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Abstract

Lot streaming is a technique used to split a processing batch into several transfer batches. In this way, overlapping operations
can be performed in different manufacturing stages, and production can be accelerated. This paper proposes two cost models for
solving lot streaming problems in a multistage flow shop. The purpose is to determine the optimal processing batch size and the
optimal number of transfer batches that minimize the total annual cost in each model. In the first model, a more complete and
accurate method is developed to compute the costs of raw materials, work-in-process, and finished-product inventories. The total
cost includes the setup cost, the transfer batch movement cost, the three-type inventory holding cost, and the finished-product
shipment cost. The second model contains not only the four costs in the first model, but also the imputed cost associated with
the makespan time. The total annual cost functions in both models are shown to be convex, and two solution approaches are
suggested. An experiment consisting of three phases was conducted to explore the effect on the optimal solution when changing
the value of one parameter at a time. The results indicate that three parameters have significant effects on the optimal solution.
� 2004 Elsevier Ltd. All rights reserved.
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1. Introduction

In recent years, the philosophy of time-based competition has been widely used in a variety of businesses. Reduction in
manufacturing lead time is a very important means of gaining competitive advantages when this philosophy is adopted by an
enterprise. Lot streaming is a procedure in which a processing batch (i.e., a lot) is split into several smaller transfer batches
(i.e., sublots). Each sublot is processed serially by a given number of workstations (i.e., stages), and precedence relationships
are determined by a manufacturing or assembly structure. In this way, several operations in different stages can be performed
simultaneously, thereby accelerating production. Lot streaming was first introduced by Reiter[1], and it has gradually received
more attention in academic and industrial fields. This procedure for splitting a processing batch and overlapping operations in
different stages is one of the effective methods used to shorten manufacturing lead times and reduce inventories. For this reason,
several researchers (e.g.,[2,3]) studied lot streaming and found that it is one of the major optimized production technology
(OPT) techniques that can be used in general manufacturing systems.
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The literature on lot streaming can be divided into two parts. One part focuses on time models. The purpose of some time
models is only to determine the optimal allocation of sublots for the single-product case. However, some time models aim to
obtain both the optimal allocation of sublots and the optimal production sequence for the multiple-product case. To achieve
aforementioned goals, the objective functions of these time models based on a time-related performance measurement criterion
(e.g., the makespan time or the mean flow time) are minimized. In this area, Kropp and Smunt[2] developed linear and quadratic
programming models that minimize the makespan time and the mean flow time, respectively. They investigated the optimal
lot splitting policies in a multistage flow shop for the single-product problem. Baker and Pyke[4] proposed a computationally
efficient algorithm for finding the optimal allocation of two sublots for the purpose of minimizing the makespan time. They
also developed several heuristic approaches to handle more than two sublots in flow shops using the technique of network
analysis. Trietsch and Baker[5] presented an overview of basic time models and their solution procedures. Chen and Steiner
[6,7] explored the structural properties of schedules (i.e., the allocation of sublots) for the single-product case. Their models
minimize the makespan time with detached and attached setup times in three-machine flow shops. Glass and Potts[8] developed a
two-phase method to find the optimal allocation of sublots. In the first phase, a powerful relaxation algorithm that uses the machine
dominance property is derived to reduce the number of machines so that only dominant machines should be considered. In the
second phase, the critical path structure of an optimal solution that in fact is an optimal allocation of sublots is characterized by
applying the network representation. Kalir and Sarin[9] used an optimization method to determine the optimal number of sublots
in which the makespan time is affected by the sublot movement time. In addition, they developed an algorithm to determine the
optimal number of sublots, where the setup time has an impact on the makespan time. Multiple-product lot streaming problems
are more complex than classical scheduling problems which do not consider splitting or overlapping. The reason is that the
former problems concurrently consider two decisions on the optimal production sequence and the optimal allocation of sublots,
provided that the number of sublots for each product must be known. So far as we know, the previous studies on optimizing
lot streaming models for multiple-product problems were based on no more than three machines in a flow shop. Hence, all
of the previous studies simplified the problem to one that could be sequenced by Johnson’s algorithm[10] (see, for example,
[11–13]).

Another part of the literature deals with cost models that only consider the single-product case in multistage flow shops
due to the fact that multiple-product problems are extremely intractable. The objective of solving a cost model is to determine
the optimal processing lot size and/or the optimal number of sublots that minimize the total cost. In this part of the literature,
Szendrovits[14] first introduced a cost model to solve the problem. Although the total cost in Szendrovits’s model is a function
of the processing lot size and the number of sublots, only the optimal processing lot size is obtained since the number of
sublots is assumed to be constant. Goyal[15] extended Szendrovits’s model to a more realistic model in two ways. First,
he considered the effect of the number of sublots on the processing lot size by including the sublot movement cost in the
total cost function. He also used a method to accurately measure work-in-process (WIP) inventories. Second, the solution
procedure in Goyal’s model is similar to that in Szendrovits’s model. However, a major difference is that Goyal obtained
a processing lot size for each predetermined number of sublots, and then chose one with the lowest total cost. Graves and
Kostreva[16] applied the concept of Szendrovits’s model to overlapping operations in a material requirements planning (MRP)
framework. They studied only one manufacturing segment consisting of two workstations and constructed a more complicated
cost model in which the setup cost, the sublot movement cost, and the holding cost of the input, WIP, and output inventories
are included. Ranga et al.[17] proposed a cost model in which the setup time, the wait time, and the sublot movement time
that constitute a part of the makespan time are also considered. Conversely, Szendrovits[14] used an arbitrary factor to multiply
the technological lead time based only on the processing time. They used the same method used by Szendrovits to measure
WIP inventories. Because Ranga et al.’s model is much complex and has no closed-form solution, the optimal solution is
obtained for two cases: (1) completely balanced flow shops, where the unit processing times for all stages were identical; and
(2) unbalanced flow shops where the unit processing times for all stages need not be the same, but the number of sublots is
pre-specified.

