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We analyze a single removable and unreliable server in an M/G/1 queueing system operating under
the hp,Ni-policy. As soon as the system size is greater than N, turn the server on with probability p
and leave the server off with probability (1 � p). All arriving customers demand the first essential ser-
vice, where only some of them demand the second optional service. He needs a startup time before
providing first essential service until there are no customers in the system. The server is subject to
break down according to a Poisson process and his repair time obeys a general distribution. In this
queueing system, the steady-state probabilities cannot be derived explicitly. Thus, we employ an
improved maximum entropy method with several well-known constraints to estimate the probability
distributions of system size and the expected waiting time in the system. By a comparative analysis
between the exact and approximate results, we may demonstrate that the improved maximum
entropy method is accurate enough for practical purpose, and it is a useful method for solving complex
queueing systems.

� 2011 Elsevier Ltd. All rights reserved.
1. Introduction

In this paper, we consider an unreliable server in an M/G/1
queue operating under the hp,Ni-policy with a second optional
service (here abbreviated as SOS) and general startup times. An
unreliable server means that the server is typically subject to
unpredictable breakdowns. We elaborate an information theoretic
technique based on the principle of maximum entropy to give an
alternative solution for deriving probability distributions in this
queueing model. We call that the policy is a hp,Ni-policy if it pre-
scribes the following conditions: (i) turn the server off when the
system is empty, (ii) turn the server on if there are N(N P 1) or
more customers are present, (iii) if the server is turned off and
the number of customers in the system reaches N, turn the server
on with probability p and leave the server off with probability
(1 � p), and (iv) do not turn the server at other epochs. If the server
finds at least N customers present in the system, it starts to provide
first essential service (here abbreviated as FES) for the waiting cus-
tomers whenever he completes its startup. In other words, the
hp,Ni-policy is to control the server randomly at the arrival epoch
of the Nth customer finds that the server is idle. If the probability p
ll rights reserved.

. Wang).
is one, then we have N-policy introduced by Yadin and Naor
(1963). In case p = 0, we have the (N + 1)-policy. An M/G/1 queue
involving the randomized server control problem has been treated
by Feinberg and Kim (1996). They considered either hp,Ni- or
hN,pi-policy M/G/1 queue with a removable sever at first and
performed the optimal control policy is of the randomized form.
Subsequently, Kim and Moon (2006) considered the system with
the hp, Ti-policy, exploit its properties and found the optimal val-
ues of T and p for a constrained problem. Lately, Ke, Ko, and Sheu
(2008) utilized bootstrap methods to investigate the estimation
of the expected busy period of an M/G/1 queueing system under
hp,Ni-policy.

One of the most significant regions of queueing problem is the
control of queue, and have studied extensive by many researchers.
Yadin and Naor (1963) first introduced the concept of an N-policy
which turns the server on whenever N (N P 1) or more customers
are present, turns the server off only when the system is empty.
The server startup corresponds to the preparatory work of the ser-
ver before starting the service. In some actual situations, the server
often needs a startup time before providing service. Exact steady-
state solutions of the N policy M/M/1 queue with exponential start-
up times were first derived by Baker (1973). Borthakur, Medhi, and
Gohain (1987) extended Baker’s model to general startup times.
Wang (2003) developed the exact steady-state solutions of the N
policy M/M/1 queue with server breakdowns and exponential
startup times. The N-policy M/G/1 queue with startup times was
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investigated by several authors such as Medhi and Templeton
(1992), Takagi (1993), Lee and Park (1997), etc. Ke (2003) analyzed
the N policy M/G/1 queueing system with server vacations, startup
and breakdowns. He developed the probability generating function
of the queue size when the server begins performing startup and
also derived important system characteristics. Recently, Wang,
Wang, and Pearn (2007) focused mainly on performing a sensitiv-
ity analysis for the N-policy with server breakdowns and general
startup times.

In many real service systems, one encounters numerous exam-
ples of the queueing situation where all arrivals require the main
service and only some may require the subsidiary service provided
by the server. Madan (2000) was the first to study an M/G/1 queue
with SOS in which the first essential service time obeys a general
distribution but second optional service time follows an exponen-
tial distribution. He also cited some important examples in daily
life. Medhi (2002) extended Madan’s model (Madan, 2000) that
the second optional service time follows a general distribution.
Al-Jararha and Madan (2003) generalized Madan’s work in the
sense that they assumed that both first essential service time
and second optional service time are general with different distri-
bution functions. Based on the supplementary variable technique,
Wang (2004) studied the reliability behavior in an M/G/1 queue
with SOS and an unreliable server. Recently, Wang and Zhao
(2007) considered a discrete-time Geo/G/1 retrial queue with an
unreliable server and SOS. Some performance measures of the sys-
tem in steady state and explicit formulae for the stationary distri-
bution are developed in their work.

In a stochastic context, little is known analytically about the
behaviors of queue length distributions of a randomized server
control queueing system. When exact methods of solution are
not known, we frequently make use of numerical solution meth-
ods. One elegant approach for this is given by an information the-
oretic technique, which based on the principle of maximum
entropy, to provide a self-contained method of inference for
obtaining an unknown and unique probability distribution. In
other word, this method is applied to estimate probability distribu-
tions, which consists of maximizing entropy function subject to the
available mean constraints. El-Affendi and Kouvatsos (1983) pre-
sented the maximum entropy formalism to analyze the M/G/1
and G/M/1 queues. Based on the maximum entropy principle,
Artalejo and Lopez-Herrero (2004) investigated the probability
density function of busy period under some controllable M/G/1
queueing models. Wang, Wang, and Pearn (2005) used maximum
entropy analysis to study the N policy M/G/1 queueing system with
server breakdowns and general startup times. Recently, Ke and Lin
(2006) studied the M[x]/G/1 queueing system with an unreliable
server and delaying vacations. They derived the approximate
steady-state probability distribution of the queue length as well.
To the best of our knowledge, that there has been no research that
investigates a randomized controllable queueing system with SOS
and startup times by the maximum entropy principle. Our work
is motivated by such works and employ maximum entropy meth-
od to estimate the queue length distribution for the hp,Ni-policy
M/G/1 queue with server breakdowns, SOS and startup times.

The purpose of this paper is fourfold. Firstly, we develop some
exact and important system performance measures for the hp,Ni-
policy M/G/1 queue with server breakdowns, SOS and startup times.
Secondly, we construct an improved maximum entropy function for
this queueing system. Thirdly, the improved maximum entropy
solutions are developed through the Lagrange’s method. Thirdly,
we obtain the approximate expected waiting time in the system
and the exact expected waiting time in the system. Finally, we
perform a comparative analysis between approximate results
obtained through the improved maximum entropy method and
exact results obtained from the convex combination property.
2. The mathematical model

In this paper, we consider the hp,Ni M/G/1 queue with the fol-
lowing specifications. It is assumed that customers arrive accord-
ing to a Poisson process with rate k. Arriving customers form a
single waiting line at a server based on the order of their arrivals;
that is, in a first-come, first-served (FCFS) discipline. A single server
is required to serve all arriving customers for the first essential ser-
vice (FES), denoted by S1. As soon as FES of a customer is completed,
a customer may leave the system with probability 1 � h or may opt
for SOS, denoted by S2, with probability h (0 6 h 6 1), at the com-
pletion of which the customer departs from the system and the
next customer, if any, from the queue is taken up for his FES. The
service times S1, S2 of two channels are independent and identi-
cally distributed (i.i.d.) random variables obeying a general distri-
bution function Si(t) (t P 0), i = 1, 2, mean service time
lSi
; i ¼ 1;2, Laplace-Stieltjes transforms (LST) �f Si

