertices from one subdomain to another if either
(a) the move improves the cost (i.e.gain (v, q) > 0) without exceeding the al-
lowed imbalance; or (b) the move improves the balance without changing the cost
(gain (v, q) = 0). Although this scheme cannot guarantee perfect balancing, it has
been applied to very good effect, [14], and is extremely fast.

Although not the default behaviour, JOSTLE includes a greedy refinement scheme,
accessed by turning off the hill-climbing abilities of the optimisation (see§2.3.3).

2.3.3 Thek-way Kernighan-Lin algorithm

A more sophisticated class of refinement method is based on the Kernighan-Lin (KL)
bisection optimisation algorithm, [15], which includes a degree of hill-climbing ability
to enable it to escape from local minima. This has been extended tok-way partitioning
in different ways by several authors (e.g. [10, 14, 29]) and recent implementations
almost universally use the linear time complexity improvements (e.g. bucket sorting
of vertices) introduced to partitioning by Fiduccia and Mattheyses, [6].

A typical KL-type algorithm will have inner and outer iterative loops with the outer
loop terminating when no vertex transfers take place during an inner loop. It is ini-
tialised by calculating thegain – the potential improvement in the cost function (see
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§2.3.1) – for all border vertices. The inner loop proceeds by examining candidate
vertices, highest gain first, and if the candidate vertex is found to be acceptable (i.e.
it does not overly upset the load-balance), it is transferred. Its neighbours have their
gains updated and, if not already tested in the current iteration of the outer loop, join
the set of candidate vertices.

The KL hill-climbing strategy allows the transfer of vertices between subsets to be
accepted even if it degrades the partition quality and later, based on the subsequent
evolution of the partition, the transfers are either rejected or confirmed. During each
pass through the inner loop, a record of the best partition achieved by transferring
vertices within that loop is maintained, together with a list of vertices which have
been transferred since that value was attained. If, during subsequent transfers, a better
partition is found, then the transfer is confirmed and the list is reset.

This inner loop terminates when a specified number of candidate vertices have been
examined without improvement in the cost function. This number (i.e. the maximum
number of continuous failed iterations of the inner loop) can provide a user specified
intensity for the search,λ, (see below,§3.1). Note that ifλ = 0 then the refinement
is purely greedy in nature. Once the inner loop is terminated, any vertices remaining
in the list (vertices whose transfer has not been confirmed) are transferred back to the
subsets they came from when the best cost was attained.

JOSTLE uses just such a refinement algorithm, [29], modified to allow for weighted
graphs (even if the original graph is not weighted, coarsened versions will always have
weights attached to both vertices and edges). It incorporates a balancing flow of vertex
weight, calculated by a diffusive type load-balancing algorithm, [11], and indeed by
relaxing the balance constraint on the coarser levels and tightening it up gradually as
uncoarsening progresses, the resulting partition quality is often enhanced, [29].

3 Multilevel context

One of the most important factors which has allowed JOSTLE to tackle a range of
different partitioning problems (including successful parallel partitioning, Section 4
and extensions such as those described in Section 5) is the multilevel framework.
Indeed, its success as a paradigm has inspired further investigation in a variety of
fields including the travelling salesman problem, the graph colouring problem, the
facility location problem and force-directed graph layout, as well as research into the
dynamics of the framework itself (see [27] for individual references). In this section
we look at how the multilevel paradigm has contributed to research in the partitioning
problem and attempt to explain its runaway success.

3.1 Multilevel refinement: typical results

To illustrate the potential gains that the multilevel paradigm can offer, we give some
example results. These are not meant to be exhaustive in any way but merely give an
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indication of typical performance behaviour.

3.1.1 Asymptotic tests

In [27], detailed tests are carried out to assess the impact of multilevel refinement on
the GPP. Here we summarise those results.

The experimental data consists of two test suites, one of which is a smallish collec-
tion of 16 sparse, mostly mesh-based graphs, drawn from a number of real-life appli-
cations, and often used for benchmarking. The other test suite consists of 90 instances
compiled to test graph-colouring algorithms and including a number of randomly gen-
erated examples. Although perhaps not representative of partitioning applications,
they reveal some interesting results. This colouring test suite is further subdivided
into 3 density classes; low (under 33%) with 58 out of 90 instances, medium (between
33% and 67%) with 23 instances and high (over 67%) with just 9 instances.

In this context, the density, oredge density, of a graph,G(V,E), is defined as the
percentage of all possible edges and given by2|E|/[|V | · (|V |−1)], so that acomplete
graph (where every vertex is adjacent to every other), with|V | · (|V |−1)/2 edges, has
a density of 100%. Although the distinction between sparse and low-density graphs
is not always clear, especially for small examples, typically we usesparseto mean
families of graphs for which the number of edges|E| is O(|V |) and so the density
decreases with increasing|V |. On the other hand,low-densitytends to mean families
of graphs which haveO(|V |2) edges but for which the density, remains constant with
increasing|V | (for example the colouring test suite contains a series of randomly
generated graphs of different sizes but fixed density of around 0.1).

The tests compare the JOSTLE implementation of the Kernighan-Lin (KL) algo-
rithm against its multilevel counterpart (MLKL). As mentioned in§2.3.3 and similar
to most local search schemes, the KL algorithm contains a parameter,λ, known as the
intensity, which allows the user to specify how long the search should continue before
giving up.

To assess the algorithms, we measure the run-time and solution quality for a chosen
group of problem instances and for a variety of intensities. We then normalise these
values with reference solution quality and run-time values and finally plot averaged
normalised solution quality against averaged normalised run-time for each intensity
value.

Figure 4(a) shows the results for the sparse suite and the dramatic improvement in
quality imparted by the multilevel framework is immediately clear. Even for purely
greedy refinement (i.e. the extreme left-hand point on either curve whereλ = 0 – see
above§2.3) the MLKL solution quality is far better than KL and it is results like these
that have helped to promote multilevel partitioning algorithms to the status they enjoy
today.