The about literature review reveals that time models have attracted much more attention than cost models. For this rea-
son, this paper presents two cost models for solving lot streaming problems in a multistage flow shop. The three main
contributions in our paper are as follows: (1) A more complete and accurate method compared to those of Goyal[15] and
Graves and Kostreva[16] is proposed to measure the costs of raw materials, WIP, and finished-product inventories. More
specifically, Goyal excluded consideration of raw materials, and Graves and Kostreva only considered a two-stage manu-
facturing system rather than a general multistage flow shop. (2) Two cost functions have two decision variables (i.e., the
processing lot size and the number of sublots), as opposed to one decision variable and one fixed-value variable used in the
papers by Szendrovits[14], Goyal [15], and Ranga et al.[17]. (3) We recognize the importance of reducing the makespan
time. Hence, this paper first incorporates the imputed cost associated with the makespan time into the second cost
model. In particular, the imputed makespan cost makes the second cost model more general than the existing cost
models.
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2. Notations and assumptions

2.1. Notation

The notations used in this paper are defined as follows:

m number of stages;
n number of sublots (decision variable);
j order of stage,j = 1, . . . , m, where stagem represents the last stage to complete production;
D demand for the finished-product per year (units/year);
Q processing lot size (units)(decision variable);
tj processing time per unit for stagej (unit time/unit);
Sj setup cost per cycle for stagej ($/cycle), where a cycle is the time required to produce a processing lot;
G1 sublot movement cost per movement ($/movement);
G2 finished-product shipment cost per shipment ($/shipment);
C0 value of raw materials per unit ($/unit);
Cj value of WIP inventories per unit for stagej, j = 1, . . . , m − 1 ($/unit);
Cm value of finished-product inventories per unit, whereC0 < C1 < · · · < Cm−1 < Cm ($/unit);
h inventory holding cost rate per unit time for stagej (1/unit time);
r cost per unit time ($/unit time).

2.2. Assumptions

The following assumptions are made in this paper:

1. A flow shop containsmstages and produces only one product, and each stage has only one machine.
2. The annual demand for the finished-product,D, is deterministic and known over the infinite planning horizon.
3. All sublots are equal sizes in different stages. There are no production interruption times between any two adjacent sublots

in the same stage.
4. The number of transporters used to move sublots, and the capacity of each transporter are unconstrained.
5. The buffer area between two stages is sufficient to store sublots of any size.
6. The processing time per unit for stagej, tj , is known and fixed, and the sublot movement time is ignored.
7. For model simplicity, the setup time for each stage is neglected. However, the setup cost for stagej, Sj , is independent of

the setup time.
8. The sublot movement cost,G1, and the finished-product shipment cost,G2, do not depend upon the sublot size.
9. No shortages are allowed.

10. Raw materials are procured from outside sources, their replenishment rates are infinite, and the value of raw materials per
unit, C0, is known and constant (i.e., no quantity discounts). In stage 1, the point of time of raw material replenishment is
the start time of each sublot’s production. In addition, each replenishment quantity is equal to the sublot size.

11. When a sublot is finished in the last stage (i.e., stagem), it should be shipped to the customer immediately.

3. Computations of makespan and inventories

Based on Assumption (3), the makespan time for producing a processing lot is

M(Q, n) = Q

n


 m∑

j=1

tj + (n − 1)

m∑
j=1

(tj − tj−1)�j


 , (1)

where

�j =
{

1 if tj > tj−1
0 otherwise

and t0 = 0, j = 1, . . . , m.
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Eq. (1) was called the no-idling makespan time by Baker and Jia[18]. Theoretically, increasing the number of sublots will reduce
the makespan time. However, its marginal proportion of reduction in the makespan time will gradually decrease with the increase
of the number of sublots. In other words, as Baker and Pyke[4] pointed out, the benefits of lot streaming show diminishing
marginal returns as the number of sublots increases. The number of sublots cannot be infinite since time and cost are required
when moving a sublot from one stage to the next stage. There exists an optimal number of sublots in the range of one unit (i.e.,
n = 1) and a processing lot (i.e.,n = Q).