ðsÞi ¼ 1;2, and

the kth moment E Sk
i

h i
; k P 1; i ¼ 1;2, where the sub-index i = 1

(respectively, i = 2) denote the FES (respectively the SOS). Further,
the same server is assumed to serve both service channels. There-
fore, a total service time is provided to a customer is defined as:

S ¼
S1 þ S2; with probability h;

S1; with probability ð1� hÞ;

�

and its LST �f SðsÞ ¼ ð1� hÞ�f S1 ðsÞ þ h�f S1 ðsÞ�f S2 ðsÞwith the first moments
of S are

E½S� ¼ E½S1� þ hE½S2� ¼ lS1
þ hlS2

; ð1Þ

E½S2� ¼ E S2
1

h i
þ 2hE½S1�E½S2� þ hE S2

2

h i
: ð2Þ

When the server is working, it may meet unpredictable break-
downs but is immediately repaired. We assume that a server’s
breakdown time has an exponential distribution with rate a1 in
the FES channel. In the SOS channel, the server fails at an exponen-
tial rate a2. When the server fails, it is immediately repaired at a
repair facility. The repair times of FES and SOS channels are inde-
pendent general distributions with distribution functions R1(t),
R2(t), (t P 0), mean repair times lR1

;lR2
and the kth moment

E Rk
1

h i
; E Rk

2

h i
; k P 1, respectively. Although no service occurs during

the repair period of the server, customers continue to arrive fol-
lowing a Poisson process. Once the failed server is repaired, it
immediately returns to serve a customer until the system is empty.

The idle server operates the hp,Ni-policy when there are N cus-
tomers accumulated in the system. He requires a startup time with
random length before starting FES. Again, the startup times are
independent and identically distributed random variables obeying
a general distribution function U(t) (t P 0), mean startup time lU

and the kth moment E[Uk], k P 1. As soon as the server completes
startup, it begins serving the waiting customers until the system is
empty. Let us suggest to the usual independence assumptions be-
tween inter-arrival times, service times, inter-breakdown times,
startup times and repair times. Conveniently, We will present this
queueing model as the hp,Ni-policy M/(G,G), (G,G), G/1 queue,
where the second and third symbols denote service time distribu-
tions for FES and SOS channels, respectively. The fourth and fifth
symbols denote the repair time distributions for FES and SOS chan-
nels, respectively. The sixth symbol is the startup time distribution.
3. System performance measures

Let H1 and H2 be a random variable representing the completion
time of FES and SOS, respectively. The completion time of a cus-
tomer includes both the service time of a customer and the repair
time of a server. Using the known results of Wang and Ke (2002),
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we get the first two moments of the completion time distribution
for the first essential channel and second optional channel:

E½Hi� ¼ lSi
1þ ailRi

� �
; i ¼ 1;2; ð3Þ

E H2
i

h i
¼ 1þ ailRi

� �2
E S2

i

h i
þ ailSi

E R2
i

h i
; i ¼ 1;2: ð4Þ

We denote by IN, UN, BN and DN, idle, startup, busy, breakdown
periods for the N-policy M/(G,G), (G,G), G/1 queue, respectively.
Suppose that CN is a busy cycle, which is a sum of idle, startup,
busy, breakdown periods. Applying the results of Wang et al.
(2007), we have:

E½IN� ¼
N
k
; ð5Þ

E½UN� ¼
qU

k
; ð6Þ

E½BN� ¼
E½S� N þ qUð Þ

1� qH
; ð7Þ

E½DN� ¼
a1lS1

lR1
þ ha2lS2

lR2

� �
N þ qUð Þ

1� qH
; ð8Þ

E½CN � ¼ E½IN � þ E½UN� þ E½BN � þ E½DN � ¼
N þ qU

k 1� qHð Þ ; ð9Þ

where qH = k(E[H1] + hE[H2]) is the traffic intensity, it should be
assumed to be less than unity and qU = klU.

Let LN denote the expected number of customers in the N policy
M/(G,G), (G,G), G/1 queue. From the results of Wang et al. (2007), it
gives that:

LN ¼
1

N þ qU

NðN � 1Þ
2

þ NqU þ
k2E½U2�

2

" #
þ LH; ð10Þ

where E½H2� ¼ E H2
1

h i
þ 2hE½H1�E½H2� þ hE H2

2

h i
, which can be

represented as:

E H2
h i

¼ 1þ a1lR1

� �2
E S2

1

h i
þ a1lS1

E R2
1

h i
þ 2hlS1

lS2
1þ a1lR1

� �
1þ a2lR2

� �
þ h 1þ a2lR2

� �2
E S2

2

h i
þ ha2lS2

E R2
2

h i
; ð11Þ

LH ¼ qH þ
k2E H2
h i

2 1� qH½ � : ð12Þ

We denote by Ip,N, Up,N, Bp,N and Dp,N idle, startup, busy, break-
down periods for the hp,Ni-policy M/(G,G), (G,G), G/1 queue. And
let Cp,N be a busy cycle for the hp,Ni-policy M/(G,G), (G,G), G/1
queue. Based on the arguments of Feinberg and Kim (1996), it
shows that the system performance measures for the hp,Ni-policy
queue is a convex combination of the performance measures for
the N-policy queue and the performance measures for the (N + 1)-
policy queue. Using the above formulae (5)–(9), we can obtain:

E Ip;N
� �

¼ pE IN½ � þ 1� pð ÞE INþ1½ � ¼ N þ 1� p
k

; ð13Þ

E Up;N
� �

¼ pE UN½ � þ 1� pð ÞE UNþ1½ � ¼ qU

k
; ð14Þ

E Bp;N
� �

¼ pE BN½ � þ 1� pð ÞE BNþ1½ � ¼ E S½ � N þ 1� pþ qUð Þ
1� qH

; ð15Þ

E Dp;N
� �

¼ pE DN½ � þ 1� pð ÞE DNþ1½ �

¼
N þ 1� pþ qUð Þ a1lS1

lR1
þ ha2lS2

lR2

� �
1� qH

; ð16Þ
E Cp;N
� �

¼ pE CN½ � þ 1� pð ÞE CNþ1½ � ¼ N þ 1� pþ qU

k 1� qHð Þ : ð17Þ
3.1. The long-run fraction of time measures

We will develop the maximum entropy solutions for steady-
state probabilities of the hp,Ni-policy M/(G,G), (G,G), G/1 queue.
Steady-state probabilities PI(n), PS(n), P1(n), P2(n), Q1(n) and Q2(n)
for the entropy formalism are defined as follows:

PI(n)� probability that there are n customers in the
system when the serve is turned off, where n = 0, 1,
2, . . . ,N � 1,N
PS(n) � probability that there are n customers in the system
when the serve is startup, where n = N, N + 1, . . .

P1(n) � probability that there are n customers in the queue
excluding the one being provided FES, and the server is in oper-
ation, where n = 1, 2, 3, . . .

P2(n) � probability that there are n customers in the queue
excluding the one being provided SOS, and the server is in oper-
ation, where n = 1, 2, 3, . . .

Q1(n) � probability that there are n customers in the queue
excluding the one being provided FES, and the server is in oper-
ation but found to be broken down, where n = 1, 2, 3, . . .

Q2(n) � probability that there are n customers in the
queue excluding the one being provided SOS, and the
server is in operation but found to be broken down, where
n = 1, 2, 3, . . .

From Eqs. (13)–(17), we can easily obtain the following proba-
bilities for the hp,Ni-policy M/(G,G), (G,G), G/1 queue.

