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Abstract. The representation and manipulation of natural human understanding 

of temporal phenomena is a fundamental field of study in Computer Science, 

which aims both to emulate human thinking, and to use the methods of human 

intelligence to underpin engineering solutions. In particular, in the domain of 

Artificial Intelligence, temporal knowledge may be uncertain and incomplete 

due to the unavailability of complete and absolute temporal information. This 

paper introduces an inferential framework for deriving logical explanations 

from partial temporal information. Based on a graphical representation which 

allows expression of both absolute and relative temporal knowledge in 

incomplete forms, the system can deliver a verdict to the question if a given set 

of statements is temporally consistent or not, and provide understandable 

logical explanation of analysis by simplified contradiction and rule based 

reasoning.  
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1   Introduction 

The notion of time plays a vital and ubiquitous role of a common universal reference. In 

particular, many Artificial Intelligence systems need to deal with the representation and 

reasoning about time in modeling natural phenomena and intelligent human activities. Other 

disciplines such as information systems, cognitive science, linguistics, philosophy and history 

have the idea of time deeply integrated in as well. For instance, in database systems, time-

dependent data may be stamped with time elements, denoting the valid time and/or transaction 

time of that data [6]. 

It has been noted that absolute-time-stamping of temporal data provides an efficient 

indexing method for temporal systems, but suffers from the requirement that precise time 

values for all temporal data need to be available. Generally speaking, in many AI systems, 

temporal knowledge can be uncertain and incomplete. For instance, we may only know that 

event A happened before event B, without knowing their precise starting and finishing time, or 

what happened between them. Incomplete relative temporal knowledge such as this is typically 

derived from humans, where complete and absolute temporal information is rarely available 

and remembered for knowledge representation and reasoning. Allen’s interval-based time theory [1] 

is a representative example of temporal systems addressing relative temporal relations including “Meets”, 

“Met_by”, “Equal”, “Before”, “After”, “Overlaps”, “Overlapped_by”, “Starts”, “Starts_by”, “During”, 

“Contains”, “Finishes” and “Finished_by”. It has been claimed in the literature that time intervals 

CORE Metadata, citation and similar papers at core.ac.uk

Provided by Greenwich Academic Literature Archive

https://core.ac.uk/display/67478?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1


are more suited for expression of common sense temporal knowledge, especially in the domain 

of linguistics and artificial intelligence. In addition, approaches like that of Allen [1,2] that treat 

intervals as primitive temporal elements can successfully overcome/bypass puzzles like the 

Dividing Instant Problem [1,4,5,10,11], which is in fact an ancient historical puzzle 

encountered when attempting to represent what happens at the boundary point that divides two 

successive intervals. However, as Galton shows in his critical examination of Allen's interval 

logic [5], a theory of time based only on intervals is not adequate for reasoning correctly about 

continuous change. In fact, many common sense situations suggest the need for including time 

points in the temporal ontology as an entity different from intervals. For instance, it is intuitive 

and convenient to say that instantaneous events such as “The database was updated at 

00:00am”, “The light was automatically switched on at 8:00pm”, and so on, occur at time 

points rather than intervals (no matter how small they are). Therefore, for general treatments, it 

is appropriate to include both points and intervals as primitives in the underlying time model, 

for making temporal reference to instantaneous phenomena with zero duration, and periodic 

phenomena which last for some positive duration, respectively. 

The objective of this paper is to promote a framework to assist referring and deriving logical 

explanations with respect to partial temporal information. In section 2, a time theory based on 

both points and intervals as the temporal primitive is introduced. Section 3 presents a graphical 

representation of partial temporal information. The necessary and sufficient condition for the 

consistency of a temporal reference is discussed in section 4.1, where section 4.2 and section 

4.3 provides explanations to the consistent case and inconsistent case, respectively. An 

illustrating example as the application of the framework in the legal field of witness evidence is 

presented in section 4.3. Finally, section 5 concludes the paper. 