Fig. 1depicts three types of inventories (as described in Section 1) and the makespan time for producing a processing lot in a
m-stage flow shop. InFig. 1, the value of raw materials in stage 1 can be computed by summing the dotted-line triangular areas.
The result is

Q2

2n
t1C0. (2)

Similarly, the value of finished-product inventories in stagem is the sum of the bold-line triangular areas. It is given by

Q2

2n
tmCm. (3)

Furthermore, the value of WIP inventories has two parts. In one part, each sublot waiting to be produced in each stage except for
stage 1 can be represented by a shaded rectangular area. Hence, the waiting time for producing a processing lot (i.e.,n sublots)
for stagej is

n∑
k=2

(n − k + 1)|tj−1 − tj |Q
n

= Q(n − 1)

2
|tj−1 − tj | for j = 2, . . . , m. (4)

Then, the value of WIP inventories for stagej can be obtained by multiplyingQ/nCj−1 by the resulting value in Eq. (4).
That is,

Q2

2

(
1 − 1

n

)
Cj−1|tj−1 − tj | for j = 2, . . . , m. (5)

Finally, the total waiting time for producing a processing lot for all stages (in fact, no waiting time exists in stage 1) is

Q(n − 1)

2

m∑
j=2

|tj−1 − tj |. (6)

The total value of WIP inventories in this part becomes

Q2

2

(
1 − 1

n

) m∑
j=2

Cj−1|tj−1 − tj |. (7)

In the other part, the WIP of each sublot in each stage except for stages 1 andmcan be represented by dotted-line and bold-line
triangular areas, while the WIP of each sublot in stage 1 can be represented by a bold-line triangular area, and that in stagem

can be represented by a dotted-line triangular area. Therefore, the value of each sublot’s WIP in each stage except for stages 1
andm is

Q2

2n
tj (Cj−t + Cj ) for j = 2, . . . , m − 1. (8)

Hence, the total value of WIP inventories in the second part is

Q2

2n


t1C1 +

m−1∑
j=2

tj (Cj−1 + Cj ) + tmCm−1


 . (9)

As a result, the total value of raw materials, WIP and finished-product inventories is the sum of the resulting values in Eqs. (2),
(3), (7), and (9). That is,

Q2

2n
t1C0 + Q2

2n
tmCm + Q2

2

(
1 − 1

n

) m∑
j=2

Cj−1|tj−1 − tj | + Q2

2n


t1C1 +

m−1∑
j=2

tj (Cj−1 + Cj ) + tmCm−1


 . (10)
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Fig. 1. Three types of inventories and the makespan time.
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However, a more concise form obtained by combining the first, second, and last terms in Eq. (10) is given by

Q2

2

(
1 − 1

n

) m∑
j=2

Cj−1|tj−1 − tj | + Q2

2n


 m∑

j=1

tj (Cj−1 + Cj )


 . (11)

4. Cost model formulation and optimization

4.1. The first cost model

The first cost model (Model I) consists of the setup cost, the sublot movement cost, the three-type inventory holding cost, and
the finished-product shipment cost. Accordingly, the total cost per cycle can be written as

CT C1(Q, n)=
m∑

j=1

Sj + G1n(m − 1) + Q2

2

(
1 − 1

n

) m∑
j=2

Cj−1|tj−1 − tj |

h

+ Q2

2n


 m∑

j=1

tj (Cj−1 + Cj )


h + G2n. (12)

Multiplying CT C1(Q, n) in Eq. (12) byD/Q, the total cost per year becomes

YT C1(Q, n)=D

Q

m∑
j=1

Sj + D

Q
G1n(m − 1) + QD

2

(
1 − 1

n

) m∑
j=2

Cj−1|tj−1 − tj |

h

+ QD

2n


 m∑

j=1

tj (Cj−1 + Cj )


h + D

Q
G2n. (13)

BecauseYT C1(Q, n) in Eq. (13) is a convex function (the detailed proof is given in Appendix A), an optimal solution exists.
In order to find it, we take the partial derivatives ofYT C1(Q, n) in Eq. (13) with respect toQ andn, respectively, and set each
of them to zero. Consequently, we have

Q0 =
√√√√ 2n0(

∑m
j=1Sj + G1n0(m − 1) + n0G2)

(n0 − 1)(
∑m

j=2Cj−1|tj−1 − tj |)h + [∑m
j=1tj (Cj−1 + Cj )]h (14)

and

n0=Q0

√
[∑m

j=1tj (Cj−1 + Cj )]h − (
∑m

j=2Cj−1|tj−1 − tj |)h
2(G1(m − 1) + G2)

=
√√√√ (

∑m
j=1Sj )(

∑m
j=1tj (Cj−1 + Cj ) −∑m

j=2Cj−1|tj−1 − tj |)
(
∑m

j=2Cj−1|tj−1 − tj |)(G1(m − 1) + G2)
.

(15)

It should be emphasized here that the value ofn0 in Eq. (15) becomes infinite when the unit processing times for all stages are
identical (i.e.,t1= t2=· · ·= tm and the flow shop is completely balanced). Obviously, the value ofQ0 in Eq. (14) is also infinite.