The probability that the server is idle given by

XN

n¼0

PI nð Þ ¼
E Ip;N
� �

E Cp;N
� � ¼ N þ 1� pð Þ 1� qHð Þ

N þ 1� pþ qU
: ð18Þ

The probability that the server is startup given by

X1
n¼N

PSðnÞ ¼
E Up;N
� �

E Cp;N
� � ¼ qU 1� qHð Þ

N þ 1� pþ qU
: ð19Þ

The probability that the server is busy given by

X1
n¼1

P1ðnÞ þ
X1
n¼1

P2ðnÞ ¼
E Bp;N
� �

E Cp;N
� � ¼ kE½S� ¼ klS1

þ hklS2
: ð20Þ

The probability that the server is breakdown given by

X1
n¼1

Q 1ðnÞ þ
X1
n¼1

Q 2 nð Þ ¼
E Dp;N
� �

E Cp;N
� � ¼ ka1lS1

lR1
þ hka2lS2

lR2
: ð21Þ

For a start, we note that the long-run fraction of time the server
is busy when FES or SOS is provided, and can be represented as klS1

and hklS2
, respectively. Next, it is noticed that the long-run fraction

of time the server is broken down when the FES or SOS provided,
which can also be represented as klS1

a1lR1
and hklS2

a2lR2
,

respectively.

3.2. The expected number of customers in the system

Let Tc
N; T

c
Nþ1 and Tc

p;N denote the cumulative amount of time that
all customers spent in the system during a busy cycle for the N-,
(N + 1)- and hp,Ni-policies M/(G,G), (G,G), G/1 queue. Following
the results of Feinberg and Kim (1996), we can obtain:
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E Tc
N

� �
¼ LNE½CN�

¼ 1
k 1� qHð Þ

N N � 1ð Þ
2

þ NqU þ
k2E U2
� �
2

2
4

3
5

þ LH N þ qUð Þ
k 1� qHð Þ ; ð22Þ

where LH is given in Eq. (12).

It follows that:

E Tc
p;N

h i
¼ pE Tc

N

� �
þ 1� pð ÞE Tc

Nþ1

� �

¼ 1
k 1� qHð Þ

N N þ 1� 2pð Þ
2

þ N þ 1� pð ÞqU þ
k2E U2
� �
2

2
4

3
5

þ LH N þ 1� pþ qUð Þ
k 1� qHð Þ :

ð23Þ

Let Lp,N denote the expected number of customers in the hp,Ni-
policy M/(G,G), (G,G), G/1 queue. Applying the renewal-reward
theorem, it yields that:

Lp;N ¼
E Tc

p;N

h i
E Cp;N
� �

¼ 1
N þ 1� pþ qU

N N þ 1� 2pð Þ
2

þ N þ 1� pð ÞqU þ
k2E U2
h i
2

2
4

3
5

þ LH;

ð24Þ
where LH is given in Eq. (12).

Note that Lp,N is a convex combination of LN for an N-policy and
LN + 1 for an (N + 1)-policy. Thus, we have:

Lp;N ¼ HLN þ ð1�HÞLNþ1; ð25Þ

where H = p(N + qU)/(N + 1 � p + qU).
It is easy to demonstrate that Eq. (25) is identical Eq. (24). Addi-

tionally, Eq. (24) is in accordance with expression (3) of Wang et al.
(2007)if we set p = 1 and h = 0.

3.3. Some known steady-state probabilities

Applying a convex combination property, the probability PI(0)
for a hp,Ni-policy is a convex combination of the probability
PN

I ð0Þ for an N-policy and the PNþ1
I ð0Þ for an (N + 1)-policy, where

PN
I ð0Þ ¼ ð1� qHÞ=ðN þ qUÞ and PNþ1

I ð0Þ ¼ ð1� qHÞ=ðN þ 1þ qUÞ.
Thus, we have:

PIð0Þ ¼ HPN
I ð0Þ þ ð1�HÞPNþ1

I ð0Þ ¼ 1� qH

N þ 1� pþ qU
: ð26Þ

From Eq. (18) and the results of Wang et al. (2007), we have:

XN

n¼0

PIðnÞ ¼ NPIð0Þ þ PIðNÞ ¼
ðN þ 1� pÞð1� qHÞ

N þ 1� pþ qU
:

This gives:

PIðNÞ ¼
ð1� pÞð1� qHÞ
N þ 1� pþ qU

: ð27Þ
4. Improved maximum entropy results

Exact probability distributions of the hp,Ni-policy M/(G,G),
(G,G), G/1 queue have not been found. Therefore, we employ the
improved maximum entropy principle to estimate probability dis-
tributions of the number of customers given several known results.
In this section, we will develop the improved maximum entropy
solutions for the steady-state probabilities of the hp,Ni-policy M/
(G,G), (G,G), G/1 queue.

4.1. The improved maximum entropy model

In order to derive the approximate steady-state probabilities
PS(n), Pi(n) (i = 1,2), Qi(n) (i = 1,2), we formulate the maximum en-
tropy model in the following. Because that the exact results for
PI(0) and PI(N) are known, the improved entropy function Y of
the hp,Ni-policy M/(G,G), (G,G), G/1 queue can be formed as:

Y ¼ �
X1
n¼N

PSðnÞ ln PSðnÞ �
X1
n¼1

P1ðnÞ ln P1ðnÞ

�
X1
n¼1

P2ðnÞ ln P2ðnÞ �
X1
n¼1

Q 1ðnÞ ln Q 1ðnÞ

�
X1
n¼1

Q2ðnÞ ln Q 2ðnÞ: ð28Þ

The improved maximum entropy solutions for the hp,Ni-policy
M/(G,G), (G,G), G/1 queue are obtained by maximizing Eq. (28)
subject to the following six constraints, written as:

1. The probability that the server is startup:
X1
n¼N

PS nð Þ ¼ qU 1� qHð Þ
N þ 1� pþ qU

¼ PqU 1� qHð Þ; ð29Þ
where P = 1/(N + 1 � p + qU).

2. The probability that the server is busy of providing FES:
X1
n¼1

P1ðnÞ ¼ klS1
¼ q1: ð30Þ
3. The probability that the server is busy of providing SOS:
X1
n¼1

P2ðnÞ ¼ hklS2
¼ hq2: ð31Þ
4. The probability that the server is broken down when FES is
provided:
X1
n¼1

Q 1ðnÞ ¼ q1a1lR1
: ð32Þ
5. The probability that the server is broken down when SOS is
provided:
X1
n¼1

Q 2ðnÞ ¼ hq2a2lR2
: ð33Þ
6. The expected number of customers in the system when the ser-
ver is not idle:
X1
n¼N

nPS þ
X1
n¼1

nP1ðnÞ þ
X1
n¼1

nP2ðnÞ þ
X1
n¼1

nQ1ðnÞ

þ
X1
n¼1

nQ2ðnÞ ¼ Lp;N � LI; ð34Þ
where LI is the expected length of customers as the server is idle and
can be expressed as follows:
LI ¼
NðN � 1Þ

2
PIð0Þ þ NPIðNÞ

¼ NðN þ 1� 2pÞð1� qHÞ
2ðN þ 1� pþ qUÞ

: ð35Þ
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In Eqs. (29)–(34), Eq. (29) is multiplied by d1, Eq. (30) is multiplied
by d2, Eq. (31) is multiplied by d3, Eq. (32) is multiplied by d4, Eq.
(33) is multiplied by d5, Eq. (34) is multiplied by d6, Thus, the
Lagrangian function y is given by
y ¼ �
X1
n¼N