2   The Time Basis 

In this paper, we shall simply adopt the general time theory proposed in [8], which takes a 

nonempty set, T, of primitive time elements, with an immediate predecessor relation, Meets, 

over time elements, and a duration assignment function, Dur, from time elements to non-

negative real numbers. If Dur(t) = 0, then t is called a point; otherwise, that is Dur(t) >0, t is 

called an interval. The basic set of axioms concerning the triad (T, Meets, Dur) is given as 

below [8]: 

 

T1. t1,t2,t3,t4(Meets(t1, t2)  Meets(t1, t3)  Meets(t4, t2)  Meets(t4, t3)) 

  

That is, if a time element meets two other time elements, then any time element that meets one of 

these two must also meets the other. This axiom is actually based on the intuition that the “place” 

where two time elements meet is unique and closely associated with the time elements [3]. 

 

T2. tt1,t2(Meets(t1, t)  Meets(t, t2)) 

 

That is, each time element has at least one immediate predecessor, as well as at least one immediate 

successor. 

 

T3. t1,t2,t3,t4(Meets(t1, t2)  Meets(t3, t4)  

 Meets(t1, t4)  t'(Meets(t1, t')  Meets(t', t4))  t''(Meets(t3, t'')  Meets(t'', t2))) 

 

where  stands for “exclusive or”. That is, any two meeting places are either identical or there is at 

least a time element standing between the two meeting places if they are not identical. 



 

T4. t1,t2,t3,t4(Meets(t3, t1)  Meets(t1, t4)  Meets(t3, t2)  Meets(t2, t4))  t1 = t2) 

 

That is, the time element between any two meeting places is unique. 

N.B. For any two adjacent time elements, that is time elements t1 and t2 such that Meets(t1, t2), 

we shall use t1  t2 to denote their ordered union. The existence of such an ordered union of any 

two adjacent time elements is guaranteed by axioms T2 and T3, while its uniqueness is guaranteed 

by axiom T4. 

 

T5. t1,t2(Meets(t1, t2)  Dur(t1) > 0  Dur(t2) > 0) 

 

That is, time elements with zero duration cannot meet each other. 

 

T6. t1,t2(Meets(t1, t2)   Dur(t1  t2) = Dur(t1) + Dur(t2)) 

 

That is, the “ordered union” operation over time elements is consistent with the conventional 

“addition” operation over the duration assignment function, i.e., Dur.  

Analogous to the 13 relations introduced by Allen for intervals [1,2], there are 30 exclusive 

temporal order relations over time elements including both time points and time intervals, 

which can be derived from the single Meets relation and classified into the following 4 groups: 
 

 Order relations relating a point to a point: 

{Equal, Before, After} 

 Order relations relating an interval to an interval: 

{Equal, Before, After, Meets, Met_by, Overlaps, Overlapped_by, Starts, Started_by, 

During, Contains, Finishes, Finished_by} 

 Order relations relating a point to an interval: 

{Before, After, Meets, Met_by, Starts, During, Finishes} 

 Order relations relating an interval to a point: 

{Before, After, Meets, Met_by, Started_by, Contains, Finished_by} 

3   A Graphical Representation 

In general, the temporal order relation between two time elements can be any one of those 30 as 

classified in section 2. However, as shown in [8], analogous to Allen and Hayes’s approach [3], 

all the temporal can be defined as derived relations in terms of the single “Meets” relation. In 

fact, such definitions are straightforward. For example, “Before” can be defined as: 

 

 Before(t1, t2)  t(Meets(t1, t)  Meets(t, t2)) 

 

Therefore, in general, a set of temporal statements, which we shall call a scenario, can be 

expressed as a collection of propositions, together with the corresponding temporal reference 

denoted as a triad (T, M, D), where T is a collection of time elements, expressing the 

knowledge of what time elements are involved with respect to the given scenario  (possibly 

incomplete); M is a collection of Meets relations over T, expressing the knowledge (possibly 

incomplete) as to how the time elements in T are related by means of the primitive immediate 

predecessor relationship;  and D is a collection of duration assignments (possibly incomplete) 

to time elements in T. 