In general, the value ofn0 obtained by using Eq. (15) is not guaranteed to be an integer. We can find that an optimal solution
with an integer number of sublots, denoted by(Q0∗, n0∗), is definitely close to(Q0, n0) sinceYT C1(Q, n) is convex. In this
case, two approaches can be used to determine the optimal values ofQ0∗ andn0∗ for an unbalanced flow shop. The first one
simply uses a computer package, such as LINGO, under the condition that the value ofn in Eq. (13) is set to be a positive integer.
If such a computer package is not available, the second approach based on Eqs. (14) and (15) can be used to search for the
optimal values ofQ0∗ andn0∗. Two steps of this search method are as follows:
Step1: Input relevant parameters into Eq. (15), use it to obtain the value ofn0, and find the values of	n0
 and�n0�, where

	x
 denotes the largest integer less than or equal tox, and�x� denotes the smallest integer larger than or equal tox. Substitute
the values of	n0
 and�n0� into n0 in Eq. (14), respectively, and obtain the values ofQ0

	n0
 andQ0
�n0�.
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Step2: Obtain the values ofYT C1(Q0
	n0
, 	n0
) andYT C1(Q0

�n0�, �n0�), and select the one with the lowest total cost. The

optimal solution is found.

4.2. The second cost model

The second cost model (Model II) contains the four costs included in Model I and the imputed cost associated with the
makespan time. Consequently, the total cost per cycle can be written as

CT C2(Q, n)=
m∑

j=1

Sj + G1n(m − 1) + Q2

2

(
1 − 1

n

) m∑
j=2

Cj−1|tj−1 − tj |

h

+ Q2

2n


 m∑

j=1

tj (Cj−1 + Cj )


h + G2n + Q

n


 m∑

j=1

tj + (n − 1)

m∑
j=1

(tj − tj−1)�j


 r. (16)

Multiplying CT C2(Q, n) in Eq. (16) byD/Q, the total cost per year becomes

YT C2(Q, n)=D

Q

m∑
j=1

Sj + D

Q
G1n(m − 1) + QD

2

(
1 − 1

n

) m∑
j=2

Cj−1|tj−1 − tj |

h

+ QD

2n


 m∑

j=1

tj (Cj−1 + Cj )


h + D

Q
G2n + D

n


 m∑

j=1

tj + (n − 1)

m∑
j=1

(tj − tj−1)�j


 r. (17)

SinceYT C2(Q, n) in Eq. (17) is also convex (the detailed proof is shown in Appendix B), an optimal solution can be determined
by means of partial differentiation of Eq. (17) with respect toQ andn, respectively. By setting each of them to zero, we get

Q′ =
√√√√ 2n′(∑m

j=1Sj + G1n′(m − 1) + n′G2)

(n′ − 1)(
∑m

j=2Cj−1|tj−1 − tj |)h + [∑m
j=1tj (Cj−1 + Cj )]h (18)

and

n′ =

√√√√Q′2h[∑m
j=1tj (Cj−1 + Cj ) − (

∑m
j=2Cj−1|tj−1 − tj |)] + 2Q′r(∑m

j=1tj −∑m
j=1(tj − tj−1)�j )

2(G1(m − 1) + G2)
. (19)

We can also use the two approaches mentioned above to obtain the optimal solution with an integer number of sublots, denoted
by (Q′∗, n′∗), for an unbalanced flow shop. The first approach uses LINGO. The second approach differs from that presented in
Model I. The main reason is thatn′ is not independent ofQ′ (as shown in Eqs. (18) and (19)). An iterative procedure based on
Eqs. (18) and (19) is developed to search for the optimal values ofQ′∗ andn′∗. Three steps of this procedure are as follows:
Step1: Setk =1, Q′

k
=L, which is a reasonable positive integer, and the tolerance,�, a minimal positive number. Substituting

the initial guess valueL into Q′ in Eq. (19), we can obtain the initial value ofn′
k
.

Step2: Setk = k + 1. Substituting the value ofn′
k−1 into n′ in Eq. (18), we can obtain the value ofQ′

k
. Then, substituting the

value ofQ′
k

into Q′ in Eq. (19), we can obtain the value ofn′
k
. This step is repeated until|n′

k
− n′

k−1| < �.
Step3: Find an integern′∗ that closely approaches the value ofn′

k
. Substituting this integer inton′ in Eq. (18), we can obtain

the optimal value ofQ′∗.
Also note that the result obtained by implementing Steps 1 and 2 in the above iterative procedure will converge to(Q′

k
, n′

k
),

which is the same as solving directly using Eq. (17), in whichQandnare assumed to be real numbers, when the unit processing
times for all stages are not equal. On the other hand, the values ofQ′

k
andn′

k
will gradually become extremely large as the

stopping condition|n′
k
− n′

k−1| < � can never be satisfied, and a large number of iterations will be performed in Step 2 when the
unit processing times for all stages are identical.
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Table 1
Related time and cost data

Stagej tj (min) Sj ($) Cj ($)

1 2 150 0.6
2 4 40 0.7
3 3 100 0.8
4 5 90 0.9
5 2 100 1

Total 16 480

Table 2
The results obtained by implementing Steps 1 and 2 in the illustration of Model II

L k 1 2 3 4 5 6 7 8

Underestimated Q′
k

50 260.4027 400.7651 448.1164 463.4031 468.1140 469.4932 469.9840
n′
k

2.9510 7.3193 9.5334 10.2375 10.4616 10.5304 10.5505 10.5576

Overestimated Q′
k

800 557.5799 495.6600 477.8704 472.5472 470.8477 470.3182
n′
k

15.1438 11.8137 10.9299 10.6724 10.5950 10.5702 10.5625

5. Numerical illustration and experimental design and analysis

5.1. Numerical illustration

A numerical example is used to illustrate the solution procedures of Models I and II. Suppose that there are five stages in
a flow shop. Relevant input parameters are:D = 600, 000 units per year,G1 = $5 per movement,G2 = $100 per shipment,
C0 = $0.5 per unit,h = 0.002 per year, andr = $2 per minute. In addition, the unit processing time, the cost per setup, and the
value per unit WIP of each stage are given inTable 1.