PSðnÞ ln PSðnÞ �
X1
n¼1

P1ðnÞ ln P1ðnÞ

�
X1
n¼1

P2ðnÞ ln P2ðnÞ �
X1
n¼1

Q 1ðnÞ ln Q 1ðnÞ

�
X1
n¼1

Q 2ðnÞ ln Q2ðnÞ � d1

X1
n¼N

PSðnÞ �PqUð1� qHÞ
" #

� d2

X1
n¼1

P1ðnÞ � q1

" #
� d3

X1
n¼1

P2ðnÞ � hq2

" #

� d4

X1
n¼1

Q 1ðnÞ � q1a1lR1

" #
� d5

X1
n¼1

Q2ðnÞ � hq2a2lR2

" #

� d6

X1
n¼N

nPSðnÞ þ
X1
n¼1

nP1ðnÞ þ
X1
n¼1

nP2ðnÞ þ
X1
n¼1

nQ1ðnÞ
"

þ
X1
n¼1

nQ2ðnÞ � Lp;N þ LI

#
; ð36Þ
where d1 � d6 are the Lagrangian multipliers corresponding to con-
strains (29)–(34), respectively.

4.2. The improved maximum entropy solutions

To find the improved maximum entropy solutions PS(n), Pi(n)
(i = 1,2) and Qi(n) (i = 1,2), maximizing in (28) subject to constrains
(29)–(34) is equivalent to maximizing (36). The improved maxi-
mum entropy solutions are obtained by taking the partial deriva-
tives of y with respect to PS(n), Pi(n)(i = 1,2), Qi(n) (i = 1,2) and
setting the results equal to zero, namely:

@y
@PSðnÞ

¼ � ln PSðnÞ � 1� d1 � d6n ¼ 0; n ¼ N;N þ 1; . . . ð37Þ

@y
@P1ðnÞ

¼ � ln P1ðnÞ � 1� d2 � d6n ¼ 0; n ¼ 1;2; . . . ð38Þ

@y
@P2ðnÞ

¼ � ln P2ðnÞ � 1� d3 � d6n ¼ 0; n ¼ 1;2; . . . ð39Þ

@y
@Q1ðnÞ

¼ � ln Q 1ðnÞ � 1� d4 � d6n ¼ 0; n ¼ 1;2; . . . ð40Þ

@y
@Q2ðnÞ

¼ � ln Q 2ðnÞ � 1� d5 � d6n ¼ 0; n ¼ 1;2; . . . : ð41Þ

It follows from Eqs. (37)–(41) that:

PSðnÞ ¼ e�ð1þd1Þe�d6n; n ¼ N;N þ 1; . . . ð42Þ
P1ðnÞ ¼ e�ð1þd2Þe�d6n; n ¼ 1;2; . . . ð43Þ
P2ðnÞ ¼ e�ð1þd3Þe�d6n; n ¼ 1;2; . . . ð44Þ
Q 1ðnÞ ¼ e�ð1þd4Þe�d6n; n ¼ 1;2; . . . ð45Þ
Q 2ðnÞ ¼ e�ð1þd5Þe�d6n; n ¼ 1;2; . . . : ð46Þ

Let xi ¼ e�ð1þdiÞ for 1 6 i 6 5, and x6 ¼ e�d6 . We transform Eqs.
(42)–(46) in terms of xi (1 6 i 6 6) given by

PSðnÞ ¼ x1xn
6; n ¼ N;N þ 1; . . . ð47Þ

P1ðnÞ ¼ x2xn
6; n ¼ 1;2; . . . ð48Þ

P2ðnÞ ¼ x3xn
6; n ¼ 1;2; . . . ð49Þ

Q 1ðnÞ ¼ x4xn
6; n ¼ 1;2; . . . ð50Þ

Q 2ðnÞ ¼ x5xn
6; n ¼ 1;2; . . . : ð51Þ

Substituting Eqs. (47)–(51) into Eqs. (29)–(33), respectively, yields:
x1 ¼
PqUð1� qHÞð1�x6Þ

xN
6

; ð52Þ

x2 ¼
q1ð1�x6Þ

x6
; ð53Þ

x3 ¼
hq2ð1�x6Þ

x6
; ð54Þ

x4 ¼
q1a1lR1

ð1�x6Þ
x6

; ð55Þ

x5 ¼
hq2a2lR2

ð1�x6Þ
x6

: ð56Þ

Substituting Eqs. (47)–(51) into Eq. (34) and taking the alge-
braic manipulations, we obtain:

x6 ¼ 1� PqU 1� qHð Þ þ qH

Lp;N �P 1� qHð Þ N Nþ1�2pð Þ
2 þ ðN � 1ÞqU

h i : ð57Þ

Substituting Eqs. (52)–(57) into Eqs. (47)–(51), respectively, we fi-
nally get:

PSðnÞ ¼ PqUð1� qHÞð1�x6Þxn�N
6 ; n ¼ N;N þ 1; . . . ð58Þ

P1ðnÞ ¼ q1ð1�x6Þxn�1
6 ; n ¼ 1;2; . . . ð59Þ

P2ðnÞ ¼ hq2ð1�x6Þxn�1
6 ; n ¼ 1;2; . . . ð60Þ

Q1ðnÞ ¼ q1a1lR1
ð1�x6Þxn�1

6 ; n ¼ 1;2; . . . ð61Þ

Q2ðnÞ ¼ hq2a2lR2
ð1�x6Þxn�1

6 ; n ¼ 1;2; . . . : ð62Þ
5. The exact and approximate expected waiting time in the
system

In this section, we first derive the exact expected waiting time
in the system by using Little’s formula. Through the maximum en-
tropy principle, the approximate formulae of the expected waiting
time in the system for the hp,Ni-policy M/(G,G), (G,G), G/1 queue is
developed.

5.1. The exact expected waiting time in the system

Let WS(N), WS(N + 1) and WS(p,N) denote the exact expected
waiting time in the system for the N-, (N + 1)- and hp,Ni-policies,
respectively. Using Eqs. (10) and (24) in Little’s formula, we see
that:

WSðNÞ ¼
LN

k
¼ 1

N þ qU

NðN � 1Þ
2k

þ NlU þ
kE½U2�

2

" #
þ LH

k
; ð63Þ

WSðNþ1Þ ¼ LN

k
¼ 1

Nþ1þqU

NðNþ1Þ
2k

þðNþ1ÞlU þ
kE½U2�

2

" #
þ LH

k
;

ð64Þ

WSðp;NÞ ¼
Lp;N

k
¼ 1

N þ 1� pþ qU

� N N þ 1� 2pð Þ
2k

þ ðN þ 1� pÞlU þ
kE½U2�

2

" #
þ LH

k
:

ð65Þ

From Feinberg and Kim (1996), we know that WS(p,N) is a convex
combination of WS(N) and WS(N + 1). It follows that:

WSðp;NÞ ¼
pðN þ qUÞ

N þ 1� pþ qU
WSðNÞ

þ 1� pðN þ qUÞ
N þ 1� pþ qU

� �
WSðN þ 1Þ: ð66Þ
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Substituting Eqs. (63) and (64) into Eq. (66), we have the same re-
sult shown in Eq. (65). Thus, we demonstrate that the relationships
given by Eqs. (65) and (66) are seen to hold.

5.2. The approximate expected waiting time in the system

The idle state, the startup state, the busy state, and the repair
state are defined as follows:

(1) Idle state 1 denoted by I1: the server is turned off, and the
number of customers waiting in the system is less than or
equal to N � 1.

(2) Idle state 2 denoted by I2: the server is turned off, and the
number of customers waiting in the system is equal toN.

(3) Startup state denoted by U: the server begins startup, and
the number of customers waiting in the system is greater
than or equal to N.

(4) Busy state when FES is provided denoted by B1: the server is
busy and provides FES to a customer.

(5) Busy state when SOS is provided denoted by B2: the server is
busy and provides SOS to a customer.

(6) Repair state when FES is provided denoted by R1: the server
is broken down when FES is provided and being repaired.