Figures 4(b)-(d) meanwhile show the partitioning results for the colouring test
suite. Figure 4(b) more or less confirms the conclusions for the sparse results and
although the curves are closer together, MLKL is the clear winner. For the medium
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(c) medium-density instances (d) high-density instances

Figure 4: Plots of convergence behaviour for the partitioning test suites

and high-density examples however, it is a surprise (especially considering the widely
accepted success of multilevel partitioning) to find that these conclusions are no longer
valid. For the high-density instances, Figure 4(d), MLKL is still the leading algorithm,
although only very marginally. However for the medium-density results, Figure 4(c),
MLKL fails to achieve the same performance as KL and the multilevel framework
appears to actually hinder the optimisation. We discuss this further in the following
section.

3.1.2 Iterated multilevel partitioning

Although the medium density results are disappointing, in fact a simple resolution
does exist which works by reusing the best partitions that have been found. Indeed,
given any partition of the original problem we can carry outsolution-based coarsening
by insisting that, at each level, every vertexv matches with a neighbouring vertex in
the same set. When no further coarsening is possible this will result in a partition of
the coarsest graph with the same cost as the initial partition of the original. Provided
the refinement algorithms guarantee not to find a worse partition than the initial one,
the multilevel refinement can then guarantee to find a new partition that is no worse
than the initial one.
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This sort of technique is frequently used in graph-partitioning for dynamic load-
balancing, e.g. [19, 28], although if the initial partition is unbalanced, the quality
guarantee can be lost in satisfying the balance constraint. However it can also be
used to find very high quality partitions, albeit at some expense, and the multilevel
procedure can be iterated via repeated coarsening and uncoarsening. At each iteration
the current best solution is used to construct a new hierarchy of graphs, via solution-
based coarsening, and, as we have seen, the process guarantees not to find a worse
solution than the initial one. However, if the matching includes a random factor, each
iteration is very likely to give a different hierarchy of graphs to previous iterations and
hence allows the refinement algorithm to visit different solutions in the search space.

We refer to this process as aniterated multilevel algorithm(see also [24] for a
variation of this technique). Note that it requires the user to specify a different intensity
parameter,γ, namely the number of failed outer iterations (i.e. the number of times the
algorithm coarsens and uncoarsens the graph without finding a better solution). We
can then varyγ, the outer intensity parameter, to test the iterated multilevel algorithm
and below we give some sample results for this scheme (which has also been used to
find very high quality partitions for benchmarking purposes).

Figure 5 illustrates the results for the iterated multilevel algorithm (IMLKL) along-
side the MLKL and KL results for low and medium-density subclasses of the colour-
ing suite. These plots contain the same information about MLKL and KL as Fig-
ures 4(b) and 4(c), only here it is more compressed because of the long IMLKL run-
times.
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Figure 5: Plots of convergence behaviour including iterated multilevel partitioning
results

We do not show results for the sparse and high-density instances because they are
not so interesting; for the sparse suite IMLKL more or less continues the MLKL
curve in Figure 4(a) with a few percentage points improvement and very shallow
decay whilst for the high-density instances IMLKL does not appear to offer much
improvement at all. However for the low and medium-density subclasses, in Fig-
ures 5(a) and 5(b) respectively, the asymptotic performance offered by IMLKL is im-

11



pressive and worthy of further and more thorough investigation. In both cases IMLKL
dramatically improves on MLKL and, for the medium-density instances, even appears
to overcome the shortcomings of MLKL and exceeds the KL results.

3.2 Multilevel landscapes

It is of great interest to ask how the multilevel paradigm helps to solve partitioning and
other combinatorial problems. In this section we attempt to give an insight into the
dynamics of the multilevel method by considering characteristics of the typical results
and, in particular, of the hierarchy of solution spaces produced by the coarsening.

As mentioned above,§2.2, the coarsening constructs a series of approximations to
the original problem; it is hoped that each problemPl retains the important features
of its parentPl−1 but the (usually) randomised and irregular nature of the coarsening
tends to preclude any rigorous analysis of this process.

On the other hand, viewing the multilevel process from the point of view of the
objective function and, in particular the hierarchy of solution spaces, is considerably
more enlightening. Typically, the coarsening is carried out by matching groups pairs
of solution variables together and representing each pair with a single variable in the
coarsened space. Previously authors have made a case for multilevel refinement (and
partitioning in particular) on the basis that the coarsening successivelyapproximates
the problem. In fact it is somewhat better than this: as discussed in [27] and illustrated
below, the effect, if carried out correctly, is tofilter the solution space by placing
restrictions on which solutions the refinement algorithm can visit.

To see this suppose that two verticesv1, v2 ∈ Gl are matched and coalesced into a
single vertexv ∈ Gl+1. When a refinement algorithm is subsequently used onGl+1

and wheneverv is assigned to a subset, bothv1 andv2 are also being assigned to that
subset. In this way the matching restricts a refinement algorithm working onGl+1 to
consider only those configurations in the solution space in whichv1 andv2 lie in the
samesubset, although the particular subset to which they are assigned is not specified
at the time of coarsening. Since many vertex pairs are generally coalesced from all
parts ofGl to formGl+1 this set of restrictions is equivalent to filtering the solution
space and hence the surface of the objective function.