5.1.1. Illustration of Model I
From Eq. (13), the total annual cost is

YT C1(Q, n) = 28, 800, 000

Q
+ 1, 200, 000

n

Q
+ 372Q

(
1 − 1

n

)
+ 1, 452

Q

n
+ 6, 000, 000

n

Q
.

The search method mentioned previously is used:
Step1: Use Eq. (15) to obtainn0 (i.e.,n0 = 3.41). As a result,	n0
 = 3 and�n0� = 4. Then, we can obtainQ0

3 = 262.398 and

Q0
4 = 299.532 using Eq. (14).
Step2: ComputeYT C1(262.398, 3) andYT C1(299.532, 4). Finally, the optimal solution is(262.398, 3) with a total annual

cost of $384,150 (which is identical to that obtained using LINGO to solve Eq. (13) directly).

5.1.2. Illustration of Model II
According to Eq. (17), the total annual cost is

YT C2(Q, n)=28, 800, 000

Q
+ 1, 200, 000

n

Q
+ 372Q

(
1 − 1

n

)

+ 1, 452
Q

n
+ 6, 000, 000

n

Q
+ 1, 920, 000

n
+ 720, 000

(
1 − 1

n

)
.

The iterative procedure is used:
Step1: Setk = 1, Q′

1 = L = 50, and� = 0.01. The initial value ofn′
1 is 2.9510 after solving Eq. (19).

Step2: Setk = 2. Using Eq. (18), the value ofQ′
2 is 260.4027. It is clear thatQ′

1 = L = 50 is an underestimated value.
Then, using Eq. (19), the value ofn′

2 is 7.3193. The results of the other iterations in this step are given inTable 2. This step is
terminated atk = 8 (i.e.,|n′

8 − n′
7| = 0.0071< 0.01). Hence, the value ofn′

8 is 10.5576.
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Fig. 2. A schematic representation of the illustration in Model II with the underestimated and overestimated values ofL.
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Table 3
The results of the first phase of the experiment

r Model II

Q′∗ n′∗ YT C2 M(Q′∗, n′∗)

0.0625 299.532 4 416474.5 2546.022
0.125 299.532 4 448349.5 2546.022
0.25 331.970 5 510396.7 2655.76
0.5 361.158 6 628717.9 2768.878
1 412.813 8 853591.9 2992.894
2 479.269 11 1279778.0 3311.313
4 555.075 15 2092906.0 3700.500
8 681.183 23 3659468.0 4383.265

16 834.878 35 6706959.0 5247.805
32 1032.137 54 12684750.0 6383.958
64 1283.092 84 24484760.0 7851.301

Table 4
The results of the second phase of the experiment

(t1, t2, t3, t4, t5) Model I Model II

Q0∗ n0∗ YT C1 M(Q0∗, n0∗) Q′∗ n′∗ YT C2 M(Q′∗, n′∗)

(2, 3, 5, 7, 10) 278.343 5 465612.4 3729.796 507.665 15 1874938.0 5652.004
(2, 3, 4, 5, 6) 391.397 6 367913.0 3261.642 756.657 18 1232017.0 5128.453
(2, 2, 2, 2, 2) ∞ ∞ — ∞ ∞ ∞ — ∞
(6, 5, 4, 3, 2) 409.197 6 351909.1 3409.975 750.789 17 1221600.0 5123.031
(10, 7, 5, 3, 2) 301.765 5 429472.6 4043.651 542.280 15 1840537.0 6037.384
(1, 3, 5, 3, 1) 282.843 3 356381.8 2168.463 456.070 9 1117130.0 2685.746
(5, 3, 1, 3, 5) 297.113 4 387731.9 3268.243 459.696 10 1614550.0 4505.021
(1, 2, 4, 3, 2) 359.573 4 320379.8 2157.438 596.754 11 929231.0 2821.019
(2, 5, 3, 6, 1) 235.339 3 428317.6 2588.729 346.410 8 1593831.0 3160.991
(1, 5, 1, 2, 7) 199.172 2 433796.3 2688.822 304.017 6 1893658.0 3597.535

Step3: Letn′ =11. Use Eq. (18) to obtain the value ofQ′∗ (which is 479.2628). Finally, the optimal solution is(479.2628, 11)
with a total annual cost of $1, 279, 778.

To more explicitly demonstrate the computational process of this illustration presented inTable 2, Fig. 2shows a schematic
representation of cases with underestimated and overestimated values ofL. In either the underestimated or overestimated case,
the magnitude of improvement at the start of the iterative procedure is significant, but it gradually decreases with the increase
of k. When the iterative procedure is terminated because the condition that|n′

k
− n′

k−1| < � is satisfied, the final solution (i.e.,
n′

8=10.5576 in the underestimated case andn′
7=10.5625 in the overestimated case) is very close to the integer optimal solution

(i.e.,n′∗ = 11).