(7) Repair state when SOS is provided denoted by R2: the
server is broken down when SOS is provided and being
repaired.

We wish to find the expected waiting time of an arbitrary cus-
tomer C at the state I1, I2, U, B1, B2, R1 and R2. Suppose an arbitrary
customer C finds n customers waiting in the queue for service in
front of him, while the system is at any one of the states I1, I2, U,
B1, B2, R1 and R2 are described, respectively, as follows:

(1) In idle state I1: Note that the idle state immediately is
switched to startup state after an arbitrary customer C
arrives and n customers in front of him are waiting for ser-
vice. The server will begin startup after (N � n � 1) custom-
ers arrive with probability p or after (N � n) customers arrive
with probability (1 � p) in the system. Thus customer C will
be served until (N � n � 1) customers arrive with probability
p or (N � n) customers arrive with probability (1 � p), and n
customers in front of him are waiting for service. Hence, cus-
tomer C must wait (i) the mean residual idle time, (ii) the
service time of n customers in the system and (iii) the
startup time before providing FES. From the inferences of
(i)–(iii), the expected waiting time of customer C at the idle
state I1 is
ðN � n� 1Þp
k

þ ðN � nÞð1� pÞ
k

þ lU þ nE½S�

¼ N � n� p
k

þ lU þ nE S½ �:
(2) In idle state I2: The server will begin startup when there are
N customers present in the system. Thus customer C will be
served when no customers in front of him waiting for ser-
vice. The expected waiting time of customer C at the idle
state I2 is lU + NE[S].

(3) In startup state U: We derive the expected waiting time of
customer C at the startup state in the following. Let us
define:
Ur(t) � remaining startup time for the server begin startup.
Following Borthakur et al. (1987), the cumulative distribu-
tion function (c.d.f.) of Ur(t) is given by
FUr ðtÞ ¼ PrfUrðtÞ 6 tg ¼ 1
lU

Z t

0
½1� DðxÞ�dx;
where D(x) is the c.d.f. of startup time. Let E[Ur] be the mean
remaining startup time. It implies that E[Ur] = E[U2]/2lU. Thus we
obtain the expected waiting time of customer C at the startup state
is nE[S] + E[U2]/2lU.

(4) In busy states B1 and B2: Since the server is busy and keeps
working, the customer C only waits n customers who
demand the server in front of him. The expected waiting
time at the busy states B1 and B2 are nE[S], respectively.

(5) In repair states R1 and R2: According to the same argument
as (3), we have the expected waiting time of an arbitrary
customer C at the repair states R1 and R2 are nE½S�þ
E R2

1

h i
=2lR1

and nE½S� þ E R2
2

h i
=2lR2

, respectively.

Utilizing the listed above results, we obtain the approximate ex-
pected waiting time in the queue, W�

qðp;NÞ, given by

W�
qðp;NÞ ¼

XN�1

n¼0

N � n� p
k

þ lU þ nE½S�
	 


PIð0Þ

þ ðlU þ NE½S�ÞPIðNÞ þ
X1
n¼N

nE½S� þ E½U2�
2lU

 !
PSðnÞ

þ
X1
n¼1

ðnE½S�ÞP1ðnÞ þ
X1
n¼1

ðnE½S�ÞP2ðnÞ

þ
X1
n¼1

nE½S� þ E R2
1

h i
=2lR1

� �
Q 1ðnÞ

þ
X1
n¼1

nE½S� þ E R2
2

h i
=2lR2

� �
Q 2ðnÞ: ð67Þ

Substituting Eqs. (26), (27), ()()()()()(58)–(62) into Expression (66),
the approximate expected waiting in the queue is given by

W�
q p;Nð Þ ¼ N N þ 1� 2pð Þ 1� qHð Þ

2k N þ 1� pþ qUð Þ

þ
2lU N þ 1� pð Þ þ kE U2

h i� �
1� qHð Þ

2 N þ 1� pþ qUð Þ

þ qWS p;Nð Þ þ
E R2

1

h i
q1a1

2
þ

hE R2
2

h i
q2a2

2
; ð68Þ

where the derivation of Eq. (68) is shown in Appendix. Conse-
quently, we again use Little’s formula to obtain the approximate ex-
pected waiting time in the system as follows:

W�
S p;Nð Þ ¼ N N þ 1� 2pð Þ 1� qHð Þ

2k N þ 1� pþ qUð Þ

þ
2lU N þ 1� pð Þ þ kE U2

h i� �
1� qHð Þ

2 N þ 1� pþ qUð Þ

þ qWS p;Nð Þ þ
E R2

1

h i
q1a1

2
þ

hE R2
2

h i
q2a2

2
þ E H½ �: ð69Þ
6. Comparative analysis between exact and approximate results

This section aims to examine the accuracy of the approximate
results based on the improved maximum entropy principle. We
provide numerical comparisons between the exact results and
the approximate results, including various service time, startup
time and repair time distribution functions. There are three sub-
sections in the following:

(1) Comparative analysis for the hp,Ni-policy M/(M,E2),
(M,D),M/1 queue.
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(2) Comparative analysis for the hp,Ni-policy M/(M,D), (E2,E3),D/
1 queue.

(3) Comparative analysis for the hp,Ni-policy M/(E2,M),
(D,E4),E3/1 queue.
Here, M is an exponential distribution, D is a deterministic
distribution and Ek is a k-stage Erlang distribution.
Table 1
The relative error percentage for the hp, Ni-policy M/(M, E2), (M,D), M/1 queue
(k = 0.5,l1 = 1.0,l2 = 2.0,c = 3.0,a1 = 0.05,a2 = 0.10,b1 = 3.0,b2 = 4.0,h = 0.4).

N p

0.01 0.1 0.3 0.5 0.7 0.9 0.99

2 0.584 0.604 0.656 0.720 0.800 0.904 0.961
4 0.122 0.134 0.165 0.200 0.240 0.288 0.312
6 0.141 0.133 0.114 0.092 0.068 0.042 0.029
8 0.311 0.305 0.292 0.277 0.261 0.244 0.236
10 0.428 0.424 0.414 0.404 0.393 0.381 0.375
12 0.515 0.512 0.504 0.497 0.488 0.480 0.476
14 0.581 0.579 0.573 0.567 0.561 0.554 0.551
16 0.634 0.632 0.627 0.622 0.617 0.612 0.610
18 0.676 0.675 0.671 0.667 0.663 0.659 0.657
20 0.712 0.710 0.707 0.704 0.700 0.697 0.695

Table 2
Comparison of exact WS(p,N) and approximate W�

S for the hp,Ni-policy M/(M,E2), (M,D), M

WS(p,N) W�
Sðp;NÞ

P = 0.2 P = 0.5 P = 0.8 P = 0.2

k Case 1: (l1,l2) = (1.0,2.0), (a1, a2) = (0.05,0.10), (b1,b2) = (3.0,4.0
0.1 40.650 39.206 37.658 40.579
0.2 21.305 20.583 19.809 21.247
0.4 12.220 11.859 11.473 12.183
0.6 10.907 10.667 10.410 10.869
0.8 53.133 52.953 52.761 52.349

(l1,l2) Case 2: k = 0.5, (a1,a2) = (0.05,0.10), (b1,b2) = (3.0,4.0), c = 3.0, h
(0.8,1.0) 17.393 17.105 16.796 17.312
(1.0,1.0) 12.524 12.236 11.927 12.492
(1.0,2.0) 10.933 10.645 10.336 10.900
(1.0,3.0) 10.593 10.305 9.996 10.548
(1.5,3.0) 9.319 9.031 8.722 9.290
(2.0,3.0) 8.921 8.633 8.324 8.896