We can then conjecture that, if the coarsening manages to filter the solution space
so as to graduallysmooththe objective function, the multilevel representation of the
problem combined with an iterative refinement algorithm should work well as an opti-
misation metaheuristic. In other words, by filtering a large amount of irrelevant detail
from the solution space (in particular the higher cost solutions which are not close to
local optima), the multilevel component allows the refinement algorithm to find re-
gions of the solution space where the objective function has a low average value (e.g.
broad valleys). On a more pragmatic level this same process also allows the refine-
ment to take larger steps around the solution space (e.g. rather than swapping single
vertices, the local search algorithm can swap whole sets of vertices as represented by
a single coarsened vertex).
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3.2.1 Motivating example

Figure 6 shows an example of how this process might work for a simple objective
function (see [26] for details). On the left hand side the objective function is filtered
and smoothed by selecting and removing possible solutions (essentially at random).
The initial solution for the final coarsened space (shown in the bottom right hand fig-
ure) is then trivial (because there is only one possible state) although the resulting
solution is far from optimal for the overall problem. However this state is used as an
initial configuration for the next level up and (in this case) asteepest descentrefine-
ment policy finds the nearest local minimum (steepest descent refinement will only
move to a neighbouring solution if the value of the objective function is lower there).
Here the vertical lines indicate the solutions visited whilst the arrows above show the
trajectory through the solution space. Repeated application of this process on the in-
creasingly finer levels continues to improve the best-found solution. Finally this gives
a good starting point for the original problem and (in this case) the optimal solution
can be found (although the arrows are indistinct, the vertical lines show the solutions
visited).
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Figure 6: The multilevel scheme applied to a simple objective function

Of course this motivational example might be considered unrealistic (in particu-
lar an objective function cannot normally be pictured in 2D). However, consider other
heuristics, such as repeated random starts combined with steepest descent local search,
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or even simulated annealing; without lucky initial guesses either might require hun-
dreds of iterations to find the optimal solution of this trivial problem.

3.2.2 Experimental results

The conjecture that the multilevel framework filters out high cost solutions (partitions)
from the solution space is validated in [35], but we give an outline of the results here.
The idea is to enumerate all possible partitions of a given graph at each level of the
coarsening and to see how the coarsening affects the solution landscape.

Clearly it is only possible to enumerate every possible solution for very small
graphs, since the number of solutions is given by(|V |−1)C|V |/2 (wherenCr denotes
the number of combinations ofr objects fromn and is given byn!/r!(n− r)!). Thus,
for a graph of size|V | = 32 the total number of solutions is31C16 = 300, 540, 195,
and the enumeration code, running on a 1 GHz Pentium processor, was able to evalu-
ate every solution in approximately 10 to 40 minutes, depending on the edge density
of the example. To illustrate the exponential size of the partitioning problem, this
means that for graphs of size|V | = 64, a similar experiment would have taken ap-
proximately1, 000 and4, 000 years to run! As an alternative then, we also look at
some larger graphs with|V | = 1, 024 where the solution space is sampled randomly.
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Figure 7: Enumeration results for the small GPP instances

Enumeration results for the small graphs (|V | = 32) are given in Figure 7, although
here we only show sparse and high-density results (the low and medium results are
intermediate and similar). For each plot we take the maximum, average and minimum
values ofQ, the normalised solution quality, for each graph and each level and then
average these values over the16 graphs in each subclasses (sparse and high-density).
These averaged normalised values are then plotted against the coarsening level.

It is perhaps not immediately obvious what conclusions to draw from these plots,
but we interpret the results as follows. Firstly, in all four density subclasses, the aver-
age value of the cost function decreases as the coarsening progresses (i.e. as the level
increases). In other words the coarsening is filtering out the higher cost solutions at a
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greater rate than the lower cost ones. Ideally we would like it to avoid filtering out any
low cost or optimal solutions (although this would mean that the multilevel scheme
would find the optimal solution at the end of the coarsening phase, which seems a
little too much to hope for). However, an important point to note is that the size of the
coarsest spaces is relatively small. Thus we might reasonably expect all but the most
basic of refinement schemes (i.e. all those with the ability to escape local minima) to
be able to find the best solution available at level 2 (which only has 35 possible solu-
tions). This means that the refinement should already have a good initial solution for
levels1 and subsequently0.

Furthermore, with regard to the effects of density, the observations above (§3.1),
do seem to be borne out. Thus the more dense the problem, the shallower the gradient
of the average cost curves. In other words, in higher-density graphs the multilevel
coarsening filters out almost as many low cost solutions as high cost and hence is less
effective.
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Figure 8: Sampling results for the large GPP instances

In Figure 8 results for somewhat larger graphs (|V | = 1, 024) are given. Here
the solution space is just sampled and hence we have no values for the minimum
or maximum cost of solutions over the whole space. Once again the fact that the
average value of the cost function always decreases for each subclass demonstrates
that the coarsening is acting as an effective filter. However, now the effects are much
more dramatic and one instantly see the success of the multilevel technique for sparse
examples, where the high cost solutions are almost completely filtered out by the final
coarsening. And, once again, as for the small examples, increasing graph density is
seen to have an adverse effect on the success of the filtration.

In summary then, it seems that the multilevel framework works by filtering out high
cost solutions from the solution space. However, as graph density increases it is harder
for the coarsening algorithms to find them. Fortunately, however, most partitioning
applications feature sparse graphs.
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4 Parallel partitioning

4.1 Background

One of the main applications associated with the GPP, and driving many of the devel-
opments in the field, is parallel or distributed computing, particularly with the purpose
of enabling large-scale mesh-based simulations in computational science. In these
cases, the graph vertices represent units of computational workload whilst the edges
represent data dependencies. For optimal parallel efficiency, it is typical that the par-
allel processors each need the same amount of computational work, thus inducing the
load-balancing constraint. Meanwhile, the minimisation of interprocessor communi-
cations is modelled by the cut-weight objective function (although, as several authors
have pointed out, e.g. [9], since this measures the total communicationvolume, it is
not necessarily the best representation of communications overhead).

4.1.1 Requirements analysis

Such mesh-partitioning problems usually arise in one of three different ways and can
be characterised as the:–

(i) static partitioning problem (the classical problem) which arises in trying to
distribute an existing mesh amongst a set of processors;

(ii) static load-balancing problemwhich arises from a mesh that has been gener-
ated in parallel (and thus is already distributed);

(iii) dynamic load-balancing/partitioning problem which arises either from adap-
tively refined meshes, or from meshes in which the computational workload for
each mesh entity can vary with time, or even from machines on which (due to
external user load) the computational resources may vary.