A temporal reference (T, M, D) can be intuitively expressed in terms of a directed and 

partially weighted graph [7], in which time elements are denoted as arcs, and the immediate 



predecessor relationship over times is denoted by the node structure where Meets(ti, tj) is 

represented by ti being an in-arc and an tj being out-arc to a common node, respectively. For 

time elements with known duration, the corresponding arcs are weighted by their durations 

respectively. For example, consider temporal reference (T, M, D), where 

 

T = {t1, t2, t3, t4, t5, t6, t7, t8, t9}; 

M = {Meets(t1, t2), Meets(t1, t3), Meets(t2, t5), Meets(t2, t6), Meets(t3, t4), Meets(t4, t7), 

Meets(t5, t8), Meets(t6, t7), Meets(t7, t8); 

D = {Dur(t2) = 1, Dur(t4) = 0.5, Dur(t6) = 0, Dur(t8) = 0.3} 

 

The graphical representation of temporal reference (T, M, D) is shown in Fig. 1: 

 

 

t1 t2 (1) 

t7  t3 

t6 (0) 

t5  t8 (0.3) 

t4 (0.5) 

 
Fig. 1. Graph representation of (T, M, D) 

4   Deriving Verdicts and Explanations 

As mentioned in the above, temporal information in general can be uncertain and 

incomplete in various ways. Also, for a given scenario, the corresponding temporal 

reference itself may be temporal inconsistent. Therefore, first of all, a mechanism 

which can provide the verdict as for the question if a temporal reference is temporal 

consistent or not is expected. 

4.1   Checking the temporal consistency 

The necessary and sufficient condition for the consistency of a general temporal 

reference, (T, M, D), can be given as below (see details in [7]): 

 

1) For each simple circuit in the graph of (T, M, D), the directed sum of weights 

is zero; 

2) For any two adjacent time elements, the directed sum of weights is bigger than 

zero. 

 

Here, condition 1) guarantees that there exists a valid duration assignment function 

Dur to the time elements in T agreeing upon D; and condition 2) ensures that no two 



time points meet each other, that is between any two time points, there is an interval 

standing between them [8]. 

The consistency checking for a temporal reference with duration constraints 

involves searching for simple circuits, and constructing a numerical constraint for 

each circuit. The existence of a solution(s) to this set of constraints implies the 

consistency of the system, and each solution gives a possible case for the 

corresponding temporal scenario that can subsume the addressed temporal reference. 

Hence, the consistency checker for a random temporal reference is in fact a linear 

programming problem. 

In fact, in the graph presented in Fig. 1 of section 3, there are two simple circuits 

as shown in Fig. 2. 

 

 

t2 (1) 

t3 

t4 (0.5) 

t6 (0) 

 t7  t6(0) 

t5  
 

Fig. 2. The two simple circuits 

 

Setting the directed sum of weights in each of these two circuits as 0, we get 2 

independent constraints: 

 

Dur(t2) + Dur(t6) = Dur(t3) + Dur(t4) 

Dur(t5) = Dur(t6) + Dur(t7) 

 

We can easily find a solution, for instance: Dur(t3) = 0.5, Dur(t5) = Dur(t7) = 1. 

Actually, the duration assignment to t5 and t7 can be any positive real number, 

provided that Dur(t5) = Dur(t7). 

In some special cases where only relative temporal knowledge are addressed, that 

is there is no duration constraint involved, temporal reference (T, M, D) is reduced to 

a pair (T, M) and the consistency checking can be reformulated in a simpler form. In 

fact, (T, M) is consistent if and only if: 

 

1)' There are no nodes with at least one point in-arc and at least one point out-arc; 

2)' The associated reduced graph is acyclic, where the associated reduced graph is 

formed by means of removing every point arc in the graph of (T, D), and 

merging any two nodes connected by the point arc. 