(a1,a2) Case 3: k = 0.5, (l1,l2) = (1.0,2.0), (b1,b2) = (3.0,4.0), c = 3.0, h = 0
(0.05,0.10) 10.933 10.645 10.336 10.900
(0.05,0.20) 10.961 10.673 10.364 10.903
(0.10,0.05) 11.029 10.740 10.432 10.918
(0.10,0.20) 11.073 10.785 10.476 10.922
(0.20,0.05) 11.264 10.976 10.667 10.964
(0.20,0.10) 11.280 10.992 10.683 10.967

(b1,b2) Case 4: k = 0.5, (l1,l2) = (1.0,2.0), (a1,a2) = (0.05,0.10), c = 3.0, h
(3.0,2.0) 10.963 10.675 10.366 10.904
(3.0,4.0) 10.933 10.645 10.336 10.900
(3.0,6.0) 10.923 10.635 10.326 10.899
(6.0,2.0) 10.907 10.619 10.310 10.894
(6.0,4.0) 10.877 10.589 10.280 10.890
(6.0,6.0) 10.868 10.580 10.271 10.889

c Case 5: k = 0.5, (l1,l2) = (1.0,2.0), (a1,a2) = (0.05,0.10), b1,b2 = (3
2.0 11.029 10.741 10.433 10.995
3.0 10.933 10.645 10.336 10.900
4.0 10.885 10.597 10.288 10.853
5.0 10.857 10.568 10.259 10.825
6.0 10.838 10.550 10.240 10.807

h Case 6: k = 0.5, (l1,l2) = (1.0,2.0), (a1,a2) = (0.05,0.10), b1, b2 = (
0.2 10.469 10.180 9.871 10.406
0.4 10.933 10.645 10.334 10.900
0.6 11.507 11.219 10.910 11.512
0.8 12.249 11.961 11.652 12.300
1.0 13.271 12.983 12.674 13.371
6.1. Comparative analysis for the hp,Ni-policy M/(M,E2), (M,D),M/1
queue

We perform a comparative analysis between the exact WS(p,N)
and the approximate W�

Sðp;NÞ for the hp,Ni-policy M/(M,E2),
(M,D),M/1 queue. For this queueing system, we have:
/1 queue (N = 8).

RE(%)

P = 0.5 P = 0.8 P = 0.2 P = 0.5 P = 0.8

), c = 3.0, h = 0.4
39.138 37.593 0.174 0.173 0.171
20.528 19.758 0.272 0.267 0.260
11.825 11.442 0.305 0.288 0.268
10.632 10.378 0.356 0.335 0.311
52.173 51.983 1.475 1.474 1.473

= 0.4
17.028 16.724 0.467 0.449 0.428
12.208 11.903 0.256 0.231 0.203
10.615 10.309 0.298 0.277 0.253
10.263 9.957 0.421 0.405 0.387

9.004 8.697 0.313 0.300 0.285
8.609 8.302 0.286 0.276 0.264

.4
10.615 10.309 0.298 0.277 0.253
10.618 10.313 0.535 0.514 0.489
10.635 10.331 1.006 0.985 0.961
10.640 10.338 1.361 1.340 1.315
10.686 10.388 2.659 2.638 2.614
10.689 10.391 2.777 2.756 2.732

= 0.4
10.620 10.315 0.536 0.514 0.490
10.615 10.309 0.298 0.277 0.253
10.614 10.308 0.219 0.198 0.174
10.608 10.302 0.123 0.101 0.077
10.604 10.297 0.114 0.136 0.160
10.603 10.295 0.193 0.215 0.239

.0,4.0), h = 0.4
10.710 10.405 0.305 0.284 0.261
10.615 10.309 0.298 0.277 0.253
10.568 10.262 0.295 0.273 0.249
10.540 10.234 0.293 0.271 0.247
10.521 10.215 0.291 0.270 0.245

3.0,4.0), c = 3.0
10.120 9.814 0.599 0.588 0.577
10.615 10.309 0.298 0.277 0.253
11.228 10.922 0.047 0.080 0.116
12.015 11.711 0.411 0.453 0.500
13.087 12.782 0.752 0.801 0.856

Table 3
The relative error percentage for the hp, Ni-policy M/(M, D), (E2,E3), D/1 queue
(k = 0.5,l1 = 1.0,l2 = 2.0,c = 3.0,a1 = 0.05,a2 = 0.10,b1 = 3.0,b2 = 4.0,h = 0.4).

N p

0.01 0.1 0.3 0.5 0.7 0.9 0.99

2 0.855 0.879 0.941 1.016 1.110 1.233 1.302
4 0.314 0.329 0.364 0.405 0.453 0.508 0.536
6 0.007 0.017 0.040 0.065 0.092 0.124 0.139
8 0.189 0.183 0.167 0.150 0.132 0.112 0.103
10 0.326 0.321 0.310 0.298 0.285 0.271 0.265
12 0.426 0.423 0.414 0.405 0.396 0.385 0.381
14 0.503 0.500 0.494 0.487 0.479 0.472 0.468
16 0.564 0.562 0.556 0.551 0.545 0.539 0.536
18 0.613 0.611 0.607 0.603 0.598 0.593 0.590
20 0.654 0.653 0.649 0.645 0.641 0.637 0.635



Table 5
The relative error percentage for the hp, Ni-policy M/(E2,M), (D, E4), E3/1 queue
(k = 0.5,l1 = 1.0,l2 = 2.0,c = 3.0,a1 = 0.05,a2 = 0.10,b1 = 3.0,b2 = 4.0,h = 0.4).

N p

0.01 0.1 0.3 0.5 0.7 0.9 0.99

2 3.088 3.142 3.281 3.452 3.669 3.953 4.111
4 1.878 1.910 1.989 2.080 2.185 2.308 2.370
6 1.209 1.229 1.279 1.333 1.393 1.461 1.495
8 0.786 0.800 0.833 0.869 0.908 0.951 0.972
10 0.494 0.504 0.528 0.554 0.581 0.611 0.625
12 0.281 0.289 0.307 0.326 0.346 0.368 0.378
14 0.119 0.125 0.139 0.154 0.169 0.186 0.193
16 0.009 0.004 0.007 0.019 0.031 0.044 0.050
18 0.112 0.108 0.099 0.090 0.080 0.069 0.064
20 0.197 0.194 0.186 0.178 0.170 0.162 0.158
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E½S1� ¼
1
l1
; E S2

1

h i
¼ 2

l2
1

; E½S2� ¼
1
l2
; E S2

2

h i
¼ 3

2l2
2

;

E½R1� ¼
1
b1
; E R2

1

h i
¼ 2

b2
1

; E½R2� ¼
1
b2
; E R2

2

h i
¼ 1

b2
2

;

E½U� ¼ 1
c
; E½U2� ¼ 2

c2 :

Firstly, we fix k = 0.5, l1 = 1.0, l2 = 2.0, a1 = 0.05, a2 = 0.10, b1 = 3.0,
b2 = 4.0, c = 3.0, h = 0.4, and choose various values of (p,N). The
accuracy of the approximate values is assessed by the relative error:

RE ¼ WSðp;NÞ �W�
Sðp;NÞ

WSðp;NÞ

����
����� 100%:

The relative error percentage for the hp,Ni-policy M/(M,E2),
(M,D),M/1 queue under various values p and N are shown in Table
1. We observe from Table 1 that (i) for fix p, the relative error per-
centage decreases when N ranges from 2 to 6 and increases when N
ranges from 8 to 20; (ii) if N is from 2 to 4 and fixed it, the relative
error percentage increases in p; (iii) if N is from 6 to 20 and fixed it,
the relative error percentage decreases in p; (iii) the relative error
percentage in Table 1 is below 1%.