In the last two cases, (ii) and (iii), the initial data is a distributed mesh which may
be neither load-balanced nor optimally partitioned. One way of dealing with this is
to ship the mesh back to some host processor, run a serial partitioning algorithm on
it and redistribute. However, this is unattractive for many reasons. Firstly, anO(N)
overhead for the mesh-partitioning is simply not scalable if the solver is running at
O(N/P ), where hereN is the number of graph vertices andP the number of proces-
sors. Indeed the mesh may not even fit into the memory of the host machine and thus
incur enormous delays through memory paging. In addition, a partition of the mesh
(which may even be optimal) already exists, so it makes sense to reuse this as a start-
ing point for repartitioning, [19, 33]. In fact, not only is the load-balancing likely to
be unnecessarily computationally expensive if it fails to use this information, but also
the mesh elements will be redistributed without any reference to their previous ‘home
processor’ and heavy data migration may result. Thus, because the mesh is already
distributed, it is a natural strategy to repartition itin situ.
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It could be argued that case (i) is best handled by a serial partitioning algorithm.
However, once again anO(N) start-up cost for the mesh-partitioning may not be
acceptable and the same memory problems can arise. Also, assuming that a parallel
machine is available to run the solver, it makes sense to use it for the initial partition
as well.

With these issues in mind, JOSTLE is implemented to provide a partitioning frame-
work that:–

(a) works in parallel;

(b) can optimise an existing partition;

(c) can find a high quality partitionindependentof the existing partition;

(d) incorporates load-balancing techniques.

4.1.2 The parallel partitioning paradox

This raises a paradox for case (i): we seek to compute, in parallel, a partition of a
previously unpartitioned mesh; however, to do it in parallel we must first distribute
the mesh sensibly amongst the processors and to distribute the mesh sensibly we must
first find a reasonable partition.

In fact it is requirement (c) that, if met, can answer this paradox. It is easy to dis-
tribute a mesh if there are no guarantees about the partition quality (e.g. by assigning
mesh entities to processors on a cyclic basis). Thus if requirement (c) can be met, we
can indeed solve problem (i) to high quality by initially using a crude distribution of
the mesh and then optimising it in parallel.

In this section we outline the JOSTLE framework which satisfies all four require-
ments (a)-(d) and which thus aims to solve all three problems (i)-(iii), using the same
algorithm. In particular, we will focus on the solution of the static partitioning prob-
lem (i) and the requirements (a)-(c). For more details of the dynamic aspects, and a
new self-adapting dynamic strategy, see [28], where a dynamic partitioning scheme
is described that trades off the minimisation of cut-weight against the changes to the
partition (if the partition is left relatively unchanged, most of the data can stay in place
and does not need to migrate to another processor).

4.2 Parallel multilevel partitioning

The multilevel scheme described in Section 2 has been parallelised within JOSTLE,
[30]. The communications are performed via the Message Passing Interface library
MPI, and the implementation uses the owner-computes single-program multiple-data
paradigm. Thus the vertices in each subdomain,Sp, are assigned to processorp, which
also holds a one deep halo or read-only copy of vertices adjacent toSp.
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4.2.1 Parallelising the multilevel framework

In fact, most of the multilevel framework, including the coarsening and expansion,
is inherently localised and hence relatively easy to implement in parallel, although
with some minor differences. Most notably, the graph is already distributed and an
initial partition already exists, and so does not need to be computed for the coarsest
graph. However, the coarsening algorithms can work almost unchanged, although
some migration of vertices is allowed to facilitate matching of vertices in two different
subdomains (this feature can also be switched off by the user at run-time to reduce
vertex migration for dynamic load-balancing).

As mentioned in§2.2, the coarsening usually continues until the number of ver-
tices in the coarsest graph is the same as the number of subdomains,P , and this
gives us automatically an initial partition with one vertex per subdomain. However,
although coarsening down to a single vertex per subdomain is rapid in serial (since
at the coarsest levels, the graphs become very small indeed), in parallel it can be rel-
atively inefficient since each coarsening stage involves several communication calls.
For this reason, once the size of the graph falls below a given threshold, each pro-
cessor broadcasts its portion so that every processor has a copy of the entire graph.
The coarsening and expansion/refinement process can then continue entirely in serial,
using the algorithms described in§2.2 and§2.3, with every processor duplicating the
work. The optimum threshold at which to construct the global graph is of course ma-
chine dependent (based on the ratio of the cost of communication and computation)
but the default setting (which can be reset at run-time) is 20 vertices per processor.
Indeed, for maximum scalability it may make sense to not to the construct the global
graph at all and this option can also be chosen at run-time.

4.2.2 Parallelising the refinement algorithm

As described in§2.2, a typical serial Kernighan-Lin (KL) type algorithm consists of
inner and outer iterative loops. The inner loop picks vertices (usually those with the
highest gain) and migrates them from one subdomain to another. It will not usually
visit any vertex more than once during the course of an inner loop, in order to prevent
cyclic behaviour, and terminates when all vertices have been visited, or when there is
little prospect of further improvement with the unvisited vertices. The outer loop is
simply repeated applications of the inner loop and terminates when no migration takes
place within an inner loop.

The main problems in parallelising this procedure lie within the inner loop. Firstly,
if the graph is distributed, migrating one vertex at a time involves far too much com-
munication overhead (with most of the processors lying idle most of the time) and for
this reason we employ a bulk migration scheme where each processor finds as many
border vertices as possible to migrate and moves them once per iteration of the outer
loop.

The second, and more difficult problem lies in determining which vertices to mi-
grate. In fact, the swapping of vertices between two subdomains is an inherently
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non-parallel operation and hence there are some difficulties in arriving at efficient par-
allel versions, [18]. Since all the processors are acting in parallel on the vertices that
they own, simply moving vertices with the highest gain is not a satisfactory solution as
it means that adjacent vertices may be swapped simultaneously (a non-optimal event
known as acollision) and this may lead to anincreasein the cost.

An important part of our strategy for tackling the problem of collisions is to note
that every border vertex in a subdomain,Sp say, has a preferred subdomain for it to
migrate to expressed by the preference function (§2.3.1). It is therefore possible to fix
border regions, temporarily at least, and define subsetsBpq = {v ∈ Sp : pref (v) =
q}; in other words,Bpq is the set of vertices in the border of subdomainSp with a
preference to migrate toSq. We refer to these sets assubdomain faces.