5.2. Experimental design and analysis

The experiment was conducted in three phases. In the first phase of the experiment, the purpose was to explore the effect of
changing the value of the cost per unit time,r, on the optimal solution in Model II. The levels of the cost per unit time were
0.0625, 0.125, 0.25, 0.5, 1, 2, 4, 8, 16, 32, and 64. The values of other parameters were identical to those given in the above
numerical illustration. The results of the first phase of the experiment are listed inTable 3. In the second phase, the objective was
to investigate whether the unit processing time for stagej , tj , would have a significant impact on the optimal solutions in Models
I and II. The values oft1, t2, . . . , t5 were chosen from 1, 2, . . . , 10 according to several unit-processing-time configurations in
a flow shop, including increasing, decreasing, completely balanced, and other configurations.Table 4summarizes the results of
the second phase. In the third phase, the aim was to deal with the impact of changing the values ofG1, G2, h, and

∑m
j=1Sj , on

the optimal solutions in Models I and II. Note that only one of the above four values was changed at a time.Table 5shows the
results of the third phase.
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Some important conclusions drawn fromTables 3, 4, and 5 are as follows:

1. FromTables 3, 4, and 5, the optimal value ofn′∗ obtained by solving Model II is larger than that ofn0∗ obtained by solving
Model I. The reason is that the imputed makespan cost is not included in Model I.

2. FromTable 3, the optimal values ofQ′∗ andn′∗ in Model II increase as the value ofr increases. Obviously, the optimal values
of Q′∗ andn′∗ gradually become close to those ofQ0∗ andn0∗ in Model I when the value ofr decreases. In addition, according
to Eqs. (1) and (17), althoughYT C2(Q0∗, n0∗) > YT C2(Q′∗, n′∗), it can be found thatM(Q0∗, n0∗) < M(Q′∗, n′∗). The
reason is that the purpose of this paper is to minimize the total annual cost rather than to minimize the total annual cost and
the makespan time simultaneously. In other words, the minimum of the total annual cost does not guarantee the minimum of
the makespan time.

3. FromTable 4, the optimal values of(Q0∗, n0∗) and(Q′∗, n′∗) obtained by solving Models I and II become extremely large as
the flow shop approaches complete balance, as expected from Eqs. (14), (15), (18), and (19). Conversely, those of(Q0∗, n0∗)

and(Q′∗, n′∗) are small when the flow shop is unbalanced. In addition, the optimal values ofQ′∗andn′∗ in Model II are
inevitably larger than those ofQ0∗ andn0∗ in Model I.

4. It also can be seen fromTable 5that the optimal value ofn0∗ obtained by solving Model I is negatively correlated with the
value ofG1 or G2. The same situation can be applied to the optimal value ofn′∗ in Model II. On the other hand, each optimal
value ofQ0∗ andQ′∗ exhibits positive correlation with the value ofG1 or G2 under the condition that the optimal value of
n0∗ or n′∗ is fixed. Furthermore, the optimal values ofQ0∗, Q′∗, andn′∗, except for that ofn0∗, are negatively correlated
with the value ofh. The above four optimal values, however, exhibit positive correlation with the value of

∑m
j=1Sj .

6. Conclusions and directions for future research

This paper has developed two cost models to solve lot streaming problems in a multistage flow shop. The contribution of
Model I is a more complete and accurate method for taking into account the costs of raw materials, WIP, and finished-product
inventories. Model II further includes the imputed cost (as seen from the last term in Eq. (16)), which is transformed from
the makespan time (as presented in Eq. (1)). This makes Model II more general than Model I and other existing cost models.
It can be proven that the total annual cost functions of Models I and II (i.e., Eqs. (13) and (17)) are convex. In addition, we
have suggested the use of LINGO or the proposed approach in each cost model, depending on the availability of the computer
package, to find the optimal solutions of the lot streaming problems. The results obtained by conducting an experiment indicate
that the inventory holding cost rate (h), the setup cost (

∑m
j=1Sj ), and the unit-processing-time configuration (t1, t2, . . . , tm) each

has a much greater impact on the optimal solution than does the sublot movement cost (G1) or the finished-product shipment
cost (G2).

A more detailed factorial design can be used in the future to analyse the effect on the optimal solution in each cost model
when concurrently changing the values of two or more related parameters. Other interesting research topics will be the use of the
imputed mean-flow-time cost rather than the imputed makespan cost to formulate a cost model and simultaneously minimizing
the time and cost objective functions in dual-objective lot streaming problems.
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Appendix A. Proof of the convexity ofYT C1(Q, n) in Model I

The total annual cost function is

YT C1(Q, n)=D

Q

m∑
j=1

Sj + D

Q
G1n(m − 1) + QD

2

(
1 − 1

n

) m∑
j=2

Cj−1|tj−1 − tj |

h

+ QD

2n


 m∑

j=1

tj (Cj−1 + Cj )


h + D

Q
G2n.
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Table 5
The results of the third phase of the experiment

Parameter Model I Model II

G1 G2 h
∑m

j=1Sj Q0∗ n0∗ YT C1 M(Q0∗, n0∗) Q′∗ n′∗ YT C2 M(Q′∗, n′∗)