Next, we set N = 8 and consider the different values p = 0.2, 0.5
and 0.8. Choosing the various values of k, (l1,l2), (a1,a2), (b1,b2), c
and h. The numerical results are obtained by considering the fol-
lowing six cases:
Table 4
Comparison of exact WS(p,N) and approximate W�

Sðp;NÞ for the hp,Ni-policy M/(M, D), (E2,

WS(p,N) W�
Sðp;NÞ

P = 0.2 P = 0.5 P = 0.8 P = 0.2

k Case 1: (l1,l2) = (1.0,2.0), (a1a2) = (0.05,0.10), (b1,b2) = (3.0,4.0
0.1 40.646 39.202 37.654 40.578
0.2 21.296 20.575 19.801 21.243
0.4 12.196 11.835 11.449 12.169
0.6 10.842 10.602 10.344 10.820
0.8 52.160 51.979 51.787 51.414

(l1,l2) Case 2: k = 0.5, (a1,a2) = (0.05,0.10), (b1b2) = (3.0,4.0), c = 3.0, h =
(0.8,1.0) 17.056 16.768 16.459 17.033
(1.0,1.0) 12.336 12.048 11.739 12.359
(1.0,2.0) 10.894 10.606 10.297 10.875
(1.0,3.0) 10.574 10.286 9.977 10.536
(1.5,3.0) 9.306 9.017 8.708 9.282
(2.0,3.0) 8.909 8.621 8.312 8.890

(a1,a2) Case 3: k = 0.5, (l1,l2) = (1.0,2.0), (b1,b2) = (3.0,4.0), c = 3.0, h = 0
(0.05,0.10) 10.894 10.606 10.297 10.875
(0.05,0.20) 10.921 10.633 10.324 10.877
(0.10,0.05) 10.989 10.700 10.391 10.891
(0.10,0.20) 11.030 10.742 10.433 10.894
(0.20,0.05) 11.218 10.930 10.621 10.933
(0.20,0.10) 11.233 10.945 10.636 10.935

(b1,b2) Case 4: k = 0.5, (l1,l2) = (1.0,2.0), (a1,a2) = (0.05,0.10), c = 3.0, h
(3.0,2.0) 10.923 10.635 10.326 10.879
(3.0,4.0) 10.894 10.606 10.297 10.875
(3.0,6.0) 10.885 10.597 10.288 10.875
(6.0,2.0) 10.869 10.581 10.272 10.870
(6.0,4.0) 10.841 10.552 10.243 10.867
(6.0,6.0) 10.832 10.544 10.235 10.866

c Case 5: k = 0.5, (l1,l2) = (1.0,2.0), (a1,a2) = (0.05,0.10), (b1,b2) =
2.0 10.987 10.698 10.390 10.967
3.0 10.894 10.606 10.297 10.875
4.0 10.848 10.560 10.251 10.830
5.0 10.821 10.532 10.223 10.802
6.0 10.802 10.514 10.204 10.784

h Case 6: k = 0.5, (l1,l2) = (1.0,2.0), (a1,a2) = (0.05,0.10), (b1,b2) =
0.2 10.449 10.161 9.852 10.393
0.4 10.894 10.606 10.297 10.875
0.6 11.444 11.155 10.846 11.470
0.8 12.153 11.865 11.556 12.231
1.0 13.126 12.838 12.529 13.261
Case 1: We fix (l1,l2) = (1.0,2.0), (a1,a2) = (0.05,0.10),
(b1,b2) = (3.0,4.0), c = 3.0, h = 0.4 and vary k from 0.1
to 0.8.

Case 2: We fix k = 0.5, (a1,a2) = (0.05,0.10), (b1,b2) = (3.0,4.0),
c = 3.0, h = 0.4 and consider various values of (l1,l2) =
(0.8,1.0), (1.0,1.0), (1.0,2.0), (1.0,3.0), (1.5,3.0),
(2.0,3.0).
E3),D/1 queue (N = 8).

RE(%)

P = 0.5 P = 0.8 P = 0.2 P = 0.5 P = 0.8

), c = 3.0, h = 0.4
39.137 37.592 0.168 0.166 0.164
19.755 19.755 0.247 0.241 0.233
11.182 11.429 0.218 0.198 0.175
10.583 10.329 0.205 0.180 0.152
51.237 51.047 1.430 1.429 1.428

0.4
16.749 16.445 0.137 0.113 0.086
12.075 11.770 0.186 0.222 0.263
10.590 10.284 0.175 0.150 0.122
10.250 9.944 0.365 0.347 0.327

8.996 8.689 0.250 0.234 0.217
8.603 8.296 0.220 0.207 0.194

.4
10.590 10.284 0.175 0.150 0.122
10.592 10.287 0.406 0.381 0.353
10.608 10.305 0.886 0.862 0.834
10.612 10.310 1.233 1.208 1.180
10.655 10.356 2.541 2.517 2.490
10.657 10.359 2.657 2.632 2.605

= 0.4
10.594 10.290 0.407 0.381 0.353
10.590 10.284 0.175 0.150 0.122
10.589 10.283 0.098 0.073 0.046
10.584 10.278 0.007 0.032 0.060
10.580 10.273 0.238 0.263 0.291
10.579 10.272 0.315 0.340 0.368

(3.0,4.0), h = 0.4
10.682 10.376 0.183 0.158 0.131
10.590 10.284 0.175 0.150 0.122
10.544 10.238 0.171 0.146 0.118
10.517 10.211 0.169 0.144 0.115
10.499 10.192 0.167 0.142 0.114

(3.0,4.0), c = 3.0
10.108 9.801 0.535 0.523 0.509
10.590 10.284 0.175 0.150 0.122
11.185 10.880 0.226 0.264 0.305
11.946 11.642 0.641 0.689 0.743
12.977 12.672 1.027 1.082 1.145
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Case 3: We fix k = 0.5, (l1,l2) = (1.0,2.0), (b1,b2) = (3.0,4.0),
c = 3.0, h = 0.4 and consider various values of (a1,a2) =
(0.05,0.10), (0.05,0.20), (0.10,0.05), (0.10,0.20), (0.20,
0.05), (0.20,0.10).

Case 4: We fix k = 0.5, (l1,l2) = (1.0,2.0), (a1,a2) = (0.05,0.10),
c = 3.0, h = 0.4 and consider various values of (b1,b2) =
(3.0,2.0), (3.0,4.0), (3.0,6.0), (6.0,2.0), (6.0,4.0), (6.0,
6.0).

Case 5: We fix k = 0.5, (l1,l2) = (1.0,2.0), (a1,a2) = (0.05,0.10),
(b1,b2)=(3.0,4.0), h = 0.4 and vary c from 2.0 to 6.0.

Case 6: We fix k = 0.5, (l1,l2) = (1.0,2.0), (a1,a2) = (0.05,
0.10), (b1,b2)=(3.0,4.0), c = 3.0 and vary h from 0.2 to
1.0.
Numerical results of the hp,Ni-policy M/(M,E2), (M,D),
M/1 queue are shown in Table 2. It can be found
that the approximations are good because that the
relative error percentages are very small (0–2.8%).