Each pair of subdomain faces,Bpq
⋃
Bqp then forms aninterfaceregionIpq. Since

the preference of every border vertex is fixed throughout each outer iteration (because
it is only determined once during the iteration), these interfaces cannot change during
that iteration. This allows us to isolate regions of the graph, which in turn helps to
avoid collisions.

Three different refinement strategies, implemented in JOSTLE, are described in
[30]. Each chooses, in parallel, vertices to migrate, whilst attempting to avoid colli-
sions. In summary they are:–

• Interface Optimisation. A serial optimisation algorithm is executed indepen-
dently in each of the interface regionsIpq by one or other of the processorsp
andq.

• Alternating Optimisation . One of each pair of subdomain faces,Bpq, Bqp, is
selected and the owning processor chooses vertices from that face for migration
(to its opposite face). A certain amount of imbalance is crucial for this algorithm
to work because the active processor is not allowed to create serious imbalance
and so if the tolerance is zero no vertices can be migrated. In the following
iteration of the outer loop the alternate face is selected.

• Relative Gain Optimisation. If we think of the gain as a force or potential we
can imagine a relative gain for every border vertex,v, according to the neigh-
bouring vertices in the opposite face. Intuitively, if the gain of the opposite
vertices is high they are likely to migrate and sov should not migrate; if the
opposing gain is low then there is little danger of a collision ifv migrates and
so the relative gain attempts to express this migration potential. Each processor
then picks an ‘appropriate’ weight of vertices to migrate, highest relative gain
first. The fact that the gains of all vertices in the opposite face are taken into
account (in the relative gain calculation) helps to avoid most collisions.

In [30] these three approaches are compared. To summarise, the interface optimi-
sation algorithm is very rapid and generally produces the best results in terms of cut-
weight. However, it does not completely remove imbalance in the final partition and a
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hybrid algorithm, using relative gain with a final clean-up step of interface optimisa-
tion, produces very similar results (about 2.5% worse), equally rapidlyand removes
most of the imbalance. The results are also compared with another partitioning tool,
ParMETIS, [12], and shown to be of higher quality (about 11% better) although taking
longer to compute.

4.3 Typical results

The parallel version of JOSTLE has been tested and deployed on a variety of parallel
machines, including the ASCI Red at Sandia National Laboratories, the world’s first
TeraFLOPS supercomputer. Here we give some typical results from a Cray T3E-
900/512 at the University of Stuttgart.

For each test the mesh is read in parallel and distributed contiguously to the pro-
cessors (i.e. processor 0 is given the first|V |/P vertices, processor 1 the next|V |/P ,
etc.). This means the initial partition can be of extremely poor quality (although see
§4.3.2 for results on the impact of the initial distribution). The algorithm is allowed a
5% final imbalance tolerance (which can be reset at run-time by the user).

4.3.1 Run-time and serial/parallel comparisons

P = 16 P = 64

mesh |V | |E| tp(s) Cp Cs
Cs
Cp

tp(s) Cp Cs
Cs
Cp

4elt 15606 45878 0.49 1070 993 0.93 0.84 2728 2707 0.99
t60k-d 60005 89440 0.54 925 952 1.03 0.70 2381 2412 1.01
t60k-n 30570 90575 0.87 1753 1817 1.04 0.79 4378 4379 1.00
dime20 224843 336024 1.49 1305 1257 0.96 1.26 3632 3665 1.01
mesh100 103081 200976 2.85 4662 4420 0.95 2.61 9993 10478 1.05
t60k-f 90575 360030 3.46 5190 4731 0.91 2.87 12118 12020 0.99
fe-ocean 143437 409593 6.52 8546 8904 1.04 3.60 21845 22867 1.05
fe-rotor 99617 662431 8.36 22789 22050 0.97 6.58 50580 52764 1.04
cyl3 232362 457853 12.32 9976 10543 1.06 6.34 20211 21014 1.04
598a 110971 741934 17.17 27009 28198 1.04 10.38 59866 60775 1.02
average 0.99 1.02

Table 1: The results of the parallel interface algorithm showing parallel run-time in
secondstp(s), the parallel and serial cut-weight,Cp andCs respectively, and their
ratio,Cs/Cp.

The results of the parallel multilevel partitioning using the interface optimisation
algorithm are shown in Table 1 for two values ofP (the number of processors). It
shows the parallel run-time in seconds,tp(s), the cut-weight found by the parallel
and serial algorithms,Cp andCs respectively, and the ratio of these two figures. The
results are sorted in order of the run-time whenP = 16 and indicate that it is roughly
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dependent on|V |+ |E| (although the mesh numbering can also play an important role
here – see below§4.3.2).

The ratio shows how well the parallel version performs. Thus the value 1.04 (t60k-
n, P = 16) means that the serial partitioning resulted in a cut-weight 1.04 times as
large (or 4% larger) than that of the parallel partitioning. Indeed, as can be seen, the
serial results are very similar to the parallel ones, with a maximum of 9% difference
(t60k-f, P = 16). The average difference in the quality ranges between 1% better
and 2% worse over the different values ofP with an overall average of under 1%
depreciation for the serial results. This demonstrates that the parallel partitioner pro-
duces results of more or less the same quality as the serial partitioner, an impressive
result considering the fact that the serial version has access to all of the data whilst a
processor running the parallel code can only access its local portion of the graph.

The timing results also indicate parallel performance. Achieving high parallel
speedup within partitioning codes such as JOSTLE is not as easy as, say, a typical
CFD or CM code. For a start the algorithms use only integer operations and so there
are no megaFLOPS to ‘hide behind’. In addition, most of the work is carried out
on the subdomain boundaries and so very little of the actual graph is used. Also the
partitioner itself may not necessarily be well load-balanced and the communications
cost may dominate on the coarsest reduced graphs since at this stage there are very
few vertices per processor. However, the timings generally decrease asP increases
(except on the smaller meshes where there is so little computational work that these
figures mainly show parallel communication overhead), indicating good performance
for this sort of code. Furthermore, as was explained in§4.1.2, partitioning on the host
may be impossible or at least much more expensive and if the cost of partitioning is
regarded (as it should be) as a parallel overhead, it is usually extremely inexpensive
relative to the overall solution time of the problem.