0.3125 100 0.002 480 287.594 4 369270.6 2444.549 450.975 11 1253172.0 3115.827
0.625 100 0.002 480 288.405 4 370312.3 2451.443 452.917 11 1254997.0 3129.245
1.25 100 0.002 480 290.121 4 372386.9 2466.029 456.774 11 1258625.0 3155.893
2.5 100 0.002 480 293.226 4 376501.8 2492.421 464.393 11 1265790.0 3208.533
5 100 0.002 480 262.398 3 384150.0 2449.048 479.269 11 1279778.0 3311.313

10 100 0.002 480 271.607 3 397633.0 2534.999 484.768 10 1305377.0 3393.376
20 100 0.002 480 289.148 3 423312.7 2698.715 506.061 9 1351297.0 3598.656
40 100 0.002 480 256.495 2 467846.1 2821.445 550.417 8 1428123.0 3990.523
80 100 0.002 480 294.690 2 537514.3 3241.590 624.413 7 1548677.0 4638.497

160 100 0.002 480 224.529 1 652031.9 3592.464 731.288 6 1727342.0 5606.541
320 100 0.002 480 277.236 1 805091.8 4435.776 867.791 5 1980525.0 6942.328
640 100 0.002 480 360.211 1 1046053 5763.376 1019.437 4 2328957.0 8665.215

5 6.25 0.002 480 275.085 7 289546.7 2043.489 370.052 19 1100546.0 2415.076
5 12.5 0.002 480 284.006 7 298937.0 2109.759 384.599 18 1118961.0 2521.260
5 25 0.002 480 285.520 6 315214.2 2188.987 404.750 16 1150775.0 2681.469
5 50 0.002 480 266.511 4 342199.9 2265.344 428.095 13 1201940.0 2897.874
5 100 0.002 480 262.398 3 384150.0 2449.048 479.269 11 1279778.0 3311.313
5 200 0.002 480 305.634 3 447521.2 2852.584 514.868 8 1392076.0 3732.793
5 400 0.002 480 294.690 2 537514.3 3241.590 624.422 7 1548677.0 4638.563
5 600 0.002 480 336.390 2 613574.4 3700.290 675.664 6 1665933.0 5180.091
5 800 0.002 480 231.774 1 673070.6 3708.384 683.628 5 1763946.0 5469.024
5 1200 0.002 480 265.043 1 769685.7 4240.688 819.407 5 1923623.0 6555.256
5 1600 0.002 480 294.580 1 855457.8 4713.280 806.516 4 2055566.0 6855.386
5 2400 0.002 480 346.172 1 1005282 5538.752 974.440 4 2271181.0 8282.740.
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5 100 0.0005 480 524.795 3 192075.0 4898.087 1110.150 15 1046453.0 7401.000
5 100 0.001 480 371.086 3 271635.0 3463.469 733.438 13 1146078.0 4964.811
5 100 0.002 480 262.398 3 384150.0 2449.048 479.269 11 1279778.0 3311.313
5 100 0.004 480 185.534 3 543270.1 1731.651 308.419 9 1460301.0 2193.202
5 100 0.008 480 131.199 3 768299.9 1224.524 206.406 8 1707184.0 1496.444
5 100 0.016 480 92.772 3 1086540 856.872 137.154 7 2046339.0 1018.858
5 100 0.032 480 65.599 3 1536600 612.257 90.289 6 2514872.0 692.216
5 100 0.064 480 46.386 3 2173080 432.936 58.685 5 3168417.0 469.480
5 100 0.128 480 32.800 3 3073200 306.133 41.500 5 4083174.0 332.000
5 100 0.256 480 23.193 3 4346161 216.468 26.475 4 5371247.0 225.038
5 100 0.512 480 16.400 3 6146400 153.067 18.721 4 7173593.0 159.129
5 100 1.024 480 11.596 3 8692322 108.229 13.238 4 9722494.0 112.523

5 100 0.002 8 72.727 1 211200.0 1163.632 364.257 9 1211762.0 2590.272
5 100 0.002 15 74.689 1 216898.1 1195.024 365.427 9 1212913.0 2598.592
5 100 0.002 30 78.730 1 228630.7 1259.680 367.921 9 1215368.0 2616.327
5 100 0.002 60 86.244 1 250452.4 1379.904 372.860 9 1220227.0 2651.449
5 100 0.002 120 153.897 2 280707.7 1692.867 382.546 9 1229759.0 2720.327
5 100 0.002 240 177.705 2 324133.3 1954.755 424.264 10 1247294.0 2969.848
5 100 0.002 480 262.398 3 384150.0 2449.048 479.269 11 1279778.0 3311.313
5 100 0.002 960 398.978 5 469198.5 3191.824 558.291 12 1335860.0 3814.989
5 100 0.002 1920 560.944 7 590433.4 4167.013 693.481 14 1428658.0 4656.230
5 100 0.002 3840 793.725 10 761976.4 5556.075 886.763 16 1574464.0 5874.805
5 100 0.002 7680 1118.205 14 1004467 7507.948 1191.519 20 1795174.0 7744.874
5 100 0.002 15360 1571.000 19 1347422 10252.842 1637.452 26 2120453.0 10454.501
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For convenience, letA1, A2, A3, andA4 be
∑m

j=1Sj , G1(m − 1), (
∑m

j=2Cj−1|tj−1 − tj |)h, and[∑m
j=1tj (Cj−1 + Cj )]h,

respectively. The cost function becomes

YT C1(Q, n) = D

Q
A1 + nD

Q
A2 + QD

2

(
1 − 1

n

)
A3 + QD

2n
A4 + G2nD

Q
.