 

Here, again, condition 1)' preserves that no two time points meet each other, while 

condition 2)' preserves that time points are not decomposable, and excludes any 

circular time structure. 

For example, consider a relative temporal reference (T, M), where 



 

T = {t1, t2, t3, t4, t5, t6} 

M = {Meets(t1, t2), Meets(t1, t3), Meets(t2, t6), 

Meets(t3, t4), Meets(t4, t5), Meets(t5, t6)} 

 

The graphical representation of temporal reference (T, M) is shown in Fig. 3: 

 

 

t1 t2 t6 

t4 

t3 
t5 

 
Fig. 3. Graph representation of (T, M) 

 

If t2 is not known to be a time point, then the corresponding graph shown in Fig. 3 is 

acyclic, and hence the temporal reference is consistent. 

However, if t2 is stated to be a point, then the graph in Fig. 3 is reduced to the 

graph as shown in Fig. 4. 

 

 

t1 t6 

t5 
t3 

t4 

 
Fig. 4. The reduced graph 

 



In the reduced graph in Fig. 4, there is a cycle, i.e., t3 -> t4 -> t5 -> t3. Therefore the 

temporal reference is inconsistent. 

Now, further investigations are needed to explain what does the verdict that a give 

scenario is temporal consistent or inconsistent mean in the context.  

4.2   Explanation to the consistent case 

As mentioned in section 4.1, the consistency checking for a general temporal 

reference is in fact a linear programming problem, where each solution to the linear 

programming problem gives a possible case for the corresponding temporal scenario 

that can subsume the addressed temporal reference. In the case where the temporal 

reference is consistent, there exists at least one solution to the linear programming 

problem. Of course, if the solution(s) is unique, we can use this solution construct the 

corresponding complete temporal reference which is also unique.  

However, in general cases where a verdict that the temporal reference is consistent 

has been reached, there may be more than one, or even an infinite number of solutions 

to the corresponding linear programming. This may be due to various forms of 

incompleteness of the corresponding temporal reference, e.g., some referencing time 

elements may be missing, the duration of some time elements may be unknown, and 

so on. Therefore, we can only construct the possible complete scenarios which can 

subsume the addressed temporal reference. 

In this case, we can at least find the minimal model(s) among these complete 

scenarios by means of defining and calculating the similarity degree between the 

complete temporal references and the original partial temporal reference. 

Since each temporal reference can be expressed as a directed and partially 

weighted graph, the problem of matching temporal references can be transformed into 

conventional graph matching. 

4.3   Explanation to the inconsistent case 

In the case where a verdict that the temporal reference is inconsistent has been 

reached, we can simply analyse and identify the linear equations which make the 

corresponding linear programming unsolvable, which, in turn, will identify and 

explain which part(s) of the temporal reference actually leads to the inconsistency. 

4.4   An illustrating example 

In As an example, consider the situation where two persons, Peter and Jack, are 

suspected of committing a murder during the daytime. In court, Jack and Peter gave 

the following statements, respectively: 

 

 Peter’s statements: 

I got home with Jack before 1pm. We had our lunch, and when Jack left I put 

on a video. The video lasts 2 hours. Before it finished, Robert arrived. When 



the video finished we went to the train station and waited until Jack came at 

4 pm. 

 Jack’s statements: 

Peter and me went to his home and arrived there before 1pm. When we 

finished our lunch there, Peter put on a video, and I left and went to the 

supermarket. I stayed there for between 1 and 2 hours. Then I drove to my 

home to collect some mail. It takes between 1.5 to 2 hours to reach my home, 

and about the same to the train station. I arrived at the train station at 4 pm. 

 In addition, being a witness, Robert made these statements: 

I left home at 2 pm and went to Peter’s house. He was playing a video, and 

we waited till it finished. Then we went together to the train station and 

waited for Jack. Jack got to the train station at 4pm. 