4.3.2 The impact of the initial distribution

initial P = 16 P = 64
mesh distribution C0 C t(s) C0 C t(s)
t60k-n cyclic 86929 1821 2.08 89586 4476 1.45
t60k-n random 84843 1737 2.06 89103 4385 1.43
t60k-n block 6639 1753 0.88 10536 4378 0.80
t60k-n greedy 2248 1758 0.44 5336 4476 0.61
cyl3 cyclic 432639 10299 14.71 451608 20564 6.86
cyl3 random 429109 10195 14.87 450678 20606 6.83
cyl3 block 351188 9976 12.31 388139 20211 6.34
cyl3 greedy 20014 10398 3.49 37442 20911 3.47

Table 2: Results showing the effect of different initial distributions (with cut-weight
C0) on the final partition quality (cut-weightC) and the parallel partitioning time,t.

We have suggested the requirement in§4.1.1 that the partitioner should be able to
find a high quality partitionindependentof the existing partition. It is of interest to
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ask, therefore, whether this is possible and indeed what impact the initial distribution
has on the outcome of the final partition. In Table 2 we compare four different initial
distribution schemes for two example meshes. The cyclic distribution assigns vertexi
to processorp if i modP = p, i.e. vertex numbers0, P, 2P, . . . are given to processor
0, vertices1, P + 1, 2P + 1, . . . to processor 1, etc. The random distribution assigns
them randomly. The block distribution is the one used for the results in Table 1 and
assigns the first|V |/P vertices to processor 0, etc., while the greedy algorithm is a
(serial) graph-based implementation of Farhat’s algorithm, [4]. Note that the cyclic,
random and block distributions are all parallel input algorithms in the sense that the
mesh can be read in from file in parallel, while the greedy algorithm requires the
execution of a separate serial partitioner. The results show for each value ofP the
cut-weight of the initial distribution,C0, the cut-weight of the final partition,C and
the partitioning time in seconds,t(s).

The results clearly demonstrate two things. Firstly, modulo a certain amount of
‘noise’ (inevitable for randomised discrete optimisation algorithms such as these) with
a maximum variation of 4.8% in the final cut-weight, the quality of the final partition
is independent of the quality of the initial distribution. Thus the partitioning tech-
niques are clearly seen to provide global rather than just local optimisation. Secondly,
the partitioning time isstronglydependent on the initial distribution, with the poorly
distributed results taking much longer to partition.

Regarding the initial distribution schemes, note that the block distribution can lead
to a wide variation in initial cut-weight dependent on whether the mesh has been
numbered with some form of structure (i.e. as in t60k-n, vertices which are close in
index have a good chance of being neighbours in the graph) or not (i.e. as in cyl3,
where no such relation appears to exist). Finally note that the cyclic scheme almost
always (and always in Table 2) produces an initial cut-weight worse than the random
distribution for precisely the opposite reason; even if such a relation exists in the
numbering it is destroyed by placing contiguous vertices on different processors.

5 Variants and extensions

JOSTLE has been successfully extended to a range of partitioning problems variants
and in this section we outline four modifications to the basic algorithms described in
Section 2. In particular, in§5.1 we show how the aspect ratio (shape) of the subdo-
mains can be optimised as an alternative to the cut-weight. Meanwhile, in§5.2 we
look at mapping graphs onto parallel computers with heterogeneous communications
links – a successful mapping is then one in which adjacent subsets generally lie on
‘adjacent’ processors. In both cases, the coarsening and refinement schemes require
relatively few modifications and the new cost function is optimised solely by simple
changes to the gain function (§2.3.1) and, in the case of aspect ratio optimisation, the
matching. This makes an interesting point: using the multilevel framework, theglobal
layout of the final partition can be radically changed just by modifying thelocal cost
function. This corroborates the evidence in Section 3 that the multilevel framework
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adds some sort of global perspective to partitioning schemes.

Meanwhile, in§5.3 and§5.4, two variants are described which essentially use the
standard multilevel partitioner as a black-box solver and build a framework around it.
In particular, we look at multiphase partitioning problems in§5.3, and in§5.4 discuss
the use of evolutionary search techniques to find very high quality partitions.

5.1 Optimising subdomain aspect ratio (shape)

In [32] Walshaw and Cross describe a variant of JOSTLE which optimises the aspect
ratio of the subdomains, rather than the cut-weight. We outline those ideas here.

The need for aspect ratio (AR) optimisation arises from a class of mesh-based so-
lution techniques. A naturalparallel solution strategy for the underlying problem
is to use an iterative solver such as the conjugate gradient (CG) algorithm together
with domain decomposition (DD) preconditioning. DD methods take advantage of
the partition of the mesh by first imposing artificial boundary conditions on the sub-
domain boundaries and hence solving each subdomain independently for the interior
unknowns. In a second step, an ‘interface’ problem is solved on the boundaries which
gives new boundary conditions for the next step of subdomain solution. Adding the
results of the second step to the first gives the new conjugate search direction for the
CG algorithm.

The parallel run-time for such a preconditioned CG solver is determined by two
factors: the maximum time needed by any of the subdomain solutions and the num-
ber of iterations of the global CG search. Whilst an algorithm such as the multigrid
method, when used as the solver on the subdomains, is relatively robust against subdo-
main shape, the number of global iterations are heavily influenced by the subdomain
ARs, [25]. Essentially, the subdomains can be viewed as elements of the interface
problem, [5], and, just as with the normal finite element method, where the condition
of the matrix system is determined by the AR of elements, the condition of the global
preconditioning matrix is dependent on the AR of subdomains.