6.2. Comparative analysis for the hp,Ni-policy M/(M,D), (E2,E3), D/1
queue

We perform a comparative analysis between the exact WS(p,N)
and the approximate W�

Sðp;NÞ for the hp,Ni-policy M/(M,D), (E2,E3),
D/1 queue. For this queueing system, we have:
Table 6
Comparison of exact WS(p,N) and approximate W�

Sðp;NÞ for the hp,Ni-policy M/(E2,M), (D,

WS(p,N) W�
Sðp;NÞ

P = 0.2 P = 0.5 P = 0.8 P = 0.2

k Case 1: (l1,l2) = (1.0,2.0), (a1,a2) = (0.05,0.10), (b1,b2) = (3.0,4.0
0.1 40.622 39.179 37.630 40.575
0.2 21.242 20.520 19.746 21.230
0.4 12.035 11.674 11.288 12.092
0.6 10.377 10.137 9.880 10.485
0.8 44.844 44.664 44.471 44.390

(l1,l2) Case 2: k = 0.5, (a1,a2) = (0.05,0.10), (b1,b2) = (3.0,4.0), c = 3.0, h
(0.8,1.0) 16.445 16.157 15.848 16.528
(1.0,1.0) 12.251 11.962 11.653 12.299
(1.0,2.0) 10.629 10.341 10.032 10.716
(1.0,3.0) 10.296 10.008 9.699 10.378
(1.5,3.0) 9.229 8.940 8.631 9.252
(2.0,3.0) 8.8792 8.591 8.282 8.881

(a1,a2) Case 3: k = 0.5, (l1,l2) = (1.0,2.0), (b1,b2) = (3.0,4.0), c = 3.0, h = 0
(0.05,0.10) 10.629 10.341 10.032 10.716
(0.05,0.20) 10.657 10.369 10.060 10.718
(0.10,0.05) 10.704 10.415 10.106 10.719
(0.10,0.20) 10.748 10.459 10.150 10.724
(0.20,0.05) 10.892 10.604 10.295 10.735
(0.20,0.10) 10.908 10.620 10.311 10.737

(b1,b2) Case 4: k = 0.5, (l1,l2) = (1.0,2.0), (a1,a2) = (0.05,0.10), c = 3.0, h
(3.0,2.0) 10.659 10.371 10.062 10.720
(3.0,4.0) 10.629 10.341 10.032 10.716
(3.0,6.0) 10.620 10.331 10.022 10.715
(6.0,2.0) 10.615 10.327 10.018 10.717
(6.0,4.0) 10.585 10.297 9.988 10.713
(6.0,6.0) 10.576 10.287 9.978 10.713

c Case 5: k = 0.5, (l1,l2) = (1.0,2.0), (a1,a2) = (0.05,0.10), b1, b2 = (
2.0 10.723 10.435 10.126 10.808
3.0 10.629 10.341 10.032 10.716
4.0 10.582 10.294 9.985 10.670
5.0 10.555 10.266 9.957 10.642
6.0 10.536 10.247 9.938 10.624

h Case 6: k = 0.5, (l1,l2) = (1.0,2.0), (a1,a2) = (0.05,0.10), b1, b2 = (
0.2 10.185 9.897 9.588 10.248
0.4 10.629 10.341 10.032 10.716
0.6 11.177 10.889 10.580 11.296
0.8 11.884 11.596 11.287 12.042
1.0 12.854 12.566 12.257 13.057
E½S1� ¼
1
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; E S2
1

h i
¼ 2

l2
1

; E½S2� ¼
1
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; E S2
2
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¼ 1
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2
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1
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1
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1

; E½R2� ¼
1
b2
; E R2

2

h i
¼ 4

3b2
2

;

E½U� ¼ 1
c
; E½U2� ¼ 1

c2 :

The relative error percentage for the hp,Ni-policy M/(M,D),
(E2,E3),D/1 queue under various values p and N are shown in Table
3. It reveals that (i) for fix p, the relative error percentage decreases
when N ranges from 2 to 6 and increases when N ranges from 8 to
20; (ii) if N is from 2 to 6 and fixed it, the relative error percentage
increases in p; (iii) if N is from 8 to 20 and fixed it, the relative error
percentage decreases in p; (iv) the relative error percentage in Ta-
ble 3 is below 1.4%.

Numerical results of the hp,Ni-policy M/(M,D), (E2,E3),D/1
queue summarized in Table 4 for the above six cases. Table 4 indi-
cates that the relative error percentages are very small (0–2.7%).

6.3. Comparative analysis for the hp,Ni-policy M/(E2,M), (D,E4),E3/1
queue

We perform a comparative analysis between the exact WS(p,N)
and the approximate W�

Sðp;NÞ for the hp,Ni-policy M/(E2,M), (D,E4),
E3/1 queue. For this queueing system, we have:
E4), E3/1 queue (N = 8).

RE(%)

P = 0.5 P = 0.8 P = 0.2 P = 0.5 P = 0.8

), c = 3.0, h = 0.4
39.134 37.589 0.117 0.114 0.109
20.512 19.742 0.053 0.040 0.024
11.734 11.351 0.475 0.517 0.564
10.248 9.994 1.035 1.090 1.152
44.213 44.024 1.013 1.010 1.007

= 0.4
16.244 15.940 0.503 0.540 0.581
12.014 11.709 0.393 0.435 0.482
10.431 10.125 0.816 0.869 0.929
10.092 9.787 0.794 0.845 0.904

8.966 8.659 0.250 0.281 0.317
8.594 8.287 0.014 0.034 0.057

.4
10.431 10.125 0.816 0.869 0.929
10.434 10.129 0.570 0.623 0.683
10.436 10.133 0.145 0.199 0.260
10.422 10.139 0.223 0.169 0.109
10.457 10.159 1.443 1.389 1.327
10.459 10.161 1.566 1.511 1.449

= 0.4
10.436 10.131 0.570 0.623 0.683
10.431 10.125 0.816 0.869 0.929
10.429 10.124 0.898 0.951 1.011
10.432 10.126 0.966 1.019 1.079
10.427 10.120 1.213 1.265 1.325
10.426 10.119 1.295 1.347 1.407

3.0,4.0), h = 0.4
10.523 10.218 0.800 0.852 0.910
10.431 10.125 0.816 0.869 0.929
10.384 10.079 0.824 0.878 0.939
10.357 10.051 0.829 0.883 0.944
10.338 10.032 0.833 0.887 0.948

3.0,4.0), c = 3.0
9.962 9.656 0.615 0.661 0.714

10.431 10.125 0.816 0.869 0.929
11.011 10.706 1.064 1.124 1.192
11.758 11.453 1.331 1.397 1.472
12.772 12.468 1.574 1.643 1.721
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The relative error percentage for the hp,Ni-policy M/(E2,M),
(D,E4),E3/1 queue under various values p and N are shown in Table
5. One can easily see that (i) for fix p, the relative error percentage
decreases when N ranges from 2 to 16 and increases when N ranges
from 18 to 20; (ii) if N is from 2 to 16 and fixed it, the relative error
percentage increases in p; (iii) if N is from 18 to 20 and fixed it, the
relative error percentage decreases in p; (iv) the relative error per-
centage in Table 5 is below 4.2 %.

Numerical results of the hp,Ni-policy M/(E2,M), (D,E4),E3/1
queue summarized in Table 6 for the above six cases. Again, it
shows that the relative error percentages are very small (0–1.8%).

7. Conclusion

In this paper, we developed some important system perfor-
mance measures for the hp,Ni-policy M/(G,G), (G,G), G/1 queue.
An elegant approach, the maximum entropy principle, is used to
derive the approximate formulae for the steady-state probability
distributions of the queue length. Our numerical investigations
show that it is feasible to use the probability of various server
states and the expected number of customers in the system when
the server is not idle. The numerical results also indicate that the
relative error percentages are very small (below 4.2%). As expected,
it is sufficiently accuracy to obtain the approximate estimations.
Finally, based on the improved maximum entropy principle, we
demonstrate that the hp,Ni-policy M/(G,G), (G,G), G/1 queue is
really robust to the variations of service time distribution, repair
time distribution and startup time distribution functions. Conse-
quently, this improved maximum entropy method is a useful ana-
lytic tool for approximating the solution of complex queueing
systems.
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