 

The temporal reference of the above temporal information involves the following time 

elements: 

 

 i1: the time (interval) over which Peter and Jack went to Peter’s home; 

 1pm: the time (point) before which they arrived at Peter’s home; 

 i2: the time (interval) over which Peter and Jack had lunch; 

 i3: the time (interval) over which Peter played the video (Dur(i3) = 2); 

 i4: the time (interval) over which Jack went to the supermarket; 

 p1: the time (point) when Robert arrived at Peter’s house; 

 i5: the time (interval) over which Peter and Robert went to the train station; 

 i6: the time (interval) over which Peter and Robert waited for Jack at the train 

station; 

 4pm: the time (point) when Jack arrived at the train station; 

 i7: the time (interval) over which Jack stayed in the supermarket (1<Dur(i7)< 2); 

 i8: the time (interval) over which Jack drove to his home (1.5<Dur(i8)< 2); 

 i9: the time (interval) over which Jack collected some post from his home; 

 i10: the time (interval) over which Jack drove to the train station (1.5<Dur(i10)<2); 

 2pm:the time (point) when Robert left home; 

 i11: the time (interval) over which Robert went to Peter's house; 

 i12: the time (interval) over which Peter and Robert watched the video together; 

 i13, i14, ..., i27: some extra relative time elements which are used for expressing the 

correspondingly relative duration knowledge, e.g., with i19, i20, i21, i22, and 

Dur(i19) = 1.5 and Dur(i21) = 2, we can express that 1.5 < Dur(i8) < 2 (Picture 3) 

 

The graphical representation of the corresponding temporal reference for the above 

legal statements can be shown as Fig. 5 as below: 

 



 
Fig. 5. (T, M, D) of the legal statements 

 

From Fig. 5, we see that there are three time elements (i.e., two intervals, i11 and i12, 

and one points, p1) standing between 2pm and 4pm. Since each interval has a positive 

duration and each point has a non-negative duration, we can infer that: 

 

Dur(i5) + Dur(i6) < 2 

 

in addition, since Dur(i3) = 2, hence 

  

Dur(i3) + Dur(i5) + Dur(i6) < 2 + 2 = 4 

 

However, 

  

Dur(i4) + Dur(i7) + Dur(i8) + Dur(i9) + Dur(i10) > 0 + 1 + 1.5 + 0 + 1.5 = 4  

      

Therefore, for the simple circuit, i.e., i3, i5, i6, i10, i9, i8, i7, i4, as shown below in Fig. 6, 

there does not exist any duration assignment over T such that 

 

Dur(i3) + Dur(i5) + Dur(i6) = Dur(i4) + Dur(i7) + Dur(i8) + Dur(i9) + Dur(i10) 

 

In other words, there is no solution to the following linear equation: 

 

Dur(i3) + Dur(i5) + Dur(i6)  Dur(i4)  Dur(i7)  Dur(i8)  Dur(i9)  Dur(i10) = 0 

 



 
Fig. 6. A simple circuit in the legal statements 

 

Hence, the temporal reference shown in Fig. 6 is inconsistent, and therefore we can 

directly confirm that some statements are untrue. 

Suppose the video can be checked that it did actually last for two hours, we can 

confirm that there must be some falsity in either Robert's or Jack's statements. If it can 

be proved that Robert did leave home at 2 pm, then Jack must have lied in making his 

statements. Otherwise, to convince the jury that his statements are true, Jack must 

prove that Robert left home at some time before 2 o’clock in the afternoon.  

5   Conclusion 

In this paper, we introduced an inferential framework for temporal representation and 

temporal reasoning. It allows expression of both absolute and relative temporal 

knowledge, and provides graphical representation of temporal references in terms of 

directed and partially weighted graphs. Based on the temporal reference of a given 

scenario with partial temporal information, the framework can check if it is 

temporally consistent or inconsistent, and derive the corresponding explanations. The 

benefit of this approach is that the inferential framework has powerful analytic 

abilities, and its analysis is amenable to human scrutiny.  
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