In seeking to optimise the partition on the basis of subdomain AR, rather than cut-
weight, it is first necessary to determine a suitable cost function to minimise. In fact it
turns out that a particularly appropriate function is given by

Γ =
∑
p

∂Sp

(ΩSp)
d−1
d

where∂Sp is the surface area (or perimeter length in 2D) of subdomainSp, ΩSp is its
volume (area in 2D) andd (= 2 or 3) is the dimension of the mesh.

We use the dual graph representation of the mesh (§1.2.2) and so, since every graph
vertex represents a mesh element, as in Figure 1(b), each edge corresponds to an
element face. However, to use this cost functions in a graph-partitioning context,
it is necessary to add some additional qualities to the graph. In particular, vertices
must store the volume and total surface area of their corresponding element. More
importantly, we also weight the edges of the graph with the size (length in 2D, area
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in 3D) of the face to which they correspond. This leads to a particularly elegant
formulation, since minimising the cost functionΓ is equivalent to minimising the cut-
edge weights, and so the partitioning algorithms require relatively little modification.

The method is fully described in [32] and is very successful at minimising subdo-
main AR. The paper also demonstrates that, dependent on the mesh, partitions with
good subdomain aspect ratios can vary greatly from those with a low edge-cut.

To fully validate the method, it would be interesting to measure the correlation be-
tween the definition of aspect ratio used here and convergence in the solver and verify
that it does indeed provide the benefits for DD preconditioners that other researchers
suggest, e.g. [5, 25]. It would also be interesting to extend the ideas to investigate the
‘shaping’ of subdomains to reflect anisotropic behaviour.

5.2 Heterogeneous communication networks

As described in§1.2, the usual practice in graph-partitioning is to approximate the
communications cost by the cut-weight and then attempt to minimise this quantity.
However, many, if not most, parallel machines are based on networks in which the
communications cost (both latency and bandwidth) is not uniform across the interpro-
cessor network and in this case the cut-weight is certainly an inadequate measure. For
instance, a cut edge between two processors which are ‘neighbouring’ in some sense
will contribute far less to the overall cost than an edge between two processors which
are ‘far apart’. This is particularly true for symmetric multiprocessor (SMP) clusters
– systems of multiprocessor compute nodes with very fast intra-node communications
but relatively slow inter-node networks – and for meta-computers – multiple super-
computers combined together, in extreme cases over inter-continental networks (e.g.
[7] discusses a meta-computer consisting of two Cray T3Es, one in Stuttgart, the other
in Pittsburgh, USA).

(a)

(c)

(d)(b)

Figure 9: Example processor graphs: (a) 1D array, (b) 2D array, (c) SMP cluster and
(d) meta-computer.

Figure 9 shows some typical processor graphs which represent machine intercon-
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nection networks. For example, Figure 9(a) is a 1d array, a configuration which may
not actually occur in practice but which could be useful for machines with very high
communication latencies, since, if the graph can be successfully mapped onto this
topology, each subdomain will have at most 2 neighbours. Figure 9(b) is a 2D array
(realised in the past by the Intel Paragon and in 3D by the Cray T3D). More recently
however, machines have appeared which have a hierarchical network and, for exam-
ple, Figure 9(c) shows an SMP cluster of 4 compute nodes (each of 4 processors) with
all inter-node communications passing through a hub. Finally, Figure 9(d) illustrates
a meta-computer.

In [31] Walshaw and Cross describe modifications to JOSTLE which address the
mapping problem – a partitioning variant in which the cost of a cut-edge,(v1, v2) say,
between verticesv1 ∈ Sp andv2 ∈ Sq is conflated with some network weighting factor
representing the relative cost of communication between processorsp andq. In fact
the coarsening algorithm can be left unchanged and the cost function is first taken into
account when theP vertices of the coarsest graph are assigned to theP processors.
The modified cost function is subsequently refined on each of the multilevel graphs in
succession by relatively simple changes to the gain and preference functions (§2.3.1).

A successful mapping is then one in which subdomains are constructed such that
adjacent subdomains generally lie on adjacent processors. The power of the process to
compute such a mapping stems from the global properties of the multilevel algorithm.
Edges which cross expensive links are penalised heavily within the cost function and
so the vertices at either end of such an edge tend to migrate to nearby processors and
create a sort of buffer zone. Because this occurs first on the coarser levels of the
graph, where each vertex represents many vertices in the original graph, the buffer
zone which may start off only one vertex wide, can actually represent reasonably
broad regions. In this way the partition is given a good global quality on the coarse
graphs which is refined on the finer graphs. Figure 10 shows example graphs mapped
onto 1D and 2D arrays, both with 8 processors.

(a) mapping onto a 1D array (b) mapping onto a 2D array

Figure 10: Example graphs mapped onto two different processor configurations

The technique is described in full in [31] and shows some impressive results. The

25



model of the communications network can be supplied by the user at run-time and
the technique is very generic since the mapping algorithm can apply to any architec-
ture, simply by changing the network cost matrix. Indeed a machine could even be
instrumented at run-time.

Finally, although the mapping algorithms have not been tested in parallel, there is
nothing inherently serial about any of the modifications to the multilevel partitioner
and in principle they could be applied to the parallel version described in§4.

5.3 Multiphase partitioning

Multiphase partitioning is a further variant, developed to aid a class of parallel mesh-
based solvers characterised by multiple distinct computational subphases, each of
which must be balanced separately. Typically multiphase partitioning problems arise
from multiphysics or multiphase modelling (e.g. [16]) where different parts of the
computational domain exhibit different physical behaviour and/or material properties.
They can also arise in contact-impact modelling (see below).

(b)
(a)

processor 1processor 0

solid/stressfluid/flow
proc 1

proc 0

Figure 11: An example of a multiphysics problem showing (a) the partition of the
mesh; and (b) the solution time-line.

Consider the example shown in Figure 11(a) with a partition for 2 processors indi-
cated by dotted line. This partition might normally be considered of good quality, but
for a solution algorithm which solves for flow and stress separately, it is completely
unsuitable because processor 1 is not able to start the solid/stress calculation until
the fluid/flow part has terminated. As a time-line of the parallel solver, Figure 11(b)
shows, during the fluid/flow phase of the calculation, processor 1 has relatively little
work to do and during the solid/stress phase processor 0 has no work at all.