�2
YT C1

�Q2 = 2D

Q3 A1 + 2nD

Q3 A2 + 2G2nD

Q3 > 0.

Since
∑m

j=2Cj−1|tj−1− tj | <∑m
j=2Cj−1(tj−1+ tj ), it follows that

∑m
j=1tj (Cj−1+Cj )−∑m

j=2Cj−1(tj−1+ tj )= t1C0+
tmCm > 0. As a result,A4 − A3 > 0. Thus,

�2
YT C1

�n2 = −QD

n3 A3 + QD

n3 A4 = QD

n3 (A4 − A3) > 0

and (
�2

YT C1

�Q2

)(
�2

YT C1

�n2

)
−
(

�2
YT C1

�Q�n

)(
�2

YT C1

�n�Q

)
=
(

2D(A1 + nA2 + nG2)

Q3

)(
QD(A4 − A3)

n3

)

−
[(

−D(A2 + G2)

Q2

)
+
(

−D(A4 − A3)

2n2

)]2
= 2D2A1(A4 − A3)

Q2n3 > 0.

YT C1(Q, n) is a convex function and the proof is completed.

Appendix B. Proof of the convexity ofYT C2(Q, n) in Model II

The total annual cost function is

YT C2(Q, n) = D

Q

m∑
j=1

Sj + D

Q
G1n(m − 1) + QD

2

(
1 − 1

n

) m∑
j=2

Cj−1|tj−1 − tj |

h

+ QD

2n


 m∑

j=1

tj (Cj−1 + Cj )


h + D

Q
G2n + D

n


 m∑

j=1

tj + (n − 1)

m∑
j=1

(tj − tj−1)�j


 r.

Since the sum of two convex functions is still a convex function, we can divideYT C2(Q, n) into two parts. That is,

YT C21(Q, n)=D

Q

m∑
j=1

Sj + D

Q
G1n(m − 1) + QD

2

(
1 − 1

n

) m∑
j=2

Cj−1|tj−1 − tj |

h

+ QD

2n


 m∑

j=1

tj (Cj−1 + Cj )


h

and

YT C22(Q, n) = D

Q
G2n + D

n


 m∑

j=1

tj + (n − 1)

m∑
j=1

(tj − tj−1)�j


 r.

(1) Proof of the convexity ofYT C21(Q, n):
Let A1, A2, A3, andA4 be

∑m
j=1Sj , G1(m−1), (

∑m
j=2Cj−1|tj−1 − tj |)h, and[∑m

j=1tj (Cj−1 +Cj )]h, respectively. The
cost function becomes

YT C21(Q, n) = D

Q
A1 + nD

Q
A2 + QD

2

(
1 − 1

n

)
A3 + QD

2n
A4,

�2
YT C21

�Q2 = 2D

Q3 A1 + 2nD

Q3 A2 > 0.
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SinceA4 − A3 > 0, as proven in Appendix A, it follows that

�2
YT C21

�n2 = −QD

n3 A3 + QD

n3 A4 = QD

n3 (A4 − A3) > 0

and (
�2

YT C21

�Q2

)(
�2

YT C21

�n2

)
−
(

�2
YT C21

�Q�n

)(
�2

YT C21

�n�Q

)
=
(

2DA1 + 2nDA2

Q3

)(
QD(A4 − A3)

n3

)

−
[(

−DA2

Q2

)
+
(

−D(A4 − A3)

2n2

)]2
= 2D2A1(A4 − A3)

Q2n3 > 0.

Hence,YT C21(Q, n) is a convex function.
(2) Proof of the convexity ofYT C22(Q, n):

YT C22(Q, n)=D

Q
G2n + D

n


 m∑

j=1

tj + (n − 1)

m∑
j=1

(tj − tj−1)�j


 r

= D

Q
G2n + rD

n

m∑
j=1

tj + rD

(
1 − 1

n

) m∑
j=1

(tj − tj−1)�j ,

�2
YT C22

�Q2 = 2G2nD

Q3 > 0.

When�j = 1,
∑m

j=1tj −∑m
j=1(tj − tj−1) =∑m

j=1tj−1 > 0. When�j = 0,
∑m

j=1tj > 0. Consequently,

�2
YT C22

�n2 = 2rD

n3


 m∑

j=1

tj −
m∑

j=1

(tj − tj−1)�j


> 0

and (
�2

YT C22

�Q2

)(
�2

YT C22

�n2

)
−
(

�2
YT C22

�Q�n

)(
�2

YT C22

�n�Q

)

=
(

2G2nD

Q3

)
2rD

n3


 m∑

j=1

tj −
m∑

j=1

(tj − tj−1)�j




−

(
G2D

Q2

)2
= 3G2

2D2

Q4 > 0.

Hence,YT C22(Q, n) is a convex function.
From parts (1) and (2),YT C2(Q, n) is a convex function, and the proof is completed.
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