In [34], Walshawet al. address the multiphase partitioning problem by using the
standard multilevel partitioner as a ‘black box’ solver, partitioning the problem phase
by phase, but calculating the partition of each phase based on that of the previous
phases. The strategy is described in detail in [34] and shown to be successful in
producing high quality,balancedpartitions where a standard mesh-partitioning tech-
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niques simply fail (as they take no account of the different phases). The paper provides
results for three different classes of multiphase problem:

Distinct two-phase problems. In this context, distinct means that the computa-
tional phase regions do not overlap and are separated by a relatively small interface.
Such problems are typical of many multiphysics computational mechanics applica-
tions such as solidification.

Entity-based two-phase problems.This type of multiphase problem can easily
arise for a solver in which different calculations take place on mesh nodes from those
taking place on mesh elements and the two calculations are separated by global syn-
chronisation points in the solver. This issue is discussed in [17] and we simulate it
taking a set of meshes and assigning the elements to phase 1 and the nodes to phase 2.
In such problems the two phases are not well separated with a small interface as above,
but highly integrated and very interconnected.

Contact-impact problems. One of the particular areas of interest driving the de-
velopment of multiphase partitioning algorithms has been the use of contact-impact
algorithms (e.g. used for simulating crashes in the automotive industry). Typically
the simulation will involve localised stress-strain finite element calculations over the
entire mesh together with a much more complex contact-impact detection phase over
the restricted areas of possible penetration.

Some additional examples, showing the parallel multiphase version of JOSTLE in
action for contact-impact problems, can be found in [2].

5.4 Evolutionary search

In [22, 23] Soper and Walshaw report on two variants of an evolutionary search al-
gorithm, with JOSTLE at its core, which has is able to find partitions considerably
better than those found by any of the public-domain graph-partitioning packages. Al-
though this evolutionary technique is not a possible substitute for such packages – the
very long run times preclude such a possibility for the typical applications in which
graph-partitioning is used – it is of interest to find the best possible partitions for
benchmarking purposes. Indeed, for certain applications such as circuit partitioning,
where the quality of the partition is paramount, the computational resources required
may be completely justified by the very high quality partitions that the technique is
able to find.

Evolutionary (or genetic) algorithms produce new search points by one of two op-
erations: crossover, which combines information from two or more randomly selected
individuals in the current generation, and mutation which modifies a single, randomly
selected, individual. The construction of successful crossover and mutation opera-
tors is problem specific and often complex, especially where individuals are subject to
constraints (as are the partitions) so that information from different individuals cannot
be arbitrarily combined or modified. Further, the information needs to be effectively
exploited so that new individuals result that are fitter than the current best individuals
with sufficient probability even when the current generation is already very good.
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In the first variant, [23], a genetic algorithm is constructed with a crossover that
modifies the graph using edge weights to record where the parent partitions had cut-
edges. JOSTLE is applied to the new graph, effectively as a local optimisation proce-
dure, and the weighting, or biasing, means that cut-edges of the parents are more likely
to be cut again. The mutation operator has a bias which exploits the local translational
invariance possessed by many graphs of interest.

More recent work, [22], uses similar operators but further exploits the properties
of the graphs being partitioned. Effectively both crossover and mutations act on sub-
domains (or the set of cut edges containing a subdomain) and the major difference is
that JOSTLE needs only to be applied to a fraction – almost always less than half – of
the graph to be partitioned. Much more information is transferred into the offspring
from the parent(s) and the optimisation algorithm is more effectively focussed on one
part of the problem at a time.

(c)

repartition

(b)(a)

Figure 12: An illustration of the crossover operator

In particular, crossover selects sets of complete subdomains from two individuals,
and combines them in the child by partitioning the remainder of the graph. Figure 12
illustrates this, with Figures 12(a) & 12(b) showing two parent partitions which have
been selected for crossover. Sets of adjacent subdomains which do not intersect are
retained (shown shaded) and the remainder of the graph – the unshaded part of Fig-
ure 12(c) – is repartitioned.

Meanwhile, the mutation operator selects a set of subdomains that constitute a cycle
in the subdomain graph. The subgraph defined by this cycle is then repartitioned so as
to exploit local translational symmetry; new partition boundaries are sought close to
existing boundaries where they should have similar and so sometimes less cut edges.

For both papers, the crossover and mutation operators require that certain edges
of the graph are made more likely to be cut. This is achieved by adding biases to
the edge weights. Mutations are implemented by making existing cut edges and their
neighbours much less costly, and crossover by making the cut edges of both parents
slightly less costly. Different biases are constructed for every operation (even when
the parents are identical) via small randomised additions.

Results are given in [22, 23] and typically provide partitions that have 20% lower
cut-weight than those found by a single run of a multilevel partitioner. Of course the
comparison is unfair as the evolutionary approach can soak up CPU cycles and for
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larger graphs has run-times measured in days rather than fractions of a second. How-
ever, the techniques provide good benchmark solutions and the resultant partitions still
dominate the graph-partition archive1 over 5 years on.

Finally note that, although this work uses a serial version of the multilevel algo-
rithm, in principle, the same strategy could be used to enable a parallel version of the
code by employing the parallel version of JOSTLE. Alternatively, there are many ways
to parallelise the evolutionary search algorithm, such as using a processor farm and
distributing each partition calculation to an idle processor. However neither strategy
has been tested.

6 Summary

We have given an overview of JOSTLE, the parallel multilevel graph-partitioning
software, and discussed how it has contributed to research in the partitioning field.
In particular, it has helped to enable a variety of applications, most notably parallel
mesh-based computational mechanics simulations, and demonstrated that partitioning
in parallel is a practical possibility. The algorithms have been extended and modified
in a variety of ways and have provided results for a number of partitioning problem
variants. Finally, it has helped to investigate and explore the multilevel paradigm for
combinatorial optimisation problems.
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